CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 2,133 results for author: <span class="mathjax">Wang, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19566">arXiv:2411.19566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19566">pdf</a>, <a href="https://arxiv.org/format/2411.19566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Current-driven motion of magnetic domain-wall skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+H">Haoyang Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhixiong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiansi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19566v1-abstract-short" style="display: inline;"> Domain-wall skyrmions (DWSKs) are topological spin textures confined within domain walls that have recently attracted significant attention due to their potential applications in racetrack memory technologies. In this study, we theoretically investigated the motion of DWSKs driven by spin-polarized currents in ferromagnetic strips. Our findings reveal that the motion of DWSKs is contingent upon th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19566v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19566v1-abstract-full" style="display: none;"> Domain-wall skyrmions (DWSKs) are topological spin textures confined within domain walls that have recently attracted significant attention due to their potential applications in racetrack memory technologies. In this study, we theoretically investigated the motion of DWSKs driven by spin-polarized currents in ferromagnetic strips. Our findings reveal that the motion of DWSKs is contingent upon the direction of the current. When the current is applied parallel to the domain wall, both spin-transfer torque (STT) and spin-orbit torque (SOT) can drive the DWSK along the domain wall. Conversely, for currents applied perpendicular to the domain wall, STT can induce DWSK motion by leveraging the skyrmion Hall effect as a driving force, whereas SOT-driven DWSKs halt their motion after sliding along the domain wall. Furthermore, we demonstrated the current-driven motion of DWSKs along curved domain walls and proposed a racetrack memory architecture utilizing DWSKs. These findings advance the understanding of DWSK dynamics and provide insights for the design of spintronic devices based on DWSKs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19566v1-abstract-full').style.display = 'none'; document.getElementById('2411.19566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19079">arXiv:2411.19079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19079">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Charge transfer induced cubic gauche nitrogen from azides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+T">Tingting Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuxuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liangfei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Junfeng Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19079v1-abstract-short" style="display: inline;"> Cubic gauche nitrogen (cg-N) with a three-dimensional network of N-N single bonds attracted lots of attentions in last decades, since it theoretically has five times larger energy than TNT. While, extreme environments of high pressure or plasma treatment were required in traditional routes. Quite recently, in vacuum or protective gas environments, a one-step synthesis route relying solely on heati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19079v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19079v1-abstract-full" style="display: none;"> Cubic gauche nitrogen (cg-N) with a three-dimensional network of N-N single bonds attracted lots of attentions in last decades, since it theoretically has five times larger energy than TNT. While, extreme environments of high pressure or plasma treatment were required in traditional routes. Quite recently, in vacuum or protective gas environments, a one-step synthesis route relying solely on heating is reported giving the highest cg-N content. However, corresponding mechanism is missing, which hinders the improvement of yield and the development of simpler methods. Here, by treating KN3 in different gas environments, we find that moisture can prevent the transition from KN3 to cg-N. In a dry air environment at 260 ~ 300掳C, KN3 decomposes into K and N2, and charge transfer from K to KN3 can induce cg-N. Furthermore, by grinding or loading pressure on the mixture of KN3 with Li, Na, K, Cs, Ca, Mg and Al, we find that elements with higher electronegativity, higher pressure and temperature conditions are needed to induce cg-N, while grinding alone is sufficient for alkali metals even without heating, thus confirming the charge-transfer mechanism. These findings provide guidance for the synthesis of cg-N under ambient conditions through metal-catalyzed polymerization of various azides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19079v1-abstract-full').style.display = 'none'; document.getElementById('2411.19079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15725">arXiv:2411.15725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15725">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Occupation and diffusion of interstitial solutes in dilute alloys in perspective of the Gauss Legendre three square theorem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoshuang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15725v1-abstract-short" style="display: inline;"> In the example of the diffusion of C, N, O in dilute ferric iron alloys, it is shown that the polyhedron consisting of equivalent occupation of interstitial solutes in dilute alloys, can be classified into 7 groups altogether, i.e., cube, octahedron, cuboctahedron, truncated octahedron, truncated cube, rhombicuboctahedron and truncated cuboctahedron. No more polyhedron can be found. The notation a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15725v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15725v1-abstract-full" style="display: none;"> In the example of the diffusion of C, N, O in dilute ferric iron alloys, it is shown that the polyhedron consisting of equivalent occupation of interstitial solutes in dilute alloys, can be classified into 7 groups altogether, i.e., cube, octahedron, cuboctahedron, truncated octahedron, truncated cube, rhombicuboctahedron and truncated cuboctahedron. No more polyhedron can be found. The notation and the migration paths of C, N, O in dilute alloys are well described by the Gauss Legendre three square theorem. The abstraction of the migration paths gives rise to the Wythoffian operations illustrated with cube and octahedron. The occupation and migration paths of the diffuser in this work can be generalized to the diffusion of vacancy and interstitial atoms in other host materials with low concentration of substitutional solutes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15725v1-abstract-full').style.display = 'none'; document.getElementById('2411.15725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14061">arXiv:2411.14061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14061">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> One-step Synthesis of Cubic Gauche Polymeric Nitrogen with High Yield Just by Heating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liangfei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuxuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Junfeng Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14061v1-abstract-short" style="display: inline;"> A high-efficient one-step synthesis of cubic gauche polymeric nitrogen was developed just by thermal treatment of KN3 powders. The Raman and infrared spectra confirm the formation of polymeric nitrogen networks. Thermogravimetric differential scanning calorimeter measurements show that the content of cubic gauche polymeric nitrogen is as high as 1.5 wt% with high thermal stability, which is the hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14061v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14061v1-abstract-full" style="display: none;"> A high-efficient one-step synthesis of cubic gauche polymeric nitrogen was developed just by thermal treatment of KN3 powders. The Raman and infrared spectra confirm the formation of polymeric nitrogen networks. Thermogravimetric differential scanning calorimeter measurements show that the content of cubic gauche polymeric nitrogen is as high as 1.5 wt% with high thermal stability, which is the highest content value so far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14061v1-abstract-full').style.display = 'none'; document.getElementById('2411.14061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13488">arXiv:2411.13488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13488">pdf</a>, <a href="https://arxiv.org/format/2411.13488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Evidence of anisotropic three-dimensional weak-localization in TiSe$_{2}$ nanoflakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaocui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Junxi Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13488v1-abstract-short" style="display: inline;"> TiSe$_2$ is a typical transition-metal dichalcogenide known for its charge-density wave order. In this study, we report the observation of an unusual anisotropic negative magnetoresistance in exfoliated TiSe$_2$ nanoflakes at low temperatures. Unlike the negative magnetoresistance reported in most other transition-metal dichalcogenides, our results cannot be explained by either the conventional tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13488v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13488v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13488v1-abstract-full" style="display: none;"> TiSe$_2$ is a typical transition-metal dichalcogenide known for its charge-density wave order. In this study, we report the observation of an unusual anisotropic negative magnetoresistance in exfoliated TiSe$_2$ nanoflakes at low temperatures. Unlike the negative magnetoresistance reported in most other transition-metal dichalcogenides, our results cannot be explained by either the conventional two-dimensional weak localization effect or the Kondo effect. A comprehensive analysis of the data suggests that the observed anisotropic negative magnetoresistance in TiSe$_2$ flakes is most likely caused by the three-dimensional weak localization effect. Our findings contribute to a deeper understanding of the phase-coherent transport processes in TiSe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13488v1-abstract-full').style.display = 'none'; document.getElementById('2411.13488v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12540">arXiv:2411.12540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12540">pdf</a>, <a href="https://arxiv.org/format/2411.12540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium dynamics of localization phase transition in the non-Hermitian Disorder-Aubry-Andr茅 model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue-Mei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin-Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+L">Liang-Jun Zhai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12540v2-abstract-short" style="display: inline;"> The driven dynamics of localization transitions in a non-Hermitian Disorder-Aubry-Andr茅 (DAA) model are thoroughly examined under both open boundary conditions (OBC) and periodic boundary conditions (PBC). Through an analysis of the static properties of observables, including the localization length ($尉$), inverse participation ratio ($\rm IPR$), and energy gap ($螖E$), we found that the critical e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12540v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12540v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12540v2-abstract-full" style="display: none;"> The driven dynamics of localization transitions in a non-Hermitian Disorder-Aubry-Andr茅 (DAA) model are thoroughly examined under both open boundary conditions (OBC) and periodic boundary conditions (PBC). Through an analysis of the static properties of observables, including the localization length ($尉$), inverse participation ratio ($\rm IPR$), and energy gap ($螖E$), we found that the critical exponents examined under PBC are also applicable under OBC. The Kibble-Zurek scaling (KZS) for the driven dynamics in the non-Hermitian DAA systems is formulated and numerically verified for different quench directions. Notably, for the dynamical paths considered, boundary conditions had minimal impact on the evolution process. This study generalizes the application of the KZS to the dynamical localization transitions within systems featuring dual localization mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12540v2-abstract-full').style.display = 'none'; document.getElementById('2411.12540v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11359">arXiv:2411.11359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thickness-dependent Topological Phases and Flat Bands in Rhombohedral Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H+B">H. B. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">X. Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+H">S. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M+Z">M. Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Q. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">M. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F+Y">F. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+P">J. P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+B">Z. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K+H">K. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11359v2-abstract-short" style="display: inline;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk rem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11359v2-abstract-full" style="display: none;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk remains elusive. Using state-of-the-art angle-resolved photoemission spectroscopy with submicron spatial resolution, we directly probe and trace the thickness evolution of the topological electronic structures of rhombohedral multilayer graphene. As the layer number increases, the gapped subbands transform into the 3D Dirac nodes that spirals in the momentum space; while the flatbands are constantly observed around Fermi level, and eventually evolve into the topological drumhead surface states. This unique thickness-dependent topological phase transition can be well captured by the 3D generalization of 1D Su-Schrieffer-Heeger chain in thin layers, to the topological Dirac nodal spiral semimetal in the bulk limit. Our findings establish a solid foundation for exploring the exotic quantum phases with nontrivial topology and correlation effects in rhombohedral multilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'none'; document.getElementById('2411.11359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, under review. A note added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11156">arXiv:2411.11156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11156">pdf</a>, <a href="https://arxiv.org/format/2411.11156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of giant nonlinear Hall conductivity in Bernal bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chichinadze%2C+D+V">Dmitry V. Chichinadze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+N+J">Naiyuan James Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jiang-Xiazi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vafek%2C+O">Oskar Vafek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J+I+A">J. I. A. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11156v1-abstract-short" style="display: inline;"> In a system of two-dimensional electrons, a combination of broken symmetry, interactions, and nontrivial topology can conspire to give rise to a nonlinear transport regime, where electric current density scales as the square of electric field. This regime has become a venue for exciting discoveries such as the nonlinear Hall effect and diode-like nonreciprocal transport. However, interpretation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11156v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11156v1-abstract-full" style="display: none;"> In a system of two-dimensional electrons, a combination of broken symmetry, interactions, and nontrivial topology can conspire to give rise to a nonlinear transport regime, where electric current density scales as the square of electric field. This regime has become a venue for exciting discoveries such as the nonlinear Hall effect and diode-like nonreciprocal transport. However, interpretation of experimental data is challenging in the nonlinear regime as DC transport is described by a rank-3 conductivity tensor with 6 free parameters. Here, we resolve this challenge by analytically solving for the nonlinear potential distribution across the disk sample for an arbitrary linear and nonlinear conductivity tensors. This allows us to unambiguously extract all components of the nonlinear tensor from experimental measurement. Using this novel tool, we identify giant nonlinear Hall effect in Bernal bilayer graphene. Our methodology provides the first systematic framework for interpreting nonlinear transport and uncovers a new route towards understanding quasi-2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11156v1-abstract-full').style.display = 'none'; document.getElementById('2411.11156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures + 85 pages, 16 figures in SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11121">arXiv:2411.11121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multi-topological phases of matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziteng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bongiovanni%2C+D">Domenico Bongiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhichan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juki%C4%87%2C+D">Dario Juki膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Daohong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jingjun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morandotti%2C+R">Roberto Morandotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhigang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buljan%2C+H">Hrvoje Buljan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11121v1-abstract-short" style="display: inline;"> The discovery of topological phases of matter and topological boundary states had tremendous impact on condensed matter physics and photonics, where topological phases are defined via energy bands, giving rise to topological band theory. However, topological systems that cannot be described by band topology but still support non-trivial boundary states are little-known and largely unexplored. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11121v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11121v1-abstract-full" style="display: none;"> The discovery of topological phases of matter and topological boundary states had tremendous impact on condensed matter physics and photonics, where topological phases are defined via energy bands, giving rise to topological band theory. However, topological systems that cannot be described by band topology but still support non-trivial boundary states are little-known and largely unexplored. Here, we uncover a new kind of topological phase of matter named &#34;multi-topological phase&#34; (MTP) that features multiple sets of boundary states, where each set is associated with one distinct topological invariant. Unlike conventional topological phase transitions, the MTP transitions can occur without band-gap closing. We present typical examples of MTPs in a one-dimensional topological insulator and a two-dimensional higher-order topological insulator, where the systems are otherwise trivial according to band topology. Furthermore, MTPs can exist also in indirectly gapped Chern insulators, beyond the regime where the conventional bulk-boundary correspondence predicts the existence of boundary states. Experimentally, we demonstrate the first two examples of MTPs in laser-written photonic lattices. Our findings constitute a fundamental advance in topological physics and provide a route for designing novel topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11121v1-abstract-full').style.display = 'none'; document.getElementById('2411.11121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10851">arXiv:2411.10851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10851">pdf</a>, <a href="https://arxiv.org/format/2411.10851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of Chiral Majorana Edge States and Bogoliubov Fermi Surfaces in Two-Dimensional Nonsymmorphic Dirac Semimetal/Superconductor Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+Y">Yijie Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaojiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Z">Zheng-Yang Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zhongbo Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10851v1-abstract-short" style="display: inline;"> Dirac semimetals are renowned for the host of singular symmetry-protected band degeneracies which can give rise to other exotic phases. In this work, we consider a two-dimensional Dirac semimetal stabilized by PT symmetry and nonsymmorphic symmetries. We find that an out-of-plane Zeeman field can lift the Dirac points and transform the system into a Chern insulator with chiral edge states. By plac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10851v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10851v1-abstract-full" style="display: none;"> Dirac semimetals are renowned for the host of singular symmetry-protected band degeneracies which can give rise to other exotic phases. In this work, we consider a two-dimensional Dirac semimetal stabilized by PT symmetry and nonsymmorphic symmetries. We find that an out-of-plane Zeeman field can lift the Dirac points and transform the system into a Chern insulator with chiral edge states. By placing the nonsymmorphic Dirac semimetal in proximity to an s-wave superconductor, we uncover that chiral topological superconductors with large Chern numbers can be achieved. In addition, we find that topologically-protected Bogoliubov Fermi surface can also emerge in this system, due to the coexistence of inversion symmetry and particle-hole symmetry. Notably, we find that the chiral Majorana edge state persists even when the Chern number becomes ill-defined due to the appearance of Bogoliubov Fermi surfaces. The impact of these Bogoliubov Fermi surfaces on the thermal Hall effects is also investigated. Our study not only identifies a class of materials capable of realizing topological Bogoliubov Fermi surfaces through conventional s-wave superconductivity, but also uncovers an exotic phase where chiral Majorana edge states and Bogoliubov Fermi surfaces coexist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10851v1-abstract-full').style.display = 'none'; document.getElementById('2411.10851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+2 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10698">arXiv:2411.10698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10698">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.4c01652">10.1021/acsaelm.4c01652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Charge Dynamics in Amorphous Oxide Semiconductors by Time-of-flight Microwave Impedance Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jia Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yuchen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuejian Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dodabalapur%2C+A">Ananth Dodabalapur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+K">Keji Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10698v1-abstract-short" style="display: inline;"> The unique electronic properties of amorphous indium gallium zinc oxide (a-IGZO) thin films are closely associated with the complex charge dynamics of the materials. Conventional studies of charge transport in a-IGZO usually involve steady-state or transient measurements on field-effect transistors. Here, we employed microwave impedance microscopy to carry out position-dependent time-of-flight (TO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10698v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10698v1-abstract-full" style="display: none;"> The unique electronic properties of amorphous indium gallium zinc oxide (a-IGZO) thin films are closely associated with the complex charge dynamics of the materials. Conventional studies of charge transport in a-IGZO usually involve steady-state or transient measurements on field-effect transistors. Here, we employed microwave impedance microscopy to carry out position-dependent time-of-flight (TOF) experiments on a-IGZO devices, which offer spatial and temporal information of the underlying transport dynamics. The drift mobility calculated from the delay time between carrier injection and onset of TOF response is 2 - 3 cm2/Vs, consistent with the field-effect mobility from device measurements. The spatiotemporal conductivity data can be nicely fitted to a two-step function, corresponding to two coexisting mechanisms with a typical timescale of milliseconds. The competition between multiple-trap-and-release conduction through band-tail states and hopping conduction through deep trap states is evident from the fitting parameters. The underlying length scale and time scale of charge dynamics in a-IGZO are of fundamental importance for transparent and flexible nanoelectronics and optoelectronics, as well as emerging back-end-of-line applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10698v1-abstract-full').style.display = 'none'; document.getElementById('2411.10698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Electron. Mater. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09429">arXiv:2411.09429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09429">pdf</a>, <a href="https://arxiv.org/format/2411.09429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> AI-driven inverse design of materials: Past, present and future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiao-Qi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin-De Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Meng-Yuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+B">Bo-Wen Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09429v3-abstract-short" style="display: inline;"> The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09429v3-abstract-full').style.display = 'inline'; document.getElementById('2411.09429v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09429v3-abstract-full" style="display: none;"> The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long explored new materials through a large number of experiments and proposed corresponding theoretical systems to predict new material properties and structures. With the improvement of computational power, researchers have gradually developed various electronic structure calculation methods, such as the density functional theory and high-throughput computational methods. Recently, the rapid development of artificial intelligence technology in the field of computer science has enabled the effective characterization of the implicit association between material properties and structures, thus opening up an efficient paradigm for the inverse design of functional materials. A significant progress has been made in inverse design of materials based on generative and discriminative models, attracting widespread attention from researchers. Considering this rapid technological progress, in this survey, we look back on the latest advancements in AI-driven inverse design of materials by introducing the background, key findings, and mainstream technological development routes. In addition, we summarize the remaining issues for future directions. This survey provides the latest overview of AI-driven inverse design of materials, which can serve as a useful resource for researchers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09429v3-abstract-full').style.display = 'none'; document.getElementById('2411.09429v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08596">arXiv:2411.08596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08596">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.4c01195">10.1021/acs.cgd.4c01195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08596v1-abstract-short" style="display: inline;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08596v1-abstract-full" style="display: none;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order to (1) address the open question whether the room temperature crystal structure is P-3m1, P-3, P21/c or else, (2) to elucidate the nature of phase transitions, and (3) to study direction-dependent physical properties. Single-crystal-to-single-crystal structural transitions at ~305 K and ~127 K were observed in the averievite CsClCu5V2O10 single crystals. The nature of the transition at ~305 K, which was reported as P-3m1-P21/c transition, was found to be a structural transition from high temperature P-3m1 to low temperature P-3 by combining variable temperature synchrotron X-ray single crystal and high-resolution powder diffraction. In-plane and out-of-plane magnetic susceptibility and heat capacity measurements confirm a first-order transition at 305 K, a structural transition at 127 K and an antiferromagnetic transition at 24 K. These averievites are thus ideal model systems for a deeper understanding of structural transitions and magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'none'; document.getElementById('2411.08596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystal Growth &amp; Design (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08558">arXiv:2411.08558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Top Al$_2$O$_3$ Interlayer Thickness on Memory Window and Reliability of FeFETs With TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zeqi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">Kai Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanrong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08558v1-abstract-short" style="display: inline;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08558v1-abstract-full" style="display: none;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric field of the ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ in the MIFIS structure with a thicker top Al2O3 after a program operation. The lower electric field makes the charges trapped at the top Al2O3/Hf0.5Zr0.5O$_2$ interface, which are injected from the metal gate, cannot be retained. Furthermore, we study the effect of the top Al$_2$O$_3$ interlayer thickness on the reliability (endurance characteristics and retention characteristics). We find that the MIFIS structure with a thicker top Al$_2$O$_3$ interlayer has poorer retention and endurance characteristics. Our work is helpful in deeply understanding the effect of top interlayer thickness on the MW and reliability of Si-FeFETs with MIFIS gate stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'none'; document.getElementById('2411.08558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06668">arXiv:2411.06668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06668">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ab initio investigation of layered TMGeTe3 alloys for phase-change applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yihui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Suyang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hanyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yibo Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzarello%2C+R">Riccardo Mazzarello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06668v1-abstract-short" style="display: inline;"> Chalcogenide phase-change materials (PCMs) are one of the most mature candidates for next-generation memory technology. Recently, CrGeTe3 (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06668v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06668v1-abstract-full" style="display: none;"> Chalcogenide phase-change materials (PCMs) are one of the most mature candidates for next-generation memory technology. Recently, CrGeTe3 (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crystallization. A subsequent computational screening work identified several similar compounds with good thermal stability, such as InGeTe3, CrSiTe3 and BiSiTe3. Here, we explore substitution of Cr in CrGT with other 3d metals, and predict four additional layered alloys to be dynamically stable, namely, ScGeTe3, TiGeTe3, ZnGeTe3 and MnGeTe3. Thorough ab initio simulations performed on both crystalline and amorphous models of these materials indicate the former three alloys to be potential PCMs with sizable resistance contrast. Furthermore, we find that crystalline MnGeTe3 exhibits ferromagnetic behavior, whereas the amorphous state probably forms a spin-glass phase. This makes MnGeTe3 a promising candidate for magnetic phase-change applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06668v1-abstract-full').style.display = 'none'; document.getElementById('2411.06668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06062">arXiv:2411.06062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06062">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Powder Diffraction-AI Solution for Crystalline Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengkun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bochun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Liheng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhengyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sujing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06062v1-abstract-short" style="display: inline;"> Determining the atomic-level structure of crystalline solids is critically important across a wide array of scientific disciplines. The challenges associated with obtaining samples suitable for single-crystal diffraction, coupled with the limitations inherent in classical structure determination methods that primarily utilize powder diffraction for most polycrystalline materials, underscore an urg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06062v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06062v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06062v1-abstract-full" style="display: none;"> Determining the atomic-level structure of crystalline solids is critically important across a wide array of scientific disciplines. The challenges associated with obtaining samples suitable for single-crystal diffraction, coupled with the limitations inherent in classical structure determination methods that primarily utilize powder diffraction for most polycrystalline materials, underscore an urgent need to develop alternative approaches for elucidating the structures of commonly encountered crystalline compounds. In this work, we present an artificial intelligence-directed leapfrog model capable of accurately determining the structures of both organic and inorganic-organic hybrid crystalline solids through direct analysis of powder X-ray diffraction data. This model not only offers a comprehensive solution that effectively circumvents issues related to insoluble challenges in conventional structure solution methodologies but also demonstrates applicability to crystal structures across all conceivable space groups. Furthermore, it exhibits notable compatibility with routine powder diffraction data typically generated by standard instruments, featuring rapid data collection and normal resolution levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06062v1-abstract-full').style.display = 'none'; document.getElementById('2411.06062v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00958">arXiv:2411.00958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00958">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Computational investigation of formation enthalpies and phase stability for rare earth oxyphosphates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+E+X">Edric X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Ligen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Q">Qi-Jun Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00958v1-abstract-short" style="display: inline;"> Rare earth phosphates have garnered significant interest due to their versatile properties, including high chemical stability, thermal resistance, luminescence, and the ability to adopt various crystalline structures. Density functional theory (DFT)-based ab initio methods have become essential tools for complementing experimental studies. In this paper, we performed DFT calculations on rare earth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00958v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00958v1-abstract-full" style="display: none;"> Rare earth phosphates have garnered significant interest due to their versatile properties, including high chemical stability, thermal resistance, luminescence, and the ability to adopt various crystalline structures. Density functional theory (DFT)-based ab initio methods have become essential tools for complementing experimental studies. In this paper, we performed DFT calculations on rare earth (RE; here considered as lanthanides + Y) oxyphosphates to examine their formation enthalpies and phase stability. The calculations were conducted using the GGA-PBE and r2SCAN exchange-correlation functionals. Our results indicate that both functionals predict similar phase stabilities for REPO4 and RE3PO7. However, the r2SCAN functional provides significantly more accurate formation enthalpies for the monazite and xenotime REPO4, aligning closely with experimental data. Furthermore, the inclusion of lattice vibrational entropy enhances the free energy predictions, leading to improved agreement with experimental observations on phase stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00958v1-abstract-full').style.display = 'none'; document.getElementById('2411.00958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23543">arXiv:2410.23543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23543">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Physics Origin of Universal Unusual Magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lijun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qianbiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiangrong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23543v1-abstract-short" style="display: inline;"> The discovery of the unusual magnetoresistance (UMR) during the rotation of magnetization in the plane perpendicular to the electric current, which has been typically attributed to magnetization-dependent interfacial reflection of spin current, has brought remarkable impacts on the understanding and application of a variety of spintronic phenomena. Here, we report that giant UMR occurs also in sin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23543v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23543v1-abstract-full" style="display: none;"> The discovery of the unusual magnetoresistance (UMR) during the rotation of magnetization in the plane perpendicular to the electric current, which has been typically attributed to magnetization-dependent interfacial reflection of spin current, has brought remarkable impacts on the understanding and application of a variety of spintronic phenomena. Here, we report that giant UMR occurs also in single-layer magnetic metals and exhibits high-order contributions and a universal sum rule, which agree well with the physics origin of the recently proposed two-vector magnetoresistance that simply considers electron scattering by the magnetization vector and interfacial electric field, without the need for any relevance to spin current. Revisiting of the literature data reveals that the most representative data that were used to claim spin Hall magnetoresistance or other magnetoresistances related or unrelated to spin current can be understood unifiedly by the two-vector MR theory. Experimental and theoretical results against spin-current-related magnetoresistances, but not the two-vector magnetoresistance, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23543v1-abstract-full').style.display = 'none'; document.getElementById('2410.23543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22834">arXiv:2410.22834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22834">pdf</a>, <a href="https://arxiv.org/format/2410.22834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Floquet-induced interactions in many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22834v1-abstract-short" style="display: inline;"> The development of future quantum devices requires understanding the dynamics of driven many-body systems, in which the Floquet-induced interactions play a central role. This understanding is crucial for coherently controlling quantum states, minimising errors, and benchmarking the performance of these devices. In this thesis, we analyse the enhancement on the Floquet-induced interactions by many-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22834v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22834v1-abstract-full" style="display: none;"> The development of future quantum devices requires understanding the dynamics of driven many-body systems, in which the Floquet-induced interactions play a central role. This understanding is crucial for coherently controlling quantum states, minimising errors, and benchmarking the performance of these devices. In this thesis, we analyse the enhancement on the Floquet-induced interactions by many-body correlations, and develop an advanced Floquet method to understand the Floquet-induced interactions relevant for future quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22834v1-abstract-full').style.display = 'none'; document.getElementById('2410.22834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">DPhil Thesis for the University of Oxford</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22823">arXiv:2410.22823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of superconductivity and sliding polar metal state in HgPSe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawaguchi%2C+S">Saori Kawaguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kadobayashi%2C+H">Hirokazu Kadobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhenxiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Changfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+B">Binbin Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-Kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+F">Fang Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22823v1-abstract-short" style="display: inline;"> The simultaneous presence of polarity and metallicity in a material signifies an exotic polar metal state, but such materials are extremely rare, especially in bulk form, due to mutually exclusive nature of the fundamental defining properties. Here, we report experimental findings that HgPSe3 is a robust bulk polar metal at room temperature with a chiral structure stabilized by pressure and, remar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22823v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22823v1-abstract-full" style="display: none;"> The simultaneous presence of polarity and metallicity in a material signifies an exotic polar metal state, but such materials are extremely rare, especially in bulk form, due to mutually exclusive nature of the fundamental defining properties. Here, we report experimental findings that HgPSe3 is a robust bulk polar metal at room temperature with a chiral structure stabilized by pressure and, remarkably, this polar metal hosts superconductivity with critical temperature Tc up to 11 K. Theoretical analysis reveals a two-step interlayer sliding-then-compressing mechanism for coexistence of polarity and metallicity in HgPSe3. This work unveils a new paradigm for creating the bulk polar metal state and simultaneous presence of coexisting quantum orders, raising the prospect of discovering novel emergent physics using pressure as a tuning knob. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22823v1-abstract-full').style.display = 'none'; document.getElementById('2410.22823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 main figures + 6 extented figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19634">arXiv:2410.19634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Binding memory of liquid molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+S">Shiyi Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huimin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+S">Shangguo Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19634v1-abstract-short" style="display: inline;"> Understanding the binding dynamics of liquid molecules is of fundamental importance in physical and life sciences. However, nanoscale fast dynamics pose great challenges for experimental characterization. Conventionally, the binding dynamics have been assumed to be memoryless. Here, we integrate large scale computer simulation, scaling theory, and real-time single particle tracking microscopy with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19634v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19634v1-abstract-full" style="display: none;"> Understanding the binding dynamics of liquid molecules is of fundamental importance in physical and life sciences. However, nanoscale fast dynamics pose great challenges for experimental characterization. Conventionally, the binding dynamics have been assumed to be memoryless. Here, we integrate large scale computer simulation, scaling theory, and real-time single particle tracking microscopy with high spatiotemporal precision to unveil a universal memory effect in the binding dynamics of liquid molecules. This binding memory can be quantified by a binding time autocorrelation function, whose power-law decay depends not only on the binding affinity, but also on the topological and materials properties of the surrounding environment. Context-dependent biomolecular binding memory is likely exploited by biological systems to regulate biochemical reactions and biophysical processes. Deciphering this binding memory offers a novel strategy to probe complex biological systems and advanced soft materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19634v1-abstract-full').style.display = 'none'; document.getElementById('2410.19634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18258">arXiv:2410.18258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18258">pdf</a>, <a href="https://arxiv.org/format/2410.18258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetoresistance oscillations in vertical junctions of 2D antiferromagnetic semiconductor CrPS$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+P">Pengyuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenqin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kunlin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuxi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruisheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Liangliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jie Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18258v2-abstract-short" style="display: inline;"> Magnetoresistance (MR) oscillations serve as a hallmark of intrinsic quantum behavior, traditionally observed only in conducting systems. Here we report the discovery of MR oscillations in an insulating system, the vertical junctions of CrPS$_4$ which is a two dimensional (2D) A-type antiferromagnetic semiconductor. Systematic investigations of MR peaks under varying conditions, including electrod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18258v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18258v2-abstract-full" style="display: none;"> Magnetoresistance (MR) oscillations serve as a hallmark of intrinsic quantum behavior, traditionally observed only in conducting systems. Here we report the discovery of MR oscillations in an insulating system, the vertical junctions of CrPS$_4$ which is a two dimensional (2D) A-type antiferromagnetic semiconductor. Systematic investigations of MR peaks under varying conditions, including electrode materials, magnetic field direction, temperature, voltage bias and layer number, elucidate a correlation between MR oscillations and spin-canted states in CrPS$_4$. Experimental data and analysis point out the important role of the in-gap electronic states in generating MR oscillations, and we proposed that spin selected interlayer hopping of localized defect states may be responsible for it. Our findings not only illuminate the unusual electronic transport in CrPS$_4$ but also underscore the potential of van der Waals magnets for exploring interesting phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18258v2-abstract-full').style.display = 'none'; document.getElementById('2410.18258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Physical Review X</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17582">arXiv:2410.17582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17582">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Divergent Evolution of Slip Banding in Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+B">Bijun Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hangman Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+B">Bin Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Mingjie Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdevit%2C+L">Lorenzo Valdevit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rimoli%2C+J">Julian Rimoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xiaoqing Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+P">Penghui Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17582v1-abstract-short" style="display: inline;"> Metallic materials under high stress often exhibit deformation localization, manifesting as slip banding. Over seven decades ago, Frank and Read introduced the well-known model of dislocation multiplication at a source, explaining slip band formation. Here, we reveal two distinct types of slip bands (confined and extended) in alloys through multi-scale testing and modeling from microscopic to atom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17582v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17582v1-abstract-full" style="display: none;"> Metallic materials under high stress often exhibit deformation localization, manifesting as slip banding. Over seven decades ago, Frank and Read introduced the well-known model of dislocation multiplication at a source, explaining slip band formation. Here, we reveal two distinct types of slip bands (confined and extended) in alloys through multi-scale testing and modeling from microscopic to atomic scales. The confined slip band, characterized by a thin glide zone, arises from the conventional process of repetitive full dislocation emissions at Frank-Read source. Contrary to the classical model, the extended band stems from slip-induced deactivation of dislocation sources, followed by consequent generation of new sources on adjacent planes, leading to rapid band thickening. Our findings provide critical insights into atomic-scale collective dislocation motion and microscopic deformation instability in advanced structural materials, marking a pivotal advancement in our fundamental understanding of deformation dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17582v1-abstract-full').style.display = 'none'; document.getElementById('2410.17582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pafes, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12624">arXiv:2410.12624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Field-free superconducting diode effect and magnetochiral anisotropy in FeTe0.7Se0.3 junctions with the inherent asymmetric barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Ya Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Dianyi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Chao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zherui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wanghao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+M">Ming Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12624v1-abstract-short" style="display: inline;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12624v1-abstract-full" style="display: none;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirement on broken inversion symmetry, the SDE is commonly accompanied by electrical magnetochiral anisotropy (eMCA) in the resistive state. Achieving a magnetic field-free SDE with field tunability is pivotal for advancements in superconductor devices. Conventionally, the field-free SDE has been achieved in Josephson junctions by intentionally intercalating an asymmetric barrier layer. Alternatively, internal magnetism was employed. Both approaches pose challenges in the selection of superconductors and fabrication processes, thereby impeding the development of SDE. Here, we present a field-free SDE in FeTe0.7Se0.3 (FTS) junction with eMCA, a phenomenon absent in FTS single nanosheets. The field-free property is associated with the presence of a gradient oxide layer on the upper surface of each FTS nanosheet, while the eMCA is linked to spin-splitting arising from the absence of inversion symmetry. Both the SDE and eMCA respond to magnetic fields with distinct temperature dependencies. This work presents a versatile and straightforward strategy for advancing superconducting electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'none'; document.getElementById('2410.12624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10560">arXiv:2410.10560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10560">pdf</a>, <a href="https://arxiv.org/format/2410.10560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sulfur Vacancies Limit the Open-circuit Voltage of Sb2S3 Solar Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kavanagh%2C+S+R">Se谩n R. Kavanagh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walsh%2C+A">Aron Walsh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10560v1-abstract-short" style="display: inline;"> Antimony sulfide (Sb2S3) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of Sb2S3-based solar cells has remained stagnant over the past decade, largely due to trap-assisted non-radiative recombination. Here we assess the trap-limited conversion efficiency of Sb2S3 by investigating non-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10560v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10560v1-abstract-full" style="display: none;"> Antimony sulfide (Sb2S3) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of Sb2S3-based solar cells has remained stagnant over the past decade, largely due to trap-assisted non-radiative recombination. Here we assess the trap-limited conversion efficiency of Sb2S3 by investigating