CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 73 results for author: <span class="mathjax">Zhang, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhang%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17020">arXiv:2412.17020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17020">pdf</a>, <a href="https://arxiv.org/format/2412.17020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Optical evidence of the band reconstruction during the charge-density wave transition in annealed Kagome magnet FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">A. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X+-">X. -L. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A+-">A. -F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y+-">Y. -M. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z+-">Z. -X. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17020v1-abstract-short" style="display: inline;"> In Kagome magnet FeGe, the coexistence of electron correlation, charge-density wave (CDW), and magnetism renders it ideal to study their interactions. Here, we combined the optical spectroscopy and the first-principles calculations to investigate the band structures of FeGe annealed at different temperatures. Our observations reveal that the sample annealed at 320C experienced dramatic change in o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17020v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17020v1-abstract-full" style="display: none;"> In Kagome magnet FeGe, the coexistence of electron correlation, charge-density wave (CDW), and magnetism renders it ideal to study their interactions. Here, we combined the optical spectroscopy and the first-principles calculations to investigate the band structures of FeGe annealed at different temperatures. Our observations reveal that the sample annealed at 320C experienced dramatic change in optical conductivity following the CDW transition. Specifically, a substantial portion of the spectral weight (SW) in the low-energy region ( &lt; 0.4 eV) was redistributed to the high-energy region (0.8 - 1.5 eV), suggesting a reconstruction of the band structure. The sample annealed at 560 C did not exhibit a CDW transition, but its SW transfer occurred progressively from 300 to 5 K. We noticed that: i) after the CDW transition, the sample annealed at 320 C showed similar tendency of SW transfer to that of the 560 C annealed sample; ii) the high-energy SW of both materials displayed a temperature dependence consistent with the magnetic roperties. Combining the first-principles calculations, we attribute the SW transfer to the band reconstruction triggered by the distortion of Ge1 atoms induced either by annealing at 560C or by the CDW transitions. This lattice distortion affects the energies of Fe 3d orbitals. Under the influence of Hund&#39;s rule coupling, the magnetic moment of Fe atoms is enhanced. Our findings elucidate the interactions among charge, lattice, and spin in FeGe, offering pivotal insights to modulate properties of this Kagome magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17020v1-abstract-full').style.display = 'none'; document.getElementById('2412.17020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13012">arXiv:2412.13012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13012">pdf</a>, <a href="https://arxiv.org/format/2412.13012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Based Superconductivity: Prediction and Experimental Tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kaplan%2C+D">Daniel Kaplan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Adam Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blawat%2C+J">Joanna Blawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudovenko%2C+V">Viktor Oudovenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotliar%2C+G">Gabriel Kotliar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sengupta%2C+A+M">Anirvan M. Sengupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13012v1-abstract-short" style="display: inline;"> The discovery of novel superconducting materials is a longstanding challenge in materials science, with a wealth of potential for applications in energy, transportation, and computing. Recent advances in artificial intelligence (AI) have enabled expediting the search for new materials by efficiently utilizing vast materials databases. In this study, we developed an approach based on deep learning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13012v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13012v1-abstract-full" style="display: none;"> The discovery of novel superconducting materials is a longstanding challenge in materials science, with a wealth of potential for applications in energy, transportation, and computing. Recent advances in artificial intelligence (AI) have enabled expediting the search for new materials by efficiently utilizing vast materials databases. In this study, we developed an approach based on deep learning (DL) to predict new superconducting materials. We have synthesized a compound derived from our DL network and confirmed its superconducting properties in agreement with our prediction. Our approach is also compared to previous work based on random forests (RFs). In particular, RFs require knowledge of the chem-ical properties of the compound, while our neural net inputs depend solely on the chemical composition. With the help of hints from our network, we discover a new ternary compound $\textrm{Mo}_{20}\textrm{Re}_{6}\textrm{Si}_{4}$, which becomes superconducting below 5.4 K. We further discuss the existing limitations and challenges associated with using AI to predict and, along with potential future research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13012v1-abstract-full').style.display = 'none'; document.getElementById('2412.13012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages + 2 appendices + references. EPJ submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18522">arXiv:2410.18522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18522">pdf</a>, <a href="https://arxiv.org/format/2410.18522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043061">10.1103/PhysRevResearch.6.043061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystalline electric field excitations and their nonlinear splitting under magnetic fields in YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">Xijing Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18522v2-abstract-short" style="display: inline;"> Recently reported van der Waals layered honeycomb rare-earth chalcohalides REChX (RE = rare earth, Ch = chalcogen, and X = halogen) are considered to be promising Kitaev spin liquid (KSL) candidates. The high-quality single crystals of YbOCl, a representative member of the family with an effective spin of 1/2, are available now. The crystalline electric field (CEF) excitations in a rare-earth spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18522v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18522v2-abstract-full" style="display: none;"> Recently reported van der Waals layered honeycomb rare-earth chalcohalides REChX (RE = rare earth, Ch = chalcogen, and X = halogen) are considered to be promising Kitaev spin liquid (KSL) candidates. The high-quality single crystals of YbOCl, a representative member of the family with an effective spin of 1/2, are available now. The crystalline electric field (CEF) excitations in a rare-earth spin system are fundamentally important for understanding both finite-temperature and ground-state magnetism, but remain unexplored in YbOCl so far. In this paper, we conduct a comprehensive Raman scattering study to unambiguously identify the CEF excitations in YbOCl and determine the CEF parameters and wave functions. Our Raman experiments further reveal the anomalous nonlinear CEF splitting under magnetic fields. We have grown single crystals of YbOCl, the nonmagnetic LuOCl, and the diluted magnetic Lu_{0.86}Yb_{0.14}OCl to make a completely comparative investigation. Polarized Raman spectra on the samples at 1.8 K allow us to clearly assign all the Raman-active phonon modes and explicitly identify the CEF excitations in YbOCl. The CEF excitations are further examined using temperature-dependent Raman measurements and careful symmetry analysis based on Raman tensors related to CEF excitations. By applying the CEF Hamiltonian to the experimentally determined CEF excitations, we extract the CEF parameters and eventually determine the CEF wave functions. The study experimentally pins down the CEF excitations in the Kitaev compound YbOCl and sets a foundation for understanding its finite-temperature magnetism and exploring the possible nontrivial spin ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18522v2-abstract-full').style.display = 'none'; document.getElementById('2410.18522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043061 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08878">arXiv:2409.08878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08878">pdf</a>, <a href="https://arxiv.org/format/2409.08878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02672-0">10.1038/s41567-024-02672-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanishing bulk heat flow in the nu=0 quantum Hall ferromagnet in monolayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Delagrange%2C+R">Rapha毛lle Delagrange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garg%2C+M">Manjari Garg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breton%2C+G+L">Ga毛lle Le Breton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aifei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Q">Quan Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roulleau%2C+P">Preden Roulleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maillet%2C+O">Olivier Maillet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roche%2C+P">Patrice Roche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parmentier%2C+F+D">Fran莽ois D. Parmentier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08878v1-abstract-short" style="display: inline;"> Under high perpendicular magnetic field and at low temperatures, graphene develops an insulating state at the charge neutrality point. This state, dubbed $谓=0$, is due to the interplay between electronic interactions and the four-fold spin and valley degeneracies in the flat band formed by the $n=0$ Landau level. Determining the ground state of $谓=0$, including its spin and valley polarization, ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08878v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08878v1-abstract-full" style="display: none;"> Under high perpendicular magnetic field and at low temperatures, graphene develops an insulating state at the charge neutrality point. This state, dubbed $谓=0$, is due to the interplay between electronic interactions and the four-fold spin and valley degeneracies in the flat band formed by the $n=0$ Landau level. Determining the ground state of $谓=0$, including its spin and valley polarization, has been a theoretical and experimental undertaking for almost two decades. Here, we present experiments probing the bulk thermal transport properties of monolayer graphene at $谓=0$, which directly probe its ground state and collective excitations. We observe a vanishing bulk thermal transport, in contradiction with the expected ground state, predicted to have a finite thermal conductance even at very low temperature. Our result highlight the need for further investigations on the nature of $谓=0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08878v1-abstract-full').style.display = 'none'; document.getElementById('2409.08878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contains Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12044">arXiv:2408.12044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12044">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of Group-IV ternary and binary semiconductors using epitaxy of $\rm GeH_3Cl$ and $\rm SnH_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aixin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ringuala%2C+D+A">Dhruve A. Ringuala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mircovich%2C+M+A">Matthew A. Mircovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roldan%2C+M+A">Manuel A. Roldan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kouvetakis%2C+J">John Kouvetakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Men%C3%A9ndez%2C+J">Jos茅 Men茅ndez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12044v2-abstract-short" style="display: inline;"> $\rm{Ge}_{1-x-y}Si_{x}Sn_{y}$ alloys were grown on Ge buffer layers at ultra-low temperature using reactions of $\rm SnH_{4}$ and $\rm GeH_{3}Cl$ for the first time. The latter is a newly introduced CVD source designed for epitaxial development of group IV semiconductors under low thermal budgets and CMOS compatible conditions. The $\rm{Ge}_{1-x-y}Si_{x}Sn_{y}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12044v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12044v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12044v2-abstract-full" style="display: none;"> $\rm{Ge}_{1-x-y}Si_{x}Sn_{y}$ alloys were grown on Ge buffer layers at ultra-low temperature using reactions of $\rm SnH_{4}$ and $\rm GeH_{3}Cl$ for the first time. The latter is a newly introduced CVD source designed for epitaxial development of group IV semiconductors under low thermal budgets and CMOS compatible conditions. The $\rm{Ge}_{1-x-y}Si_{x}Sn_{y}$ films were produced between 160-200oC with 3-5% Si and ~ 5-11 % Sn, which traverses the indirect to direct gap transition in Ge-Sn materials. The films were fully strained to Ge and exhibited defect-free microstructures, flat surfaces, homogeneous compositions, uniform thicknesses and sharp interfaces as required for device manufacturing. A comparative study was then conducted to investigate the applicability of $\rm GeH_{3}Cl$ for the synthesis of $\rm Ge_{1-y}Sn_{y}$ binaries under similar experimental conditions. The$\rm Ge_{1-y}Sn_{y}$ films were grown fully strained to Ge, but with reduced Sn compositions ranging from ~ 2 - 7 % and lower thicknesses relative to $\rm{Ge}_{1-x-y}Si_{x}Sn_{y}$. This prompted efforts to further investigate the growth behavior of $\rm Ge_{1-y}Sn_{y}$ using the $\rm GeH_{3}Cl$ method, bypassing the Ge buffer to produce samples directly on Si, with the aim of exploring how to manage interface strain. In this case the $\rm Ge_{1-y}Sn_{y}$ on Si films exhibited compositions and thicknesses comparable to $\rm Ge_{1-y}Sn_{y}$-on-Ge films; however, their strain states were mostly relaxed, presumably due to the large misfit between $\rm Ge_{1-y}Sn_{y}$ and Si. Efforts to increase the concentration and thickness of these samples resulted in non-homogeneous multi-phase materials containing large amounts of interstitial Sn impurities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12044v2-abstract-full').style.display = 'none'; document.getElementById('2408.12044v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10515">arXiv:2408.10515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10515">pdf</a>, <a