CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,842 results for author: <span class="mathjax">Li, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Li%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09825">arXiv:2412.09825</a> <span> [<a href="https://arxiv.org/pdf/2412.09825">pdf</a>, <a href="https://arxiv.org/format/2412.09825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Fast square-oscillations in semiconductor VCSELs with delayed orthogonal polarization feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+Z">Zhicong Tu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yixing Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhibo Li</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+F">Fan Qin</a>, <a href="/search/physics?searchtype=author&query=Barland%2C+S">Stephan茅 Barland</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+S">Shuiying Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09825v1-abstract-short" style="display: inline;"> We present an experimental study on the generation of self-sustained and fast square oscillations from the TE mode of semiconductor VCSELs with delayed orthogonal polarization feedback. We find that the low frequency switching originates from the rotation of the TE and TM modes facilitated by a long time delay, but the fast oscillations are anchored to the frequency beating between the TE and TM m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09825v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09825v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09825v1-abstract-full" style="display: none;"> We present an experimental study on the generation of self-sustained and fast square oscillations from the TE mode of semiconductor VCSELs with delayed orthogonal polarization feedback. We find that the low frequency switching originates from the rotation of the TE and TM modes facilitated by a long time delay, but the fast oscillations are anchored to the frequency beating between the TE and TM modes and are modified by a half-wavelength ($位/2$) plate. A comprehensive analysis of the evolution of the nonlinear dynamics is conducted and the related mechanism is discussed. Our study not only deepens our comprehension of laser nonlinear dynamics but also offers an all-optical approach for producing specialized signals, which could be instrumental in applications such as optical communications and photonic computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09825v1-abstract-full').style.display = 'none'; document.getElementById('2412.09825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09060">arXiv:2412.09060</a> <span> [<a href="https://arxiv.org/pdf/2412.09060">pdf</a>, <a href="https://arxiv.org/ps/2412.09060">ps</a>, <a href="https://arxiv.org/format/2412.09060">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sorting light's radial momentum and orbital angular momentum with a parabola-like lens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+Y">Ye Xing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wuhong Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lixiang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09060v1-abstract-short" style="display: inline;"> The orbital angular momentum and radial momentum both describe the transverse momentum of a light field. Efficient discriminating and sorting the two kinds of momentum lies at the heart of further application. Here, we propose a parabola-like lens that can transform the orbital angular momentum and the radial momentum into different positions in the parabolas. We experimentally characterize the pe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09060v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09060v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09060v1-abstract-full" style="display: none;"> The orbital angular momentum and radial momentum both describe the transverse momentum of a light field. Efficient discriminating and sorting the two kinds of momentum lies at the heart of further application. Here, we propose a parabola-like lens that can transform the orbital angular momentum and the radial momentum into different positions in the parabolas. We experimentally characterize the performance of our implementation by separating individual angular and radial momentum as well as the multiple superposition states. The reported scheme can achieve two kinds of transverse momentum identification and thus provide a possible way to complete the characterization of the full transverse momentum of an optical field. The proposed device can readily be used in multiplexing and demultiplexing of optical information, and in principle, achieve unit efficiency, and thus can be suitable for applications that involve quantum states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09060v1-abstract-full').style.display = 'none'; document.getElementById('2412.09060v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07711">arXiv:2412.07711</a> <span> [<a href="https://arxiv.org/pdf/2412.07711">pdf</a>, <a href="https://arxiv.org/format/2412.07711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> New calculation of the geo-neutrino energy spectrum and its implication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yu-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Xin%2C+Z">Zhao Xin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07711v2-abstract-short" style="display: inline;"> The energy spectrum of geo-neutrinos plays a vital role in the experimental measurement of geo-neutrinos that have profound implications for both particle physics and earth sciences. In this letter, we present a state-of-the-art calculation of the energy spectrum of geo-neutrinos originating from the beta decay of Uranium-238 and Thorium-232. Our calculation is underpinned by the latest updates in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07711v2-abstract-full').style.display = 'inline'; document.getElementById('2412.07711v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07711v2-abstract-full" style="display: none;"> The energy spectrum of geo-neutrinos plays a vital role in the experimental measurement of geo-neutrinos that have profound implications for both particle physics and earth sciences. In this letter, we present a state-of-the-art calculation of the energy spectrum of geo-neutrinos originating from the beta decay of Uranium-238 and Thorium-232. Our calculation is underpinned by the latest updates in the nuclear database, accounts for previously overlooked forbidden transitions, and incorporates advanced corrections for the beta decay. This brand new geo-neutrino flux model, compared to the widely-used estimates from Enomoto, reveals notable distinction in the energy spectrum shape because of our comprehensive approach. When considering the inverse beta decay (IBD) detection process, our findings show a significant deviation in the predicted IBD yield of around 4% for Uranium-238 and 9% for Thorium-232 decay chains. The implications of using the new geo-neutrino flux model for the experimental analysis are substantial, potentially affecting the analysis results of geo-neutrino measurements of KamLAND and Borexino by around 10% to 20%. Our study represents a significant advancement in geo-neutrino research, establishing a new benchmark for accuracy and reliability in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07711v2-abstract-full').style.display = 'none'; document.getElementById('2412.07711v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages inclucing appendixes, 3 figures and 9 tables. Data files of the new flux model are provided, please refer to the ancillary file directory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07531">arXiv:2412.07531</a> <span> [<a href="https://arxiv.org/pdf/2412.07531">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multifunctional Portable Optical Measuring Instrument Based on Y-Fiber Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+J">Juntao He</a>, <a href="/search/physics?searchtype=author&query=Dang%2C+Y">Yikai Dang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haoqi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaohua Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingke Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+R">Ruiyun Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingyuan Li</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+P">Peilin Gao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">Jianguo Cao</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yong Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07531v1-abstract-short" style="display: inline;"> Based on grating diffraction principle, optical fiber transmission principle and optical interference principle, a multi-functional portable optical measuring instrument is constructed in this paper. The optical measurement visualization spectrometer based on CCD photoelectric image sensor is designed and assembled. The "Y" optical signal transmission fiber optical path suitable for multi-function… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07531v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07531v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07531v1-abstract-full" style="display: none;"> Based on grating diffraction principle, optical fiber transmission principle and optical interference principle, a multi-functional portable optical measuring instrument is constructed in this paper. The optical measurement visualization spectrometer based on CCD photoelectric image sensor is designed and assembled. The "Y" optical signal transmission fiber optical path suitable for multi-function measurement is improved and designed. The multi-function optical measurement system is built by combining with remote controlled multi-color LED lights. The spectral analysis, solution concentration monitoring and film thickness measurement are realized. The experimental results show that the observable wavelength range of the spectrometer is about 340-1050nm and the resolution is 1nm. The solution concentration can be obtained by measuring absorbance with optical fiber spectrometer. The film thickness measuring instrument can accurately measure the thickness of the micron film, and the measurement accuracy can reach 1.25 渭m. It is proved that the instrument integrates multiple functions, has high measurement accuracy and wide range, and realizes non-contact measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07531v1-abstract-full').style.display = 'none'; document.getElementById('2412.07531v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07528">arXiv:2412.07528</a> <span> [<a href="https://arxiv.org/pdf/2412.07528">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Film Thickness Gauge Based on Interferometric Principle of Y-shaped Optical Fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+J">Juntao He</a>, <a href="/search/physics?searchtype=author&query=Dang%2C+Y">Yikai Dang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haoqi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaohua Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingke Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+R">Ruiyun Ma</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingyuan Li</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+P">Peilin Gao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">Jianguo Cao</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yong Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07528v1-abstract-short" style="display: inline;"> In this paper, a thin film thickness gauge based on the interferometric principle of Y-shaped optical fiber is proposed to achieve accurate measurement of film thickness. In this paper, the optical fiber, the interferometric principle and the film thickness calculation principle are introduced, and the interferometric thickness measurement system based on Y-shaped optical fiber is constructed. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07528v1-abstract-full" style="display: none;"> In this paper, a thin film thickness gauge based on the interferometric principle of Y-shaped optical fiber is proposed to achieve accurate measurement of film thickness. In this paper, the optical fiber, the interferometric principle and the film thickness calculation principle are introduced, and the interferometric thickness measurement system based on Y-shaped optical fiber is constructed. The system uses the special structure of Y-shaped optical fiber to transmit the optical signal generated by the light source to the surface of the thin film, and obtains coherent optical signals of different wavelengths through reflection and interference. The spectrometer is used to receive and interpret these interference signals, and the thickness of the film is calculated according to the wavelength difference of the peak positions of the adjacent stages, combined with the refractive index of the film. In the specific design, the paper elaborates on the design of each part of the instrument, including the selection and parameter setting of the light source, Y-fiber and spectrometer. Among them, the Y-shaped optical fiber, as the core component of the instrument, has the function of transmitting optical signals and detecting optical signals on the surface of thin films. At the same time, the paper also introduces the housing packaging and internal assembly process of the instrument to ensure the portability and stability of the instrument. The results show that the thickness gauge has high measurement accuracy and stability, which can meet the needs of practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07528v1-abstract-full').style.display = 'none'; document.getElementById('2412.07528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06221">arXiv:2412.06221</a> <span> [<a href="https://arxiv.org/pdf/2412.06221">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Unidirectional focusing of light using structured diffractive surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+T">Tianyi Gan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingxi Li</a>, <a href="/search/physics?searchtype=author&query=Jarrahi%2C+M">Mona Jarrahi</a>, <a href="/search/physics?searchtype=author&query=Ozcan%2C+A">Aydogan Ozcan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06221v1-abstract-short" style="display: inline;"> Unidirectional optical systems enable selective control of light through asymmetric processing of radiation, effectively transmitting light in one direction while blocking unwanted propagation in the opposite direction. Here, we introduce a reciprocal diffractive unidirectional focusing design based on linear and isotropic diffractive layers that are structured. Using deep learning-based optimizat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06221v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06221v1-abstract-full" style="display: none;"> Unidirectional optical systems enable selective control of light through asymmetric processing of radiation, effectively transmitting light in one direction while blocking unwanted propagation in the opposite direction. Here, we introduce a reciprocal diffractive unidirectional focusing design based on linear and isotropic diffractive layers that are structured. Using deep learning-based optimization, a cascaded set of diffractive layers are spatially engineered at the wavelength scale to focus light efficiently in the forward direction while blocking it in the opposite direction. The forward energy focusing efficiency and the backward energy suppression capabilities of this unidirectional architecture were demonstrated under various illumination angles and wavelengths, illustrating the versatility of our polarization-insensitive design. Furthermore, we demonstrated that these designs are resilient to adversarial attacks that utilize wavefront engineering from outside. Experimental validation using terahertz radiation confirmed the feasibility of this diffractive unidirectional focusing framework. Diffractive unidirectional designs can operate across different parts of the electromagnetic spectrum by scaling the resulting diffractive features proportional to the wavelength of light and will find applications in security, defense, and optical communication, among others. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06221v1-abstract-full').style.display = 'none'; document.getElementById('2412.06221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 Pages, 6 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05084">arXiv:2412.05084</a> <span> [<a href="https://arxiv.org/pdf/2412.05084">pdf</a>, <a href="https://arxiv.org/format/2412.05084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconstructing Quantitative Cerebral Perfusion Images Directly From Measured Sinogram Data Acquired Using C-arm Cone-Beam CT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Haotian Zhao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruifeng Chen</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+J">Jing Yan</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J">Juan Feng</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+J">Jun Xiang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yang Chen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+D">Dong Liang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yinsheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05084v1-abstract-short" style="display: inline;"> To shorten the door-to-puncture time for better treating patients with acute ischemic stroke, it is highly desired to obtain quantitative cerebral perfusion images using C-arm cone-beam computed tomography (CBCT) equipped in the interventional suite. However, limited by the slow gantry rotation speed, the temporal resolution and temporal sampling density of typical C-arm CBCT are much poorer than… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05084v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05084v1-abstract-full" style="display: none;"> To shorten the door-to-puncture time for better treating patients with acute ischemic stroke, it is highly desired to obtain quantitative cerebral perfusion images using C-arm cone-beam computed tomography (CBCT) equipped in the interventional suite. However, limited by the slow gantry rotation speed, the temporal resolution and temporal sampling density of typical C-arm CBCT are much poorer than those of multi-detector-row CT in the diagnostic imaging suite. The current quantitative perfusion imaging includes two cascaded steps: time-resolved image reconstruction and perfusion parametric estimation. For time-resolved image reconstruction, the technical challenge imposed by poor temporal resolution and poor sampling density causes inaccurate quantification of the temporal variation of cerebral artery and tissue attenuation values. For perfusion parametric estimation, it remains a technical challenge to appropriately design the handcrafted regularization for better solving the associated deconvolution problem. These two challenges together prevent obtaining quantitatively accurate perfusion images using C-arm CBCT. The purpose of this work is to simultaneously address these two challenges by combining the two cascaded steps into a single joint optimization problem and reconstructing quantitative perfusion images directly from the measured sinogram data. In the developed direct cerebral perfusion parametric image reconstruction technique, TRAINER in short, the quantitative perfusion images have been represented as a subject-specific conditional generative model trained under the constraint of the time-resolved CT forward model, perfusion convolutional model, and the subject's own measured sinogram data. Results shown in this paper demonstrated that using TRAINER, quantitative cerebral perfusion images can be accurately obtained using C-arm CBCT in the interventional suite. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05084v1-abstract-full').style.display = 'none'; document.getElementById('2412.05084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04361">arXiv:2412.04361</a> <span> [<a href="https://arxiv.org/pdf/2412.04361">pdf</a>, <a href="https://arxiv.org/format/2412.04361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Small-scale dynamics and structure of free-surface turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qi%2C+Y">Yinghe Qi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaxing Li</a>, <a href="/search/physics?searchtype=author&query=Coletti%2C+F">Filippo Coletti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04361v1-abstract-short" style="display: inline;"> The dynamics of small-scale structures in free-surface turbulence is crucial to large-scale phenomena in natural and industrial environments. Here we conduct experiments on the quasi-flat free surface of a zero-mean-flow turbulent water tank over the Reynolds number range $Re_位 = 207\textrm{--}312$. By seeding microscopic floating particles at high concentrations, the fine scales of the flow and t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04361v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04361v1-abstract-full" style="display: none;"> The dynamics of small-scale structures in free-surface turbulence is crucial to large-scale phenomena in natural and industrial environments. Here we conduct experiments on the quasi-flat free surface of a zero-mean-flow turbulent water tank over the Reynolds number range $Re_位 = 207\textrm{--}312$. By seeding microscopic floating particles at high concentrations, the fine scales of the flow and the velocity gradient tensor are resolved. A kinematic relation is derived expressing the contribution of surface divergence and vorticity to the dissipation rate. The probability density functions of divergence, vorticity and strain-rate collapse once normalized by the Kolmogorov scales. Their magnitude displays strong intermittency and follows chi-square distributions with power-law tails at small values. The topology of high-intensity events and two-point statistics indicate that the surface divergence is characterized by dissipative spatial and temporal scales, while the high-vorticity and high-strain-rate regions are larger, long-lived, concurrent, and elongated. The second-order velocity structure functions obey the classic Kolmogorov scaling in the inertial range when the dissipation rate on the surface is considered, with a different numerical constant than in 3D turbulence. The cross-correlation among divergence, vorticity and strain-rate indicates that the surface-attached vortices are strengthened during downwellings and diffuse when those dissipate. Sources (sinks) in the surface velocity fields are associated with strong (weak) surface-parallel stretching and compression along perpendicular directions. The floating particles cluster over spatial and temporal scales larger than those of the sinks. These results demonstrate that, compared to 3D turbulence, in free-surface turbulence the energetic scales leave a stronger imprint on the small-scale quantities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04361v1-abstract-full').style.display = 'none'; document.getElementById('2412.04361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04091">arXiv:2412.04091</a> <span> [<a href="https://arxiv.org/pdf/2412.04091">pdf</a>, <a href="https://arxiv.org/format/2412.04091">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Machine learning enhanced multi-particle tracking in solid fuel combustion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Haowen Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hm%2C+B">Benjamin B枚hm</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">Tao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04091v1-abstract-short" style="display: inline;"> Particle velocimetry is essential in solid fuel combustion studies, however, the accurate detection and tracking of particles in high Particle Number Density (PND) combustion scenario remain challenging. The current study advances the machine-learning approaches for precise velocity measurements of solid particles. For this, laser imaging experiments were performed for high-volatile bituminous coa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04091v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04091v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04091v1-abstract-full" style="display: none;"> Particle velocimetry is essential in solid fuel combustion studies, however, the accurate detection and tracking of particles in high Particle Number Density (PND) combustion scenario remain challenging. The current study advances the machine-learning approaches for precise velocity measurements of solid particles. For this, laser imaging experiments were performed for high-volatile bituminous coal particles burning in a laminar flow reactor. Particle positions were imaged using time-resolved Mie scattering. Various detection methods, including conventional blob detection and Machine Learning (ML) based You Only Look Once (YOLO) and Realtime Detection Transformer (RT-DETR) were employed and bench marked.