CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 505 results for author: <span class="mathjax">Zhu, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhu, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhu%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhu, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09003">arXiv:2412.09003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09003">pdf</a>, <a href="https://arxiv.org/ps/2412.09003">ps</a>, <a href="https://arxiv.org/format/2412.09003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetism in Ruddlesden-Popper bilayer nickelate revealed by muon spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K+W">K. W. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+Q">X. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z+Y">Z. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J+C">J. C. Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+C+Y">C. Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+L">L. Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09003v1-abstract-short" style="display: inline;"> Here we report the positive muon spin relaxation study on Pr-doped La$_{1.9}$Pr$_{1.1}$Ni$_2$O$_{6.97}$ and oxygen-deficient La$_3$Ni$_2$O$_{6.63}$ polycrystalline under ambient pressure. Zero-field $渭^+$SR experiments reveal the existence of bulk long-range magnetic order in La$_{1.9}$Pr$_{1.1}$Ni$_2$O$_{6.97}$ with $T_{N}=161\ \rm{K}$, while La$_3$Ni$_2$O$_{6.63}$ exhibits a short-range magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09003v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09003v1-abstract-full" style="display: none;"> Here we report the positive muon spin relaxation study on Pr-doped La$_{1.9}$Pr$_{1.1}$Ni$_2$O$_{6.97}$ and oxygen-deficient La$_3$Ni$_2$O$_{6.63}$ polycrystalline under ambient pressure. Zero-field $渭^+$SR experiments reveal the existence of bulk long-range magnetic order in La$_{1.9}$Pr$_{1.1}$Ni$_2$O$_{6.97}$ with $T_{N}=161\ \rm{K}$, while La$_3$Ni$_2$O$_{6.63}$ exhibits a short-range magnetic ground state with $T_N=30\ \rm{K}$. The magnetic transition width of La$_{1.9}$Pr$_{1.1}$Ni$_2$O$_{6.97}$ revealed by weak-transverse-field $渭^+$SR is narrower compared to La$_3$Ni$_2$O$_{6.92}$. Our $渭^+$SR experiment results provide a comprehensive view on the correlation between magnetism and structure perfection in Ruddlesden-Popper bilayer nickelates under ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09003v1-abstract-full').style.display = 'none'; document.getElementById('2412.09003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15443">arXiv:2411.15443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15443">pdf</a>, <a href="https://arxiv.org/format/2411.15443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> String breaking mechanism in a lattice Schwinger model simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15443v1-abstract-short" style="display: inline;"> String breaking is a fundamental concept in gauge theories, describing the decay of a flux string connecting two charges through the production of particle-antiparticle pairs. This phenomenon is particularly important in particle physics, notably in Quantum Chromodynamics, and plays a crucial role in condensed matter physics. However, achieving a theoretical understanding of this non-perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15443v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15443v1-abstract-full" style="display: none;"> String breaking is a fundamental concept in gauge theories, describing the decay of a flux string connecting two charges through the production of particle-antiparticle pairs. This phenomenon is particularly important in particle physics, notably in Quantum Chromodynamics, and plays a crucial role in condensed matter physics. However, achieving a theoretical understanding of this non-perturbative effect is challenging, as conventional numerical approaches often fall short and require substantial computational resources. On the experimental side, studying these effects necessitates advanced setups, such as high-energy colliders, which makes direct observation difficult. Here, we report an experimental investigation of the string breaking mechanism in a one-dimensional U(1) lattice gauge theory using an optical lattice quantum simulator. By deterministically preparing initial states of varying lengths with fixed charges at each end, and adiabatically tuning the mass and string tension, we observed in situ microscopic confined phases that exhibit either string or brokenstring states. Further analysis reveals that string breaking occurs under a resonance condition, leading to the creation of new particle-antiparticle pairs. These findings offer compelling evidence of string breaking and provide valuable insights into the intricate dynamics of lattice gauge theories. Our work underscores the potential of optical lattices as controllable quantum simulators, enabling the exploration of complex gauge theories and their associated phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15443v1-abstract-full').style.display = 'none'; document.getElementById('2411.15443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, (5+3) figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12565">arXiv:2411.12565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12565">pdf</a>, <a href="https://arxiv.org/format/2411.12565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing false vacuum decay on a cold-atom gauge-theory quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lagnese%2C+G">Gianluca Lagnese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Surace%2C+F+M">Federica Maria Surace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halimeh%2C+J+C">Jad C. Halimeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalmonte%2C+M">Marcello Dalmonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morampudi%2C+S+C">Siddhardh C. Morampudi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilczek%2C+F">Frank Wilczek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12565v1-abstract-short" style="display: inline;"> In the context of quantum electrodynamics, the decay of false vacuum leads to the production of electron-positron pair, a phenomenon known as the Schwinger effect. In practical experimental scenarios, producing a pair requires an extremely strong electric field, thus suppressing the production rate and making this process very challenging to observe. Here we report an experimental investigation, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12565v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12565v1-abstract-full" style="display: none;"> In the context of quantum electrodynamics, the decay of false vacuum leads to the production of electron-positron pair, a phenomenon known as the Schwinger effect. In practical experimental scenarios, producing a pair requires an extremely strong electric field, thus suppressing the production rate and making this process very challenging to observe. Here we report an experimental investigation, in a cold-atom quantum simulator, of the effect of the background field on pair production from the infinite-mass vacuum in a $1+1$D $\mathrm{U}(1)$ lattice gauge theory. The ability to tune the background field allows us to study pair production in a large production rate regime. Furthermore, we find that the energy spectrum of the time-evolved observables in the zero mass limit displays excitation peaks analogous to bosonic modes in the Schwinger model. Our work opens the door to quantum-simulation experiments that can controllably tune the production of pairs and manipulate their far-from-equilibrium dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12565v1-abstract-full').style.display = 'none'; document.getElementById('2411.12565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11586">arXiv:2411.11586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11586">pdf</a>, <a href="https://arxiv.org/format/2411.11586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Quantization of Sondheimer oscillations of conductivity in thin cadmium crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiaodong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11586v2-abstract-short" style="display: inline;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field and the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11586v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11586v2-abstract-full" style="display: none;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field and the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with thickness varying between 12.6 to 475 $渭$m. When the magnetic field is sufficiently large or the sample sufficiently thick, the amplitude of oscillation falls off as $B^{-4}$ as previously reported. In contrast, the ten first oscillations follow a $B^{-2.5}e^{-B/B_0}$ field dependence and their amplitude is set by the quantum of conductance, the sample thickness, the magnetic length and the Fermi surface geometry. We demonstrate that they are beyond the semi-classical picture, as the exponential prefactor indicates quantum tunneling between distinct quantum states. We draw a picture of these quantum oscillations, in which the linear dispersion of the semi-Dirac band in the cadmium plays a crucial role. The oscillations arise by the intersection between the lowest Landau tube and flat toroids on the Fermi surface induced by confinement. Positive and negative corrections to semi-classical magneto-conductance can occur by alternation between destructive and constructive interference in phase-coherent helical states. The quantum limit of Sondheimer oscillations emerges as another manifestation of Aharanov-Bohm flux quantization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v2-abstract-full').style.display = 'none'; document.getElementById('2411.11586v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10756">arXiv:2411.10756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10756">pdf</a>, <a href="https://arxiv.org/format/2411.10756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light-Induced Subpicosecond Topological Phase Transition by Tuning Magnetic Order in Antiferromagnetic Dirac Semimetal EuAgAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi-Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yahui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziming Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiao-Jiao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Honghong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hai-Yun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+Y">Yu-Xia Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jian-Qiao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10756v1-abstract-short" style="display: inline;"> We report the observation of a light-induced subpicosecond topological phase transition in the antiferromagnetic Dirac semimetal EuAgAs, achieved through precise manipulation of its magnetic configuration. Using ultrafast optical spectroscopy, we probe the nonequilibrium carrier dynamics and reveal a magnetic-order-driven transition between distinct topological states. Our results demonstrate that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10756v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10756v1-abstract-full" style="display: none;"> We report the observation of a light-induced subpicosecond topological phase transition in the antiferromagnetic Dirac semimetal EuAgAs, achieved through precise manipulation of its magnetic configuration. Using ultrafast optical spectroscopy, we probe the nonequilibrium carrier dynamics and reveal a magnetic-order-driven transition between distinct topological states. Our results demonstrate that EuAgAs, with its highly tunable magnetic structure, offers a unique platform for exploring topological phase transitions, distinct from conventional methods like Floquet engineering, coherent-phonon excitation, and lattice structural modifications. These results underscore the potential of ultrashort optical pulses as powerful tools for real-time control of topological phases, opening pathways for advances in spintronics, quantum computing, and energy-efficient information technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10756v1-abstract-full').style.display = 'none'; document.getElementById('2411.10756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06931">arXiv:2411.06931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dongxiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuxuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingjian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingxiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhengqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Boxi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nong%2C+S">Shutong Nong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+T">Tingrui Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weihua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mujun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06931v1-abstract-short" style="display: inline;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06931v1-abstract-full" style="display: none;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free UV cross-linking. This method achieves a nematic order 3000% higher than those fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method may open new possibilities for soft robotics, biomedical devices, and wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v1-abstract-full').style.display = 'none'; document.getElementById('2411.06931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06379">arXiv:2411.06379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0223716">10.1063/5.0223716 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orthogonal Spin-Orbit Torque-Induced Deterministic Switching in NiO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yixiao Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06379v1-abstract-short" style="display: inline;"> The electrical switching of antiferromagnet (AFM) is very important for the development of ultrafast magnetic random-access memory (MRAM). This task becomes more difficult in antiferromagnetic oxide NiO which has complex anisotropy. We show that by utilizing two spin-orbit torques (SOT) from orthogonal currents, one can deterministically switch the magnetic moments of NiO in two electrical disting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06379v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06379v1-abstract-full" style="display: none;"> The electrical switching of antiferromagnet (AFM) is very important for the development of ultrafast magnetic random-access memory (MRAM). This task becomes more difficult in antiferromagnetic oxide NiO which has complex anisotropy. We show that by utilizing two spin-orbit torques (SOT) from orthogonal currents, one can deterministically switch the magnetic moments of NiO in two electrical distinguishable states that can be read out using the spin Hall magnetoresistance. This deterministic switching relies on the symmetry of SOT on different sublattices, where the sign reversal of magnetic moments leads to constructive torques in the beginning and balanced torques in the end. In addition, we show that the easy-plane anisotropy plays a key role in the switching, which has been ignored in some previous works. The uniform magnetic dynamics in this work provides a clear physical picture in understanding the SOT switching of NiO. Furthermore, the electrical writing and reading function in our device advances the development of AFM-MRAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06379v1-abstract-full').style.display = 'none'; document.getElementById('2411.06379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 182403 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06321">arXiv:2411.