href="https://arxiv.org/format/2408.10515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033274">10.1103/PhysRevResearch.6.033274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground State Magnetic Structure and Magnetic Field Effects in the Layered Honeycomb Antiferromagnet YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J">Jinlong Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+B">Bertrand Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10515v1-abstract-short" style="display: inline;"> YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide REChX (RE = rare earth, Ch = O, S, Se, and Te, and X = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. In this paper, we have grown high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10515v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10515v1-abstract-full" style="display: none;"> YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide REChX (RE = rare earth, Ch = O, S, Se, and Te, and X = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. In this paper, we have grown high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron scattering experiments down to 50 mK. The experiments reveal an antiferromagnetic phase below 1.3 K, which is identified as a spin ground state with an intralayer ferromagnetic and interlayer antiferromagnetic ordering. By applying sophisticated numerical techniques to a honeycomb (nearest-neighbor)-triangle (next-nearest-neighbor) model Hamiltonian which accurately describes the highly anisotropic spin system, we are able to well simulate the experiments and determine the diagonal and off-diagonal spin-exchange interactions. The simulations give an antiferromagnetic Kitaev term comparable to the Heisenberg one. The experiments under magnetic fields allow us to establish a magnetic field-temperature phase diagram around the spin ground state. Most interestingly, a relatively small magnetic field (~ 0.3 to 3 T) can significantly suppress the antiferromagnetic order, suggesting an intriguing interplay of the Kitaev interaction and magnetic fields in the spin system. The present study provides fundamental insights into the highly anisotropic spin systems and opens a new window to look into Kitaev spin physics in a rare-earth-based system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10515v1-abstract-full').style.display = 'none'; document.getElementById('2408.10515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 6, 033274 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07887">arXiv:2408.07887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07887">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological Charge Quadrupole Protected by Spin-Orbit U(1) Quasi-Symmetry in Antiferromagnet NdBiPt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaobing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07887v2-abstract-short" style="display: inline;"> The interplay of symmetry and topology in crystal solids has given rise to various elementary excitations as quasiparticles. Among these, those with significant Berry-phase-related transport responses are of particular interest. Here, we predict a new type of quasiparticle called topological charge quadruple (TCQ), which is analogous to a charge quadrupole but consists of two closely-packed pairs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07887v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07887v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07887v2-abstract-full" style="display: none;"> The interplay of symmetry and topology in crystal solids has given rise to various elementary excitations as quasiparticles. Among these, those with significant Berry-phase-related transport responses are of particular interest. Here, we predict a new type of quasiparticle called topological charge quadruple (TCQ), which is analogous to a charge quadrupole but consists of two closely-packed pairs of Weyl points in momentum space, specifically in a half-Heusler antiferromagnet NdBiPt. Interestingly, the TCQ is protected by the spin-orbit $U(1)$ quasi-symmetry, rather than any exact crystallographic symmetries. This quasi-symmetry restricts the energy splitting induced by symmetry-lowering perturbations to a second-order effect. Furthermore, the closely located Berry curvature sources and sinks in the TCQ lead to a large Berry curvature dipole, resulting in a significant nonlinear Hall effect. Our work opens an avenue for designing novel quasiparticles using quasi-symmetries and developing materials with enhanced nonlinear responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07887v2-abstract-full').style.display = 'none'; document.getElementById('2408.07887v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04819">arXiv:2406.04819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04819">pdf</a>, <a href="https://arxiv.org/ps/2406.04819">ps</a>, <a href="https://arxiv.org/format/2406.04819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2427-2">10.1007/s11433-024-2427-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism of $\mathrm{NaYbS_2}$: From finite temperatures to ground state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04819v1-abstract-short" style="display: inline;"> Rare-earth chalcogenide compounds $\mathrm{ARECh_2}$ (A = alkali or monovalent metal, RE = rare earth, Ch = O, S, Se, Te) are a large family of quantum spin liquid (QSL) candidate materials. $\mathrm{NaYbS_2}$ is a representative member of the family. Several key issues on $\mathrm{NaYbS_2}$, particularly how to determine the highly anisotropic spin Hamiltonian and describe the magnetism at finite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04819v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04819v1-abstract-full" style="display: none;"> Rare-earth chalcogenide compounds $\mathrm{ARECh_2}$ (A = alkali or monovalent metal, RE = rare earth, Ch = O, S, Se, Te) are a large family of quantum spin liquid (QSL) candidate materials. $\mathrm{NaYbS_2}$ is a representative member of the family. Several key issues on $\mathrm{NaYbS_2}$, particularly how to determine the highly anisotropic spin Hamiltonian and describe the magnetism at finite temperatures and the ground state, remain to be addressed. In this paper, we conducted an in-depth and comprehensive study on the magnetism of $\mathrm{NaYbS_2}$ from finite temperatures to the ground state. Firstly, we successfully detected three crystalline electric field (CEF) excitation energy levels using low-temperature Raman scattering technique. Combining them with the CEF theory and magnetization data, we worked out the CEF parameters, CEF energy levels, and CEF wavefunctions. We further determined a characteristic temperature of $\sim$40 K, above which the magnetism is dominated by CEF excitations while below which the spin-exchange interactions play a main role. The characteristic temperature has been confirmed by the temperature-dependent electron spin resonance (ESR) linewidth. Low-temperature ESR experiments on the dilute magnetic doped crystal of $\mathrm{NaYb_{0.1}Lu_{0.9}S_2}$ further helped us to determine the accurate $g$-factor. Next, we quantitatively obtained the spin-exchange interactions in the spin Hamiltonian by consistently simulating the magnetization and specific heat data. Finally, the above studies allow us to explore the ground state magnetism of $\mathrm{NaYbS_2}$ by using the density matrix renormalization group. We combined numerical calculations and experimental results to demonstrate that the ground state of $\mathrm{NaYbS_2}$ is a Dirac-like QSL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04819v1-abstract-full').style.display = 'none'; document.getElementById('2406.04819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 107411 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08284">arXiv:2401.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08284">pdf</a>, <a href="https://arxiv.org/format/2401.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53140-5">10.1038/s41467-024-53140-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang-Ren Liu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08284v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08284v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages, which unfortunately pose tremendous challenges as GHZ states are vulnerable to noise. Here we propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement, and demonstrate a series of experiments underlined by high-fidelity digital quantum circuits. For initialization, we employ a scalable protocol to create genuinely entangled GHZ states with up to 60 qubits, almost doubling the previous size record. For protection, we take a new perspective on discrete time crystals (DTCs), originally for exploring exotic nonequilibrium quantum matters, and embed a GHZ state into the eigenstates of a tailor-made cat scar DTC to extend its lifetime. For manipulation, we switch the DTC eigenstates with in-situ quantum gates to modify the effectiveness of the GHZ protection. Our findings establish a viable path towards coherent operations on large-scale entanglement, and further highlight superconducting processors as a promising platform to explore nonequilibrium quantum matters and emerging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'none'; document.getElementById('2401.08284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04333">arXiv:2401.04333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04333">pdf</a>, <a href="https://arxiv.org/format/2401.04333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53077-9">10.1038/s41467-024-53077-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lived topological time-crystalline order on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04333v1-abstract-short" style="display: inline;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04333v1-abstract-full" style="display: none;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon -- a prethermal topologically ordered time crystal -- with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'none'; document.getElementById('2401.04333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main text), 16 pages (supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00996">arXiv:2312.00996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00996">pdf</a>, <a href="https://arxiv.org/format/2312.00996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.214401">10.1103/PhysRevB.108.214401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> M枚ssbauer spectroscopy study of the magnetostructural and spin-state transitions in the breathing pyrochlore LiFeCr$_{4}$O$_{8}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shengyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+Q">Qifeng Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Da Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+H">Hua Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+L">Liyun Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fashen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiwei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00996v1-abstract-short" style="display: inline;"> We report on investigations of the complex magnetostructural and spin-state transitions in the breathing pyrochlore LiFeCr$_{4}$O$_{8}$ by means of magnetization, M枚ssbauer spectroscopy, and density functional theory (DFT) calculations. Three transitions corresponding to the ferrimagnetic transition at $T_N\sim94$ K, the spin-gap transition at $T_{SG}\sim50$ K, and the magnetostructural transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00996v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00996v1-abstract-full" style="display: none;"> We report on investigations of the complex magnetostructural and spin-state transitions in the breathing pyrochlore LiFeCr$_{4}$O$_{8}$ by means of magnetization, M枚ssbauer spectroscopy, and density functional theory (DFT) calculations. Three transitions corresponding to the ferrimagnetic transition at $T_N\sim94$ K, the spin-gap transition at $T_{SG}\sim50$ K, and the magnetostructural transition at $T_{MS}\sim19$ K were observed from the $蠂$(T) curve, whereas only $T_N$ and $T_{MS}$ were evidenced for the Fe site from our M枚ssbauer measurements, suggesting that the spin-gap transition is absent at the Fe site. This indicates that the spin-gap transition is an effect of the breathing Cr$_4$ lattice, in agreement with our DFT calculations from which we see nearly decoupled electronic states for the FeO$_4$ and CrO$_6$ units. From the temperature dependence of the hyperfine magnetic field we also observed a spin-state transition for the Fe spins at $T_{MS}$ consistent with earlier neutron diffraction measurements. These local characteristics are believed to be important for a complete understanding of the complex magnetostructural coupling effects observed in similar systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00996v1-abstract-full').style.display = 'none'; document.getElementById('2312.00996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 214401(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18161">arXiv:2311.18161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18161">pdf</a>, <a href="https://arxiv.org/format/2311.18161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Random Green&#39;s function method for large-scale electronic structure calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">Mingfa Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aixia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingyun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Shengjun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+Y">Youqi Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18161v2-abstract-short" style="display: inline;"> We report a linear-scaling random Green&#39;s function (rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states to stochastically express the density matrix, and rGF is calculated with the linear-scaling computational cost. We show the rGF method is generally applicable to the nonorthogonal localized basis, and circumvent the large Che&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18161v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18161v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18161v2-abstract-full" style="display: none;"> We report a linear-scaling random Green&#39;s function (rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states to stochastically express the density matrix, and rGF is calculated with the linear-scaling computational cost. We show the rGF method is generally applicable to the nonorthogonal localized basis, and circumvent the large Chebyshev expansion for the density matrix. As a demonstration, we implement rGF with density-functional Tight-Binding method and apply it to self-consistently calculate water clusters up 9984 H2Os. We find the rGF method combining with a simple fragment correction can reach an error of ~1meV per H2O in total energy, compared to the deterministic calculations, due to the self-average. The development of rGF method advances the stochastic electronic structure theory to a new stage of the efficiency and