~Particle tracking was performed using the Simple Online Realtime Tracking (SORT) algorithm. The results demonstrated the capability of machine learning models trained on low-PND data for prediction of high-PND data. Slicing Aided Hyper Inference (SAHI) algorithm is important for the better performance of the used models. By evaluating the velocity statistics, it is found that the mean particle velocity decreases with increasing PND, primarily due to stronger particle interactions. The particle dynamics are closely related to the position of combustion zone observed in the previous study. Thus, PND is considered as the dominant factor for the particle group combustion behavior of high-volatile solid fuels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04091v1-abstract-full').style.display = 'none'; document.getElementById('2412.04091v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04035">arXiv:2412.04035</a> <span> [<a href="https://arxiv.org/pdf/2412.04035">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional \b{eta}-phase copper iodide: a promising candidate for low-temperature thermoelectric applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peng%2C+B">Bingquan Peng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yinshuo Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04035v1-abstract-short" style="display: inline;"> Bismuth telluride-based materials is the only commercially viable room-temperature thermoelectric material, despite its limited tellurium and poor mechanical properties. The search for materials with a high figure of merit (zT > 1.00) near room temperature remains a major challenge. In this work, we systematically investigate the structural stability and the thermoelectric capabilities of monolaye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04035v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04035v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04035v1-abstract-full" style="display: none;"> Bismuth telluride-based materials is the only commercially viable room-temperature thermoelectric material, despite its limited tellurium and poor mechanical properties. The search for materials with a high figure of merit (zT > 1.00) near room temperature remains a major challenge. In this work, we systematically investigate the structural stability and the thermoelectric capabilities of monolayer \b{eta}-CuI and 纬-CuI through the density functional theory (DFT) combined with Boltzmann transport theory. Based on the thermoelectric transport coefficients of monolayer \b{eta}-CuI and 纬-CuI, we predict their zT values will vary with carrier concentration and increase with temperature. Comparing the zT values, monolayer \b{eta}-CuI demonstrates superior thermoelectric properties compared to 纬-CuI. At room temperature, the optimal zT values of monolayer \b{eta}-CuI exceed 1.50, with particularly high values of 2.98 (p-type) and 4.10 (n-type) along the Zigzag direction, demonstrating significant anisotropy. These results suggest the great potential of the monolayer \b{eta}-CuI is promising candidate materials for low temperature thermoelectric applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04035v1-abstract-full').style.display = 'none'; document.getElementById('2412.04035v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03802">arXiv:2412.03802</a> <span> [<a href="https://arxiv.org/pdf/2412.03802">pdf</a>, <a href="https://arxiv.org/format/2412.03802">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-Chip Enhanced Biphoton Generation with Incoherent Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yue-Wei Song</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Heng Zhao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yin-Hai Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wu-Zhen Li</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+M">Ming-Yuan Gao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ren-Hui Chen</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+M">Meng-Yu Xie</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03802v1-abstract-short" style="display: inline;"> On-chip quantum photon sources are pivotal components in integrated photonics, driving significant advancements in quantum information technologies over recent decades. Traditionally, the coherence of the pump beam has been considered a critical property in ensuring the quality of the source. In this work, we produce a photon-pair source via spontaneous four-wave mixing pumped by temporally incohe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03802v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03802v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03802v1-abstract-full" style="display: none;"> On-chip quantum photon sources are pivotal components in integrated photonics, driving significant advancements in quantum information technologies over recent decades. Traditionally, the coherence of the pump beam has been considered a critical property in ensuring the quality of the source. In this work, we produce a photon-pair source via spontaneous four-wave mixing pumped by temporally incoherent light in a standard silicon nanowire. Compared to a coherent laser, the incoherence improves pump utilization efficiency, which results in higher source brightness. Additionally, its spectrally uncorrelated nature of incoherent light is transferred to the generated photon source, allowing high-purity state preparation without the need for narrow filtering. Experimentally, we demonstrate the advantages using an amplified spontaneous emission source over a continuous-wave laser. With temporally incoherent pumping, the photon pair generation rate increases by 40%. The coincidence-to-accidental ratio and heralded second-order autocorrelation exhibit improved performance at low power. Our work expands the scope of incoherently pumped quantum states and provides a method for generating photon sources using a more readily accessible light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03802v1-abstract-full').style.display = 'none'; document.getElementById('2412.03802v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03733">arXiv:2412.03733</a> <span> [<a href="https://arxiv.org/pdf/2412.03733">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Large role of anthropogenic climate change in driving smoke exposure across the western United States from 1992 to 2020 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/physics?searchtype=author&query=Mickley%2C+L+J">Loretta J. Mickley</a>, <a href="/search/physics?searchtype=author&query=Kaplan%2C+J+O">Jed O. Kaplan</a>, <a href="/search/physics?searchtype=author&query=Kelp%2C+M">Makoto Kelp</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tianjia Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03733v1-abstract-short" style="display: inline;"> Wildfire activity has increased dramatically in the western United States (US) over the last three decades, having a significant impact on air quality and human health. However, quantifying the drivers of trends in wildfires and subsequent smoke exposure is challenging, as both natural variability and anthropogenic climate change play important roles. Here we devise an approach involving observed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03733v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03733v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03733v1-abstract-full" style="display: none;"> Wildfire activity has increased dramatically in the western United States (US) over the last three decades, having a significant impact on air quality and human health. However, quantifying the drivers of trends in wildfires and subsequent smoke exposure is challenging, as both natural variability and anthropogenic climate change play important roles. Here we devise an approach involving observed meteorology and vegetation and a range of models to determine the relative roles of anthropogenic climate change and natural variability in driving burned area across the western US. We also examine the influence of anthropogenic climate change on smoke exposure. We estimate that anthropogenic climate change accounts for 33-82% of observed total burned area, depending on the ecoregion, yielding 65% of total fire emissions on average across the western US from 1992 to 2020. In all ecoregions except Mediterranean California, anthropogenic climate change contributes to a greater percentage of burned area in lightning-caused wildfires than in human-caused wildfires. On average, anthropogenic climate change contributes 49% to smoke PM2.5 concentrations in the western US from 1997 to 2020, and explains 58% of the increasing trend in smoke PM2.5 from 2010 to 2020. We further find that populations in northern California, western Oregon, Washington, and parts of Idaho have experienced the greatest smoke exposure attributable to anthropogenic climate change in recent years. Our work highlights the significant role of anthropogenic climate change in degrading air quality in the western US and identifies those regions most vulnerable to wildfire smoke and thus adverse health impacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03733v1-abstract-full').style.display = 'none'; document.getElementById('2412.03733v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03354">arXiv:2412.03354</a> <span> [<a href="https://arxiv.org/pdf/2412.03354">pdf</a>, <a href="https://arxiv.org/format/2412.03354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Exact steady state of quantum van der Pol oscillator: critical phenomena and enhanced metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaohua Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuanchen Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yong-Chun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03354v1-abstract-short" style="display: inline;"> Quantum criticality of open many-body systems has attracted lots of interest for emergent phenomena and universality. Here we present the exact steady state of the quantum van der Pol oscillator using the complex $P$-representation. We show the threshold corresponds to a dissipative phase transition with abrupt changes of steady-state properties and enhanced metrology. The critical behaviors and f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03354v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03354v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03354v1-abstract-full" style="display: none;"> Quantum criticality of open many-body systems has attracted lots of interest for emergent phenomena and universality. Here we present the exact steady state of the quantum van der Pol oscillator using the complex $P$-representation. We show the threshold corresponds to a dissipative phase transition with abrupt changes of steady-state properties and enhanced metrology. The critical behaviors and finite-size effects are investigated through the analytical steady state. Moreover, we obtain divergent quantum