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2024.172614">10.1016/j.jmmm.2024.172614 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous switching pattern in the ferrimagnetic memory cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhengping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yixiao Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06321v1-abstract-short" style="display: inline;"> Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06321v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06321v1-abstract-full" style="display: none;"> Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. This stems from the small switching window of FiM and the dynamic resistance variation during the magnetization switching. We find the resulting current variation can be suppressed by reducing the magnetoresistance ratio. Furthermore, we demonstrate that the switching window can be expanded by adjusting the amount of Gd in FiM. We predict that the polarity of both switching current (Jc,switch) and oscillation current (Jc,osc) reverses at the angular momentum compensation point but not the magnetization compensation point. This anomalous dynamic behavior is attributed to the different physical nature of magnetization switching and oscillation in FiM, which must be considered when designing FiM-based MRAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06321v1-abstract-full').style.display = 'none'; document.getElementById('2411.06321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 611 (2024) 172614 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21371">arXiv:2410.21371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21371">pdf</a>, <a href="https://arxiv.org/format/2410.21371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Effective tight-binding models in optical moir茅 potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Johnstone%2C+D">Dean Johnstone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">Shanya Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhaoxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Palencia%2C+L">Laurent Sanchez-Palencia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21371v1-abstract-short" style="display: inline;"> A twist between two systems offers the possibility to drastically change the underlying physical properties. To that end, we study the bandstructure of twisted moir茅 potentials in detail. At sets of commensurate twisting angles, the low energy single-particle spectrum of a twisted moir茅 potential will form into distinct bands and gaps. To a first approximation, energy bands can be qualitatively mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21371v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21371v1-abstract-full" style="display: none;"> A twist between two systems offers the possibility to drastically change the underlying physical properties. To that end, we study the bandstructure of twisted moir茅 potentials in detail. At sets of commensurate twisting angles, the low energy single-particle spectrum of a twisted moir茅 potential will form into distinct bands and gaps. To a first approximation, energy bands can be qualitatively modelled by harmonic states, localised in different potential minima. The bands are intrinsically linked to the number of distinct minima and size of the moir茅 unit cell, with smaller cells producing larger gaps and vice versa. For shallower potential depths, degeneracies between harmonic states are lifted by virtue of anharmonic confinement and coupling between states. Depending on the exact geometry of potential minima, bands can then be classified by $4$ unique forms of tight-binding models. We find excellent agreement between the continuous spectrum and fitting to our tight-binding models, allowing for accurate tunnelling rates and onsite energies to be extracted. Our results are directly relevant to the bosonic, many-body problem, and thus provide further understanding on the relative stability of quantum phases both in theory and experiments. In particular, the prominence of gaps can be mapped to strongly correlated insulating phases. Furthermore, tunnelling rates of different bands serve as thresholds on temperature in which a phase can be either a normal fluid or superfluid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21371v1-abstract-full').style.display = 'none'; document.getElementById('2410.21371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12308">arXiv:2410.12308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12308">pdf</a>, <a href="https://arxiv.org/format/2410.12308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mitigating higher-band heating in Floquet-Hubbard lattices via two-tone driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yuanning Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zijie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viebahn%2C+K">Konrad Viebahn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12308v1-abstract-short" style="display: inline;"> Multi-photon resonances to high-lying energy levels represent an unavoidable source of Floquet heating in strongly driven quantum systems. In this work, we extend the recently developed two-tone approach of &#39;cancelling&#39; multi-photon resonances to shaken lattices in the Hubbard regime. Our experiments show that even for strong lattice shaking the inclusion of a weak second drive leads to cancellati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12308v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12308v1-abstract-full" style="display: none;"> Multi-photon resonances to high-lying energy levels represent an unavoidable source of Floquet heating in strongly driven quantum systems. In this work, we extend the recently developed two-tone approach of &#39;cancelling&#39; multi-photon resonances to shaken lattices in the Hubbard regime. Our experiments show that even for strong lattice shaking the inclusion of a weak second drive leads to cancellation of multi-photon heating resonances. Surprisingly, the optimal cancelling amplitude depends on the Hubbard interaction strength $U$, in qualitative agreement with exact diagonalisation calculations. Our results call for novel analytical approaches to capture the physics of strongly-driven-strongly-interacting many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12308v1-abstract-full').style.display = 'none'; document.getElementById('2410.12308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06575">arXiv:2410.06575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06575">pdf</a>, <a href="https://arxiv.org/format/2410.06575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> $q$-Breathers in the diatomic $尾$-Fermi-Pasta-Ulam- Tsingou chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Lin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhigang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+W">Weicheng Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yisen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Liang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06575v1-abstract-short" style="display: inline;"> $q$-Breathers (QBs) represent a quintessential phenomenon of energy localization, manifesting as stable periodic orbits exponentially localized in normal mode space. Their existence can hinder the thermalization process in nonlinear lattices. In this study, we employ the Newton&#39;s method to identify QB solutions in the diatomic Fermi-Pasta-Ulam-Tsingou chains and perform a comprehensive analysis of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06575v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06575v1-abstract-full" style="display: none;"> $q$-Breathers (QBs) represent a quintessential phenomenon of energy localization, manifesting as stable periodic orbits exponentially localized in normal mode space. Their existence can hinder the thermalization process in nonlinear lattices. In this study, we employ the Newton&#39;s method to identify QB solutions in the diatomic Fermi-Pasta-Ulam-Tsingou chains and perform a comprehensive analysis of their linear stability. We derive an analytical expression for the instability thresholds of low-frequency QBs, which converges to the known results of monoatomic chains as the bandgap approaches zero. The expression reveals an inverse square relationship between instability thresholds and system size, as well as a quadratic dependence on the mass difference, both of which have been corroborated through extensive numerical simulations. Our results demonstrate that the presence of a bandgap can markedly enhance QB stability, providing a novel theoretical foundation and practical framework for controlling energy transport between modes in complex lattice systems. These results not only expand the applicability of QBs but also offer significant implications for understanding the thermalization dynamics in complex lattice structures, with wide potential applications in related low-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06575v1-abstract-full').style.display = 'none'; document.getElementById('2410.06575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18554">arXiv:2409.18554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Torque Driven Chiral Domain Wall Motion in Mn3Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yixiao Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z+X+D">Zhuo Xuand Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18554v1-abstract-short" style="display: inline;"> Noncollinear chiral antiferromagnets, such as Mn3X (X = Sn, Ge), have garnered significant interest in spintronics due to their topologically protected Weyl nodes and large momentum-space Berry curvatures. In this study, we report rapid chirality domain-wall (CDW) motion in Mn3Sn, driven by spin-orbit torque at over 545.3 m.s^-1 a remarkably low current density of 9 10^10 A.m^-2. The results demon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18554v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18554v1-abstract-full" style="display: none;"> Noncollinear chiral antiferromagnets, such as Mn3X (X = Sn, Ge), have garnered significant interest in spintronics due to their topologically protected Weyl nodes and large momentum-space Berry curvatures. In this study, we report rapid chirality domain-wall (CDW) motion in Mn3Sn, driven by spin-orbit torque at over 545.3 m.s^-1 a remarkably low current density of 9 10^10 A.m^-2. The results demonstrate that the chirality of the domain wall and the direction of the current collectively determine the displacement direction of the CDW. Theoretically, we provide ananalysis of the effective field experienced by the octupole moment, uncovering the underlying motion mechanism based on the unique profile of the chiral spin structure. Notably, CDWs with opposite chirality can form within the same Dzyaloshinskii-Moriya interaction sample, and the Neel-like CDW type is dictated by the orientation of the kagome plane rather than the negligible magnetostatic energy associated with the small magnetization (approximately 3.957 10^-3). Additionally, the CDW, with a considerable width of 770 nm, is segmented into three 60 portions due to the six-fold anisotropy in Mn3Sn. These emphasize that CDW motion in Mn3Sn cannot be quantitatively studied using ferromagnetic frameworks. We also demonstrate that a small external field can effectively regulate CDW velocity. Our comprehensive results and theoretical analysis provide crucial guidelines for integrating antiferromagnet CDWs into functional spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18554v1-abstract-full').style.display = 'none'; document.getElementById('2409.18554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18258">arXiv:2409.18258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18258">pdf</a>, <a href="https://arxiv.org/format/2409.18258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206501">10.1103/PhysRevLett.133.206501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capping effects on spin and charge excitations in parent and superconducting Nd1-xSrxNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">H. LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Y. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhartiya%2C+V">V. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">S. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+A">A. Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardini%2C+F">F. Bernardini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18258v1-abstract-short" style="display: inline;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18258v1-abstract-full" style="display: none;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations of Nd1-xSrxNiO2 (x = 0 and 0.2). Spin excitations are observed in parent and 20% doped Nd1-xSrxNiO2 regardless of capping, proving that magnetism is intrinsic to infinite-layer nickelates and appears in a significant fraction of their phase diagram. In parent and superconducting Nd1-xSrxNiO2, the spin excitations are slightly hardened in capped samples compared to the non-capped ones. Additionally, a weaker Ni - Nd charge transfer peak at ~ 0.6 eV suggests that the hybridization between Ni 3d and Nd 5d orbitals is reduced in capped samples. From our data, capping induces only minimal differences in Nd1-xSrxNiO2 and we phenomenologically discuss these differences based on the reconstruction of the SrTiO3 - NdNiO2 interface and other mechanisms such as crystalline disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'none'; document.getElementById('2409.18258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15738">arXiv:2409.15738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15738">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Coupling of Superconductivity and Evolution of Gap Structure in CsV3Sb5 through Ta Doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhengyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yongze Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hai-Hu Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15738v1-abstract-short" style="display: inline;"> In this study, we present a detailed investigation of kagome superconductors CsV3Sb5 single crystal and its Ta-doped variant, Cs(V0.86Ta0.14)3Sb5, through specific heat measurements. Our results show a clear suppression of the charge density wave (CDW) and notable increase in the superconducting transition temperature (Tc) from 2.8 K to 4.6 K upon Ta doping. The electronic specific heat of the pri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15738v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15738v1-abstract-full" style="display: none;"> In this study, we present a detailed investigation of kagome superconductors CsV3Sb5 single crystal and its Ta-doped variant, Cs(V0.86Ta0.14)3Sb5, through specific heat measurements. Our results show a clear suppression of the charge density wave (CDW) and notable increase in the superconducting transition temperature (Tc) from 2.8 K to 4.6 K upon Ta doping. The electronic specific heat of the pristine CsV3Sb5 sample can be fitted with a model comprising an s-wave gap and a highly anisotropic extended s-wave gap, where the ratio 2螖/k_B T_c is smaller than the weak coupling limit of 3.5. For the doped sample Cs(V0.86Ta0.14)3Sb5, it exhibits two isotropic s-wave gaps, yielding the larger gap of 2螖/k_B T_c=5.04, which indicates a significant enhancement in superconducting coupling. This evolution is attributed to the increased density of states (DOS) near the Fermi level released through the suppression of the CDW gap. Our results demonstrate enhanced superconducting coupling and variation of gap structure in CsV3Sb5 due to Ta doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15738v1-abstract-full').style.display = 'none'; document.getElementById('2409.15738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04121">arXiv:2409.04121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resolving the Electronic Ground State of La3Ni2O7-未 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04121v1-abstract-short" style="display: inline;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04121v1-abstract-full" style="display: none;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge transfer insulator with long-range antiferromagnetism. Through X-ray absorption spectroscopy, we have uncovered the crucial influence of oxygen ligands on the electronic ground states of the Ni ions, displaying a charge transfer nature akin to cuprate but with distinct orbital configurations. Both in-plane and out-of-plane Zhang-Rice singlets associated with Ni d_(x^2-y^2 ) and d_(z^2) orbitals are identified, together with a strong interlayer coupling through inner apical oxygen. Additionally, in La3Ni2O7-未 films, we have detected a superlattice reflection (1/4, 1/4, L) at the Ni L absorption edge using resonant X-ray scattering measurements. Further examination of the resonance profile indicates that the reflection originates from the Ni d orbitals. By evaluating the reflection&#39;s azimuthal angle dependence, we have confirmed the presence of collinear antiferromagnetic spin ordering and charge-like anisotropy ordered with the same periodicity. Notably, our findings reveal a microscopic relationship between these two components in the temperature dependence of the scattering intensity of the reflection. This investigation enriches our understanding of high-temperature superconductivity in La3Ni2O7-未 under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'none'; document.getElementById('2409.04121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02984">arXiv:2409.02984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02984">pdf</a>, <a href="https://arxiv.org/format/2409.02984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum circuits based on topological pumping in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zijie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiefer%2C+Y">Yann Kiefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jele%2C+S">Samuel Jele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%A4chter%2C+M">Marius G盲chter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisson%2C+G">Giacomo Bisson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viebahn%2C+K">Konrad Viebahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esslinger%2C+T">Tilman Esslinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02984v1-abstract-short" style="display: inline;"> Gate operations composed in quantum circuits form the basis of digital quantum simulation and quantum processing. While two-qubit gates generally operate between nearest neighbours, many circuits require non-local connectivity, necessitating some form of quantum information transport, such as the repeated application of SWAP gates or qubit shuttling. Preserving motional coherence during such trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02984v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02984v1-abstract-full" style="display: none;"> Gate operations composed in quantum circuits form the basis of digital quantum simulation and quantum processing. While two-qubit gates generally operate between nearest neighbours, many circuits require non-local connectivity, necessitating some form of quantum information transport, such as the repeated application of SWAP gates or qubit shuttling. Preserving motional coherence during such transport remains a key challenge to improve gate fidelity and qubit connectivity, as well as to connect local fermionic modes. Here we combine tuneable gate operations between fermionic potassium-40 atoms - based on superexchange interaction - with their bidirectional transport via topological Thouless pumping in an optical lattice. We demonstrate shuttling of atomic singlet pairs with a single-shift fidelity of 99.57(4)% over 50 lattice sites. We spatially and coherently split a large number of randomly distributed fermionic spin singlet pairs and show $($SWAP$)^伪$-gate operations between atoms encountering each other during transport. As a signature of entanglement between fermions separated over large distances and interwoven with each other, we observe multi-frequency singlet-triplet oscillations. Topological pumping is generally applicable to long-lived atomic and molecular states, and specifically overcomes lifetime limitations inherent to transport using state-dependent optical lattices. Our work opens up new avenues for transport of quantum information and offers unprecedented possibilities for engineering connectivity in quantum circuits, including approaches based on fermionic modes, as well as for atom interferometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02984v1-abstract-full').style.display = 'none'; document.getElementById('2409.02984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00669">arXiv:2409.00669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00669">pdf</a>, <a href="https://arxiv.org/format/2409.00669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Extended dissipaton-equation-of-motion approach to study the electronic migration in adatom-graphene composite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yu Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Fan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Y">Yuan Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui-Xue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">YiJing Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiao Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00669v1-abstract-short" style="display: inline;"> Graphene has garnered significant attention due to its unique properties. Among its many intriguing characteristics, the tuning effects induced by adsorbed atoms (adatoms) provide immense potential for the design of graphene-based electronic devices. This work explores the electronic migration in the adatom-graphene composite, using the extended dissipaton-equation-of-motion (DEOM) approach. As an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00669v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00669v1-abstract-full" style="display: none;"> Graphene has garnered significant attention due to its unique properties. Among its many intriguing characteristics, the tuning effects induced by adsorbed atoms (adatoms) provide immense potential for the design of graphene-based electronic devices. This work explores the electronic migration in the adatom-graphene composite, using the extended dissipaton-equation-of-motion (DEOM) approach. As an exact dynamics theory for open quantum systems embedded in environments composed of non-interacting electrons, the extended DEOM is capable of handling both linear and quadratic environmental couplings (a certain non-Gaussian effect) which account for the interactions between the adatom and the graphene substrate. We demonstrate and analyze the adatom-graphene correlated properties and the tuning effects by simulating the adatom spectral functions with varied Coulomb repulsion strengths. This work offers not only advanced theoretical methods but also new insights into the theoretical investigation of complex functional materials such as graphene-based electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00669v1-abstract-full').style.display = 'none'; document.getElementById('2409.00669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13703">arXiv:2408.13703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13703">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the Analytical Solution of Spin-Orbit Torque Switched Nanoscale Perpendicular Ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13703v1-abstract-short" style="display: inline;"> The scaling of magnetic memory into nanometer size calls for a theoretical model to accurately predict the switching current. Previous models show large discrepancy with experiments in studying the spin-orbit torque switching of perpendicular magnet. In this work, we find that the trajectory of magnetization shows a smooth transition during the switching. This contradicts the key assumption in pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13703v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13703v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13703v1-abstract-full" style="display: none;"> The scaling of magnetic memory into nanometer size calls for a theoretical model to accurately predict the switching current. Previous models show large discrepancy with experiments in studying the spin-orbit torque switching of perpendicular magnet. In this work, we find that the trajectory of magnetization shows a smooth transition during the switching. This contradicts the key assumption in previous models that magnetization needs to align to the spin polarization (蟽) before the switching occurs. We demonstrate that aligning magnetization to 蟽requires a very large current, resulting in the unsatisfactory fitting between the previous models and experiments. In contrast, the smooth transition permits a lower switching current that is comparable to experiments. Guided by this refined physical picture, we pinpoint the reversal of precession chirality as a pivotal factor for achieving deterministic switching. This insight leads to the formulation of a new analytical model that demonstrates remarkable agreement with experimental data. Our work resolves an important issue confronting the experiment and theory. We provide a clear physical picture of the current-induced magnetization switching, which is invaluable in the development of spin-orbit torque magnetic random-access memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13703v1-abstract-full').style.display = 'none'; document.getElementById('2408.13703v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05971">arXiv:2408.05971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05971">pdf</a>, <a