CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;13 of 13 results for author: <span class="mathjax">Qu, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Qu%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Qu, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Qu%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Qu, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14600">arXiv:2412.14600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14600">pdf</a>, <a href="https://arxiv.org/ps/2412.14600">ps</a>, <a href="https://arxiv.org/format/2412.14600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Identifying topological excitonic insulators via bulk-edge correspondence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zeying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanchang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14600v1-abstract-short" style="display: inline;"> Excitonic insulator remains elusive and there has been a lack of reliable identification methods. In this work, we demonstrate the promise of topological excitonic insulators for identification due to their unique bulk-edge correspondence, as illustrated by the LiFe$X$ ($X$ = S, Se, and Te) family. First-principles Bethe-Salpeter equation calculations reveal excitonic instabilities in these spin-o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14600v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14600v1-abstract-full" style="display: none;"> Excitonic insulator remains elusive and there has been a lack of reliable identification methods. In this work, we demonstrate the promise of topological excitonic insulators for identification due to their unique bulk-edge correspondence, as illustrated by the LiFe$X$ ($X$ = S, Se, and Te) family. First-principles Bethe-Salpeter equation calculations reveal excitonic instabilities in these spin-orbit coupling quantum anomalous Hall insulators. Effective Hamiltonian analyses indicate that spontaneous exciton condensation does not disrupt the gapless edge state but reconstructs the bulk-gap to be almost independent of the spin-orbit coupling strength. This change in the bulk-edge correspondence can be experimentally inspected by angle-resolved photoelectron spectroscopy or electron compressibility measurements, providing observational evidence for the identification of topological excitonic insulators. Moreover, exciton condensation raises the critical temperature of the topological nontrivial phase above room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14600v1-abstract-full').style.display = 'none'; document.getElementById('2412.14600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13084">arXiv:2407.13084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13084">pdf</a>, <a href="https://arxiv.org/ps/2407.13084">ps</a>, <a href="https://arxiv.org/format/2407.13084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad8955">10.1088/1367-2630/ad8955 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-Dimensional Magnetic Excitonic Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanchang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13084v1-abstract-short" style="display: inline;"> Dimensionality significantly affects exciton production and condensation. Despite the report of excitonic instability in one-dimensional materials, it remains unclear whether these spontaneously produced excitons can form Bose-Einstein condensates. In this work, we first prove statistically that one-dimensional condensation exists when the spontaneously generated excitons are thought of as an idea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13084v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13084v1-abstract-full" style="display: none;"> Dimensionality significantly affects exciton production and condensation. Despite the report of excitonic instability in one-dimensional materials, it remains unclear whether these spontaneously produced excitons can form Bose-Einstein condensates. In this work, we first prove statistically that one-dimensional condensation exists when the spontaneously generated excitons are thought of as an ideal neutral Bose gas, which is quite different from the inability of free bosons to condense. We then derive a general expression for the critical temperature in different dimensions and find that the critical temperature increases with decreasing dimension. We finally predict by first-principles $GW$-BSE calculations that experimentally accessible single-chain staircase Scandocene and Chromocene wires are an antiferromagnetic spin-triplet excitonic insulator and a ferromagnetic half-excitonic insulator, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13084v1-abstract-full').style.display = 'none'; document.getElementById('2407.13084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> https://iopscience.iop.org/article/10.1088/1367-2630/ad8955 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26 103034 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16711">arXiv:2305.16711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16711">pdf</a>, <a href="https://arxiv.org/ps/2305.16711">ps</a>, <a href="https://arxiv.org/format/2305.16711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.235407">10.1103/PhysRevB.107.235407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant enhancement of exciton radiative lifetime by ferroelectric polarization: The case of monolayer TiOCl$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanchang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16711v1-abstract-short" style="display: inline;"> Exciton binding energy and lifetime are the two most important parameters controlling exciton dynamics, and the general consensus is that the larger the former the larger the latter. However our first-principles study of monolayer ferroelectric TiOCl$_2$ shows that this is not always the case. We find that ferroelectric polarization tends to weaken exciton binding but enhance exciton