Fisher information (QFI) in the thermodynamic limit both at the critical point and in the time crystal phase, but only the QFI at the critical point approaches the Heisenberg limit. We further prove that the steady-state photon number is the optimized estimated observable with the largest signal-to-noise ratio. We show that the Heisenberg-limited metrology originates from the enhancement of both the variance and changing rate of the photon number. Our work reveals the underlying relation between the time crystal, dissipative phase transition, and enhanced metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03354v1-abstract-full').style.display = 'none'; document.getElementById('2412.03354v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19764">arXiv:2411.19764</a> <span> [<a href="https://arxiv.org/pdf/2411.19764">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Chirality-Dependent Kinetics of Single-Walled Carbon Nanotubes from Machine-Learning Force Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+S">Sida Sun</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+S">Shigeo Maruyama</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19764v1-abstract-short" style="display: inline;"> The origin of the chirality of single-walled carbon nanotubes (SWCNTs) has been a long-standing dispute. Molecular dynamics (MD) simulations driven by machine-learning force fields (MLFF), which can study the interface dynamics under near ab-initio accuracy, provides a powerful technique to reveal the formation mechanism of SWCNTs. Here, we develop a cobalt-carbon MLFF and perform growth simulatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19764v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19764v1-abstract-full" style="display: none;"> The origin of the chirality of single-walled carbon nanotubes (SWCNTs) has been a long-standing dispute. Molecular dynamics (MD) simulations driven by machine-learning force fields (MLFF), which can study the interface dynamics under near ab-initio accuracy, provides a powerful technique to reveal the formation mechanism of SWCNTs. Here, we develop a cobalt-carbon MLFF and perform growth simulations on a cobalt catalyst to investigate the chirality preference of the growth of SWCNTs under the vapor-liquid-solid (VLS) regime. Through microkinetic modeling, we reproduce the observed growth and defect kinetics, demonstrating their dependence on the chirality. It is observed that while the initial chirality assignment is likely related to the configurational degeneracy of the nanotube caps, pentagon defects immediately form and resolve after nucleation. Such processes, which we name as diameter control mechanisms, not only control the diameter toward an optimum but also shift the chirality distribution drastically. Our work therefore offers a microkinetic modeling workflow for the chirality-dependent kinetics of the SWCNTs, highlighting the important contribution of the defect kinetics to the chirality origination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19764v1-abstract-full').style.display = 'none'; document.getElementById('2411.19764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18988">arXiv:2411.18988</a> <span> [<a href="https://arxiv.org/pdf/2411.18988">pdf</a>, <a href="https://arxiv.org/format/2411.18988">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Ground electron calibration of the Gamma-ray Transient Monitor onboard DRO-A Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yu-Hui Li</a>, <a href="/search/physics?searchtype=author&query=Le%2C+Q">Qi Le</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Cong-Zhan Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei-Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian-Li Wang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+B">Bing-Lin Deng</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">He Xu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18988v1-abstract-short" style="display: inline;"> The Gamma-Ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite, with the scientific objective of detecting gamma-ray bursts in the energy range of 20 keV to 1 MeV. The GTM is equipped with five Gamma-Ray Transient Probes (GTPs), utilizing silicon photomultiplier (SiPM) arrays coupled with NaI(Tl) scintillators for signal readout. To test the pe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18988v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18988v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18988v1-abstract-full" style="display: none;"> The Gamma-Ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite, with the scientific objective of detecting gamma-ray bursts in the energy range of 20 keV to 1 MeV. The GTM is equipped with five Gamma-Ray Transient Probes (GTPs), utilizing silicon photomultiplier (SiPM) arrays coupled with NaI(Tl) scintillators for signal readout. To test the performance of the GTP in detecting electrons, we independently developed a continuous-energy-tunable, low-current, quasi-single-electron accelerator, and used this facility for ground-based electron calibration of the GTP. This paper provides a detailed description of the operational principles of the unique electron accelerator and comprehensively presents the process and results of electron calibration for the GTP. The calibration results indicate that the dead time for normal signals is less than 4 $渭$s, while for overflow signals, it is approximately 70 $渭$s, consistent with the design specifications. The GTP's time-recording capability is working correctly, accurately recording overflow events. The GTP responds normally to electrons in the 0.4-1.4 MeV energy range. The ground-based electron calibration validates the design of the GTP and enhances the probe's mass model, laying the foundation for payload development, in-orbit observation strategies, and scientific data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18988v1-abstract-full').style.display = 'none'; document.getElementById('2411.18988v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18925">arXiv:2411.18925</a> <span> [<a href="https://arxiv.org/pdf/2411.18925">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202414631">10.1002/adma.202414631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Performance Green and Blue Light-Emitting Diodes Enabled by CdZnSe/ZnS Core/Shell Colloidal Quantum Wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yunke Zhu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+X">Xiuyuan Lu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Jingjing Qiu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+P">Peng Bai</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+A">An Hu</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Y">Yige Yao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qinyun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+W">Wenjin Yu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaolong Li</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Wangxiao Jin</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xitong Zhu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yunzhou Deng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhetong Liu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+P">Peng Gao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+X">XiaoFei Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Youqin Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Yizheng Jin</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yunan Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18925v1-abstract-short" style="display: inline;"> The unique anisotropic properties of colloidal quantum wells (CQWs) make them highly promising as components in nanocrystal-based devices. However, the limited performance of green and blue light-emitting diodes (LEDs) based on CQWs has impeded their practical applications. In this study, we tailored alloy CdZnSe core CQWs with precise compositions via direct cation exchange (CE) from CdSe CQWs wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18925v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18925v1-abstract-full" style="display: none;"> The unique anisotropic properties of colloidal quantum wells (CQWs) make them highly promising as components in nanocrystal-based devices. However, the limited performance of green and blue light-emitting diodes (LEDs) based on CQWs has impeded their practical applications. In this study, we tailored alloy CdZnSe core CQWs with precise compositions via direct cation exchange (CE) from CdSe CQWs with specific size, shape, and crystal structure and utilized hot-injection shell (HIS) growth to synthesize CdZnSe/ZnS core/shell CQWs exhibiting exceptional optoelectronic characteristics. This approach enabled us to successfully fabricate green and blue LEDs manifesting superior performance compared to previously reported solution-processed CQW-LEDs. Our devices demonstrated a remarkable peak external quantum efficiency (20.4% for green and 10.6% for blue), accompanied by a maximum brightness 347,683 cd m-2 for green and 38,063 cd m-2 for blue. The high-performance represents a significant advancement for nanocrystal-based light-emitting diodes (Nc-LEDs) incorporating anisotropic nanocrystals. This work provides a comprehensive synthesis strategy for enhancing the efficiency of Nc-LEDs utilizing anisotropic nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18925v1-abstract-full').style.display = 'none'; document.getElementById('2411.18925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17297">arXiv:2411.17297</a> <span> [<a href="https://arxiv.org/pdf/2411.17297">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202401459">10.1002/lpor.202401459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D-band MUTC Photodiode Module for Ultra-Wideband 160 Gbps Photonics-Assisted Fiber-THz Integrated Communication System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Yuxin Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaxuan Li</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+B">Bing Xiong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Changzheng Sun</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Z">Zhibiao Hao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lai Wang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yanjun Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongtao Li</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&query=Chi%2C+N">Nan Chi</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yi Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17297v3-abstract-short" style="display: inline;"> Current wireless communication systems are increasingly constrained by insufficient bandwidth and limited power output, impeding the achievement of ultra-high-speed data transmission. The terahertz (THz) range offers greater bandwidth, but it also imposes higher requirements on broadband and high-power devices. In this work, we present a modified uni-traveling-carrier photodiode (MUTC-PD) module w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17297v3-abstract-full').style.display = 'inline'; document.getElementById('2411.17297v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17297v3-abstract-full" style="display: none;"> Current wireless communication systems are increasingly constrained by insufficient bandwidth and limited power output, impeding the achievement of ultra-high-speed data transmission. The terahertz (THz) range offers greater bandwidth, but it also imposes higher requirements on broadband and high-power devices. In this work, we present a modified uni-traveling-carrier photodiode (MUTC-PD) module with WR-6 waveguide output for photonics-assisted fiber-THz integrated wireless communications. Through the optimization of the epitaxial structure and high-impedance coplanar waveguide (CPW), the fabricated 6-um-diameter MUTC-PD achieves a high output power of -0.96 dBm at 150 GHz and ultra-flat frequency response at D-band. The MUTC-PD is subsequently packaged into a compact WR-6 