href="https://arxiv.org/format/2408.05971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetism Mechanism in a Geometrically Frustrated Triangular Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qianqian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05971v1-abstract-short" style="display: inline;"> We study the emergent itinerant ferromagnetism and propose its underlying mechanism in the geometrically frustrated triangular lattice. Based on large-scale density matrix renormalization group simulations and unrestricted Hartree-Fock mean-field analysis, we identify itinerant ferromagnetic phases in the intermediate-$U$ Hubbard model with finite doping and reveal the kinetic mechanisms assisted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05971v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05971v1-abstract-full" style="display: none;"> We study the emergent itinerant ferromagnetism and propose its underlying mechanism in the geometrically frustrated triangular lattice. Based on large-scale density matrix renormalization group simulations and unrestricted Hartree-Fock mean-field analysis, we identify itinerant ferromagnetic phases in the intermediate-$U$ Hubbard model with finite doping and reveal the kinetic mechanisms assisted by geometric frustration. Notably, we find that the doublon-singlon exchange process among other microscopic charge hoppings solely drives the fully polarized ferromagnetism for geometrically frustrated triangular lattice. Additionally, we establish the whole magnetic phase diagram and illustrate itinerant ferromagnetism within a finite range of electron doping for finite on-site Coulomb repulsion. The comparison of local spin correlations with recent cold-atom experiments is also discussed. Our work enhances the understanding of ferromagnetism mechanisms at intermediate coupling strength and finite doping concentrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05971v1-abstract-full').style.display = 'none'; document.getElementById('2408.05971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7 pages; 4+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05708">arXiv:2408.05708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05708">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tunable atomically enhanced moir茅 Berry curvatures in twisted triple bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydov%2C+K">Konstantin Davydov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedman%2C+N">Noah Friedman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gramowski%2C+E">Ethan Gramowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaotian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tavakley%2C+J">Jack Tavakley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luskin%2C+M">Mitchell Luskin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05708v1-abstract-short" style="display: inline;"> We report a twisted triple bilayer graphene platform consisting of three units of Bernal bilayer graphene (BLG) consecutively twisted at 1.49掳 and 1.68掳. We observe inter-moir茅 Hofstadter butterflies from two co-existing moir茅 superlattices and a Hofstadter butterfly from reconstructed moir茅-of-moir茅 lattice, and show that their Brown-Zak (BZ) oscillations quantitatively agree with each other, bot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05708v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05708v1-abstract-full" style="display: none;"> We report a twisted triple bilayer graphene platform consisting of three units of Bernal bilayer graphene (BLG) consecutively twisted at 1.49掳 and 1.68掳. We observe inter-moir茅 Hofstadter butterflies from two co-existing moir茅 superlattices and a Hofstadter butterfly from reconstructed moir茅-of-moir茅 lattice, and show that their Brown-Zak (BZ) oscillations quantitatively agree with each other, both evidencing strong atomic reconstruction with a lattice constant of 18.1 nm. We further demonstrate such atomic reconstruction strongly enhances the Berry curvature of each moir茅 and moir茅-of-moir茅 band-insulator state, characterized by measured strong non-local valley Hall effect (VHE) that sensitively depends on the inter-moir茅 competition strength, tunable by manipulating the out-of-the-plane carrier distribution which controls the magnitude of the valley currents. Our study sheds new light on the microscopic mechanism of atomic and electronic reconstruction in twisted-multilayer systems, by investigating novel emergent quantum phenomena of reconstructed quasi-crystalline moir茅-of-moir茅 superlattice, including a new type of moir茅-of-moir茅 band-insulator states and atomically enhanced moir茅 Berry curvature. We show that the reconstructed electronic band can be versatilely tuned by electrostatics, providing an approach towards engineering the band structure and its topology for a novel quantum material platform with designer electrical and optical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05708v1-abstract-full').style.display = 'none'; document.getElementById('2408.05708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20752">arXiv:2407.20752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20752">pdf</a>, <a href="https://arxiv.org/format/2407.20752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Second Order Spin Current </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhen-Gang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20752v2-abstract-short" style="display: inline;"> In recent years, nonlinear Hall effect has attracted great attention with three different terms contributed by Drude effect, Berry curvature dipole and Berry connection polarizability. In this work, we theoretically predict an intrinsic second order spin current induced by spin-dependent Berry curvature polarizability based on time-independent perturbation theory. We show other two second order sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20752v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20752v2-abstract-full" style="display: none;"> In recent years, nonlinear Hall effect has attracted great attention with three different terms contributed by Drude effect, Berry curvature dipole and Berry connection polarizability. In this work, we theoretically predict an intrinsic second order spin current induced by spin-dependent Berry curvature polarizability based on time-independent perturbation theory. We show other two second order spin conductivities contributed by the group velocity and spin-dependent Berry curvature dipole.A two-dimensional Rashba-Dresselhaus spin-orbit coupled system is studied as an example, and it is found that the intrinsic second order contribution plays a major role in the region of $渭&gt;0$, while current mainly comes from the extrinsic terms when $渭&lt;0$. Thus, the dependence of spin conductivity on chemical potential is expected to distinguish the extrinsic and intrinsic contributions experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20752v2-abstract-full').style.display = 'none'; document.getElementById('2407.20752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18458">arXiv:2407.18458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18458">pdf</a>, <a href="https://arxiv.org/format/2407.18458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phase engineering of giant second harmonic generation in Bi$_2$O$_2$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+Z">Zhefeng Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yingjie Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zhihao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mengqi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jialu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+H">Haoyu Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuokai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuigang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+W">Wei Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaorui Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18458v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18458v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in strained 20 nm-BOS films exceed those of NbOI$_2$ and NbOCl$_2$ of similar thickness by a factor of 10, and are four orders of magnitude higher than monolayer-MoS$_2$, resulting in a significant second-order nonlinear susceptibility on the order of 1 nm V$^{-1}$. Intriguingly, the strain enables continuous adjustment of the ferroelectric phase transition across room temperature. Consequently, an exceptionally large tunability of SHG, approximately six orders of magnitude, is achieved through strain or thermal modulation. This colossal SHG, originating from the geometric phase of Bloch wave functions and coupled with sensitive tunability through multiple approaches in this air-stable 2D semiconductor, opens new possibilities for designing chip-scale, switchable nonlinear optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'none'; document.getElementById('2407.18458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12411">arXiv:2407.12411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12411">pdf</a>, <a href="https://arxiv.org/format/2407.12411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Engineering Fractional Chern Insulators through Periodic Strain in Monolayer Graphene and Transition Metal Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuchen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12411v2-abstract-short" style="display: inline;"> We propose the realization of interaction-driven insulators in periodically strained monolayer graphene and transition metal dichalcogenides (TMDs). By analyzing the tunable band structure and band geometry via strain, and performing extensive many-body exact diagonalization of a realistic model, we present compelling evidence for realizing various fractional Chern insulators in both strained mono&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12411v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12411v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12411v2-abstract-full" style="display: none;"> We propose the realization of interaction-driven insulators in periodically strained monolayer graphene and transition metal dichalcogenides (TMDs). By analyzing the tunable band structure and band geometry via strain, and performing extensive many-body exact diagonalization of a realistic model, we present compelling evidence for realizing various fractional Chern insulators in both strained monolayer graphene and TMDs. Our thorough analysis across different strain parameters, accounting for experimental variability, reveals that a broad spectrum of fractional Chern insulators, including the Laughlin states, Halperin 112, 332 and 111 states, and Chern number |C| = 2 states, can be stabilized in distinct regions of the phase diagram. These findings suggest that periodically strained monolayer graphene and TMDs provide promising platforms for engineering fractional Chern insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12411v2-abstract-full').style.display = 'none'; document.getElementById('2407.12411v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5+7 figures. We corrected the model of PSTMDs from non-relativistic to massive Dirac electrons in a periodic magnetic field. Fig. 3 has been updated, and exact diagonalization recalculations confirm the FCI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11836">arXiv:2407.11836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11836">pdf</a>, <a href="https://arxiv.org/format/2407.11836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic memory and distinct spin populations in ferromagnetic Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Menil%2C+C">Charles Menil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leridon%2C+B">Brigitte Leridon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavanna%2C+A">Antonella Cavanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gennser%2C+U">Ulf Gennser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mailly%2C+D">Dominique Mailly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">Linchao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fauqu%C3%A9%2C+B">Beno卯t Fauqu茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11836v2-abstract-short" style="display: inline;"> Co3Sn2S2, a ferromagnetic Weyl semi-metal with Co atoms on a kagome lattice, has generated much recent attention. Experiments have identified a temperature scale below the Curie temperature. Here, we find that this magnet keeps a memory, when not exposed to a magnetic field sufficiently large to erase it. We identify the driver of this memory effect as a small secondary population of spins, whose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11836v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11836v2-abstract-full" style="display: none;"> Co3Sn2S2, a ferromagnetic Weyl semi-metal with Co atoms on a kagome lattice, has generated much recent attention. Experiments have identified a temperature scale below the Curie temperature. Here, we find that this magnet keeps a memory, when not exposed to a magnetic field sufficiently large to erase it. We identify the driver of this memory effect as a small secondary population of spins, whose coercive field is significantly larger than that of the majority spins. The shape of the magnetization hysteresis curve has a threshold magnetic field set by the demagnetizing factor. These two field scales set the hitherto unidentified temperature scale, which is not a thermodynamic phase transition, but a crossing point between meta-stable boundaries. Global magnetization is well defined, even when it is non-uniform, but drastic variations in local magnetization point to a coarse energy landscape, with the thermodynamic limit not achieved at micrometer length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11836v2-abstract-full').style.display = 