lifetime. Thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16711v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16711v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16711v1-abstract-full" style="display: none;"> Exciton binding energy and lifetime are the two most important parameters controlling exciton dynamics, and the general consensus is that the larger the former the larger the latter. However our first-principles study of monolayer ferroelectric TiOCl$_2$ shows that this is not always the case. We find that ferroelectric polarization tends to weaken exciton binding but enhance exciton lifetime. This stems from the different effects of the induced built-in electric field and structural distortion by the spontaneous polarization: the former always destabilizes or even dissociates the exciton while the latter leads to a relaxation of the selection rule and activates excitons that are otherwise not optically active. Their combined effect leads to a halving of the exciton binding energy but a substantial increase in lifetime by 40 times. Our results deepen the understanding of the interaction of light with ferroelectric materials and provide new insights into the use of ferroelectricity to control exciton dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16711v1-abstract-full').style.display = 'none'; document.getElementById('2305.16711v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRB 107, 235407 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14238">arXiv:2204.14238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.14238">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystallographic effects on transgranular chloride-induced stress corrosion crack propagation of arc welded austenitic stainless steel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H+J">Haozheng J. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+F">Fei Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+N">Nianju Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+T">Timothy Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+J+M">Jason M. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schaller%2C+R+F">Rebecca F. Schaller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindelholz%2C+E">Eric Schindelholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wharry%2C+J+P">Janelle P. Wharry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14238v1-abstract-short" style="display: inline;"> The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on &gt;300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14238v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14238v1-abstract-full" style="display: none;"> The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on &gt;300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14238v1-abstract-full').style.display = 'none'; document.getElementById('2204.14238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16310">arXiv:2203.16310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16310">pdf</a>, <a href="https://arxiv.org/format/2203.16310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hybrid magnonics for short-wavelength spin waves facilitated by a magnetic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Inman%2C+J">Jerad Inman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bidthanapally%2C+R">Rao Bidthanapally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louis%2C+S">Steven Louis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tyberkevych%2C+V">Vasyl Tyberkevych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sklenar%2C+J">Joseph Sklenar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16310v1-abstract-short" style="display: inline;"> Recent research on hybrid magnonics has been restricted by the long magnon wavelengths of the ferromagnetic resonance modes. We present an experiment on the hybridization of 250-nm wavelength magnons with microwave photons in a multimode magnonic system consists of a planar cavity and a magnetic bilayer. The coupling between magnon modes in the two magnetic layers, i.e., the uniform mode in Permal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16310v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16310v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16310v1-abstract-full" style="display: none;"> Recent research on hybrid magnonics has been restricted by the long magnon wavelengths of the ferromagnetic resonance modes. We present an experiment on the hybridization of 250-nm wavelength magnons with microwave photons in a multimode magnonic system consists of a planar cavity and a magnetic bilayer. The coupling between magnon modes in the two magnetic layers, i.e., the uniform mode in Permalloy (Py) and the perpendicular standing spin waves (PSSWs) in YIG, serves as an effective means for exciting short-wavelength PSSWs, which is further hybridized with the photon mode of the microwave resonator. The demonstrated magnon-photon coupling approaches the superstrong coupling regime, and can even be achieved near zero bias field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16310v1-abstract-full').style.display = 'none'; document.getElementById('2203.16310v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16303">arXiv:2203.16303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16303">pdf</a>, <a href="https://arxiv.org/format/2203.16303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable magnetically induced transparency spectra in magnon-magnon coupled Y3Fe5O12/permalloy bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inman%2C+J">Jerad Inman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhengyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+K">Kaile Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bidthanapally%2C+R">Rao Bidthanapally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sklenar%2C+J">Joseph Sklenar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louis%2C+S">Steven Louis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tyberkevych%2C+V">Vasyl