module, incorporating planar-circuit-based RF-choke, DC-block and probe. The packaged PD module demonstrates high saturation power and flat frequency responses with minimal power roll-off of only 2 dB over 110-170 GHz. By incorporating the PD module into a fiber-THz integrated communication system, high data rates of up to 160 Gbps with 16 quadrature amplitude modulation (QAM) and a maximum symbol transmission rate of 60 Gbaud with QPSK modulation are successfully secured. The demonstration verifies the potential of the PD module for ultra-broadband and ultra-high-speed THz communications, setting a foundation for future research in high-speed data transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17297v3-abstract-full').style.display = 'none'; document.getElementById('2411.17297v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the accepted version of the manuscript, as published in Laser & Photonics Reviews</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser & Photonics Reviews 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17158">arXiv:2411.17158</a> <span> [<a href="https://arxiv.org/pdf/2411.17158">pdf</a>, <a href="https://arxiv.org/format/2411.17158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Synthetic frequency-controlled gene circuits unlock expanded cellular states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rongrong Zhang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+S">Shengjie Wan</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+J">Jiarui Xiong</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+L">Lei Ni</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Ye Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yajia Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bing Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mei Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Shuai Yang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+F">Fan Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17158v1-abstract-short" style="display: inline;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17158v1-abstract-full" style="display: none;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development in synthetic biology. Here we present a Time-Resolved Gene Circuit (TRGC) architecture that enables frequency-to-amplitude signal conversion in engineered biological systems. Through systematic analysis, we establish a theoretical framework that guides the design of synthetic circuits capable of distinct frequency-dependent responses, implementing both high-pass and low-pass filtering behaviors. To enable rigorous characterization of these dynamic circuits, we developed a high-throughput automated platform that ensures stable and reproducible measurements of frequency-dependent r esponses across diverse conditions. Using this platform, we demonstrate that these frequency-modulated circuits can access cellular states unreachable through conventional amplitude modulation, significantly expanding the controllable gene expression space in multi-gene systems. Our results show that frequency modulation expands the range of achievable expression patterns when controlling multiple genes through a single input, demonstrating a new paradigm for engineering cellular behaviors. This work establishes frequency modulation as a powerful strategy for expanding the capabilities of engineered biological systems and enhancing cellular response to dynamic signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'none'; document.getElementById('2411.17158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16626">arXiv:2411.16626</a> <span> [<a href="https://arxiv.org/pdf/2411.16626">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Negative Capacitance in InGaN/GaN Based LEDs from metal-semiconductor interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuchen Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhizhong Chen</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+C">Chuhan Deng</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+B">Boyan Dong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Daqi Wang</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Z">Zuojian Pan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Haodong Zhang</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+J">Jingxin Nie</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Weihua Chen</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+F">Fei Jiao</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+X">Xiangning Kang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guoyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Bo Shen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenji Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16626v1-abstract-short" style="display: inline;"> To meet the demand for high-speed response in display applications, a more detailed study of the capacitive effects in LEDs is required. This work tested the capacitance of LEDs at different frequencies and proposed an effective capacitance model, which achieved a good fit to the frequency dispersion observed in the experimental results. Additionally, it was determined that the low-frequency 1/f c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16626v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16626v1-abstract-full" style="display: none;"> To meet the demand for high-speed response in display applications, a more detailed study of the capacitive effects in LEDs is required. This work tested the capacitance of LEDs at different frequencies and proposed an effective capacitance model, which achieved a good fit to the frequency dispersion observed in the experimental results. Additionally, it was determined that the low-frequency 1/f capacitance originates from the metal-semiconductor interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16626v1-abstract-full').style.display = 'none'; document.getElementById('2411.16626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14712">arXiv:2411.14712</a> <span> [<a href="https://arxiv.org/pdf/2411.14712">pdf</a>, <a href="https://arxiv.org/format/2411.14712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffusiophoretic transport of colloids in porous media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alipour%2C+M">Mobin Alipour</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haoyu Liu</a>, <a href="/search/physics?searchtype=author&query=Pahlavan%2C+A+A">Amir A. Pahlavan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14712v1-abstract-short" style="display: inline;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14712v1-abstract-full" style="display: none;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior. However, chemical gradients are ubiquitous in these environments and can lead to the non-equilibrium diffusiophoretic migration of colloids. Here, combining microfluidic experiments, numerical simulations, and theoretical modeling we demonstrate that diffusiophoresis leads to significant macroscopic changes in the dispersion of colloids in porous media. We displace a suspension of colloids dispersed in a background salt solution with a higher/lower salinity solution and monitor the removal of the colloids from the medium. While mixing weakens the solute gradients, leading to the diffusiophoretic velocities that are orders of magnitude weaker than the background fluid flow, we show that the cross-streamline migration of colloids changes their macroscopic transit time and dispersion through the medium by an order of magnitude compared to the control case with no salinity gradients. Our observations demonstrate that solute gradients modulate the influence of geometric disorder on the transport, pointing to the need for revisiting the classical models of colloid transport in porous media to obtain predictive models for technological, medical, and environmental applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'none'; document.getElementById('2411.14712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14116">arXiv:2411.14116</a> <span> [<a href="https://arxiv.org/pdf/2411.14116">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Equivalent slip length of flow around a super-hydrophobic cylinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi-yong Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Ya-kang Xiao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan-cheng Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+L">Li Yu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+S">Sai Peng</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+Y">Yong-liang Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14116v1-abstract-short" style="display: inline;"> In this research, a two-dimensional numerical simulation is conducted to determine the equivalent wall slip length for flow around a circular cylinder featuring a super-hydrophobic surface. The super-hydrophobic surface is modeled as an alternating distribution of slip and no-slip conditions along the cylinder's surface. The smallest unit of this alternating pattern is referred to as a monomer. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14116v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14116v1-abstract-full" style="display: none;"> In this research, a two-dimensional numerical simulation is conducted to determine the equivalent wall slip length for flow around a circular cylinder featuring a super-hydrophobic surface. The super-hydrophobic surface is modeled as an alternating distribution of slip and no-slip conditions along the cylinder's surface. The smallest unit of this alternating pattern is referred to as a monomer. The study takes into account the Reynolds number and two critical dimensionless parameters: the gas fraction (GF) and the ratio l/a. GF indicates the proportion of the slip length relative to the total length of the monomer, while l/a denotes the ratio of the monomer length (l) to the cylinder's radius (a). The ranges considered for the Reynolds number, GF, and l/a are from 0.2 to 180, 0.1 to 0.99, and $蟺$/80 to $蟺$/5, respectively. A dimensionless number, the Knudsen number (Kn), is introduced to measure the ratio between the equivalent slip length ($位$) and the cylinder's diameter (D). By equating the integral wall friction resistance on the cylinder surface, a quantitative relationship between the equivalent Kn and the parameters (Re, GF, l/a) is established. A meticulous comparison of flow parameters between the equivalent slip length model and the slip-no-slip scenario reveals that the slip length model is an effective approximation for the slip-no-slip alternating model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14116v1-abstract-full').style.display = 'none'; document.getElementById('2411.14116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13120">arXiv:2411.13120</a> <span> [<a href="https://arxiv.org/pdf/2411.13120">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Virtual Staining of Label-Free Tissue in Imaging Mass Spectrometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yijie Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Luzhe Huang</a>, <a href="/search/physics?searchtype=author&query=Pillar%2C+N">Nir Pillar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuzhu Li</a>, <a href="/search/physics?searchtype=author&query=Migas%2C+L+G">Lukasz G. Migas</a>, <a href="/search/physics?searchtype=author&query=Van+de+Plas%2C+R">Raf Van de Plas</a>, <a href="/search/physics?searchtype=author&query=Spraggins%2C+J+M">Jeffrey M. Spraggins</a>, <a href="/search/physics?searchtype=author&query=Ozcan%2C+A">Aydogan Ozcan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13120v1-abstract-short" style="display: inline;"> Imaging mass spectrometry (IMS) is a powerful tool for untargeted, highly multiplexed molecular mapping of tissue in biomedical research. IMS offers a means of mapping the spatial distributions of molecular species in biological tissue with unparalleled chemical specificity and sensitivity. However, most IMS platforms are not able to achieve