'none'; document.getElementById('2407.11836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09908">arXiv:2407.09908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09908">pdf</a>, <a href="https://arxiv.org/format/2407.09908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Abnormal planar Hall effect in quasi-1D Kondo chain CeCo$_2$Ga$_8$ and its implications for hybridization dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+S">Shuo Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Hai Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+G">Guohao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiaodong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+F">Fangjun Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09908v1-abstract-short" style="display: inline;"> The process how heavy-electron state is established in Kondo-lattice compounds remains an unsolved issue. Recent angle-resolved photoemission spectroscopy and ultrafast optical spectroscopy imply an intermediate regime with hybridization fluctuations prior to the establishment of Kondo coherence, which appears at odds with traditional transport measurements. Extensive experimental works are highly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09908v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09908v1-abstract-full" style="display: none;"> The process how heavy-electron state is established in Kondo-lattice compounds remains an unsolved issue. Recent angle-resolved photoemission spectroscopy and ultrafast optical spectroscopy imply an intermediate regime with hybridization fluctuations prior to the establishment of Kondo coherence, which appears at odds with traditional transport measurements. Extensive experimental works are highly demanded to both reconcile this dichotomy and delineate the intrinsic features in this special regime. Here, on the example of quasi-one-dimensional Kondo lattice compound CeCo$_2$Ga$_8$, we investigated angular dependent magnetotransport properties by planar Hall effect and planar anisotropic magnetoresistance measurements. Upon cooling from $T_K^{on}$ (an onset of incoherent Kondo scattering ) to below $T^*$ (where coherent $c$-$f$ hybridization comes into play), the two-fold symmetrical pattern of planar Hall effect changes sign gradually (i.e. $180^\circ$ phase shift); most strikingly, as a crossover, additional oscillations appear and persist until the heavy-electron state is stabilized below $T^*$. These results provide new insights for the regime of hybridization dynamics which might be deemed as a precursor state of the heavy-electron state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09908v1-abstract-full').style.display = 'none'; document.getElementById('2407.09908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06715">arXiv:2407.06715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06715">pdf</a>, <a href="https://arxiv.org/format/2407.06715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> On the relation between momentum uncertainty and thermal wavelength </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Fan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06715v1-abstract-short" style="display: inline;"> For quantum particles in a Boltzmann state, we derive an inequality between momentum uncertainty $螖p$ and thermal de Broglie wavelength $位_{\rm th}$, expressed as $螖p \geq \sqrt{2蟺}\hbar/位_{\rm th}$, as a corollary of the Boltzmann lower bound for the Heisenberg uncertainty product proposed in the previous work [EPL, 143, 20001 (2023)] </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06715v1-abstract-full" style="display: none;"> For quantum particles in a Boltzmann state, we derive an inequality between momentum uncertainty $螖p$ and thermal de Broglie wavelength $位_{\rm th}$, expressed as $螖p \geq \sqrt{2蟺}\hbar/位_{\rm th}$, as a corollary of the Boltzmann lower bound for the Heisenberg uncertainty product proposed in the previous work [EPL, 143, 20001 (2023)] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06715v1-abstract-full').style.display = 'none'; document.getElementById('2407.06715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03293">arXiv:2407.03293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03293">pdf</a>, <a href="https://arxiv.org/format/2407.03293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Microscopic theory for electron-phonon coupling in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03293v1-abstract-short" style="display: inline;"> The origin of superconductivity in twisted bilayer graphene -- whether phonon-driven or electron-driven -- remains unresolved. The answer to this question is hindered by the absence of a quantitative and efficient model for electron-phonon coupling (EPC). In this work, we develop a first-principles-based microscopic theory to calculate EPC in twisted bilayer graphene for arbitrary twist angles wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03293v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03293v1-abstract-full" style="display: none;"> The origin of superconductivity in twisted bilayer graphene -- whether phonon-driven or electron-driven -- remains unresolved. The answer to this question is hindered by the absence of a quantitative and efficient model for electron-phonon coupling (EPC). In this work, we develop a first-principles-based microscopic theory to calculate EPC in twisted bilayer graphene for arbitrary twist angles without needing a periodic moir茅 supercell. We adopt a momentum-space model for the electronic and phonon structures and quantify the EPC using generalized Eliashberg-McMillan theory for superconductivity without an adiabatic approximation. Using this framework, we find that the EPC is significantly enhanced near the magic angle, and drops abruptly for larger twist angles. We show that the EPC strength of a phonon corresponds to the modification of the moir茅 potential. In particular, we identify several $螕$-phonon branches that contribute most significantly to the EPC, including one layer breathing mode, three layer shearing modes, and one chiral mode. These phonons should be experimentally detectable via Raman spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03293v1-abstract-full').style.display = 'none'; document.getElementById('2407.03293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02600">arXiv:2407.02600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02600">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Macroscopic uniform 2D moir茅 superlattices with controllable angles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zaborski%2C+G">Gregory Zaborski Jr.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majchrzak%2C+P+E">Paulina E. Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+S">Samuel Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+C">Amalya C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saunders%2C+A+P">Ashley P. Saunders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Yujun Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Z-X Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02600v1-abstract-short" style="display: inline;"> Moir茅 superlattices, engineered through precise stacking of van der Waals (vdW) layers, hold immense promise for exploring strongly correlated and topological phenomena. However, these applications have been held back by the common preparation method: tear-and-stack of Scotch tape exfoliated monolayers. It has low efficiency and reproducibility, along with challenges of twist angle inhomogeneity,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02600v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02600v1-abstract-full" style="display: none;"> Moir茅 superlattices, engineered through precise stacking of van der Waals (vdW) layers, hold immense promise for exploring strongly correlated and topological phenomena. However, these applications have been held back by the common preparation method: tear-and-stack of Scotch tape exfoliated monolayers. It has low efficiency and reproducibility, along with challenges of twist angle inhomogeneity, interfacial contamination, micrometer sizes, and a tendency to untwist at elevated temperatures. Here we report an effective strategy to construct highly consistent vdW moir茅 structures with high production throughput, near-unity yield, pristine interfaces, precisely controlled twist angles, and macroscopic scale (up to centimeters) with enhanced thermal stability. We further demonstrate the versatility across various vdW materials including transition metal dichalcogenides, graphene, and hBN. The expansive size and high quality of moir茅 structures enables high-resolution mapping of the reciprocal space back-folded lattices and moir茅 mini band structures with low energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). This technique will have broad applications in both fundamental studies and mass production of twistronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02600v1-abstract-full').style.display = 'none'; document.getElementById('2407.02600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18816">arXiv:2406.18816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18816">pdf</a>, <a href="https://arxiv.org/format/2406.18816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Angle-dependent planar thermal Hall effect by quasi-ballistic phonons in black phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiaodong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18816v2-abstract-short" style="display: inline;"> The origin of the phonon thermal Hall effect in insulators is a matter of ongoing debate. The large amplitude of the signal in an elemental non-magnetic solid, such as black phosphorus (BP) calls for a minimal mechanism with no role for spin degree of freedom. Here, we show that a longitudinal heat flow generates a transverse temperature gradient in BP even when the magnetic field, the heat curren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18816v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18816v2-abstract-full" style="display: none;"> The origin of the phonon thermal Hall effect in insulators is a matter of ongoing debate. The large amplitude of the signal in an elemental non-magnetic solid, such as black phosphorus (BP) calls for a minimal mechanism with no role for spin degree of freedom. Here, we show that a longitudinal heat flow generates a transverse temperature gradient in BP even when the magnetic field, the heat current and the thermal gradient lie in the same plane. The long phonon mean-free-path leaves little room for scattering by point-like symmetry breaking defects. We argue that the angular dependence of the signal can be accounted for as a sum of two sinusoidal components each peaking when the magnetic field is parallel to a high symmetry axis. Anharmonicity and finite thermal expansion emerge as indispensable ingredients for a planar Hall signal. We identify the torque exerted by magnetic field on traveling electric dipolar waves as a possible microscopic driver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18816v2-abstract-full').style.display = 'none'; document.getElementById('2406.18816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, Supplemental Materials included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18769">arXiv:2406.18769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18769">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Subharmonic oscillations in the Floquet circuit with the frequency-synthesis dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Bo Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+S">Shiyun Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Ye Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Ting Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+H">Hongyang Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhichao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sijie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Huibin Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanyi Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jinhui Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18769v2-abstract-short" style="display: inline;"> The period-doubling oscillation emerges with the coexistence between zero and 蟺 modes in Floquet topological insulator. Here, utilized the flexibility of the circuit, we construct the Floquet circuit with frequency-synthetic dimension and find the topological-protected deeply-subharmonic oscillations with the period extensively exceeding the doubling-driven period. In the construction framework, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18769v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18769v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18769v2-abstract-full" style="display: none;"> The period-doubling oscillation emerges with the coexistence between zero and 蟺 modes in Floquet topological insulator. Here, utilized the flexibility of the circuit, we construct the Floquet circuit with frequency-synthetic dimension and find the topological-protected deeply-subharmonic oscillations with the period extensively exceeding the doubling-driven period. In the construction framework, the periodically-driven mechanism is attained by implementing the circuit-oscillator hierarchy with the stepping-variation resonances in frequency domain. The zero and 蟺 modes that arise at the Floquet band in the circuit indicate the anomalous boundary-bulk correspondence. The coexistence of zero and 蟺 modes, results in a subharmonic oscillation with the extremely-low frequency on the edge of the Floquet circuit. Furthermore, we explore the Floquet band with the enhanced periodically-driven strength tailored by the component flexibility of the circuit. Our method provides a flexible scheme to study Floquet topological phases, and open a new path for realizing the deeply subwavelength system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18769v2-abstract-full').style.display = 