Tyberkevych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhili Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwok%2C+W+K">Wai K. Kwok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fusheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16303v1-abstract-short" style="display: inline;"> Hybrid magnonic systems host a variety of characteristic quantum phenomena such as the magnetically-induced transparency (MIT) and Purcell effect, which are considered useful for future coherent quantum information processing. In this work, we experimentally demonstrate a tunable MIT effect in the Y3Fe5O12(YIG)/Permalloy(Py) magnon-magnon coupled system via changing the magnetic field orientations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16303v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16303v1-abstract-full" style="display: none;"> Hybrid magnonic systems host a variety of characteristic quantum phenomena such as the magnetically-induced transparency (MIT) and Purcell effect, which are considered useful for future coherent quantum information processing. In this work, we experimentally demonstrate a tunable MIT effect in the Y3Fe5O12(YIG)/Permalloy(Py) magnon-magnon coupled system via changing the magnetic field orientations. By probing the magneto-optic effects of Py and YIG, we identify clear features of MIT spectra induced by the mode hybridization between the uniform mode of Py and the perpendicular standing spin-wave modes of YIG. By changing the external magnetic field orientations, we observe a tunable coupling strength between the YIG&#39;s spin-wave modes and the Py&#39;s uniform mode, upon the application of an out-of-plane magnetic field. This observation is theoretically interpreted by a geometrical consideration of the Py and YIG magnetization under the oblique magnetic field even at a constant interfacial exchange coupling. Our findings show high promise for investigating tunable coherent phenomena with hybrid magnonic platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16303v1-abstract-full').style.display = 'none'; document.getElementById('2203.16303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08093">arXiv:2202.08093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08093">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-performance and Low-power Transistors Based on Anisotropic Monolayer $尾$-TeO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">Shiying Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hengze Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wenhan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jing Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Haibo Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengli Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08093v1-abstract-short" style="display: inline;"> Two-dimensional (2D) semiconductors offer a promising prospect for high-performance and energy-efficient devices especially in the sub-10 nm regime. Inspired by the successful fabrication of 2D $尾$-TeO$_2$ and the high on/off ratio and high air-stability of fabricated field effect transistors (FETs) [Nat. Electron. 2021, 4, 277], we provide a comprehensive investigation of the electronic structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08093v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08093v1-abstract-full" style="display: none;"> Two-dimensional (2D) semiconductors offer a promising prospect for high-performance and energy-efficient devices especially in the sub-10 nm regime. Inspired by the successful fabrication of 2D $尾$-TeO$_2$ and the high on/off ratio and high air-stability of fabricated field effect transistors (FETs) [Nat. Electron. 2021, 4, 277], we provide a comprehensive investigation of the electronic structure of monolayer $尾$-TeO$_2$ and the device performance of sub-10 nm metal oxide semiconductors FETs (MOSFETs) based on this material. The anisotropic electronic structure of monolayer $尾$-TeO$_2$ plays a critical role in the anisotropy of transport properties for MOSFETs. We show that the 5.2-nm gate-length n-type MOSFET holds an ultra-high on-state current exceeding 3700 渭A/渭m according to International Roadmap for Devices and Systems (IRDS) 2020 goals for high-performance devices, which is benefited by the highly anisotropic electron effective mass. Moreover, monolayer $尾$-TeO$_2$ MOSFETs can fulfill the IRDS 2020 goals for both high-performance and low-power devices in terms of on-state current, sub-threshold swing, delay time, and power-delay product. This study unveils monolayer $尾$-TeO$_2$ as a promising candidate for ultra-scaled devices in future nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08093v1-abstract-full').style.display = 'none'; document.getElementById('2202.08093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11044">arXiv:2101.11044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.11044">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.187701">10.1103/PhysRevLett.124.187701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Voltage-controlled antiferromagnetism in magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Meng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khanal%2C+P">Pravin Khanal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habiboglu%2C+A">Ali Habiboglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Insana%2C+B">Blake Insana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+T">Thomas Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myers%2C+J+C">Jason C. Myers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortega%2C+D">Deborah Ortega</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C+L">C. L. Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+G">W. G. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11044v1-abstract-short" style="display: inline;"> We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11044v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11044v1-abstract-full" style="display: none;"> We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange bias. It is found that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11044v1-abstract-full').style.display = 'none'; document.getElementById('2101.11044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 187701, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06155">arXiv:2011.06155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06155">pdf</a>, <a href="https://arxiv.org/ps/2011.06155">ps</a>, <a href="https://arxiv.org/format/2011.06155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0023715">10.1063/5.0023715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental parameters, combined dynamics, and nonlinearity of a Magnonic-Opto-Electronic Oscillator (MOEO) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhizhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammami%2C+M">Mouhamad Hammami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sklenar%2C+J">Joseph Sklenar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alahmed%2C+L">Laith Alahmed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+T">Thomas Sebastian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06155v1-abstract-short" style="display: inline;"> We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttirum iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06155v1-abstract-full').style.display = 'inline'; document.getElementById('2011.06155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06155v1-abstract-full" style="display: none;"> We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttirum iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequency self-generation as well as the related nonlinear processes become sensitive to the external magnetic field. Besides being known as a narrowband filter and a delay element, the YIG delayline possesses spin wave modes that can be controlled to mix with the optoelectronic modes to generate higher-order harmonic beating modes. With the high sensitivity and external tunability, the MOEO system may find usefulness in sensing applications in magnetism and spintronics beyond optoelectronics and photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06155v1-abstract-full').style.display = 'none'; document.getElementById('2011.06155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Comments are welcome. [A more comprehensive version of the manuscript was submitted to Rev. Sci. Instrum.]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.13407">arXiv:1912.13407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.13407">pdf</a>, <a href="https://arxiv.org/format/1912.13407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing magnon-magnon coupling in exchange coupled Y$_3$Fe$_5$O$_{12}$/Permalloy bilayers with magneto-optical effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammami%2C+M">Mouhamad Hammami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bidthanapally%2C+R">Rao Bidthanapally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sklenar%2C+J">Joseph Sklenar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srinivasan%2C+G">Gopalan Srinivasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pearson%2C+J">John Pearson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.13407v2-abstract-short" style="display: inline;"> We demonstrate the magnetically-induced transparency (MIT) effect in Y$_3$Fe$_5$O$_{12}$(YIG)/Permalloy(Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13407v2-abstract-full').style.display = 'inline'; document.getElementById('1912.13407v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.13407v2-abstract-full" style="display: none;"> We demonstrate the magnetically-induced transparency (MIT) effect in Y$_3$Fe$_5$O$_{12}$(YIG)/Permalloy(Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG. We develop a phenomenological model that nicely reproduces the experimental results including the induced amplitude and phase evolution caused by the magnon-magnon coupling. Our work offers a new route towards studying phase-resolved spin dynamics and hybrid magnonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13407v2-abstract-full').style.display = 'none'; document.getElementById('1912.13407v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01923">arXiv:1901.01923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01923">pdf</a>, <a href="https://arxiv.org/format/1901.01923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.034047">10.1103/PhysRevApplied.11.034047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Optical and Electrical Spin-Torque Magnetometry with Stroboscopic Detection of Spin-Precession Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saglam%2C+H">Hilal Saglam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhizhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bidthanapally%2C+R">Rao Bidthanapally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pearson%2C+J+E">John E. Pearson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hongwei Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srinivasan%2C+G">Gopalan Srinivasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A+H+a+W">Axel Hoffmann andand Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01923v1-abstract-short" style="display: inline;"> Spin-based coherent information processing and encoding utilize the precession phase of spins in magnetic materials. However, the detection and manipulation of spin precession phases remain a major challenge for advanced spintronic functionalities. By using simultaneous electrical and optical detection, we demonstrate the direct measurement of the precession phase of Permalloy ferromagnetic resona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01923v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01923v1-abstract-full" style="display: none;"> Spin-based coherent information processing and encoding utilize the precession phase of spins in magnetic materials. However, the detection and manipulation of spin precession phases remain a major challenge for advanced spintronic functionalities. By using simultaneous electrical and