applicability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18161v2-abstract-full').style.display = 'none'; document.getElementById('2311.18161v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12738">arXiv:2311.12738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12738">pdf</a>, <a href="https://arxiv.org/ps/2311.12738">ps</a>, <a href="https://arxiv.org/format/2311.12738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.026402">10.1103/PhysRevLett.133.026402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Group Theory on Quasisymmetry and Protected Near Degeneracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12738v3-abstract-short" style="display: inline;"> In solid state systems, group representation theory is powerful in characterizing the behavior of quasiparticles, notably the energy degeneracy. While conventional group theory is effective in answering yes-or-no questions related to symmetry breaking, its application to determining the magnitude of energy splitting resulting from symmetry lowering is limited. Here, we propose a theory on quasisym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12738v3-abstract-full').style.display = 'inline'; document.getElementById('2311.12738v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12738v3-abstract-full" style="display: none;"> In solid state systems, group representation theory is powerful in characterizing the behavior of quasiparticles, notably the energy degeneracy. While conventional group theory is effective in answering yes-or-no questions related to symmetry breaking, its application to determining the magnitude of energy splitting resulting from symmetry lowering is limited. Here, we propose a theory on quasisymmetry and near degeneracy, thereby expanding the applicability of group theory to address questions regarding large-or-small energy splitting. Defined within the degenerate subspace of an unperturbed Hamiltonian, quasisymmetries form an enlarged symmetry group eliminating the first-order splitting. This framework ensures that the magnitude of splitting arises as a second-order effect of symmetry-lowering perturbations, such as external fields and spin-orbit coupling. We systematically tabulate the quasisymmetry groups within 32 crystallographic point groups and find all the possible unitary quasisymmetry group structures regarding double degeneracy. Applying our theory to the realistic material AgLa, we predict a &#34;quasi-Dirac semimetal&#34; phase characterized by two tiny-gap band anticrossings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12738v3-abstract-full').style.display = 'none'; document.getElementById('2311.12738v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 026402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12366">arXiv:2307.12366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12366">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Catalog of Unconventional Magnons in Collinear Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaobing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yutong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jun Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12366v3-abstract-short" style="display: inline;"> Topological magnons have garnered significant interest for their potential in both fundamental research and device applications, owing to their exotic, uncharged, yet topologically protected boundary modes. However, their comprehension has been hindered by the absence of fundamental symmetry descriptions of magnetic materials, which are primarily governed by isotropic Heisenberg interactions in sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12366v3-abstract-full').style.display = 'inline'; document.getElementById('2307.12366v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12366v3-abstract-full" style="display: none;"> Topological magnons have garnered significant interest for their potential in both fundamental research and device applications, owing to their exotic, uncharged, yet topologically protected boundary modes. However, their comprehension has been hindered by the absence of fundamental symmetry descriptions of magnetic materials, which are primarily governed by isotropic Heisenberg interactions in spin Hamiltonians. The ensuing magnon dispersions enable gapless magnon band nodes that go beyond the scenario of representation theory of the magnetic space groups (MSGs), thus referred to as unconventional magnons. Here we developed spin space group (SSG) theory to elucidate collinear magnetic configurations, classifying the 1421 collinear SSGs into four types, constructing their band representations, and providing a comprehensive tabulation of unconventional magnons, such as duodecuple points, octuple nodal lines, and charge-4 octuple points. Based on the MAGNDATA database, we identified 498 collinear magnets with unconventional magnons, among which over 200 magnon band structures were obtained by using first-principles calculations and linear spin wave theory. Additionally, we evaluated the influence of the spin-orbit coupling-induced exchange interaction in these magnets and found that more than 80% are predominantly governed by the Heisenberg interactions, indicating that SSG serves as an ideal framework for describing magnon band nodes in most 3d, 4d and half-filled 4f collinear magnets. Our work offers new pathways for exploring uncharged transports in magnonic systems, holding promise for advancements in next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12366v3-abstract-full').style.display = 'none'; document.getElementById('2307.12366v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript contains 28 pages, 3 figures and 2 tables. The supplementary information contains 349 pages, 15 figures and 245 tables. The databases for all 1421 collinear spin space groups and the magnon band structures are provided on https://www.findspingroup.com/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10369">arXiv:2307.10369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10369">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.031038">10.1103/PhysRevX.14.031038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enumeration and representation theory of spin space groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaobing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jun Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yanzhou Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yutong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Caiheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10369v4-abstract-short" style="display: inline;"> Those fundamental physical properties, such as phase transitions, Weyl fermions, and spin excitation, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully chara&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10369v4-abstract-full').style.display = 'inline'; document.getElementById('2307.10369v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10369v4-abstract-full" style="display: none;"> Those fundamental physical properties, such as phase transitions, Weyl fermions, and spin excitation, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been developed. In this work, we present a systematic study of the enumeration and the representation theory of SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order of 8, we establish an extensive collection of over 100000 SSGs under a four-index nomenclature as well as the International notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar, and noncoplanar magnetic configurations. To facilitate the identification of SSG, we develop an online program (findspingroup.com) that can determine the SSG symmetries of any magnetic ordered crystals. Moreover, we derive the irreducible co-representations of the little group in momentum space within the SSG framework. Finally, we illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through several representative material examples, including a well-known altermagnet RuO2, spiral spin polarization in the coplanar antiferromagnet CeAuAl3, and geometric Hall effect in the noncoplanar antiferromagnet CoNb3S6. Our work advances the field of group theory in describing magnetic ordered materials, opening up avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10369v4-abstract-full').style.display = 'none'; document.getElementById('2307.10369v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. X. 158 pages, including the main text (41 pages including 3 tables and 7 figures) and appendix. There is another Supplementary table with the full list of spin space groups at https://liuqh.phy.sustech.edu.cn/wp-content/uploads/92-supp.pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 031038 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02819">arXiv:2302.02819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02819">pdf</a>, <a href="https://arxiv.org/ps/2302.02819">ps</a>, <a href="https://arxiv.org/format/2302.02819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear electromagnetic response for Hall effect in time-reversal breaking materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+J">Jun-Won Rhim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02819v2-abstract-short" style="display: inline;"> It is known that materials with broken time-reversal symmetry can have Hall response. Here we show that in addition to the conventional currents, a new type of nonlinear Hall current can occur in the time-reversal breaking materials within the second-order response to in-plane electric and vertical magnetic fields. Such a Hall response is generated by the oscillation of the electromagnetic field a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02819v2-abstract-full').style.display = 'inline'; document.getElementById('2302.02819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02819v2-abstract-full" style="display: none;"> It is known that materials with broken time-reversal symmetry can have Hall response. Here we show that in addition to the conventional currents, a new type of nonlinear Hall current can occur in the time-reversal breaking materials within the second-order response to in-plane electric and vertical magnetic fields. Such a Hall response is generated by the oscillation of the electromagnetic field and has a quantum origin arising from a novel dipole associated with the Berry curvature and band velocity. We demonstrate that the massive Dirac model of LaAlO3/LaNiO3/LaAlO3 quantum well can be used to detect this Hall effect. Our work widens the theory of the Hall effect in the time-reversal breaking materials by proposing a new kind of nonlinear electromagnetic response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02819v2-abstract-full').style.display = 'none'; document.getElementById('2302.02819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12201">arXiv:2301.12201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12201">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/12/126101">10.1088/0256-307X/40/12/126101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Dirac fermion in a collinear antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+K">Ke Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Shiv Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jun Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikawa%2C+Y">Yoshihisa Ishikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McIntyre%2C+G">Garry McIntyre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12201v2-abstract-short" style="display: inline;"> In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect (AHE). Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral Dirac-like fermion, whose dispersion manifests four-fold dege&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12201v2-abstract-full').style.display = 'inline'; document.getElementById('2301.12201v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12201v2-abstract-full" style="display: none;"> In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect (AHE). Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral Dirac-like fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear AFM configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb3S6, paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12201v2-abstract-full').style.display = 'none'; document.getElementById('2301.12201v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 40, 126101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15391">arXiv:2211.15391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15391">pdf</a>, <a href="https://arxiv.org/ps/2211.15391">ps</a>, <a href="https://arxiv.org/format/2211.15391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Flat bands in Network Superstructures of Atomic Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heo%2C+D">Donghyeok Heo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+S">Jun Seop Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+J">Jun-Won Rhim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15391v1-abstract-short" style="display: inline;"> We investigate the origin of the ubiquitous existence of flat bands in the network superstructures of atomic chains, where one-dimensional(1D) atomic chains array periodically. While there can be many ways to connect those chains, we consider two representative ways of linking them, the dot-type and triangle-type links. Then, we construct a variety of superstructures, such as the square, rectangul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15391v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15391v1-abstract-full" style="display: none;"> We investigate the origin of the ubiquitous existence of flat bands in the network superstructures of atomic chains, where one-dimensional(1D) atomic chains array periodically. While there can be many ways to connect those chains, we consider two representative ways of linking them, the dot-type and triangle-type links. Then, we construct a variety of superstructures, such as the square, rectangular, and honeycomb network superstructures with dot-type links and the honeycomb superstructure with triangle-type links. These links provide the wavefunctions with an opportunity to have destructive interference, which stabilizes the compact localized state(CLS). The CLS is a localized eigenstate whose amplitudes are finite only inside a finite region and guarantees the existence of a flat band. In the network superstructures, there exist multiple flat bands proportional to the number of atoms of each chain, and the corresponding eigenenergies can be found from the stability condition of the compact localized state. Finally, we demonstrate that the finite bandwidth of the nearly flat bands of the network superstructures arising from the next-nearest-neighbor hopping processes can be suppressed by increasing the length of the chains consisting of the superstructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15391v1-abstract-full').style.display = 'none'; document.getElementById('2211.15391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09802">arXiv:2211.09802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09802">pdf</a>, <a