'none'; document.getElementById('2406.18769v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17621">arXiv:2406.17621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17621">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quasiphase transition of a single-file water chain influenced by atomic charges in a water model using orientational-biased replica exchange Monte Carlo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J">Junqing Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhi Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yusong Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chunlei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17621v3-abstract-short" style="display: inline;"> The recently observed temperature-dependent quasiphase transition of the single-file water chain confined within a carbon nanotube in experiments has been validated by the simple lattice theory and molecular dynamics simulations. It has been pointed out that the atomic charges in water models are important, yet how the values will affect the structural details and thermodynamic properties of the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17621v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17621v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17621v3-abstract-full" style="display: none;"> The recently observed temperature-dependent quasiphase transition of the single-file water chain confined within a carbon nanotube in experiments has been validated by the simple lattice theory and molecular dynamics simulations. It has been pointed out that the atomic charges in water models are important, yet how the values will affect the structural details and thermodynamic properties of the quasiphase transition has not been fully revealed. In this work, we perform orientational-biased replica exchange Monte Carlo simulations in the canonical ensemble to explore the effect of atomic charges in the SPC/E water model on the quasiphase transition of a single-file water chain. Based on the atomic charge values reported in literature, three distinct quasiphases are reproduced, comprising a fully hydrogen-bonded water chain at lower temperatures, a more ordered dipolar orientation along the tube axis at intermediate temperatures, and a completely disordered structure at higher temperatures. Then by increasing the atomic charge values, we find that the fragmentation of the entire water chain into shorter water segments, the orientational ordering of water dipoles along the tube axis, and the transition towards complete disorder are all inhibited. Consequently, the transition temperatures between three quasiphases have been shifted to higher temperatures. The thermodynamic analysis demonstrates that the increased atomic charge values enhance the hydrogen bonding between neighbouring water molecules also the electrostatic attraction within the water chain, leading to a longer water dipole correlation length even at higher temperatures. These findings highlight the vital role of atomic charges in water models also the electrostatic interaction in regulating the orientational ordering of water molecules under nanoconfinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17621v3-abstract-full').style.display = 'none'; document.getElementById('2406.17621v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages and 7 figures in Main text, 5 figures in Appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12963">arXiv:2406.12963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12963">pdf</a>, <a href="https://arxiv.org/format/2406.12963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Weak Superfluidity in Twisted Optical Potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Johnstone%2C+D">Dean Johnstone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">Shanya Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhaoxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">Hepeng Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Palencia%2C+L">Laurent Sanchez-Palencia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12963v1-abstract-short" style="display: inline;"> A controlled twist between different underlying lattices allows one to interpolate, under a unified framework, across ordered and (quasi-)disordered matter while drastically changing quantum transport properties. Here, we use quantum Monte Carlo simulations to determine the unique phase diagrams of strongly-correlated ultracold bosons in twisted optical potentials. We show that at commensurate twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12963v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12963v1-abstract-full" style="display: none;"> A controlled twist between different underlying lattices allows one to interpolate, under a unified framework, across ordered and (quasi-)disordered matter while drastically changing quantum transport properties. Here, we use quantum Monte Carlo simulations to determine the unique phase diagrams of strongly-correlated ultracold bosons in twisted optical potentials. We show that at commensurate twisting angles, spectral gaps govern the formation of insulating patterns, separated by thin superfluid domains. The latter form weak superfluids, which are very sensitive to thermal fluctuations, but can be stabilized under appropriate parameter control. In contrast, slightly changing the twisting angle to a incommensurate value destroys most spectral gaps, leaving behind a prominent Bose glass phase. Our results are directly applicable to current generation experiments that quantum simulate moir茅 physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12963v1-abstract-full').style.display = 'none'; document.getElementById('2406.12963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08780">arXiv:2406.08780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08780">pdf</a>, <a href="https://arxiv.org/format/2406.08780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.054514">10.1103/PhysRevB.110.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mean Field Study of Superconductivity in the Square Lattice $t$-$J$ Model with Three-Site Hopping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Ke Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qianqian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lei Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08780v3-abstract-short" style="display: inline;"> It remains an open question whether the two-dimensional single-band pure Hubbard model and its related pure $t$-$J$ model truly capture the superconducting order in cuprates. Recent numerical studies on this issue have raised a notable disparity in superconducting order between the pure Hubbard model and the pure $t$-$J$ model. Inspired by these, we investigate the role of the three-site hopping t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08780v3-abstract-full').style.display = 'inline'; document.getElementById('2406.08780v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08780v3-abstract-full" style="display: none;"> It remains an open question whether the two-dimensional single-band pure Hubbard model and its related pure $t$-$J$ model truly capture the superconducting order in cuprates. Recent numerical studies on this issue have raised a notable disparity in superconducting order between the pure Hubbard model and the pure $t$-$J$ model. Inspired by these, we investigate the role of the three-site hopping term in $d$-wave superconductivity, such a term is usually neglected in the effective Hamiltonian of the Hubbard model, though its amplitude is of the same order as the superexchange coupling $J$ in the $t$-$J$ model. Our slave-boson mean-field solution demonstrates the suppression of $d$-wave superconducting order by incorporating the three-site hopping term, consistent with numerical observations by the density matrix renormalization group. This suppression could be understood as a result of competition between superexchange interaction and three-site hopping, the former favors $d$-wave pairing while the latter favors $s$-wave pairing. We also discussed its role in quasiparticle dispersion and boson-condensation temperature. Our findings may offer an alternative understanding of the recent numerical contrasting findings in the strong coupling regime: the absent or weak superconductivity in the pure Hubbard model, while the robust superconductivity in the $t$-$J$ model without including the three-site hopping term. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08780v3-abstract-full').style.display = 'none'; document.getElementById('2406.08780v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 054514 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08243">arXiv:2406.08243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08243">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exploring mechanical and thermal properties of high-entropy ceramics via general machine learning potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+H">Hong Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zijie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hulei Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+L">Lei Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanhui Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08243v3-abstract-short" style="display: inline;"> The mechanical and thermal performance of high-entropy ceramics are critical to their use in extreme conditions. However, the vast composition space of high-entropy ceramic significantly hinders their development with desired mechanical and thermal properties. Herein, taking high-entropy carbides (HECs) as the model, we show the efficiency and effectiveness of exploring the mechanical and thermal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08243v3-abstract-full').style.display = 'inline'; document.getElementById('2406.08243v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08243v3-abstract-full" style="display: none;"> The mechanical and thermal performance of high-entropy ceramics are critical to their use in extreme conditions. However, the vast composition space of high-entropy ceramic significantly hinders their development with desired mechanical and thermal properties. Herein, taking high-entropy carbides (HECs) as the model, we show the efficiency and effectiveness of exploring the mechanical and thermal properties via machine-learning-potential-based molecular dynamics (MD). Specifically, a general neuroevolution potential (NEP) with broad compositional applicability for HECs of ten transition metal elements from group IIIB-VIB is efficiently constructed from the small dataset comprising unary and binary carbides with an equal amount of ergodic chemical compositions. Based on this well-established NEP, MD simulations on mechanical and thermal properties of different HECs have shown good agreement with the results of first-principles calculations and experimental measurements, validating the accuracy, generalization, and reliability of using the developed general NEP in investigating mechanical and thermal performance of HECs. Our work provides an efficient solution to accelerate the search for high-entropy ceramics with desirable mechanical and thermal properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08243v3-abstract-full').style.display = 'none'; document.getElementById('2406.08243v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06879">arXiv:2405.06879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06879">pdf</a>, <a href="https://arxiv.org/format/2405.06879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ad5bb0">10.1088/1361-648X/ad5bb0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic Second-Order magnon Thermal Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun-Cen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhen-Gang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06879v2-abstract-short" style="display: inline;"> In this paper, we study the intrinsic contribution of nonlinear magnon thermal Hall Effect. We derive the intrinsic second order thermal Hall conductivity of magnon by the thermal scalar potential (TSP) method and the thermal vector potential (TVP) method. We find that the intrinsic second order magnon thermal Hall conductivity is related to the thermal Berry-connection polarizability (TBCP). We a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06879v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06879v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06879v2-abstract-full" style="display: none;"> In this paper, we study the intrinsic contribution of nonlinear magnon thermal Hall Effect. We derive the intrinsic second order thermal Hall conductivity of magnon by the thermal scalar potential (TSP) method and the thermal vector potential (TVP) method. We find that the intrinsic second order magnon thermal Hall conductivity is related to the thermal Berry-connection polarizability (TBCP). We apply our theory to the monolayer ferromagnetic Hexagonal lattice, and we find that the second order magnon thermal Hall conductivity can be controlled by changing Dzyaloshinskii-Moriya strength and applying strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06879v2-abstract-full').style.display = 'none'; document.getElementById('2405.06879v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 36 395802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03795">arXiv:2405.03795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03795">pdf</a>, <a href="https://arxiv.org/format/2405.03795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Two Toy Spin Chain Models of Decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+P+C+E+S+Z">P. C. E. Stamp Zhen Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03795v1-abstract-short" style="display: inline;"> We solve for the decoherence dynamics of two models in which a simple qubit or Central Spin couples to a bath of spins; the bath is made from a chain of spins. In model 1, the bath spins are