microscopy-level spatial resolution and lack cellular mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13120v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13120v1-abstract-full" style="display: none;"> Imaging mass spectrometry (IMS) is a powerful tool for untargeted, highly multiplexed molecular mapping of tissue in biomedical research. IMS offers a means of mapping the spatial distributions of molecular species in biological tissue with unparalleled chemical specificity and sensitivity. However, most IMS platforms are not able to achieve microscopy-level spatial resolution and lack cellular morphological contrast, necessitating subsequent histochemical staining, microscopic imaging and advanced image registration steps to enable molecular distributions to be linked to specific tissue features and cell types. Here, we present a virtual histological staining approach that enhances spatial resolution and digitally introduces cellular morphological contrast into mass spectrometry images of label-free human tissue using a diffusion model. Blind testing on human kidney tissue demonstrated that the virtually stained images of label-free samples closely match their histochemically stained counterparts (with Periodic Acid-Schiff staining), showing high concordance in identifying key renal pathology structures despite utilizing IMS data with 10-fold larger pixel size. Additionally, our approach employs an optimized noise sampling technique during the diffusion model's inference process to reduce variance in the generated images, yielding reliable and repeatable virtual staining. We believe this virtual staining method will significantly expand the applicability of IMS in life sciences and open new avenues for mass spectrometry-based biomedical research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13120v1-abstract-full').style.display = 'none'; document.getElementById('2411.13120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 Pages, 6 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10435">arXiv:2411.10435</a> <span> [<a href="https://arxiv.org/pdf/2411.10435">pdf</a>, <a href="https://arxiv.org/format/2411.10435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The Spatial Complexity of Optical Computing and How to Reduce It </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yandong Li</a>, <a href="/search/physics?searchtype=author&query=Monticone%2C+F">Francesco Monticone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10435v1-abstract-short" style="display: inline;"> Similar to algorithms, which consume time and memory to run, hardware requires resources to function. For devices processing physical waves, implementing operations needs sufficient "space," as dictated by wave physics. How much space is needed to perform a certain function is a fundamental question in optics, with recent research addressing it for given mathematical operations, but not for more g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10435v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10435v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10435v1-abstract-full" style="display: none;"> Similar to algorithms, which consume time and memory to run, hardware requires resources to function. For devices processing physical waves, implementing operations needs sufficient "space," as dictated by wave physics. How much space is needed to perform a certain function is a fundamental question in optics, with recent research addressing it for given mathematical operations, but not for more general computing tasks, e.g., classification. Inspired by computational complexity theory, we study the "spatial complexity" of optical computing systems in terms of scaling laws - specifically, how their physical dimensions must scale as the dimension of the mathematical operation increases - and propose a new paradigm for designing optical computing systems: space-efficient neuromorphic optics, based on structural sparsity constraints and neural pruning methods motivated by wave physics (notably, the concept of "overlapping nonlocality"). On two mainstream platforms, free-space optics and on-chip integrated photonics, our methods demonstrate substantial size reductions (to 1%-10% the size of conventional designs) with minimal compromise on performance. Our theoretical and computational results reveal a trend of diminishing returns on accuracy as structure dimensions increase, providing a new perspective for interpreting and approaching the ultimate limits of optical computing - a balanced trade-off between device size and accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10435v1-abstract-full').style.display = 'none'; document.getElementById('2411.10435v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10002">arXiv:2411.10002</a> <span> [<a href="https://arxiv.org/pdf/2411.10002">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Uncover the Dynamic Community Structure of Instant Delivery Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengbo Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yonglin Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Z">Zuopeng Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10002v1-abstract-short" style="display: inline;"> The rise of instant delivery services has reshaped urban spatial structures through the interaction between suppliers and consumers. However, limited research has explored the spatiotemporal dynamics of delivery network structures. This study constructs a time-dependent, multi-layer instant delivery network in the case city of Beijing using a large-scale dataset from Eleme, organized into 500m gri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10002v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10002v1-abstract-full" style="display: none;"> The rise of instant delivery services has reshaped urban spatial structures through the interaction between suppliers and consumers. However, limited research has explored the spatiotemporal dynamics of delivery network structures. This study constructs a time-dependent, multi-layer instant delivery network in the case city of Beijing using a large-scale dataset from Eleme, organized into 500m grid units. A dynamic community detection method identifies evolving community structures over time. The results reveal 309 dynamic communities, with an average size of 13.78 square kilometers. Communities form in the morning, expand, stabilize, then contract, and disappear by night. Key factors influencing stability include building area and residential population, while online retail and service facilities contribute to instability. These findings offer insights into the spatial structure of instant delivery networks and the factors driving their dynamics, with practical implications for optimizing platform strategies, resource allocation, and urban transportation planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10002v1-abstract-full').style.display = 'none'; document.getElementById('2411.10002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures.This is a long abstract for participating in the AAG meeting 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span> [<a href="https://arxiv.org/pdf/2411.09713">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+W">Wei Lin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09421">arXiv:2411.09421</a> <span> [<a href="https://arxiv.org/pdf/2411.09421">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A 2D van der Waals Material for Terahertz Emission with Giant Optical Rectification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Handa%2C+T">Taketo Handa</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Chun-Ying Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiliu Li</a>, <a href="/search/physics?searchtype=author&query=Olsen%2C+N">Nicholas Olsen</a>, <a href="/search/physics?searchtype=author&query=Chica%2C+D+G">Daniel G. Chica</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D+D">David D. Xu</a>, <a href="/search/physics?searchtype=author&query=Sturm%2C+F">Felix Sturm</a>, <a href="/search/physics?searchtype=author&query=McIver%2C+J+W">James W. McIver</a>, <a href="/search/physics?searchtype=author&query=Roy%2C+X">Xavier Roy</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiaoyang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09421v1-abstract-short" style="display: inline;"> Exfoliation and stacking of two-dimensional (2D) van der Waals (vdW) crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in sample sizes (1 - 10 micrometer) and wavelengths (0.1 - 1 millimeter) of electromagnetic radiation relevant to their low-energy excitation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09421v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09421v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09421v1-abstract-full" style="display: none;"> Exfoliation and stacking of two-dimensional (2D) van der Waals (vdW) crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in sample sizes (1 - 10 micrometer) and wavelengths (0.1 - 1 millimeter) of electromagnetic radiation relevant to their low-energy excitations. Here, we introduce a new member of the 2D vdW material family: a terahertz (THz) emitter. We show intense and broadband THz generation from the vdW ferroelectric semiconductor NbOI2 with optical rectification efficiency over one-order-of-magnitude higher than that of the current standard THz emitter, ZnTe. The NbOI2 THz emitter can be easily integrated into vdW heterostructures for on-chip near-field THz spectroscopy of a target vdW material/device. Our approach provides a general spectroscopic tool for the rapidly expanding field of 2D vdW materials and quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09421v1-abstract-full').style.display = 'none'; document.getElementById('2411.09421v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, 15 pages of Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08997">arXiv:2411.08997</a> <span> [<a href="https://arxiv.org/pdf/2411.08997">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Aerodynamic Significance of Mass Distribution on Samara Descent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hou%2C+Z">Zhao-Bang Hou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun-Duo Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yun-Da Li</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+Y">Yong-Xia Jia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wei-Xi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08997v1-abstract-short" style="display: inline;"> Samaras, a distinct category of fruit, are composed of heavier seeds and lighter wings. Diversity in morphologies and structures subtly contributes to the flight patterns of various seeds, thereby serving as a key factor in the reproductive strategies of plants. To explore the mechanisms underlying various samara flight behaviors, we proposed an effective scheme by manipulating the mass distributi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08997v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08997v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08997v1-abstract-full" style="display: none;"> Samaras, a distinct category of fruit, are composed of heavier seeds and lighter wings. Diversity in morphologies and structures subtly contributes to the flight patterns of various seeds, thereby serving as a key factor in the reproductive strategies of plants. To explore the mechanisms underlying various samara flight behaviors, we proposed an effective scheme by manipulating the mass distribution on a plate to mimic various three-dimensional descent behaviors of samaras. Through this framework, we experimentally identified and characterized four distinct flight modes. The three-dimensional vortical structures were then numerically analyzed to gain insights into the samara-inspired flight behaviors. Our study demonstrates how strategic mass distribution in samaras leads to diverse flight behaviors that leverage vortices to enhance seed dispersal, offering a fresh perspective for