href="https://arxiv.org/format/2211.09802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/6/060301">10.1088/0256-307X/40/6/060301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital simulation of non-Abelian anyons with 68 programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Zhi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weikang Li</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09802v2-abstract-short" style="display: inline;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09802v2-abstract-full" style="display: none;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'none'; document.getElementById('2211.09802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 40 060301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14735">arXiv:2209.14735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14735">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-compatible angular momentum conservation relation in plasmonic vortex lenses with rotational symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+P">Pengyi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+F">Fei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xuezhi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiafu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Z">Zhongwei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verellen%2C+N">Niels Verellen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janssens%2C+E">Ewald Janssens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J">Jincheng Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuanjie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anxue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+B">Benfeng Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+C">Chengwei Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vandenbosch%2C+G+A+E">Guy A E Vandenbosch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14735v3-abstract-short" style="display: inline;"> Plasmonic vortex lenses (PVLs), producing vortex modes, known as plasmonic vortices (PVs), in the process of plasmonic spin-orbit coupling, provide a promising platform for the realization of many optical vortex-based applications. Very recently, it has been reported that a single PVL can generate multiple PVs. This work exploits the representation theory of finite groups, reveals the symmetry ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14735v3-abstract-full').style.display = 'inline'; document.getElementById('2209.14735v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14735v3-abstract-full" style="display: none;"> Plasmonic vortex lenses (PVLs), producing vortex modes, known as plasmonic vortices (PVs), in the process of plasmonic spin-orbit coupling, provide a promising platform for the realization of many optical vortex-based applications. Very recently, it has been reported that a single PVL can generate multiple PVs. This work exploits the representation theory of finite groups, reveals the symmetry origin of the generated PVs, and derives a new conservation relation based on symmetry principles. Specifically, the symmetry principles divide the near field of the PVL into regions, designate integers, which are the topological charges, to the regions, and, particularly, give an upper bound to the topological charge of the PV at the center of the PVL. Further application of the symmetry principles to the spin-orbit coupling process leads to a new conservation relation. Based on this relation, a two-step procedure is suggested to link the angular momentum of the incident field with the one of the generated PVs through the symmetries of the PVL. This theory is well demonstrated by numerical calculations. This work provides an alternative but essential symmetry perspective on the dynamics of spin-orbit coupling in PVLs, forms a strong complement for the physical investigations performed before, and therefore lays down a solid foundation for flexibly manipulating the PVs for emerging vortex-based nanophotonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14735v3-abstract-full').style.display = 'none'; document.getElementById('2209.14735v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages and 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02383">arXiv:2207.02383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02383">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.033006">10.1103/PhysRevResearch.4.033006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic exchange coupling and ground state phase diagram of Kitaev compound YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+Z">Zhongwen Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02383v1-abstract-short" style="display: inline;"> Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02383v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02383v1-abstract-full" style="display: none;"> Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of the family we grew, with a size up to ~ 15 mm. We have performed magnetization and high magnetic field electron spin resonance measurements from 2 to 300 K. We develop the mean-field scenario for the anisotropic spin system, with which we are able to well describe the experiments and reliably determine the fundamental parameters. The self-consistent simulations give the anisotropic spin-exchange interactions of $J_{\pm}$ (~ -0.3 K) and $J_{zz}$ (~ 1.6 K), and g factors of $g_{ab}$ (~ 3.4) and $g_{c}$ (~ 2.9). Based on the spin-exchange interactions, we employ the exact diagonalization method to work out the ground state phase diagram of YbOCl in terms of the off-diagonal exchange couplings. The phase diagram hosting rich magnetic phases including the spin-disordered one, sheds light on the novel magnetic properties of the family, particularly the Kitaev physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02383v1-abstract-full').style.display = 'none'; document.getElementById('2207.02383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 033006 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01500">arXiv:2207.01500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01500">pdf</a>, <a href="https://arxiv.org/ps/2207.01500">ps</a>, <a href="https://arxiv.org/format/2207.01500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00975-3">10.1038/s42005-022-00975-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric Origin of Intrinsic Spin Hall Effect in an Inhomogeneous Electric Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+J">Jun-Won Rhim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01500v1-abstract-short" style="display: inline;"> In recent years, the spin Hall effect has received great attention because of its potential application in spintronics and quantum information processing and storage. However, this effect is usually studied under the external homogeneous electric field. Understanding how the inhomogeneous electric field affects the spin Hall effect is still lacking. Here, we investigate a two-dimensional two-band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01500v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01500v1-abstract-full" style="display: none;"> In recent years, the spin Hall effect has received great attention because of its potential application in spintronics and quantum information processing and storage. However, this effect is usually studied under the external homogeneous electric field. Understanding how the inhomogeneous electric field affects the spin Hall effect is still lacking. Here, we investigate a two-dimensional two-band time-reversal symmetric system and give an expression for the intrinsic spin Hall conductivity in the presence of the inhomogeneous electric field, which is shown to be expressed through gauge-invariant geometric quantities. On the other hand, when people get physical intuition on transport phenomena from the wave packet, one issue appears. It is shown that the conductivity obtained from the conventional wave packet approach cannot be fully consistent with the one predicted by the Kubo-Greenwood formula. Here, we attempt to solve this problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01500v1-abstract-full').style.display = 'none'; document.getElementById('2207.01500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 5, 195(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14787">arXiv:2205.14787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14787">pdf</a>, <a href="https://arxiv.org/format/2205.14787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.106.034902">10.1103/PhysRevE.106.034902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Jammed solids with pins: Thresholds, Force networks and Elasticity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A+L">Andy L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ridout%2C+S+A">Sean A. Ridout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parts%2C+C">Celia Parts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sachdeva%2C+A">Aarushi Sachdeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bester%2C+C+S">Cacey S. Bester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vollmayr-Lee%2C+K">Katharina Vollmayr-Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utter%2C+B+C">Brian C. Utter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brzinski%2C+T">Ted Brzinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graves%2C+A+L">Amy L. Graves</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14787v2-abstract-short" style="display: inline;"> The role of fixed degrees of freedom in soft/granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our 2d simulated system consists of soft particles and fixed &#34;pins&#34;, both of which harmonically repel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14787v2-abstract-full').style.display = 'inline'; document.getElementById('2205.14787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14787v2-abstract-full" style="display: none;"> The role of fixed degrees of freedom in soft/granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our 2d simulated system consists of soft particles and fixed &#34;pins&#34;, both of which harmonically repel overlaps. On one hand, we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold, in a universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The spatial organization of this force network depends on pin geometry and is described in detail. Using persistent homology we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize the linear response of these packings to strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14787v2-abstract-full').style.display = 'none'; document.getElementById('2205.14787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11848">arXiv:2203.11848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11848">pdf</a>, <a href="https://arxiv.org/format/2203.11848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0087141">10.1063/5.0087141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and open-orbit Fermi surface topology in isostructural semimetals NbAs$_2$ and W$_2$As$_3$ with extremely large magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chenchao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Man Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaoyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11848v1-abstract-short" style="display: inline;"> In transition-metal dipnictides $TmPn_2$ ($Tm$ = Ta, Nb; $Pn$ = P, As, Sb), the origin of extremely large magnetoresistance (XMR) is yet to be studied by the direct visualization of the experimental band structures. Here, using angle-resolved photoemission spectroscopy, we map out the three-dimensional electronic structure of NbAs$_2$. The open-orbit topology contributes to a non-negligible part o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11848v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11848v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11848v1-abstract-full" style="display: none;"> In transition-metal dipnictides $TmPn_2$ ($Tm$ = Ta, Nb; $Pn$ = P, As, Sb), the origin of extremely large magnetoresistance (XMR) is yet to be studied by the direct visualization of the experimental band structures. Here, using angle-resolved photoemission spectroscopy, we map out the three-dimensional electronic structure of NbAs$_2$. The open-orbit topology contributes to a non-negligible part of the Fermi surfaces (FSs), like that of the isostructural compound MoAs$_2$, where the open FS is proposed to likely explain the origin of XMR. We further demonstrate the observation of open characters in the overall FSs of W$_2$As$_3$, which is also a XMR semimetal with the same space group of $C$12/$m$1 as $TmPn_2$ family and MoAs$_2$. Our results suggest that the open-orbit FS topology may be a shared feature between XMR materials with the space group of $C$12/$m$1, and thus could possibly play a role in determining the corresponding XMR effect together with the electron-hole compensation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11848v1-abstract-full').style.display = 'none'; document.getElementById('2203.11848v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Editor&#39;s pick</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 120, 123101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09667">arXiv:2201.09667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09667">pdf</a>, <a href="https://arxiv.org/format/2201.09667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2022.104894">10.1016/j.jmps.2022.104894 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On Nonlocal Cohesive Continuum Mechanics and Cohesive Peridynamic Modeling (CPDM) of Inelastic Fracture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jing Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shaofan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haicheng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">A-Man Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09667v1-abstract-short" style="display: inline;"> In this work, we developed a bond-based cohesive peridynamics model (CPDM) and apply it to simulate inelastic fracture by using the meso-scale Xu-Needleman cohesive potential . By doing so, we have successfully developed a bond-based cohesive continuum mechanics model with intrinsic stress/strain measures as well as consistent and built-in macro-scale constitutive relations. The main novelties of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09667v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09667v1-abstract-full" style="display: none;"> In this work, we developed a bond-based cohesive peridynamics model (CPDM) and apply it to simulate inelastic fracture by using the meso-scale Xu-Needleman cohesive potential . By doing so, we have successfully developed a bond-based cohesive continuum mechanics model with intrinsic stress/strain measures as well as consistent and built-in macro-scale constitutive relations. The main novelties of this work are: (1) We have shown that the cohesive stress of the proposed nonlocal cohesive continuum mechanics model is exactly the same as the nonlocal peridynamic stress; (2) For the first time, we have applied an irreversible built-in cohesive stress-strain relation in a bond-based cohesive peridynamics to model inelastic material