Ising spins; in Model 2, they are coupled by transverse spin-spin interactions, and the chain supports spin waves. We look at (i) the case where the Hamiltonian is static, with a constant system/bath coupling,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03795v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03795v1-abstract-full" style="display: none;"> We solve for the decoherence dynamics of two models in which a simple qubit or Central Spin couples to a bath of spins; the bath is made from a chain of spins. In model 1, the bath spins are Ising spins; in Model 2, they are coupled by transverse spin-spin interactions, and the chain supports spin waves. We look at (i) the case where the Hamiltonian is static, with a constant system/bath coupling, and (ii) where this coupling varies in time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03795v1-abstract-full').style.display = 'none'; document.getElementById('2405.03795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 page, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18727">arXiv:2404.18727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18727">pdf</a>, <a href="https://arxiv.org/format/2404.18727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuning the BCS-BEC crossover of electron-hole pairing with pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+P">Pan Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fauqu%C3%A9%2C+B">Beno卯t Fauqu茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18727v1-abstract-short" style="display: inline;"> In graphite, a moderate magnetic field confines electrons and holes into their lowest Landau levels. In the extreme quantum limit, two insulating states with a dome-like field dependence of the their critical temperatures are induced by the magnetic field. Here, we study the evolution of the first dome (below 60 T) under hydrostatic pressure up to 1.7 GPa. With increasing pressure, the field-tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18727v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18727v1-abstract-full" style="display: none;"> In graphite, a moderate magnetic field confines electrons and holes into their lowest Landau levels. In the extreme quantum limit, two insulating states with a dome-like field dependence of the their critical temperatures are induced by the magnetic field. Here, we study the evolution of the first dome (below 60 T) under hydrostatic pressure up to 1.7 GPa. With increasing pressure, the field-temperature phase boundary shifts towards higher magnetic fields, yet the maximum critical temperature remains unchanged. According to our fermiology data, pressure amplifies the density and the effective mass of hole-like and electron-like carriers. Thanks to this information, we verify the persistent relevance of the BCS relation between the critical temperature and the density of states in the weak-coupling boundary of the dome. In contrast, the strong-coupling summit of the dome does not show any detectable change with pressure. We argue that this is because the out-of-plane BCS coherence length approaches the interplane distance that shows little change with pressure. Thus, the BCS-BEC crossover is tunable by magnetic field and pressure, but with a locked summit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18727v1-abstract-full').style.display = 'none'; document.getElementById('2404.18727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, Supplemental Materials included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17795">arXiv:2404.17795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17795">pdf</a>, <a href="https://arxiv.org/format/2404.17795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Giant Unit-Cell Super-Structure in the Infinite-Layer Nickelate PrNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oppliger%2C+J">J. Oppliger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dippel%2C+A+-">A. -C. Dippel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutowski%2C+O">O. Gutowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">X. Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frison%2C+R">R. Frison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17795v1-abstract-short" style="display: inline;"> Spectacular quantum phenomena such as superconductivity often emerge in flat-band systems where Coulomb interactions overpower electron kinetics. Engineering strategies for flat-band physics is therefore of great importance. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO$_2$ induces a giant superla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17795v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17795v1-abstract-full" style="display: none;"> Spectacular quantum phenomena such as superconductivity often emerge in flat-band systems where Coulomb interactions overpower electron kinetics. Engineering strategies for flat-band physics is therefore of great importance. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO$_2$ induces a giant superlattice structure. The annealing effect has a maximum well above room temperature. By covering a large scattering volume, we show a rare period-six in-plane (bi-axial) symmetry and a period-four symmetry in the out-of-plane direction. This giant unit-cell superstructure likely stems from ordering of diffusive oxygen. The stability of this superlattice structure suggests a connection to an energetically favorable electronic state of matter. As such, our study provides a new pathway - different from Moir茅 structures - to ultra-small Brillouin zone electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17795v1-abstract-full').style.display = 'none'; document.getElementById('2404.17795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 7 pages, 4 figures. Supplementary: 2 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14186">arXiv:2404.14186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14186">pdf</a>, <a href="https://arxiv.org/format/2404.14186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnon Landau-Zener tunnelling and spin current generation by electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">YuanDong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhen-Gang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14186v1-abstract-short" style="display: inline;"> To control the magnon transport in magnetic systems is of great interest in magnonics. Due to the feasibility of electric field, how to generate and manipulate magnon with pure electrical method is one of the most desired goals. Here we propose that the magnon spin current is generated by applying time-dependent electric field, where the coupling between the magnon and electric field is invoked vi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14186v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14186v1-abstract-full" style="display: none;"> To control the magnon transport in magnetic systems is of great interest in magnonics. Due to the feasibility of electric field, how to generate and manipulate magnon with pure electrical method is one of the most desired goals. Here we propose that the magnon spin current is generated by applying time-dependent electric field, where the coupling between the magnon and electric field is invoked via Aharonov-Casher effect. In particular, the magnon spin current is dominated by electric field component which perpendicular to the magnetization direction. We apply our theory to 1D ferromagnetic SSH model and show that the generated magnon spin current is closely related to the band geometry. Our findings expands the horizons of magnonics and electric-control-magnon mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14186v1-abstract-full').style.display = 'none'; document.getElementById('2404.14186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2307.10882</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13396">arXiv:2404.13396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Angle-Resolved Magneto-Chiral Anisotropy in a Non-Centrosymmetric Atomic Layer Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">Long Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+M">Mingrui Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingxian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Hui Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+D">Dawei Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fei Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Genhao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guanglei Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+S">Sai Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+X">Xiaofang Zhai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13396v1-abstract-short" style="display: inline;"> Chirality in solid-state materials has sparked significant interest due to potential applications of topologically-protected chiral states in next-generation information technology. The electrical magneto-chiral effect (eMChE), arising from relativistic spin-orbit interactions, shows great promise for developing chiral materials and devices for electronic integration. Here we demonstrate an angle-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13396v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13396v1-abstract-full" style="display: none;"> Chirality in solid-state materials has sparked significant interest due to potential applications of topologically-protected chiral states in next-generation information technology. The electrical magneto-chiral effect (eMChE), arising from relativistic spin-orbit interactions, shows great promise for developing chiral materials and devices for electronic integration. Here we demonstrate an angle-resolved eMChE in an A-B-C-C type atomic-layer superlattice lacking time and space inversion symmetry. We observe non-superimposable enantiomers of left-handed and right-handed tilted uniaxial magnetic anisotropy as the sample rotates under static fields, with the tilting angle reaching a striking 45 degree. Magnetic force microscopy and atomistic simulations correlate the tilt to the emergence and evolution of chiral spin textures. The Dzyaloshinskii-Moriya interaction lock effect in competition with Zeeman effect is demonstrated to be responsible for the angle-resolved eMChE. Our findings open up a new horizon for engineering angle-resolved magneto-chiral anisotropy, shedding light on the development of novel angle-resolved sensing or writing techniques in chiral spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13396v1-abstract-full').style.display = 'none'; document.getElementById('2404.13396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13275">arXiv:2404.13275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13275">pdf</a>, <a href="https://arxiv.org/format/2404.13275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of disorder on Berry curvature and quantum metric in two-band gapped graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ze Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhen-Gang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13275v2-abstract-short" style="display: inline;"> The geometric properties of parameter space are mostly described by Berry curvature and quantum metric, which are the imaginary and real part of quantum geometric tensor, respectively. In this work, we calculate the dressed Berry curvature and quantum metric containing eight Feynman diagrams, which are proportional to the leading-order of the concentration of impurities. For a two-band gapped grap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13275v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13275v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13275v2-abstract-full" style="display: none;"> The geometric properties of parameter space are mostly described by Berry curvature and quantum metric, which are the imaginary and real part of quantum geometric tensor, respectively. In this work, we calculate the dressed Berry curvature and quantum metric containing eight Feynman diagrams, which are proportional to the leading-order of the concentration of impurities. For a two-band gapped graphene model, we find the disorder does not break the original symmetry but decrease (increase) the absolute value of Berry curvature and quantum metric in conduction (valence) band. We show how impurities affect the Berry curvature and quantum metric, deepening our understanding of the impurity effect on the electron transport properties in two-band gapped graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13275v2-abstract-full').style.display = 'none'; document.getElementById('2404.13275v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11617">arXiv:2404.11617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11617">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Robustness via Loss Engineering in Detuned Non-Hermitian Scattering Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jipeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Y">Yuanhao Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianfa Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+B">Biao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Ken Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihong Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11617v1-abstract-short" style="display: inline;"> Non-Hermitian optics has revealed a series of counterintuitive phenomena with profound implications for sensing, lasing, and light manipulation. While the non-Hermiticity of Hamitonians is well-recognized, recent advancements in non-Hermitian physics have broadened to include scattering matrices, uncovering phenomena such as simultaneous lasing and coherent perfect absorption (CPA), reflectionless&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11617v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11617v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11617v1-abstract-full" style="display: none;"> Non-Hermitian