the design of biomimetic fliers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08997v1-abstract-full').style.display = 'none'; document.getElementById('2411.08997v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08441">arXiv:2411.08441</a> <span> [<a href="https://arxiv.org/pdf/2411.08441">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-024-01641-9">10.1038/s41377-024-01641-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-Sided Device-Independent Random Number Generation Through Fiber Channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinfang Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+M">Mengyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Han%2C+D">Dongmei Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Meihong Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+Y">Yu Xiang</a>, <a href="/search/physics?searchtype=author&query=He%2C+Q">Qiongyi He</a>, <a href="/search/physics?searchtype=author&query=Su%2C+X">Xiaolong Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08441v1-abstract-short" style="display: inline;"> Randomness is an essential resource and plays important roles in various applications ranging from cryptography to simulation of complex systems. Certified randomness from quantum process is ensured to have the element of privacy but usually relies on the device's behavior. To certify randomness without the characterization for device, it is crucial to realize the one-sided device-independent rand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08441v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08441v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08441v1-abstract-full" style="display: none;"> Randomness is an essential resource and plays important roles in various applications ranging from cryptography to simulation of complex systems. Certified randomness from quantum process is ensured to have the element of privacy but usually relies on the device's behavior. To certify randomness without the characterization for device, it is crucial to realize the one-sided device-independent random number generation based on quantum steering, which guarantees security of randomness and relaxes the demands of one party's device. Here, we distribute quantum steering between two distant users through a 2 km fiber channel and generate quantum random numbers at the remote station with untrustworthy device. We certify the steering-based randomness by reconstructing covariance matrix of the Gaussian entangled state shared between distant parties. Then, the quantum random numbers with a generation rate of 7.06 Mbits/s are extracted from the measured amplitude quadrature fluctuation of the state owned by the remote party. Our results demonstrate the first realization of steering-based random numbers extraction in a practical fiber channel, which paves the way to the quantum random numbers generation in asymmetric networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08441v1-abstract-full').style.display = 'none'; document.getElementById('2411.08441v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08365">arXiv:2411.08365</a> <span> [<a href="https://arxiv.org/pdf/2411.08365">pdf</a>, <a href="https://arxiv.org/format/2411.08365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian Effects in Dicke models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+B">Bin Jiang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yi-Yang Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Junjie Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+J">Jian-Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08365v1-abstract-short" style="display: inline;"> The Dicke model, which describes the collective interaction between an ensemble of atoms and a single-mode photon field, serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena. In this work, we investigate the manifestation of non-Hermitian effects in a generalized Dicke model, where two dissipative atom ensembles interact with a single-mode p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08365v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08365v1-abstract-full" style="display: none;"> The Dicke model, which describes the collective interaction between an ensemble of atoms and a single-mode photon field, serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena. In this work, we investigate the manifestation of non-Hermitian effects in a generalized Dicke model, where two dissipative atom ensembles interact with a single-mode photon field. By applying the Holstein-Primakoff transformation, we explore the system in the semiclassical limit as a non-Hermitian Dicke model, revealing rich exceptional points (EPs) and diabolic points in such a system. We find that, by introducing the nonlinear saturation gain into an atomic ensemble, higher-order EP can be induced, leading to intriguing properties. Furthermore, if the system is extended to a one-dimensional chain, then the band topology will interplay with the non-Hermitian effect. In the quantum regime, we explore the quantum signature of EPs, noting that the conditions for their emergence are influenced by discrete photon numbers. We further study the transition from photon anti-bunching to bunching at a steady state, driven by non-Hermitian dynamics. Our findings deepen the understanding of non-Hermitian physics in light-matter interaction which is instructive for the design of advanced photonic and quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08365v1-abstract-full').style.display = 'none'; document.getElementById('2411.08365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08236">arXiv:2411.08236</a> <span> [<a href="https://arxiv.org/pdf/2411.08236">pdf</a>, <a href="https://arxiv.org/format/2411.08236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of Rydberg Blockade via Microwave Dressing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kurdak%2C+D">Deniz Kurdak</a>, <a href="/search/physics?searchtype=author&query=Banner%2C+P+R">Patrick R. Banner</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaxin Li</a>, <a href="/search/physics?searchtype=author&query=Muleady%2C+S+R">Sean R. Muleady</a>, <a href="/search/physics?searchtype=author&query=Gorshkov%2C+A+V">Alexey V. Gorshkov</a>, <a href="/search/physics?searchtype=author&query=Rolston%2C+S+L">S. L. Rolston</a>, <a href="/search/physics?searchtype=author&query=Porto%2C+J+V">J. V. Porto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08236v1-abstract-short" style="display: inline;"> Experimental control over the strength and angular dependence of interactions between atoms is a key capability for advancing quantum technologies. Here, we use microwave dressing to manipulate and enhance Rydberg-Rydberg interactions in an atomic ensemble. By varying the cloud length relative to the blockade radius and measuring the statistics of the light retrieved from the ensemble, we demonstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08236v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08236v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08236v1-abstract-full" style="display: none;"> Experimental control over the strength and angular dependence of interactions between atoms is a key capability for advancing quantum technologies. Here, we use microwave dressing to manipulate and enhance Rydberg-Rydberg interactions in an atomic ensemble. By varying the cloud length relative to the blockade radius and measuring the statistics of the light retrieved from the ensemble, we demonstrate a clear enhancement of the interaction strength due to microwave dressing. These results are successfully captured by a theoretical model that accounts for the excitations dynamics, atomic density distribution, and the phase-matched retrieval efficiency. Our approach offers a versatile platform for further engineering interactions by exploiting additional features of the microwave fields, such as polarization and detuning, opening pathways for new quantum control strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08236v1-abstract-full').style.display = 'none'; document.getElementById('2411.08236v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures and supplementary 9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08063">arXiv:2411.08063</a> <span> [<a href="https://arxiv.org/pdf/2411.08063">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ni%2C+Z">Ziqi Ni</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yahao Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+K">Kaijia Hu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Kunyuan Han</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+M">Ming Xu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xingyu Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fengqi Liu</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Y">Yicong Ye</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+S">Shuxin Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08063v1-abstract-short" style="display: inline;"> The rapid evolution of artificial intelligence, particularly large language models, presents unprecedented opportunities for materials science research. We proposed and developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials. The core strength of MatPilot is its natural language interactive human-machine collaboration, which augme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08063v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08063v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08063v1-abstract-full" style="display: none;"> The rapid evolution of artificial intelligence, particularly large language models, presents unprecedented opportunities for materials science research. We proposed and developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials. The core strength of MatPilot is its natural language interactive human-machine collaboration, which augments the research capabilities of human scientist teams through a multi-agent system. MatPilot integrates unique cognitive abilities, extensive accumulated experience, and ongoing curiosity of human-beings with the AI agents' capabilities of advanced abstraction, complex knowledge storage and high-dimensional information processing. It could generate scientific hypotheses and experimental schemes, and employ predictive models and optimization algorithms to drive an automated experimental platform for experiments. It turns out that our system demonstrates capabilities for efficient validation, continuous learning, and iterative optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08063v1-abstract-full').style.display = 'none'; document.getElementById('2411.08063v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07565">arXiv:2411.07565</a> <span> [<a href="https://arxiv.org/pdf/2411.07565">pdf</a>, <a href="https://arxiv.org/format/2411.07565">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Parallel Multi-Coordinate Descent Methods for Full Configuration Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuejia Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+W">Weiguo Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingzhou Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07565v1-abstract-short" style="display: inline;"> We develop a multi-threaded parallel coordinate descent full configuration interaction algorithm (mCDFCI), for the electronic structure ground-state calculation in the configuration interaction framework. The FCI problem is reformulated as an unconstrained minimization problem, and tackled by a modified block coordinate descent method with a deterministic compression strategy. mCDFCI is designed t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07565v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07565v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07565v1-abstract-full" style="display: none;"> We develop a multi-threaded parallel coordinate descent full configuration interaction algorithm (mCDFCI), for the electronic structure ground-state calculation in the configuration