behaviors without prescribing phenomenological plasticity stress-strain relations; (3) The cohesive bond force possesses both axial and tangential components, and they contribute a nonlinear constitutive relation with variable Poisson&#39;s ratios; (4) The bond-based cohesive constitutive model is consistent with the cohesive fracture criterion, and (5) We have shown that the proposed method is able to model inelastic fracture and simulate ductile fracture of small scale yielding in the nonlocal cohesive continua. Several numerical examples have been presented to be compared with the finite element based continuum cohesive zone model, which shows that the proposed approach is a simple, efficient and effective method to model inelastic fracture in the nonlocal cohesive media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09667v1-abstract-full').style.display = 'none'; document.getElementById('2201.09667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07199">arXiv:2112.07199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.07199">pdf</a>, <a href="https://arxiv.org/format/2112.07199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.085115">10.1103/PhysRevB.106.085115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Spin Dynamics of Quantum Spin Liquid Candidate $NaYbSe_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">Peter J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07199v2-abstract-short" style="display: inline;"> The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($渭$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07199v2-abstract-full').style.display = 'inline'; document.getElementById('2112.07199v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07199v2-abstract-full" style="display: none;"> The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($渭$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL in $NaYbSe_{2}$, a representative member with an effective spin-1/2, and explore its unusual spin dynamics. The ZF $渭$SR experiments unambiguously rule out spin ordering or freezing in $NaYbSe_{2}$ down to 50 mK, two orders of magnitude smaller than the exchange coupling energies. The spin relaxation rate, $位$, approaches a constant below 0.3 K, indicating finite spin excitations featured by a gapless QSL ground state. This is consistently supported by our AC susceptibility measurements. The careful analysis of the longitudinal field (LF) $渭$SR spectra reveals a strong spatial correlation and a temporal correlation in the spin-disordered ground state, highlighting the unique feature of spin entanglement in the QSL state. The observations allow us to establish an experimental H-T phase diagram. The study offers insight into the rich and exotic magnetism of the rare earth family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07199v2-abstract-full').style.display = 'none'; document.getElementById('2112.07199v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 085115 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02614">arXiv:2112.02614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02614">pdf</a>, <a href="https://arxiv.org/format/2112.02614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2SM00604A">10.1039/D2SM00604A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programming Interactions in Magnetic Handshake Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+X">Chrisy Xiyu Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+A">Hanyu Alice Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pearson%2C+T">Tanner Pearson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+J">Jakin Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEuen%2C+P">Paul McEuen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cohen%2C+I">Itai Cohen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenner%2C+M+P">Michael P. Brenner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02614v1-abstract-short" style="display: inline;"> The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis have significantly advanced our ability to create particle sets with programmable interactions, based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage off&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02614v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02614v1-abstract-full" style="display: none;"> The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis have significantly advanced our ability to create particle sets with programmable interactions, based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage offers a new path for engineering programmable components for self assembly, by printing magnetic dipole patterns on substrates using nanotechnology. How to efficiently design dipole patterns for programmable assembly remains an open question as the design space is combinatorially large. Here, we present design rules for programming these magnetic interactions. By optimizing the structure of the dipole pattern, we demonstrate that the number of independent building blocks scales super linearly with the number of printed domains. We test these design rules using computational simulations of self assembled blocks, and experimental realizations of the blocks at the mm scale, demonstrating that the designed blocks give high yield assembly. In addition, our design rules indicate that with current printing technology, micron sized magnetic panels could easily achieve hundreds of different building blocks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02614v1-abstract-full').style.display = 'none'; document.getElementById('2112.02614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter, 2022,18, 6404-6410 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06535">arXiv:2111.06535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06535">pdf</a>, <a href="https://arxiv.org/format/2111.06535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L201403">10.1103/PhysRevB.104.L201403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically switchable valley polarization, spin/valley filter, and valve effects in transition-metal dichalcogenide monolayers interfaced with two-dimensional ferromagnetic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kaike Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+A">Anlian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06535v1-abstract-short" style="display: inline;"> Electron valleys in transition-metal dichalcogenide monolayers drive novel physics and allow designing multifunctional architectures for applications. We propose to manipulate the electron valleys in these systems for spin/valley filter and valve devices through band engineering. Instead of the magnetic proximity effect that has been extensively used in previous studies, in our strategy, the elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06535v1-abstract-full').style.display = 'inline'; document.getElementById('2111.06535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06535v1-abstract-full" style="display: none;"> Electron valleys in transition-metal dichalcogenide monolayers drive novel physics and allow designing multifunctional architectures for applications. We propose to manipulate the electron valleys in these systems for spin/valley filter and valve devices through band engineering. Instead of the magnetic proximity effect that has been extensively used in previous studies, in our strategy, the electron valleys are directly coupled to the spin-polarized states of the two-dimensional ferromagnets. We find that this coupling results in a valley-selective gap opening due to the spin-momentum locking in the transition-metal dichalcogenide monolayers. This physics gives rise to a variety of unexpected electronic properties and phenomena including halfmetallicity, electrically switchable valley polarization, spin/valley filter and valve effects in the transition-metal dichalcogenide monolayers. We further demonstrate our idea in MoTe$_2$/CoCl$_2$ and CoCl$_2$/MoTe$_2$/CoCl$_2$ van der Waals heterojunctions based on first-principles calculations. Thus, our study provides a way of engineering the electron valleys in transition-metal dichalcogenide monolayers for new-concept devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06535v1-abstract-full').style.display = 'none'; document.getElementById('2111.06535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, L201403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09984">arXiv:2107.09984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xinn.2022.100343">10.1016/j.xinn.2022.100343 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jingzhi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09984v3-abstract-short" style="display: inline;"> Dirac semimetal is a phase of matter, whose elementary excitation is described by the relativistic Dirac equation. In the limit of zero mass, its parity-time symmetry enforces the Dirac fermion in the momentum space, which is composed of two Weyl fermions with opposite chirality, to be non-chiral. Inspired by the flavor symmetry in particle physics, we theoretically propose a massless Dirac-like e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09984v3-abstract-full').style.display = 'inline'; document.getElementById('2107.09984v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09984v3-abstract-full" style="display: none;"> Dirac semimetal is a phase of matter, whose elementary excitation is described by the relativistic Dirac equation. In the limit of zero mass, its parity-time symmetry enforces the Dirac fermion in the momentum space, which is composed of two Weyl fermions with opposite chirality, to be non-chiral. Inspired by the flavor symmetry in particle physics, we theoretically propose a massless Dirac-like equation yet linking two Weyl fields with the identical chirality by assuming SU(2) isospin symmetry, independent of the space-time rotation exchanging the two fields. Dramatically, such symmetry is hidden in certain solid-state spin-1/2 systems with negligible spin-orbit coupling, where the spin degree of freedom is decoupled with the lattice. Therefore, the existence of the corresponding quasiparticle, dubbed as flavor Weyl fermion, cannot be explained by the conventional (magnetic) space group framework. The four-fold degenerate flavor Weyl fermion manifests linear dispersion and a Chern number of 2, leading to a robust network of topologically protected Fermi arcs throughout the Brillouin zone. For material realization, we show that the transition-metal chalcogenide CoNb3S6 with experimentally confirmed collinear antiferromagnetic order is ideal for flavor Weyl semimetal under the approximation of vanishing spin-orbit coupling. Our work reveals a counterpart of the flavor symmetry in magnetic electronic systems, leading to further possibilities of emergent phenomena in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09984v3-abstract-full').style.display = 'none'; document.getElementById('2107.09984v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Innovation 3, 100343 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00800">arXiv:2106.00800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00800">pdf</a>, <a href="https://arxiv.org/format/2106.00800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.12.1.018">10.21468/SciPostPhys.12.1.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relating the topology of Dirac Hamiltonians to quantum geometry: When the quantum metric dictates Chern numbers and winding numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mera%2C+B">Bruno Mera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldman%2C+N">Nathan Goldman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00800v5-abstract-short" style="display: inline;"> Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities are known to play complementary roles: the Fubini-Study metric, which introduces a notion of distance between quantum states defined over a parameter space, and the Berry curvature as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00800v5-abstract-full').style.display = 'inline'; document.getElementById('2106.00800v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00800v5-abstract-full" style="display: none;"> Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities are known to play complementary roles: the Fubini-Study metric, which introduces a notion of distance between quantum states defined over a parameter space, and the Berry curvature associated with Berry-phase effects and topological band structures. In fact, recent studies have revealed direct relations between these two important quantities, suggesting that topological properties can, in special cases, be deduced from the quantum metric. In this work, we establish general and exact relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians. In particular, we demonstrate that topological indices (Chern numbers or winding numbers) are bounded by the quantum volume determined by the quantum metric. Our theoretical framework, which builds on the Clifford algebra of Dirac matrices, is applicable to topological insulators and semimetals of arbitrary spatial dimensions, with or without chiral symmetry. This work clarifies the role of the Fubini-Study metric in topological states of matter, suggesting unexplored topological responses and metrological applications in a broad class of quantum-engineered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00800v5-abstract-full').style.display = 'none'; document.getElementById('2106.00800v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages including 5 figures and references. Revised manuscript, which includes a discussion about metrological applications. Manuscript prepared for SciPost submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 12, 018 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.15142">arXiv:2105.15142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.15142">pdf</a>, <a href="https://arxiv.org/ps/2105.15142">ps</a>, <a href="https://arxiv.org/format/2105.15142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac2f2c">10.1088/1674-1056/ac2f2c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Chern number from quantum metric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.15142v2-abstract-short" style="display: inline;"> Chern number is usually characterized by Berry curvature. Here, by investigating the Dirac model of even-dimensional Chern insulator, we give the general relation between Berry curvature and quantum metric, which indicates that the Chern number can be encoded in quantum metric as well as the surface area of the Brillouin zone on the hypersphere embedded in Euclidean parameter space. We find that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15142v2-abstract-full').style.display = 'inline'; document.getElementById('2105.15142v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.15142v2-abstract-full" style="display: none;"> Chern number is usually characterized by Berry curvature. Here, by investigating the Dirac model of even-dimensional Chern insulator, we give the general relation between Berry curvature and quantum metric, which indicates that the Chern number can be encoded in quantum metric as well as the surface area of the Brillouin zone