optical detection, we demonstrate the direct measurement of the precession phase of Permalloy ferromagnetic resonance driven by the spin-orbit torques from adjacent heavy metals. The spin Hall angle of the heavy metals can be independently determined from concurrent electrical and optical signals. The stroboscopic optical detection also allows spatially measuring local spin-torque parameters and the induced ferromagnetic resonance with comprehensive amplitude and phase information. Our study offers a route towards future advanced characterizations of spin-torque oscillators, magnonic circuits, and tunnelling junctions, where measuring the current-induced spin dynamics of individual nanomagnets are required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01923v1-abstract-full').style.display = 'none'; document.getElementById('1901.01923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 034047 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07933">arXiv:1610.07933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07933">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A preliminary study on dispersions of fatigue properties of materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">L Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H+M">H M Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07933v1-abstract-short" style="display: inline;"> Static mechanical properties (e.g. elastic modulus) and fatigue properties of a material all have dispersions. Material inhomogeneity (it can be characterized well by the dispersion of elastic modulus) is the internal factor of dispersions of fatigue properties and the dispersion of the load is the external factor. In this paper, according to theoretical derivation and preliminary experiments veri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07933v1-abstract-full').style.display = 'inline'; document.getElementById('1610.07933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07933v1-abstract-full" style="display: none;"> Static mechanical properties (e.g. elastic modulus) and fatigue properties of a material all have dispersions. Material inhomogeneity (it can be characterized well by the dispersion of elastic modulus) is the internal factor of dispersions of fatigue properties and the dispersion of the load is the external factor. In this paper, according to theoretical derivation and preliminary experiments verification, the following relationships between dispersions of fatigue properties and dispersions of static mechanical properties of a material are obtained: the dispersion of fatigue life is n (the fatigue index) times of the sum of the dispersion of elastic modulus and the dispersion of the load. The corresponding dispersion of fatigue life is a decreasing function of the given fatigue strength in the stage of high cycle fatigue; P-S curve (the probability statistical distribution of fatigue strength) under the given fatigue life cannot be directly by test, but P-S curve can be obtained on the bias of P-N curve (the probability statistical distribution of fatigue life), and the corresponding dispersion of fatigue strength is a decreasing function of the given fatigue life. On bias of conclusions above, not only the inhomogeneity of material but also the dispersion of the load needs to be considered in the fatigue design, especially in high cycle fatigue design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07933v1-abstract-full').style.display = 'none'; document.getElementById('1610.07933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1266">arXiv:1301.1266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.1266">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1557/opl.2013.913">10.1557/opl.2013.913 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flexible fiber batteries for applications in smart textiles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+H">Hang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois%2C+J">Jean-Pierre Bourgeois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolland%2C+J">Julien Rolland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlad%2C+A">Alexandru Vlad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gohy%2C+J">Jean-Fran莽ois Gohy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skorobogatiy%2C+M">Maksim Skorobogatiy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1266v1-abstract-short" style="display: inline;"> Here we discuss two alternative approaches for building flexible batteries for applications in smart textiles. The first approach uses well-studied inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in order to produce batteries in a slender and flexible fiber form that can be further weaved directly into the textiles. During fabrication process the battery electrodes are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1266v1-abstract-full').style.display = 'inline'; document.getElementById('1301.1266v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1266v1-abstract-full" style="display: none;"> Here we discuss two alternative approaches for building flexible batteries for applications in smart textiles. The first approach uses well-studied inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in order to produce batteries in a slender and flexible fiber form that can be further weaved directly into the textiles. During fabrication process the battery electrodes are co-drawn within a microstructured polymer fiber, which is later filled with liquid electrolyte. The second approach describes Li-ion chemistry within solid polymer electrolytes that are used to build a fully solid and soft rechargeable battery that can be furthermore stitched onto a textile, or integrated as stripes during weaving process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1266v1-abstract-full').style.display = 'none'; document.getElementById('1301.1266v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MRS Proc. 1489 (2013) mrsf12-1489-a04-01 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10