non-radiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics. Our results show that sulfur vacancies act as effective recombination centers, limiting the maximum efficiency of Sb2S3 to 16% light to electricity. The equilibrium concentrations of sulfur vacancies remain relatively high regardless of growth conditions, indicating the intrinsic limitations imposed by these vacancies on the performance of Sb2S3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10560v1-abstract-full').style.display = 'none'; document.getElementById('2410.10560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08606">arXiv:2410.08606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Significant Impact of Quantum and Anharmonic Effects on the Structural Stability and Superconductivity of NbH3 at High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+P">Pugeng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Hui Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongmao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yuhua Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuewu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+M">Mi Pang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08606v2-abstract-short" style="display: inline;"> First-principles calculations combined with the stochastic self-consistent harmonic approximation reveal significant effects of the quantum ionic fluctuations and lattice anharmonicity on the dynamical stability of NbH3 under high pressures. Previous theoretical predictions, which ignored ionic fluctuations and relied on the harmonic approximation, suggested that the I43d phase is the most thermod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08606v2-abstract-full').style.display = 'inline'; document.getElementById('2410.08606v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08606v2-abstract-full" style="display: none;"> First-principles calculations combined with the stochastic self-consistent harmonic approximation reveal significant effects of the quantum ionic fluctuations and lattice anharmonicity on the dynamical stability of NbH3 under high pressures. Previous theoretical predictions, which ignored ionic fluctuations and relied on the harmonic approximation, suggested that the I43d phase is the most thermodynamically favorable structure between 33 and 400 GPa, with the Fm3m phase considered thermodynamically metastable. However, recent experiments at 187 GPa identified the Fm3m phase, conflicting with the prediction. In contrast, the present study indicates that the Fm3m phase remains dynamically stable down to at least 145 GPa, approximately 145 GPa lower than harmonic estimates, while the I43d phase is dynamically unstable at 187 GPa, consistent with the experimental findings. Furthermore, systematic calculations are performed on the structural, vibrational and superconducting properties of Fm3m NbH3 under pressures ranging from 100 to 300 GPa, revealing dramatic modifications due to the quantum and anharmonic effects. The calculated superconducting critical temperature (Tc) from the McMillan equation for Fm3m NbH3 at 187 GPa is 44 K, with mu set at 0.15, close to the measured value. These findings highlight the crucial role of quantum anharmonic effects in stabilizing the Fm3m phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08606v2-abstract-full').style.display = 'none'; document.getElementById('2410.08606v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07233">arXiv:2410.07233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07233">pdf</a>, <a href="https://arxiv.org/format/2410.07233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Active nonreciprocal cloaking for pseudo-Hermitian magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+D">Dominik Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berakdar%2C+J">Jamal Berakdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xi-guang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07233v1-abstract-short" style="display: inline;"> Cloaking has important applications but entails sophisticated control of signal propagation and scattering characteristics. Here, we show that invisibility for magnon signals is achievable in a non-reciprocal and electrically controlled way by engineering the magnonic channels such that they exhibit PT-symmetry. This is accomplished by attaching current-carrying heavy metal contacts to the magnon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07233v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07233v1-abstract-full" style="display: none;"> Cloaking has important applications but entails sophisticated control of signal propagation and scattering characteristics. Here, we show that invisibility for magnon signals is achievable in a non-reciprocal and electrically controlled way by engineering the magnonic channels such that they exhibit PT-symmetry. This is accomplished by attaching current-carrying heavy metal contacts to the magnon waveguides and exerting fields from an attached bias layer. Tuning the current density in the metal layer, the magnons in this setup experience electrically controlled, compensated gain and loss due to spin-orbit torque which renders the setup PT-symmetric. The magnon dynamics is then shown to be pseudo-Hermitian with exceptional points (EPs) determined actively by an external electric field. We analyze the magnon scattering from single and periodic PT-symmetric regions and identify the conditions necessary for the formation of unidirectional invisibility which can be steered by specific combinations of bias layers and current amplitudes in the heavy metal as to reach the EP. The unidirectional invisibility at EP is found to be extended for a periodic PT-symmetric region. Intrinsic damping on PT-symmetric unidirectional invisibility is shown to be marginal confirming the experimental feasibility. It is shown how the unidirectional magnons can be utilized to amplify and generate magnonic orbital angular momentum states in coupled magnetic rings demonstrating a new path for manipulating magnon propagation and processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07233v1-abstract-full').style.display = 'none'; document.getElementById('2410.07233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06669">arXiv:2410.06669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06669">pdf</a>, <a href="https://arxiv.org/format/2410.06669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Mpemba Meets Quantum Chaos: Anomalous Relaxation and Mpemba Crossings in Dissipative Sachdev-Ye-Kitaev Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuanhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Jie Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06669v2-abstract-short" style="display: inline;"> The Mpemba effect (MPE), named after a student who first observed the phenomenon, has intrigued scientists for decades by showing that hot liquid can freeze faster than cold under certain conditions. Recently, analogous effects have been identified in integrable quantum systems. However, a key distinction between the classical MPE and its quantum analog is that the latter relies predominantly on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06669v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06669v2-abstract-full" style="display: none;"> The Mpemba effect (MPE), named after a student who first observed the phenomenon, has intrigued scientists for decades by showing that hot liquid can freeze faster than cold under certain conditions. Recently, analogous effects have been identified in integrable quantum systems. However, a key distinction between the classical MPE and its quantum analog is that the latter relies predominantly on the of the properties of the initial states rather than the cooling rate. In this paper, we explore the quench dynamics of Sachdev-Ye-Kitaev (SYK) systems coupled to thermal baths. We investigate three scenarios--SYK systems coupled to SYK thermal baths, SYK systems coupled to two thermal baths at different temperatures, and dissipative SYKs modeled by the Lindblad equation. In the regimes where the system and the baths are strongly coupled, we observe effective temperature oscillations and Mpemba crossings (MPCs)--the effect of temperature crossings which are absent in quasi-equilibrium thermodynamic analysis--when the system is strongly coupled to SYK thermal baths. These effects are not observed in the Liouvillian formalism. The emergence of MPCs in quantum chaotic systems exhibits strong parallels with the classical MPE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06669v2-abstract-full').style.display = 'none'; document.getElementById('2410.06669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures. Comments and feedback are welcome! v2:several typos and minor mistakes corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06048">arXiv:2410.06048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06048">pdf</a>, <a href="https://arxiv.org/format/2410.06048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Stability of diverse dodecagonal quasicrystals in T-shaped liquid crystalline molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+A">An-Chang Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pingwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kai Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06048v2-abstract-short" style="display: inline;"> Quasicrystals are intriguing ordered structures characterized by the lack of translational symmetry and the existence of rotational symmetry. The tiling of different geometric units such as triangles and squares in two-dimensional space can result in a great variety of quasicrystals that could be realized by the self-assembly of liquid crystalline molecules. In this study, we introduce three self-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06048v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06048v2-abstract-full" style="display: none;"> Quasicrystals are intriguing ordered structures characterized by the lack of translational symmetry and the existence of rotational symmetry. The tiling of different geometric units such as triangles and squares in two-dimensional space can result in a great variety of quasicrystals that could be realized by the self-assembly of liquid crystalline molecules. In this study, we introduce three self-similar dodecagonal tilings, including a novel Diamond-Square-Triangle pattern, composed of triangular and quadrangular tiles and examine their thermodynamic stability by using the self-consistent field theory applied to T-shaped liquid crystalline molecules. Specifically, we detail the inflation rules for the construction of these dodecagonal tilings and analyze their self-similarity, and show that these tilings can be viewed as projections of higher-dimensional periodic lattice points with projection windows. Using these dodecagonal tilings as initial configurations of the SCFT results in solutions corresponding to quasicrystals that could form from the T-shaped liquid crystalline molecules. The relative stability of these aperiodic phases is analyzed to obtain design rules that could stabilize quasicrystals. Meanwhile, we provide two criteria for distinguishing three dodecagonal quasicrystals and their approximants by analyzing their diffraction peaks. These findings shed new lighten on the discovery of new quasicrystals in soft materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06048v2-abstract-full').style.display = 'none'; document.getElementById('2410.06048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05818">arXiv:2410.05818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hot electron lifetime exceeds 300 nanoseconds in quantum dots with high quantum efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Beibei Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yingying Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiaojiao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiaohan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaosuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Huaibin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+F">Fengjia Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05818v1-abstract-short" style="display: inline;"> Hot electrons are theoretically predicted to be long-lived in strongly confined quantum dots, which could play vital roles in quantum dot-based optoelectronics; however, existing photoexcitation transient spectroscopy investigations reveal that their lifetime is less than 1 ps in well-passivated quantum dots because of the ultrafast electron-hole Auger-assisted cooling. Therefore, they are general&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05818v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05818v1-abstract-full" style="display: none;"> Hot electrons are theoretically predicted to be long-lived in strongly confined quantum dots, which could play vital roles in quantum dot-based optoelectronics; however, existing photoexcitation transient spectroscopy investigations reveal that their lifetime is less than 1 ps in well-passivated quantum dots because of the ultrafast electron-hole Auger-assisted cooling. Therefore, they are generally considered absent in quantum dot optoelectronic devices. Here, by using our newly developed electrically excited transient absorption spectroscopy, we surprisingly observed abundant hot electrons in both II-VI and III-VI compound quantum dot light-emitting diodes at elevated bias (&gt;4 V), of which the lifetimes reach 59 to 371 ns, lengthened by more than 5 orders of magnitude compared with the photoexcited hot electrons. These results experimentally prove the presence of a strong phonon bottleneck effect, refreshing our understanding of the role of hot electrons in quantum dot optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05818v1-abstract-full').style.display = 'none'; document.getElementById('2410.05818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05155">arXiv:2410.05155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05155">pdf</a>, <a href="https://arxiv.org/format/2410.05155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of Anisotropic Polarons in Antimony Selenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+F">Fuyong Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jiang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05155v1-abstract-short" style="display: inline;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05155v1-abstract-full" style="display: none;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the pathways of carrier and lattice evolutions after photoexcitation through optical and electron diffraction pump-probe methods, revealing the temporal correlations between dynamics of both degrees of freedom. The observed opposite separation changes of Se2-Sb2 and Sb2-Sb1 atom pairs in a few picoseconds, and the intermediate state induced by local structural distortions lasting several tens of picoseconds, coinciding with the optical phonons population and coupling, and the trapping process of carriers, respectively, together with the analyses of modulation on diffuse scattering by the atomic displacement fields of polaron model, indicate the formation of anisotropic polarons with large size. Our findings provide carrier and structural information for helping the elucidation of polaron scenario in Sb2Se3, and probably in materials with anisotropic structure and soft lattice which are popular in developing novel optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'none'; document.getElementById('2410.05155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04893">arXiv:2410.04893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04893">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Distinct moir茅 Exciton dynamics in WS2/ WSe2 heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kai%2C+F">Feng Kai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yiqin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hongyi Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xiaodong Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04893v1-abstract-short" style="display: inline;"> This letter reports a time resolved pump-probe reflectance spectroscopic study on moir茅 excitons in a twisted monolayer WS2/WSe2 heterostructure. By probing at the resonant energies of intralayer excitons, we observed their distinct temporal tracks under the influence of interlayer excitons, which we attribute to the discrepancy in spatial distribution of the intralayer excitons in different layer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04893v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04893v1-abstract-full" style="display: none;"> This letter reports a time resolved pump-probe reflectance spectroscopic study on moir茅 excitons in a twisted monolayer WS2/WSe2 heterostructure. By probing at the resonant energies of intralayer excitons, we observed their distinct temporal tracks under the influence of interlayer excitons, which we attribute to the discrepancy in spatial distribution of the intralayer excitons in different layers. We also observed that intralayer moir茅 excitons in WSe2 layer differ at decay rate, which reflects different locations of Wannier-like and charge-transfer intralayer excitons in a moir茅 cell. We concluded that the interlayer moir茅 excitons form within a few picoseconds and have the lifetime exceeding five nanoseconds. Our results provide insights into the nature of moir茅 excitons and the strain&#39;s significant impact on their behaviour in twisted heterostructures, which could have important implications for the development of novel optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04893v1-abstract-full').style.display = 'none'; document.getElementById('2410.04893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04321">arXiv:2410.04321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c01342">10.1021/acs.chemmater.4c01342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascade of phase transitions and large magnetic anisotropy in a triangle-kagome-triangle trilayer antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shilei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04321v1-abstract-short" style="display: inline;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04321v1-abstract-full" style="display: none;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K from high temperature centrosymmetric P-3m1 to low temperature noncentrosymmetric P321, followed by an AFM transition at 13.6 K, another structural transition centering at ~3 K, and another AFM transition at ~2.18 K. Based upon magnetic susceptibility and magnetization data with magnetic fields perpendicular to the ab plane, a phase diagram, consisting of a paramagnetic state, two AFM states and four field-induced states including two magnetization plateaus, has been constructed. Our findings demonstrate that the quasi-2D CsClCu5P2O10 exhibits rich structural and metamagnetic transitions and the averievite family is a fertile platform for exploring novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'none'; document.getElementById('2410.04321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials 36, 9516-9525 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01484">arXiv:2410.01484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.4c11194">10.1021/acsami.4c11194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Humidity Sensing Properties of Different Atomic Layers of Graphene on SiO2/Si Substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaojing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01484v1-abstract-short" style="display: inline;"> Graphene has the great potential to be used for humidity sensing due to ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on SiO2/Si substrate on the humidity sensing have not been studied yet. In this paper, we fabricated three types of humidity sensors on SiO2/Si substrate based on one to three atomic layers of graphene, in which the sensing area&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01484v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01484v1-abstract-full" style="display: none;"> Graphene has the great potential to be used for humidity sensing due to ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on SiO2/Si substrate on the humidity sensing have not been studied yet. In this paper, we fabricated three types of humidity sensors on SiO2/Si substrate based on one to three atomic layers of graphene, in which the sensing areas of graphene are 75 渭m * 72 渭m and 45 渭m * 72 渭m, respectively. We studied the impact of both the number of atomic layers of graphene and the sensing areas of graphene on the responsivity and response/recovery time of the prepared graphene-based humidity sensors. We found the relative resistance change of the prepared devices decreased with the increase of number of atomic layers of graphene under the same change of relative humidity. Further, devices based on tri-layer graphene showed the fastest response/recovery time while devices based on double-layer graphene showed the slowest response/recovery time. Finally, we chose the devices based on double-layer graphene that have relatively good responsivity and stability for application in respiration monitoring and contact-free finger monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01484v1-abstract-full').style.display = 'none'; document.getElementById('2410.01484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20312">arXiv:2409.20312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20312">pdf</a>, <a href="https://arxiv.org/format/2409.20312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin Excitations of High Spin Iron(II) in Metal-Organic Chains on Metal and Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jung-Ching Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chahib%2C+O">Outhmane Chahib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothenb%C3%BChler%2C+S">Simon Rothenb眉hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4ner%2C+R">Robert H盲ner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Decurtins%2C+S">Silvio Decurtins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aschauer%2C+U">Ulrich Aschauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shi-Xia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+E">Ernst Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pawlak%2C+R">R茅my Pawlak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20312v1-abstract-short" style="display: inline;"> Many-body interactions in metal-organic frameworks are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy induced by the substrate and still not well understood. Here, we use on-surface coordination chemistry to synthesize on Ag(111) and superconducting Pb(111) an iron-bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20312v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20312v1-abstract-full" style="display: none;"> Many-body interactions in metal-organic frameworks are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy induced by the substrate and still not well understood. Here, we use on-surface coordination chemistry to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone precursors as ligands. Using low-temperature scanning probe microscopy, we compare their structures and low-energy spin excitations of coordinated Fe atoms with high S = 2 spin-state. Although the chain and coordination centers are identical on both substrates, the long-range spin-spin coupling due to a superexchange through the ligand observed on Ag is absent on Pb(111). We ascribe this reduction of spin-spin interactions on Pb to the depletion of electronic states around the Fermi level in the Pb(111) superconductor as compared to silver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20312v1-abstract-full').style.display = 'none'; document.getElementById('2409.20312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18515">arXiv:2409.18515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18515">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlation between unconventional superconductivity and strange metallicity revealed by operando superfluid density measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruozhou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingyang Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chenyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhanyi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Juan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xingyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+W">Wenxin Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Q">Qiuyan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuewei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jie Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yangmu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qihong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sachdev%2C+S">Subir Sachdev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhongxian Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18515v1-abstract-short" style="display: inline;"> Strange-metal behavior has been observed in superconductors ranging from cuprates to pressurized nickelates, but its relationship to unconventional superconductivity remains elusive. Here, we perform operando superfluid density measurements on ion-gated FeSe films. We observe for the first time a synchronized evolution of superconducting condensate and the strange-metal phase with electron doping.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18515v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18515v1-abstract-full" style="display: none;"> Strange-metal behavior has been observed in superconductors ranging from cuprates to pressurized nickelates, but its relationship to unconventional superconductivity remains elusive. Here, we perform operando superfluid density measurements on ion-gated FeSe films. We observe for the first time a synchronized evolution of superconducting condensate and the strange-metal phase with electron doping. A linear scaling between zero-temperature superfluid density and the strange-metal resistivity coefficient is further established, which nails down a direct link between the formation of superfluid in the superconducting state and the scattering of carriers in the strange-metal normal state. Remarkably, the scaling also applies for different iron-based and cuprate superconductors despite their distinct electronic structures and pairing symmetries. Such a correlation can be reproduced in a theoretical calculation on the two-dimensional Yukawa-Sachdev-Ye-Kitaev model by considering a cooperative effect of quantum critical fluctuation and disorder. These findings indicate a fundamental principle governing superconducting condensation and strange-metal scattering in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18515v1-abstract-full').style.display = 'none'; document.getElementById('2409.18515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14772">arXiv:2409.14772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14772">pdf</a>, <a href="https://arxiv.org/format/2409.14772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Domino-like magnetic phase transition induced by a bias voltage in FeRh thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huiliang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jianbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chenbo Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Q">Qingfeng Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+J">Jiangtao Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Senfu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J">Jinwu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiangqian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qingfang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14772v1-abstract-short" style="display: inline;"> The first-order magnetic phase transition (MPT) usually happens with a very wide magnetic field range about tens of thousands Oersted which hinders its applications. In this work, we induce a domino-like MPT via introducing a bias voltage in FeRh thin film and thus realize a large narrowing of transition magnetic field range from 6*10^4 Oe to lower than 2*10^3 Oe at room temperature. Furthermore,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14772v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14772v1-abstract-full" style="display: none;"> The first-order magnetic phase transition (MPT) usually happens with a very wide magnetic field range about tens of thousands Oersted which hinders its applications. In this work, we induce a domino-like MPT via introducing a bias voltage in FeRh thin film and thus realize a large narrowing of transition magnetic field range from 6*10^4 Oe to lower than 2*10^3 Oe at room temperature. Furthermore, the critical condition and phase diagram for domino-like MPTs are obtained in theory and our experiments support it well. Our works not only benefit the studies and applications of MPT-based devices but also are significant in the applications of the phase transition systems with resistance change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14772v1-abstract-full').style.display = 'none'; document.getElementById('2409.14772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14453">arXiv:2409.14453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14453">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Self-Attention Assistant Classification of non-Hermitian Topological Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hengxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14453v3-abstract-short" style="display: inline;"> Classification of non-Hermitian topological phases becomes challenging due to interplay of the band topology and non-Hermiticity. The significant increase in data dimensions and the number of categories has rendered traditional supervised learning and unsupervised manifold learning failed. Here, we propose the self-attention assistant machine learning for clustering topological phases. By incorpor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14453v3-abstract-full').style.display = 'inline'; document.getElementById('2409.14453v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14453v3-abstract-full" style="display: none;"> Classification of non-Hermitian topological phases becomes challenging due to interplay of the band topology and non-Hermiticity. The significant increase in data dimensions and the number of categories has rendered traditional supervised learning and unsupervised manifold learning failed. Here, we propose the self-attention assistant machine learning for clustering topological phases. By incorporating the self-attention mechanism, the model can effectively capture long-range dependencies and important patterns, resulting in a more compact and information-rich latent space. It can directly classify the eigenvectors and obtains the information of all topological phases. Our results provide a general method for studying non-Hermitian topological phase via machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14453v3-abstract-full').style.display = 'none'; document.getElementById('2409.14453v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10628">arXiv:2409.10628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-atom-resolved vibrational spectroscopy of a dislocation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hailing Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R">Ruochen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xifan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+B">Bowen Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+W">Weikun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bo Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindsay%2C+L+R">Lucas R Lindsay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinqiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10628v1-abstract-short" style="display: inline;"> Phonon resistance from dislocation scattering is often divided into short-range core interactions and long-range strain field interactions. Using electron energy-loss spectroscopy on a GaN dislocation, we report observations of vibrational modes localized at specific core atoms (short-range) and strain-driven phonon energy shifts around the dislocation (long-range). Ab initio calculations support&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10628v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10628v1-abstract-full" style="display: none;"> Phonon resistance from dislocation scattering is often divided into short-range core interactions and long-range strain field interactions. Using electron energy-loss spectroscopy on a GaN dislocation, we report observations of vibrational modes localized at specific core atoms (short-range) and strain-driven phonon energy shifts around the dislocation (long-range). Ab initio calculations support these findings and draw out additional details. This study reveals atomically resolved vibrational spectra of dislocations, thus offering insights for engineering improved material functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10628v1-abstract-full').style.display = 'none'; document.getElementById('2409.10628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10088">arXiv:2409.10088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10088">pdf</a>, <a href="https://arxiv.org/format/2409.10088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electric readout of the N茅el vector in an altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xian-Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xiaolong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiangrong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10088v1-abstract-short" style="display: inline;"> In the field of antiferromagnetic spintronics, the significant change in electrical resistance with the switching of the N茅el vector of an antiferromagnet plays a crucial role in electrically-readable antiferromagnetic memory with opposite N茅el vectors as binary &#34;0&#34; and &#34;1&#34;. Here, we develop a comprehensive microscopic theory to explore the diverse magnetoresistance effects in an altermagnet. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10088v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10088v1-abstract-full" style="display: none;"> In the field of antiferromagnetic spintronics, the significant change in electrical resistance with the switching of the N茅el vector of an antiferromagnet plays a crucial role in electrically-readable antiferromagnetic memory with opposite N茅el vectors as binary &#34;0&#34; and &#34;1&#34;. Here, we develop a comprehensive microscopic theory to explore the diverse magnetoresistance effects in an altermagnet. The theory demonstrates an eye-catching antiferromagnetic anisotropic magnetoresistance, i.e., the change in magnetoresistance with the orientation of the N茅el vector rather than net magnetization, which is bound to become one of the most significant phenomena in spintronics. Furthermore, the interplay between the spin Hall effect and anisotropic spin splitting effect leads to a substantial electrical resistance linear to the magnetic field-controllable N茅el vector of the altermagnet akin to the giant magnetoresistance in ferromagnetic materials and therefore is crucial for an electrically readable antiferromagnetic memory. Our microscopic theory contributes to a deeper understanding of the fundamental physics underlying antiferromagnetic spintronics and provides valuable insights for designing novel electronic devices involving altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10088v1-abstract-full').style.display = 'none'; document.getElementById('2409.10088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10061">arXiv:2409.10061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10061">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetization dependent anisotropic topological properties in EuCuP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xianbiao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Hong Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Baotian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10061v1-abstract-short" style="display: inline;"> The correlation between magnetism and nontrivial topological band structure serves as a unique venue for discovering exotic topological properties. Combining magnetotransport measurements and first-principles calculations, we unveil herein that the hexagonal EuCuP holds topologically trivial state in the paramagnetic structure, while strong magnetization dependent anisotropic topological states in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10061v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10061v1-abstract-full" style="display: none;"> The correlation between magnetism and nontrivial topological band structure serves as a unique venue for discovering exotic topological properties. Combining magnetotransport measurements and first-principles calculations, we unveil herein that the hexagonal EuCuP holds topologically trivial state in the paramagnetic structure, while strong magnetization dependent anisotropic topological states in the spin-polarization structures. Specifically, it hosts a trivial topological state in the in-plane spin-polarization structure, while a Weyl semimetal state in the out-of-plane spin-polarization structure. Our scaling analysis suggests that the intrinsic Berry curvature in the spin-polarization structures can account for the observed large anisotropic anomalous Hall effect. First-principles calculations show that the magnetization and the spin-orbit coupling simultaneously play essential roles for the appearance of the four pairs of Weyl points in the out-of-plane spin-polarization structure. Our work therefore establishes in EuCuP the intimate relation between magnetism and the nontrivial topological states, which would be instructive for future study on this key issue of topological physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10061v1-abstract-full').style.display = 'none'; document.getElementById('2409.10061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 papes, 5 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08854">arXiv:2409.08854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08854">pdf</a>, <a href="https://arxiv.org/format/2409.08854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct evidence for anisotropic magnetic interaction in $伪$-RuCl$_3$ from polarized inelastic neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Braden%2C+M">Markus Braden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertin%2C+A">Alexandre Bertin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steffens%2C+P">Paul Steffens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yixi Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08854v1-abstract-short" style="display: inline;"> Polarized neutron scattering experiments reveal the anisotropy of magnetic correlations in the candidate Kitaev material $伪$-RuCl$_3$. The anisotropy of the inelastic response at the magnetic Bragg positions is just opposite to the expectation for a simple Heisenberg model. Near the antiferromagnetic $q$ vector, there are no low-energy transversal magnon modes directly documenting the fully anisot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08854v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08854v1-abstract-full" style="display: none;"> Polarized neutron scattering experiments reveal the anisotropy of magnetic correlations in the candidate Kitaev material $伪$-RuCl$_3$. The anisotropy of the inelastic response at the magnetic Bragg positions is just opposite to the expectation for a simple Heisenberg model. Near the antiferromagnetic $q$ vector, there are no low-energy transversal magnon modes directly documenting the fully anisotropic and bond-directional character of the magnetic interaction in $伪$-RuCl$_3$. However, other findings disagree with a simple or strongly dominant Kitaev component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08854v1-abstract-full').style.display = 'none'; document.getElementById('2409.08854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07959">arXiv:2409.07959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07959">pdf</a>, <a href="https://arxiv.org/format/2409.07959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for field induced quantum spin liquid behavior in a spin-1/2 honeycomb magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+G">Gaoting Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+M">Mingfang Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qirong Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yinina Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J">Jinlong Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+G">Guijing Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07959v1-abstract-short" style="display: inline;"> One of the most important issues in modern condensed matter physics is the realization of fractionalized excitations, such as the Majorana excitations in the Kitaev quantum spin liquid. To this aim, the 3d-based Kitaev material Na2Co2TeO6 is a promising candidate whose magnetic phase diagram of B // a* contains a field-induced intermediate magnetically disordered phase within 7.5 T &lt; |B| &lt; 10 T. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07959v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07959v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07959v1-abstract-full" style="display: none;"> One of the most important issues in modern condensed matter physics is the realization of fractionalized excitations, such as the Majorana excitations in the Kitaev quantum spin liquid. To this aim, the 3d-based Kitaev material Na2Co2TeO6 is a promising candidate whose magnetic phase diagram of B // a* contains a field-induced intermediate magnetically disordered phase within 7.5 T &lt; |B| &lt; 10 T. The experimental observations, including the restoration of the crystalline point group symmetry in the angle-dependent torque and the coexisting magnon excitations and spinon-continuum in the inelastic neutron scattering spectrum, provide strong evidence that this disordered phase is a field induced quantum spin liquid with partially polarized spins. Our variational Monte Carlo simulation with the effective K-J1-螕-螕&#39;-J3 model reproduces the experimental data and further supports this conclusion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07959v1-abstract-full').style.display = 'none'; document.getElementById('2409.07959v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05178">arXiv:2409.05178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05178">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Twisted bilayer graphene for enantiomeric sensing of chiral molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moreno%2C+%C3%81">脕lvaro Moreno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavicchi%2C+L">Lorenzo Cavicchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peralta%2C+M">Mayra Peralta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M">Maia Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polini%2C+M">Marco Polini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05178v1-abstract-short" style="display: inline;"> Selective sensing of chiral molecules is a key aspect in fields spanning biology, chemistry, and pharmacology. However, conventional optical methods, such as circular dichroism (CD), encounter limitations owing to weak chiral light-matter interactions. Several strategies have been investigated to enhance CD or circularly polarised luminescence (CPL), including superchiral light, plasmonic nanoreso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05178v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05178v1-abstract-full" style="display: none;"> Selective sensing of chiral molecules is a key aspect in fields spanning biology, chemistry, and pharmacology. However, conventional optical methods, such as circular dichroism (CD), encounter limitations owing to weak chiral light-matter interactions. Several strategies have been investigated to enhance CD or circularly polarised luminescence (CPL), including superchiral light, plasmonic nanoresonators and dielectric nanostructures. However, a compromise between spatial uniformity and high sensitivity, without requiring specific molecular functionalization, remains a challenge. In this work, we propose a novel approach using twisted bilayer graphene (TBG), a chiral 2D material with a strong CD peak which energy is tunable through the twist angle. By matching the CD resonance of TBG with the optical transition energy of the molecule, we achieve a decay rate enhancement mediated by resonant energy transfer that depends on the electric-magnetic interaction, that is, on the chirality of both the molecules and TBG. This leads to an enantioselective quenching of the molecule fluorescence, allowing to retrieve the molecule chirality from time-resolved photoluminescence measurements. This method demonstrates high sensitivity down to single layer of molecules, with the potential to achieve the ultimate goal of single-molecule chirality sensing, while preserving the spatial uniformity and integrability of 2D heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05178v1-abstract-full').style.display = 'none'; document.getElementById('2409.05178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04489">arXiv:2409.04489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04489">pdf</a>, <a href="https://arxiv.org/format/2409.04489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2024.101549">10.1016/j.mtphys.2024.101549 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An interpretable formula for lattice thermal conductivity of crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+G">Guoyu Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+G">Guimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiansheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jun Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiangdong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhibin Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04489v1-abstract-short" style="display: inline;"> Lattice thermal conductivity (kL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining kL poses a considerable challenge. In this study, we introduce an formula that achieves high precision (mean relative error=8.97%) and provides fast predictions,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04489v1-abstract-full" style="display: none;"> Lattice thermal conductivity (kL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining kL poses a considerable challenge. In this study, we introduce an formula that achieves high precision (mean relative error=8.97%) and provides fast predictions, taking less than one minute, for kL across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts kL values for 4,601 binary and 6,995 ternary materials in the Materials Project database. Notably, we predict undiscovered high kL values for AlBN2 (kL=101 W/ m/ K) and the undetectedlow kL Cs2Se (kL=0.98 W/ m/ K) at room temperature. This method for determining kL streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme kL values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Gruneisen parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04489v1-abstract-full').style.display = 'none'; document.getElementById('2409.04489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 48, 101549 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03229">arXiv:2409.03229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03229">pdf</a>, <a href="https://arxiv.org/format/2409.03229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.094601">10.1103/PhysRevMaterials.8.094601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bonding Hierarchy and Coordination Interaction Leading to High Thermoelectricity in Wide Bandgap TlAgI2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mengyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">Minxuan Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xuejie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yuzhou Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiangang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiangdong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhibin Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03229v1-abstract-short" style="display: inline;"> High thermoelectric properties are associated with the phonon-glass electron-crystal paradigm. Conventional wisdom suggests that the optimal bandgap of semiconductor to achieve the largest power factor should be between 6 and 10 kbT. To address challenges related to the bipolar effect and temperature limitations, we present findings on Zintl-type TlAgI2, which demonstrates an exceptionally low lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03229v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03229v1-abstract-full" style="display: none;"> High thermoelectric properties are associated with the phonon-glass electron-crystal paradigm. Conventional wisdom suggests that the optimal bandgap of semiconductor to achieve the largest power factor should be between 6 and 10 kbT. To address challenges related to the bipolar effect and temperature limitations, we present findings on Zintl-type TlAgI2, which demonstrates an exceptionally low lattice thermal conductivity of 0.3 W m-1 K-1 at 300 K. The achieved figure of merit (ZT) for TlAgI2, featuring a 1.55 eV bandgap, reaches a value of 2.20 for p-type semiconductor. This remarkable ZT is attributed to the existence of extended antibonding states Ag-I in the valence band. Furthermore, the bonding hierarchy, influencing phonon anharmonicity, and coordination bonds, facilitating electron transfer between the ligand and the central metal ion, significantly contribute to electronic transport. This finding serves as a promising avenue for the development of high ZT materials with wide bandgaps at elevated temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03229v1-abstract-full').style.display = 'none'; document.getElementById('2409.03229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02952">arXiv:2409.02952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02952">pdf</a>, <a href="https://arxiv.org/format/2409.02952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zirui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Si Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P">Pengfei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Guanping Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kaitong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hai-Feng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02952v2-abstract-short" style="display: inline;"> We developed a convolutional neural network (CNN) model capable of predicting the performance of various ion-doped NASICON compounds by leveraging extensive datasets from prior experimental investigation.The model demonstrated high accuracy and efficiency in predicting ionic conductivity and electrochemical properties. Key findings include the successful synthesis and validation of three NASICON m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02952v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02952v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02952v2-abstract-full" style="display: none;"> We developed a convolutional neural network (CNN) model capable of predicting the performance of various ion-doped NASICON compounds by leveraging extensive datasets from prior experimental investigation.The model demonstrated high accuracy and efficiency in predicting ionic conductivity and electrochemical properties. Key findings include the successful synthesis and validation of three NASICON materials predicted by the model, with experimental results closely matching the model predictions. This research not only enhances the understanding of ion-doping effects in NASICON materials but also establishes a robust framework for material design and practical applications. It bridges the gap between theoretical predictions and experimental validations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02952v2-abstract-full').style.display = 'none'; document.getElementById('2409.02952v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; I.2.8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15957">arXiv:2408.15957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15957">pdf</a>, <a href="https://arxiv.org/format/2408.15957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin Excitation Continuum in the Exactly Solvable Triangular-Lattice Spin Liquid CeMgAl11O19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chunxiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemm%2C+M+L">Mason L. Klemm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xianghan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Won%2C+C">Choongjae Won</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCandless%2C+G+T">Gregory T. McCandless</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murai%2C+N">Naoki Murai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohira-Kawamura%2C+S">Seiko Ohira-Kawamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moxim%2C+S+J">Stephen J. Moxim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+J+T">Jason T. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiaozhou Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+J+Y">Julia Y. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tchernyshyov%2C+O">Oleg Tchernyshyov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balents%2C+L">Leon Balents</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15957v1-abstract-short" style="display: inline;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15957v1-abstract-full" style="display: none;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from entangled quantum spins characterized by emergent gauge fields and deconfined fractionalized excitations. Comparing the spin Hamiltonian with theoretical models can unveil the microscopic origins of these zero-field spin excitation continua. Here, we use neutron scattering to study spin excitations of the two-dimensional (2D) triangular-lattice effective spin-1/2 antiferromagnet CeMgAl11O19. Analyzing the spin waves in the field-polarized ferromagnetic state, we find that the spin Hamiltonian is close to an exactly solvable 2D triangular-lattice XXZ model, where degenerate 120$^\circ$ ordered ground states - umbrella states - develop in the zero temperature limit. We then find that the observed zero-field spin excitation continuum matches the calculated ensemble of spin waves from the umbrella state manifold, and thus conclude that CeMgAl11O19 is the first example of an exactly solvable spin liquid on a triangular lattice where the spin excitation continuum arises from the ground state degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'none'; document.getElementById('2408.15957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10