on the hypersphere embedded in Euclidean parameter space. We find that there is a corresponding relationship between the quantum metric and the metric on such hypersphere. We show the geometrical property of quantum metric. Besides, we give a protocol to measure the quantum metric in the degenerate system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15142v2-abstract-full').style.display = 'none'; document.getElementById('2105.15142v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5pages,2figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 31, 040201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.06755">arXiv:2010.06755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.06755">pdf</a>, <a href="https://arxiv.org/format/2010.06755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.155413">10.1103/PhysRevB.102.155413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of substrate-surface reconstruction and orientation on spin-valley polarization in MoTe$_2$/EuO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zisheng Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziming Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+A">Anlian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.06755v1-abstract-short" style="display: inline;"> We investigate the spin-valley polarization in MoTe$_2$ monolayer on (111) and (001) surfaces of ferromagnetic semiconductor EuO based on first-principles calculations. We consider surface reconstructions for EuO(111). We find that there is no direct chemical bonding between the reconstructed EuO(111) and the MoTe$_2$ overlayer, in contrast to the case of the ideal EuO(111). However, there is a st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06755v1-abstract-full').style.display = 'inline'; document.getElementById('2010.06755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.06755v1-abstract-full" style="display: none;"> We investigate the spin-valley polarization in MoTe$_2$ monolayer on (111) and (001) surfaces of ferromagnetic semiconductor EuO based on first-principles calculations. We consider surface reconstructions for EuO(111). We find that there is no direct chemical bonding between the reconstructed EuO(111) and the MoTe$_2$ overlayer, in contrast to the case of the ideal EuO(111). However, there is a strong hybridization between the states of MoTe$_2$ and the substrate states, which has a substantial impact on the valleys. The valley polarization due to the magnetic proximity effect is dependent on the detail of the interface structure, which is in the range of a few meV to about 40 meV. These values are at least one order of magnitude smaller than that induced by the ideal EuO(111). When the MoTe$_2$ monolayer is interfaced with EuO(001), the valley polarization is about 3.2 meV, insensitive to the interface structure. By a low-energy effective Hamiltonian model, the effective Zeeman field induced by EuO(001) is about 27 T, comparable to that for WSe$_2$/EuS obtained by experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06755v1-abstract-full').style.display = 'none'; document.getElementById('2010.06755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 155413 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11474">arXiv:1911.11474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11474">pdf</a>, <a href="https://arxiv.org/ps/1911.11474">ps</a>, <a href="https://arxiv.org/format/1911.11474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.201107">10.1103/PhysRevB.100.201107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological phase transition between distinctWeyl semimetal states in MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Q">Qiaohe Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tian-long Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Changfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11474v1-abstract-short" style="display: inline;"> We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks around 70 K, which, together with structural, thermodynamic measurements, and electron-phonon coupling calculations, demonstrate a temperature-induced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11474v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11474v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11474v1-abstract-full" style="display: none;"> We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks around 70 K, which, together with structural, thermodynamic measurements, and electron-phonon coupling calculations, demonstrate a temperature-induced transition between two topological phases previously identified by contrasting spectroscopic measurements. An analysis of experimental data suggests electron-phonon coupling as the main driving mechanism for the change of key topological characters in the electronic structure of MoTe2.We also find the phase transition to be sensitive to sample conditions distinguished by synthesis methods. These discoveries of temperature and material condition-dependent topological phase evolutions and transitions in MoTe2 advance the fundamental understanding of the underlying physics and enable an effective approach to tuning Weyl semimetal states for technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11474v1-abstract-full').style.display = 'none'; document.getElementById('1911.11474v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 100, 201107(R) (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05349">arXiv:1911.05349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05349">pdf</a>, <a href="https://arxiv.org/ps/1911.05349">ps</a>, <a href="https://arxiv.org/format/1911.05349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.060504">10.1103/PhysRevB.100.060504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the direct factor for superconductivity in FeSe-Based Superconductors by Raman Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Shanshan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+B">Bin Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Changfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05349v1-abstract-short" style="display: inline;"> The FeSe-based superconductors exhibit a wide range of critical temperature Tc under a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05349v1-abstract-full').style.display = 'inline'; document.getElementById('1911.05349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05349v1-abstract-full" style="display: none;"> The FeSe-based superconductors exhibit a wide range of critical temperature Tc under a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals show an anomalous power-law temperature dependence of phonon linewidths, deviating from the standard anharmonic behavior. This intriguing phenomenon is attributed to electron-phonon coupling effects enhanced by electron correlation, as evidenced by the evolution of the A1g Raman mode. Meanwhile, an analysis of the B1g mode, which probes the out-of-plane vibration of Fe, reveals a lack of influence by previously suggested structural parameters, and instead indicates a crucial role of the joint density of states in determining Tc. These findings identify carrier doping as the direct factor driving and modulating superconductivity in FeSe-based compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05349v1-abstract-full').style.display = 'none'; document.getElementById('1911.05349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 100, 060504(R) (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13199">arXiv:1909.13199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.13199">pdf</a>, <a href="https://arxiv.org/format/1909.13199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.087601">10.1103/PhysRevLett.124.087601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental identification of electric dipoles induced by magnetic monopoles in Tb2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xuefeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13199v1-abstract-short" style="display: inline;"> The fundamental principles of electrodynamics allow an electron carrying both electric monopole (charge) and magnetic dipole (spin) but prohibit its magnetic counterpart. Recently it was predicted that the magnetic &#34;monopoles&#34; carrying emergent magnetic charges in spin ice systems can induce electric dipoles. The inspiring prediction offers a novel way to study magnetic monopole excitations and ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13199v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13199v1-abstract-full" style="display: none;"> The fundamental principles of electrodynamics allow an electron carrying both electric monopole (charge) and magnetic dipole (spin) but prohibit its magnetic counterpart. Recently it was predicted that the magnetic &#34;monopoles&#34; carrying emergent magnetic charges in spin ice systems can induce electric dipoles. The inspiring prediction offers a novel way to study magnetic monopole excitations and magnetoelectric coupling. However, no clear example has been identified up to now. Here, we report the experimental evidence for electric dipoles induced by magnetic monopoles in spin frustrated Tb2Ti2O7. The magnetic field applied to pyrochlore Tb2Ti2O7 along [111] direction, brings out a &#34;3-in-1-out&#34; magnetic monopole configuration, and then induces a subtle structural phase transition at Hc~2.3 T. The transition is evidenced by the non-linear phonon splitting under magnetic fields and the anomalous crystal-field excitations of Tb3+ ions. The observations consistently point to the displacement of the oxygen O&#34; anions along [111] axis which gives rise to the formation of electric dipoles. The finding demonstrates that the scenario of magnetic monopole having both magnetic charge and electric dipole is realized in Tb2Ti2O7 and sheds light into the coupling between electricity and magnetism of magnetic monopoles in spin frustrated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13199v1-abstract-full').style.display = 'none'; document.getElementById('1909.13199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 087601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07252">arXiv:1907.07252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07252">pdf</a>, <a href="https://arxiv.org/ps/1907.07252">ps</a>, <a href="https://arxiv.org/format/1907.07252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-019-0263-0">10.1038/s42005-019-0263-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Topologically-protected Super- and Subradiant Boundary States in One-Dimensional Atomic Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakovlev%2C+V+V">Vladislav V. Yakovlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07252v1-abstract-short" style="display: inline;"> Single-photon super- and subradiance are important for the quantum memory and quantum information. We investigate one-dimensional atomic arrays under the spatially periodic magnetic field with a tunable phase, which provides a distinctive physics aspect of revealing exotic two-dimensional topological phenomena with a synthetic dimension. A butterfly-like nontrivial bandstructure associated with th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07252v1-abstract-full').style.display = 'inline'; document.getElementById('1907.07252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07252v1-abstract-full" style="display: none;"> Single-photon super- and subradiance are important for the quantum memory and quantum information. We investigate one-dimensional atomic arrays under the spatially periodic magnetic field with a tunable phase, which provides a distinctive physics aspect of revealing exotic two-dimensional topological phenomena with a synthetic dimension. A butterfly-like nontrivial bandstructure associated with the non-Hermitian physics involving strong long-range interactions has been discovered. It leads to pairs of topologically-protected edge states, which exhibit the robust super- or subradiance behavior, localized at the boundaries of the atomic arrays. This work opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions pointing to potential implications for quantum sensing as well as the super-resolution imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07252v1-abstract-full').style.display = 'none'; document.getElementById('1907.07252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10pages,4figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 2, 157 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02475">arXiv:1906.02475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.02475">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Ionic Impact Ionization (I3) in Perovskites Triggered by a Single Photon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zihan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yugang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niaz%2C+I+A">Iftikhar Ahmad Niaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yimu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+S">Shaurya Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yusheng Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miah%2C+M+A+R">Mohammad Abu Raihan Miah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiayun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A+C">Alex Ce Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Lujiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Sheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nomura%2C+K">Kenji Nomura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lo%2C+Y">Yu-Hwa Lo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02475v2-abstract-short" style="display: inline;"> Organic-inorganic metal halide perovskite devices have generated significant interest for LED, photodetector, and solar cell applications due to their attractive optoelectronic properties and substrate-choice flexibility1-4. These devices exhibit slow time-scale response, which have been explained by point defect migration5-6. In this work, we report the discovery of a room temperature intrinsic a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02475v2-abstract-full').style.display = 'inline'; document.getElementById('1906.02475v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02475v2-abstract-full" style="display: none;"> Organic-inorganic metal halide perovskite devices have generated significant interest for LED, photodetector, and solar cell applications due to their attractive optoelectronic properties and substrate-choice flexibility1-4. These devices exhibit slow time-scale response, which have been explained by point defect migration5-6. In this work, we report the discovery of a room temperature intrinsic amplification process in methylammonium lead iodide perovskite (MAPbI3) that can be triggered by few photons, down to a single photon. The electrical properties of the material, by way of photoresponse, are modified by an input energy as small as 0.19 attojoules, the energy of a single photon. These observations cannot be explained by photo-excited electronic band-to-band transitions or prevailing model of photo-excited point defect migration since none of the above can explain the observed macroscopic property