optics has revealed a series of counterintuitive phenomena with profound implications for sensing, lasing, and light manipulation. While the non-Hermiticity of Hamitonians is well-recognized, recent advancements in non-Hermitian physics have broadened to include scattering matrices, uncovering phenomena such as simultaneous lasing and coherent perfect absorption (CPA), reflectionless scattering modes (RSMs), and coherent chaos control. Despite these developments, the investigation has predominantly focused on static and symmetric configurations, leaving the dynamic properties of non-Hermitian scattering in detuned systems largely unexplored. Bridging this gap, we extend certain stationary non-Hermitian scattering phenomena to detuned systems. We delve into the interplay between bi-directional RSMs and RSM exceptional points (EPs), and elucidate the global existence conditions for RSMs under detuning. Moreover, we introduces a novel category of EPs, characterized by the coalescence of transmission peaks, emerging independent with the presence of Hamiltonian EPs. The transmission EPs (TEPs) exhibit flat-top lineshape and can be extended to a square-shaped spectrum when detuning is involved, accompanied by a distinctive phase transition. Significantly, we demonstrate the applications of the TEPs in a one-dimensional coupled cavity system, engineered to enhance sensing robustness against environmental instabilities such as laser frequency drifts, which can exceed 10 MHz. This capability represents a substantial improvement over traditional sensing methods and an important improvement of fragile EP sensors. Our findings not only contribute to the broader understanding of non-Hermitian scattering phenomena but also paves the way for future advancements in non-Hermitian sensing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11617v1-abstract-full').style.display = 'none'; document.getElementById('2404.11617v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03230">arXiv:2404.03230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03230">pdf</a>, <a href="https://arxiv.org/format/2404.03230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Quantum Phases of a Dipolar Fermi Gas with Laser-assisted Interwire Tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jin-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xue-Jing Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ying-Ying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jing-Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+L">Lu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zun-Lue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xing-Dong Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Liang-Liang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03230v1-abstract-short" style="display: inline;"> We systematically investigate unconventional superfluid phases of fermionic dipolar particles lying in a double-wire setup with laser-assisted interwire tunneling. Our numerical simulations, based on the nonlocal Kohn-Sham Bogoliubov-de Gennes equation, reveal the existence of a large Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) region with a stripe phase under an imbalance of particle densities betwee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03230v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03230v1-abstract-full" style="display: none;"> We systematically investigate unconventional superfluid phases of fermionic dipolar particles lying in a double-wire setup with laser-assisted interwire tunneling. Our numerical simulations, based on the nonlocal Kohn-Sham Bogoliubov-de Gennes equation, reveal the existence of a large Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) region with a stripe phase under an imbalance of particle densities between two wires. When the laser-assisted interwire tunneling is present, it induces a transition from the FFLO phase to the topological superfluid phase and the associated Majorana zero modes exhibit an oscillation structure, which is significantly enhanced by the long-range nature of the interwire dipolar interaction. This distinguishes itself from the results obtained with usual contact interaction and offers new opportunities for manipulating and reshaping Majorana zero modes by adjusting the degree of the nonlocality and the interwire separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03230v1-abstract-full').style.display = 'none'; document.getElementById('2404.03230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00695">arXiv:2404.00695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00695">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01732-z">10.1038/s41565-024-01732-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Even-integer Quantum Hall Effect in an Oxide Caused by Hidden Rashba Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingyue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaplan%2C+D">Daniel Kaplan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuehan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Congwei Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+G">Gangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+X">Xuzhong Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yongchao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xiaoyin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+R">Ruixue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+A">Ady Stern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongtao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Hongtao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H">Hailin Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00695v2-abstract-short" style="display: inline;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00695v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00695v2-abstract-full" style="display: none;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on ab initio band structures of Bi2O2Se thin films, we can ascribe the absence of odd-integer states in thicker films to the hidden Rasbha effect, where the local inversion symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one unit cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'none'; document.getElementById('2404.00695v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures, 23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 19, 1452 -- 1459 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00519">arXiv:2404.00519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron Collimation in Twisted Bilayer Graphene via Gate-defined Moir茅 Barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M">Moosa Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luskin%2C+M">Mitchell Luskin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00519v1-abstract-short" style="display: inline;"> Electron collimation via a graphene pn-junction allows electrostatic control of ballistic electron trajectories akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer graphene (tBLG) can provide additional probes to the underlying physics and device components towards advanced quantum electronics. In this work, we demonstrate collimation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00519v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00519v1-abstract-full" style="display: none;"> Electron collimation via a graphene pn-junction allows electrostatic control of ballistic electron trajectories akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer graphene (tBLG) can provide additional probes to the underlying physics and device components towards advanced quantum electronics. In this work, we demonstrate collimation of the electron flow via gate-defined moir茅 barriers in a tBLG device, utilizing the band-insulator gap of the moir茅 superlattice. A single junction can be tuned to host a chosen combination of conventional pseudo barrier and moir茅 tunnel barriers, from which we demonstrate improved collimation efficiency. By measuring transport through two consecutive moir茅 collimators separated by 1 um, we demonstrate evidence of electron collimation in tBLG in the presence of realistic twist-angle inhomogeneity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00519v1-abstract-full').style.display = 'none'; document.getElementById('2404.00519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13306">arXiv:2403.13306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13306">pdf</a>, <a href="https://arxiv.org/format/2403.13306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic origin of the phonon Hall effect in a honeycomb antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qingkai Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13306v2-abstract-short" style="display: inline;"> The underlying mechanism of the thermal Hall effect (THE) generated by phonons in a variety of insulators is yet to be identified. Here, we report on a sizeable thermal Hall conductivity in NiPS$_3$, a van der Waals stack of honeycomb layers with a zigzag antiferromagnetic order below $T_N$ = 155 K. The longitudinal ($魏_{aa}$) and the transverse ($魏_{ab}$) thermal conductivities peak at the same t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13306v2-abstract-full').style.display = 'inline'; document.getElementById('2403.13306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13306v2-abstract-full" style="display: none;"> The underlying mechanism of the thermal Hall effect (THE) generated by phonons in a variety of insulators is yet to be identified. Here, we report on a sizeable thermal Hall conductivity in NiPS$_3$, a van der Waals stack of honeycomb layers with a zigzag antiferromagnetic order below $T_N$ = 155 K. The longitudinal ($魏_{aa}$) and the transverse ($魏_{ab}$) thermal conductivities peak at the same temperature and the thermal Hall angle, at this peak, respects a previously identified bound. The amplitude of $魏_{ab}$ is extremely sensitive to the amplitude of magnetization along the $b$-axis, in contrast to the phonon mean free path, which is not at all. We show that the magnon and acoustic phonon bands cross each other along the $b^\ast$ orientation in the momentum space. The relevance of a thermodynamic property, combined with the irrelevance of the mean free path, points to an intrinsic origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13306v2-abstract-full').style.display = 'none'; document.getElementById('2403.13306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Supplemental Materials included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09283">arXiv:2403.09283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09283">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae127">10.1093/nsr/nwae127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shichao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenxiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+N+B">Nesta Benno Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+L">Li Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyzula%2C+J">Jan Wyzula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F">Fengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09283v1-abstract-short" style="display: inline;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09283v1-abstract-full" style="display: none;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound. Here we report the observation of quantum oscillations from Landau quantization near the Mott-Ioffe-Regel limit in CaAs3. Despite the insulator-like temperature dependence of resistivity, CaAs3 presents giant magnetoresistance and prominent Shubnikov-de Haas oscillations from Fermi surfaces, indicating highly coherent band transport. In contrast, the quantum oscillation is absent in the magnetic torque. The quasiparticle effective mass increases systematically with magnetic fields, manifesting a much larger value than the expectation given by magneto-infrared spectroscopy. It suggests a strong many-body renormalization effect near Fermi surface. We find that these unconventional behaviors may be explained by the interplay between the mobility edge and the van Hove singularity, which results in the formation of coherent cyclotron orbits emerging at the diffusive bound. Our results call for further study on the electron correlation effect of the van Hove singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'none'; document.getElementById('2403.09283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, nwae127 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09205">arXiv:2403.09205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09205">pdf</a>, <a href="https://arxiv.org/format/2403.09205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.043401">10.1103/PhysRevLett.133.043401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic Study on Superexchange Dynamics of Composite Spin-1 Bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09205v3-abstract-short" style="display: inline;"> We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site-and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We furt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09205v3-abstract-full').style.display = 'inline'; document.getElementById('2403.09205v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09205v3-abstract-full" style="display: none;"> We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site-and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the non-equilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound. Based on the superexchange process, we prepared and verified the entangled qutrits pairs with these composite spin-1 bosons, potentially being applied in qutrit-based quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09205v3-abstract-full').style.display = 'none'; document.getElementById('2403.09205v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 043401 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhu%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10