change by absorption of single or few photons. The results suggest the existence of an avalanche-like collective motion of iodides and their accumulation near the anode, which we will call ionic impact ionization (I3 mechanism). The proposed I3 process is the ionic analog of the electronic impact ionization, and has been considered impossible before because conventionally it takes far more energy to move ions out of their equilibrium position than electrons. We have performed first principle calculations to show that in MAPbI3 the activation energy for the I3 mechanism is appreciably lower than the literature value of the activation energy for the electronic impact ionization. The discovery of I3 process in perovskite material opens up possibilities for new classes of devices for photonic and electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02475v2-abstract-full').style.display = 'none'; document.getElementById('1906.02475v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01923">arXiv:1901.01923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01923">pdf</a>, <a href="https://arxiv.org/format/1901.01923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.034047">10.1103/PhysRevApplied.11.034047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Optical and Electrical Spin-Torque Magnetometry with Stroboscopic Detection of Spin-Precession Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saglam%2C+H">Hilal Saglam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhizhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bidthanapally%2C+R">Rao Bidthanapally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pearson%2C+J+E">John E. Pearson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srinivasan%2C+G">Gopalan Srinivasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A+H+a+W">Axel Hoffmann andand Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01923v1-abstract-short" style="display: inline;"> Spin-based coherent information processing and encoding utilize the precession phase of spins in magnetic materials. However, the detection and manipulation of spin precession phases remain a major challenge for advanced spintronic functionalities. By using simultaneous electrical and optical detection, we demonstrate the direct measurement of the precession phase of Permalloy ferromagnetic resona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01923v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01923v1-abstract-full" style="display: none;"> Spin-based coherent information processing and encoding utilize the precession phase of spins in magnetic materials. However, the detection and manipulation of spin precession phases remain a major challenge for advanced spintronic functionalities. By using simultaneous electrical and optical detection, we demonstrate the direct measurement of the precession phase of Permalloy ferromagnetic resonance driven by the spin-orbit torques from adjacent heavy metals. The spin Hall angle of the heavy metals can be independently determined from concurrent electrical and optical signals. The stroboscopic optical detection also allows spatially measuring local spin-torque parameters and the induced ferromagnetic resonance with comprehensive amplitude and phase information. Our study offers a route towards future advanced characterizations of spin-torque oscillators, magnonic circuits, and tunnelling junctions, where measuring the current-induced spin dynamics of individual nanomagnets are required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01923v1-abstract-full').style.display = 'none'; document.getElementById('1901.01923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 034047 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10929">arXiv:1803.10929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.10929">pdf</a>, <a href="https://arxiv.org/format/1803.10929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.018002">10.1103/PhysRevLett.121.018002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Translational and rotational dynamical heterogeneities in granular systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+B">Binquan Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yixin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jindong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+C">Chengjie Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhifeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Haipeng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kob%2C+W">Walter Kob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yujie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10929v1-abstract-short" style="display: inline;"> We use X-ray tomography to investigate the translational and rotational dynamical heterogeneities of a three dimensional hard ellipsoids granular packing driven by oscillatory shear. We find that particles which translate quickly form clusters with a size distribution given by a power-law with an exponent that is independent of the strain amplitude. Identical behavior is found for particles that a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10929v1-abstract-full').style.display = 'inline'; document.getElementById('1803.10929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10929v1-abstract-full" style="display: none;"> We use X-ray tomography to investigate the translational and rotational dynamical heterogeneities of a three dimensional hard ellipsoids granular packing driven by oscillatory shear. We find that particles which translate quickly form clusters with a size distribution given by a power-law with an exponent that is independent of the strain amplitude. Identical behavior is found for particles that are translating slowly, rotating quickly, or rotating slowly. The geometrical properties of these four different types of clusters are the same as those of random clusters. Different cluster types are considerably correlated/anticorrelated, indicating a significant coupling between translational and rotational degrees of freedom. Surprisingly these clusters are formed already at time scales that are much shorter than the $伪-$relaxation time, in stark contrast to the behavior found in glass-forming systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10929v1-abstract-full').style.display = 'none'; document.getElementById('1803.10929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 018002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03725">arXiv:1711.03725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.03725">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature24062">10.1038/nature24062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Granular materials flow like complex fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+B">Binquan Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yixin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jindong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+C">Chengjie Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhifeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Haipeng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kob%2C+W">Walter Kob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yujie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03725v1-abstract-short" style="display: inline;"> Granular materials such as sand, powders, foams etc. are ubiquitous in our daily life, as well as in industrial and geotechnical applications. Although these disordered systems form stable structures if unperturbed, in practice they do relax because of the presence of unavoidable external influences such as tapping or shear. Often it is tacitly assumed that for granular systems this relaxation dyn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03725v1-abstract-full').style.display = 'inline'; document.getElementById('1711.03725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03725v1-abstract-full" style="display: none;"> Granular materials such as sand, powders, foams etc. are ubiquitous in our daily life, as well as in industrial and geotechnical applications. Although these disordered systems form stable structures if unperturbed, in practice they do relax because of the presence of unavoidable external influences such as tapping or shear. Often it is tacitly assumed that for granular systems this relaxation dynamics is similar to the one of thermal glass-formers, but in fact experimental difficulties have so far prevented to determine the dynamic properties of three dimensional granular systems on the particle level. This lack of experimental data, combined with the fact that in these systems the motion of the particles involves friction, makes it very challenging to come up with an accurate description of their relaxation dynamics. Here we use X-ray tomography to determine the microscopic relaxation dynamics of hard granular ellipsoids that are subject to an oscillatory shear. We find that the distribution function of the particle displacement can be described by a Gumbel law with a shape parameter that is independent of time and the strain amplitude $纬$. Despite this universality, the mean squared displacement of a tagged particle shows power-laws as a function of time with an exponent that depends on $纬$ and the time interval considered. We argue that these results are directly related to the existence of the microscopic relaxation mechanisms that involve friction and memory effects. These observations demonstrate that on the particle level the dynamical behavior of granular systems is qualitatively different from the one of thermal glass-formers and instead more similar to the one of complex fluids. Thus we conclude that granular materials can relax even when the driving is weak, an insight which impacts our understanding of the nature of granular solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03725v1-abstract-full').style.display = 'none'; document.getElementById('1711.03725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted version; final version is here: https://www.nature.com/articles/nature24062</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 551, 360 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.00553">arXiv:1704.00553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.00553">pdf</a>, <a href="https://arxiv.org/ps/1704.00553">ps</a>, <a href="https://arxiv.org/format/1704.00553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C7CP02486J">10.1039/C7CP02486J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain effects on phonon transport in antimonene from a first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ai-Xia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiang-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.00553v1-abstract-short" style="display: inline;"> Strain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayer) under biaxial strain is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00553v1-abstract-full').style.display = 'inline'; document.getElementById('1704.00553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.00553v1-abstract-full" style="display: none;"> Strain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayer) under biaxial strain is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the ZA dispersion of antimonene with strain less than -1\% gives imaginary frequencies, which suggests that compressive strain can induce structural instability. Experimentally, it is possible to enhance structural stability by tensile strain. Calculated results show that lattice thermal conductivity increases with strain changing from -1\% to 6\%, and lattice thermal conductivity at 6\% strain is 5.6 times larger than that at -1\% strain at room temperature. It is interesting that lattice thermal conductivity is in inverse proportion to buckling parameter $h$ in considered strain range. Such a strain dependence of lattice thermal conductivity is attributed to enhanced phonon lifetimes caused by increased strain, while group velocities have a decreased effect on lattice thermal conductivity with increasing strain. It is found that acoustic branches dominate the lattice thermal conductivity over the full strain range. The cumulative room-temperature lattice thermal conductivity at -1\% strain converges to maximum with phonon mean free path (MFP) at 50 nm, while one at 6\% strain becomes as large as 44 $\mathrm{渭m}$, which suggests that strain can give rise to very strong size effects on lattice thermal conductivity in antimonene. These results may provide guidance on fabrication techniques of antimonene, and offer perspectives on tuning lattice thermal conductivity by size and strain for applications of thermal management and thermoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00553v1-abstract-full').style.display = 'none'; document.getElementById('1704.00553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06406">arXiv:1703.06406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06406">pdf</a>, <a href="https://arxiv.org/ps/1703.06406">ps</a>, <a href="https://arxiv.org/format/1703.06406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6528/aa8741">10.1088/1361-6528/aa8741 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Potential 2D thermoelectric materials ATeI (A=Sb and Bi) monolayers from a first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ai-Xia Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06406v1-abstract-short" style="display: inline;"> Lots of two-dimensional (2D) materials have been predicted theoretically, and further confirmed in experiment, which have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. Here, the thermoelectric properties of ATeI (A=Sb and Bi) monolayers are systematically investigated, based on semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06406v1-abstract-full').style.display = 'inline'; document.getElementById('1703.06406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06406v1-abstract-full" style="display: none;"> Lots of two-dimensional (2D) materials have been predicted theoretically, and further confirmed in experiment, which have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. Here, the thermoelectric properties of ATeI (A=Sb and Bi) monolayers are systematically investigated, based on semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has important effects on electronic transport coefficients in p-type doping, but neglectful influences on n-type ones. The room-temperature sheet thermal conductance is 14.2 $\mathrm{W K^{-1}}$ for SbTeI and 12.6 $\mathrm{W K^{-1}}$ for BiTeI, which are lower than one of most well-known 2D materials, such as transition-metal dichalcogenide, group IV-VI, group-VA and group-IV monolayers. By analyzing group velocities and phonon lifetimes, the very low sheet thermal conductance of ATeI (A=Sb and Bi) monolayers is mainly due to small group velocities. It is found that the high-frequency optical branches contribute significantly to the total thermal conductivity, being obviously different from usual picture with little contribution from optical branches. According to cumulative lattice thermal conductivity with respect to phonon mean free path (MFP), it is difficulty to further reduce lattice thermal conductivity by nanostructures. Finally, possible thermoelectric figure of merit $ZT$ of ATeI (A=Sb and Bi) monolayers are calculated. It is found that the p-type doping has more excellent thermoelectric properties than n-type doping, and at room temperature, the peak $ZT$ can reach 1.11 for SbTeI and 0.87 for BiTeI, respectively. These results make us believe that ATeI (A=Sb and Bi) monolayers may be potential 2D thermoelectric materials, and can stimulate further experimental works to synthesize these monolayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06406v1-abstract-full').style.display = 'none'; document.getElementById('1703.06406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures. arXiv admin note: text overlap with arXiv:1701.08944</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.02712">arXiv:1703.02712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.02712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13833">10.1038/ncomms13833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of Dirac electrons and magnetism in AMnBi2 (A=Ca, Sr) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+G">Guihua Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tian-long Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Changfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.02712v1-abstract-short" style="display: inline;"> Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena, such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac-carrier and magnetic layers. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02712v1-abstract-full').style.display = 'inline'; document.getElementById('1703.02712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.02712v1-abstract-full" style="display: none;"> Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena, such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac-carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison to the reference compound BaMn2Bi2, we show that the Dirac-carrier layers in AMnBi2 significantly enhance the exchange coupling between the magnetic layers, which in turn drives a charge-gap opening along the Dirac locus. Our findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin-Fermion interaction. The outstanding properties of these materials allow a delicate manipulation of the interaction between the Dirac carriers and magnetic moments, thus holding great promise for applications in magnetic Dirac devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02712v1-abstract-full').style.display = 'none'; document.getElementById('1703.02712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 7, 13833(2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.02708">arXiv:1703.02708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.02708">pdf</a>, <a href="https://arxiv.org/ps/1703.02708">ps</a>, <a href="https://arxiv.org/format/1703.02708">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.094302">10.1103/PhysRevB.94.094302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman scattering study of large magnetoresistance semimetals TaAs$_2$ and NbAs$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Pengjie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Q">Qiaohe Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.02708v1-abstract-short" style="display: inline;"> We have performed polarized and temperature-dependent Raman scattering measurements on extremely large magnetoresitance compounds TaAs$_2$ and NbAs$_2$. In both crystals, all the Raman active modes, including six A$_g$ modes and three B$_g$ modes, are clearly observed and well assigned with the combination of symmetry analysis and first-principles calculations. The well-resolved periodic intensity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02708v1-abstract-full').style.display = 'inline'; document.getElementById('1703.02708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.02708v1-abstract-full" style="display: none;"> We have performed polarized and temperature-dependent Raman scattering measurements on extremely large magnetoresitance compounds TaAs$_2$ and NbAs$_2$. In both crystals, all the Raman active modes, including six A$_g$ modes and three B$_g$ modes, are clearly observed and well assigned with the combination of symmetry analysis and first-principles calculations. The well-resolved periodic intensity modulations of the observed modes with rotating crystal orientations, verify the symmetry of each assigned mode and are fitted to experimentally determine the elements of Raman tensor matrixes. The broadening of two A$_g$ modes seen in both compounds allows us to estimate electron-phonon coupling constant, which suggests a relatively small electron-phonon coupling in the semimetals TaAs$_2$ and NbAs$_2$. The present study provides the fundamental lattice dynamics information on TaAs$_2$ and NbAs$_2$ and may shed light on the understanding of their extraordinary large magnetoresistance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02708v1-abstract-full').style.display = 'none'; document.getElementById('1703.02708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 094302 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.02701">arXiv:1703.02701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.02701">pdf</a>, <a href="https://arxiv.org/ps/1703.02701">ps</a>, <a href="https://arxiv.org/format/1703.02701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.064303">10.1103/PhysRevB.93.064303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman phonons in the ferroelectric-like metal LiOsO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.02701v1-abstract-short" style="display: inline;"> The novel ferroelectric-like structural transition observed in metallic LiOsO$_3$ [Y. Shi et al., Nat. Mater. 12, 1024 (2013)], has invoked many theoretical and experimental interests. In this work, we have performed polarized and temperature-dependent Raman scattering measurements on high-quality single crystal LiOsO$_3$ and identified Raman-active modes in both centrosymmetric phase (300 K, R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02701v1-abstract-full').style.display = 'inline'; document.getElementById('1703.02701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.02701v1-abstract-full" style="display: none;"> The novel ferroelectric-like structural transition observed in metallic LiOsO$_3$ [Y. Shi et al., Nat. Mater. 12, 1024 (2013)], has invoked many theoretical and experimental interests. In this work, we have performed polarized and temperature-dependent Raman scattering measurements on high-quality single crystal LiOsO$_3$ and identified Raman-active modes in both centrosymmetric phase (300 K, R$\bar{3}$c) and non-centrosymmetric phase (10 K, R3c). Only four phonon peaks are observed in the former phase, while there are twelve peaks in the latter phase because of the reduction of crystal symmetry. With the help of careful symmetry analysis and first-principles calculations, we can make a systematic assignment for the observed Raman modes in both phases. The significant changes in line-width and the continuous evolution of Raman frequencies with temperatures were observed for the E$_g$ modes around the transition temperature, which suggests that the ferroelectric-like structural transition is a continuous order-disorder transition. The result sheds light on the coexistence of ferroelectricity and metallicity in the compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02701v1-abstract-full').style.display = 'none'; document.getElementById('1703.02701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 064303 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01427">arXiv:1703.01427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.01427">pdf</a>, <a href="https://arxiv.org/ps/1703.01427">ps</a>, <a href="https://arxiv.org/format/1703.01427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4982622">10.1063/1.4982622 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon transport in $\mathrm{Na_2He}$ at high pressure from a first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ai-Xia Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01427v1-abstract-short" style="display: inline;"> Phonon transport of recently-fabricated $\mathrm{Na_2He}$ at high pressure is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated room-temperature lattice thermal conductivity is 149.19 $\mathrm{W m^{-1} K^{-1}}$, which is very close to one of Si. It is found that lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01427v1-abstract-full').style.display = 'inline'; document.getElementById('1703.01427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01427v1-abstract-full" style="display: none;"> Phonon transport of recently-fabricated $\mathrm{Na_2He}$ at high pressure is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated room-temperature lattice thermal conductivity is 149.19 $\mathrm{W m^{-1} K^{-1}}$, which is very close to one of Si. It is found that low-frequency optical modes comprise 16\% of the lattice thermal conductivity, while high-frequency optical modes have negligible contribution. The high lattice thermal conductivity is due to large group velocities, small Gr$\mathrm{\ddot{u}}$neisen parameters, and long phonon lifetimes. The size effects on lattice thermal conductivity are considered by cumulative thermal conductivity with respect to phonon mean free path(MFP). To significantly reduce the lattice thermal conductivity, the characteristic length smaller than 100 nm is required, and can reach a decrease of 36\%. These results may be useful to understand thermal transport processes that occur inside giant planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01427v1-abstract-full').style.display = 'none'; document.getElementById('1703.01427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05965">arXiv:1702.05965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05965">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetism in cerium doped LaCo2P2 crystals: a magnetic phase diagram </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Y">Yixiu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05965v1-abstract-short" style="display: inline;"> ThCr2Si2-type phosphide ACo2P2 (A=Rare earth elements) has the same structure as iron arsenides, but their magnetic behaviors are quite distinct. In this paper, we for the first time grew a series of La1-xCexCo2P2 single crystals (x=0.0 to1.0), and made structural and magnetic characterizations. This allows us to carry out a careful investigation on the evolution of magnetism with cerium content a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05965v1-abstract-full').style.display = 'inline'; document.getElementById('1702.05965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05965v1-abstract-full" style="display: none;"> ThCr2Si2-type phosphide ACo2P2 (A=Rare earth elements) has the same structure as iron arsenides, but their magnetic behaviors are quite distinct. In this paper, we for the first time grew a series of La1-xCexCo2P2 single crystals (x=0.0 to1.0), and made structural and magnetic characterizations. This allows us to carry out a careful investigation on the evolution of magnetism with cerium content and build a magnetic phase diagram. We found that the introduction of cerium induces a rapid decrease of c-axis and a change from ferromagnetic (FM) to antiferromagnetic (AFM) states. By employing first-principles band-structure calculations, we identify the formation of P-P bonding with the shortening of c-axis, which effectively drives an increase of AFM interaction and eventually leads to AFM ordering in the high doping region. The present study may shed light on the interplay between the structural collapsing and electronic/magnetic properties in 122 iron pnictides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05965v1-abstract-full').style.display = 'none'; document.getElementById('1702.05965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.08944">arXiv:1701.08944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.08944">pdf</a>, <a href="https://arxiv.org/ps/1701.08944">ps</a>, <a href="https://arxiv.org/format/1701.08944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermoelectric properties of $尾$-As, Sb and Bi monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Dong-Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Ai-Xia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">San-Dong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.08944v2-abstract-short" style="display: inline;"> Monolayer semiconductors of group-VA elements (As, Sb, Bi) with graphenelike buckled structure offer a potential to achieve nanoscale electronic, optoelectronic and thermoelectric devices. Motivated by recently-fabricated Sb monolayer, we systematically investigate the thermoelectric properties of $尾$-As, Sb and Bi monolayers by combining the first-principles calculations and semiclassical Boltzma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08944v2-abstract-full').style.display = 'inline'; document.getElementById('1701.08944v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.08944v2-abstract-full" style="display: none;"> Monolayer semiconductors of group-VA elements (As, Sb, Bi) with graphenelike buckled structure offer a potential to achieve nanoscale electronic, optoelectronic and thermoelectric devices. Motivated by recently-fabricated Sb monolayer, we systematically investigate the thermoelectric properties of $尾$-As, Sb and Bi monolayers by combining the first-principles calculations and semiclassical Boltzmann transport theory. The generalized gradient approximation (GGA) plus spin-orbit coupling (SOC) is adopted for the electron part, and GGA is employed for the phonon part. It is found that SOC has important influences on their electronic structures, especially for Bi monolayer, which can induce observable SOC effects on electronic transport coefficients. More specifically, SOC not only has detrimental influences on electronic transport coefficients, but also produces enhanced effects. The calculated lattice thermal conductivity decreases gradually from As to Bi monolayer, and the corresponding room-temperature sheet thermal conductance is 161.10 $\mathrm{W K^{-1}}$, 46.62 $\mathrm{W K^{-1}}$ and 16.02 $\mathrm{W K^{-1}}$, which can be converted into common lattice thermal conductivity by dividing by the thickness of 2D material. The sheet thermal conductance of Bi monolayer is lower than one of other 2D materials, such as semiconducting transition-metal dichalcogenide monolayers and orthorhombic group IV-VI monolayers. A series of scattering time is employed to estimate the thermoelectric figure of merit $ZT$. It is found that the n-type doping has more excellent thermoelectric properties than p-type doping for As and Bi monolayer, while the comparative $ZT$ between n- and p-type doping is observed in Bi monolayer. These results can stimulate further experimental works to open the new field for thermoelectric devices based on monolayer of group-VA elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08944v2-abstract-full').style.display = 'none'; document.getElementById('1701.08944v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10