interaction framework. The FCI problem is reformulated as an unconstrained minimization problem, and tackled by a modified block coordinate descent method with a deterministic compression strategy. mCDFCI is designed to prioritize determinants based on their importance, with block updates enabling efficient parallelization on shared-memory, multi-core computing infrastructure. We demonstrate the efficiency of the algorithm by computing an accurate benchmark energy for the chromium dimer in the Ahlrichs SV basis (48e, 42o), which explicitly includes $2.07 \times 10^9$ variational determinants. We also provide the binding curve of the nitrogen dimer under the cc-pVQZ basis set (14e, 110o). Benchmarks show up to $79.3\%$ parallel efficiency on 128 cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07565v1-abstract-full').style.display = 'none'; document.getElementById('2411.07565v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05870">arXiv:2411.05870</a> <span> [<a href="https://arxiv.org/pdf/2411.05870">pdf</a>, <a href="https://arxiv.org/format/2411.05870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> An Adaptive Online Smoother with Closed-Form Solutions and Information-Theoretic Lag Selection for Conditional Gaussian Nonlinear Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andreou%2C+M">Marios Andreou</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+N">Nan Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingda Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05870v1-abstract-short" style="display: inline;"> Data assimilation (DA) combines partial observations with a dynamical model to improve state estimation. Filter-based DA uses only past and present data and is the prerequisite for real-time forecasts. Smoother-based DA exploits both past and future observations. It aims to fill in missing data, provide more accurate estimations, and develop high-quality datasets. However, the standard smoothing p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05870v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05870v1-abstract-full" style="display: none;"> Data assimilation (DA) combines partial observations with a dynamical model to improve state estimation. Filter-based DA uses only past and present data and is the prerequisite for real-time forecasts. Smoother-based DA exploits both past and future observations. It aims to fill in missing data, provide more accurate estimations, and develop high-quality datasets. However, the standard smoothing procedure requires using all historical state estimations, which is storage-demanding, especially for high-dimensional systems. This paper develops an adaptive-lag online smoother for a large class of complex dynamical systems with strong nonlinear and non-Gaussian features, which has important applications to many real-world problems. The adaptive lag allows the DA to utilize only observations within a nearby window, significantly reducing computational storage. Online lag adjustment is essential for tackling turbulent systems, where temporal autocorrelation varies significantly over time due to intermittency, extreme events, and nonlinearity. Based on the uncertainty reduction in the estimated state, an information criterion is developed to systematically determine the adaptive lag. Notably, the mathematical structure of these systems facilitates the use of closed analytic formulae to calculate the online smoother and the adaptive lag, avoiding empirical tunings as in ensemble-based DA methods. The adaptive online smoother is applied to studying three important scientific problems. First, it helps detect online causal relationships between state variables. Second, its advantage of computational storage is illustrated via Lagrangian DA, a high-dimensional nonlinear problem. Finally, the adaptive smoother advances online parameter estimation with partial observations, emphasizing the role of the observed extreme events in accelerating convergence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05870v1-abstract-full').style.display = 'none'; document.getElementById('2411.05870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 7 figures, typeset in LaTeX. Submitted for peer-review to Springer Nature's Journal of Nonlinear Science. For more info see https://sites.google.com/wisc.edu/mariosandreou/pubs-and-talks/cgns-online-martingale-free#h.55a05qfs9w12</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 60H10; 62M20; 93E14 (Primary) 62F15 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03120">arXiv:2411.03120</a> <span> [<a href="https://arxiv.org/pdf/2411.03120">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A numerical study on temperature destratification induced by bubble plumes in idealized reservoirs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dongming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03120v1-abstract-short" style="display: inline;"> An in-house numerical model has been developed to study the temperature destratification induced by bubble plumes in reservoirs. The mean flow of the mixed fluid phase is solved using the Reynolds-Averaged Navier-Stokes Equations, while the bubble phase is calculated by employing the advection-diffusion equation of air concentration. The change of water temperature is tracked by solving the energy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03120v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03120v1-abstract-full" style="display: none;"> An in-house numerical model has been developed to study the temperature destratification induced by bubble plumes in reservoirs. The mean flow of the mixed fluid phase is solved using the Reynolds-Averaged Navier-Stokes Equations, while the bubble phase is calculated by employing the advection-diffusion equation of air concentration. The change of water temperature is tracked by solving the energy equation. The two-equation turbulence model, considering the effect of bubble buoyancy and the change of temperature, is adopted to model the turbulent dissipation in two-phase fluid. To validate the accuracy of the numerical model, the numerical results are compared with available experimental data. In addition, the destratification of temperature-layered water in a tank by bubble plumes is simulated by the numerical model, which is also validated by experimental data and the numerical results of another model. This three-dimensional model can reflect various physical quantities in the entire computed filed, such as thermal structure, gas concentration distribution, velocity distribution and turbulence intensity. Furthermore, by utilizing the validated model, a series of factors on reservoir destratification, including the aeration rate and the aeration location are analyzed and discussed in this study. A non-dimensional number Nt is introduced to determine the optimal aeration rate of the fasted destratification. The extent to which bubble plumes can affect the destratification is also simulated and discussed. Meanwhile, the mechanism of destratification in a large water area is described in detail. Suggestions on how to apply bubble plumes to improve the water quality of a reservoir are given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03120v1-abstract-full').style.display = 'none'; document.getElementById('2411.03120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01401">arXiv:2411.01401</a> <span> [<a href="https://arxiv.org/pdf/2411.01401">pdf</a>, <a href="https://arxiv.org/format/2411.01401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pre-trained Molecular Language Models with Random Functional Group Masking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peng%2C+T">Tianhao Peng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuchen Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xuhong Li</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">Jiang Bian</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zeke Xie</a>, <a href="/search/physics?searchtype=author&query=Sui%2C+N">Ning Sui</a>, <a href="/search/physics?searchtype=author&query=Mumtaz%2C+S">Shahid Mumtaz</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yanwu Xu</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+L">Linghe Kong</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+H">Haoyi Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01401v1-abstract-short" style="display: inline;"> Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, resear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01401v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01401v1-abstract-full" style="display: none;"> Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01401v1-abstract-full').style.display = 'none'; document.getElementById('2411.01401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00911">arXiv:2411.00911</a> <span> [<a href="https://arxiv.org/pdf/2411.00911">pdf</a>, <a href="https://arxiv.org/format/2411.00911">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Zero-Shot Self-Consistency Learning for Seismic Irregular Spatial Sampling Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peng%2C+J">Junheng Peng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yingtian Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingwei Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huating Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00911v1-abstract-short" style="display: inline;"> Seismic exploration is currently the most important method for understanding subsurface structures. However, due to surface conditions, seismic receivers may not be uniformly distributed along the measurement line, making the entire exploration work difficult to carry out. Previous deep learning methods for reconstructing seismic data often relied on additional datasets for training. While some ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00911v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00911v1-abstract-full" style="display: none;"> Seismic exploration is currently the most important method for understanding subsurface structures. However, due to surface conditions, seismic receivers may not be uniformly distributed along the measurement line, making the entire exploration work difficult to carry out. Previous deep learning methods for reconstructing seismic data often relied on additional datasets for training. While some existing methods do not require extra data, they lack constraints on the reconstruction data, leading to unstable reconstruction performance. In this paper, we proposed a zero-shot self-consistency learning strategy and employed an extremely lightweight network for seismic data reconstruction. Our method does not require additional datasets and utilizes the correlations among different parts of the data to design a self-consistency learning loss function, driving a network with only 90,609 learnable parameters. We applied this method to experiments on the USGS National Petroleum Reserve-Alaska public dataset and the results indicate that our proposed approach achieved good reconstruction results. Additionally, our method also demonstrates a certain degree of noise suppression, which is highly beneficial for large and complex seismic exploration tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00911v1-abstract-full').style.display = 'none'; document.getElementById('2411.00911v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T07 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.4.5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00803">arXiv:2411.00803</a> <span> [<a href="https://arxiv.org/pdf/2411.00803">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Designing a Dataset for Convolutional Neural Networks to Predict Space Groups Consistent with Extinction Laws </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+J">Jiajun Zhong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yikun Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junrong Zhang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+R">Rong Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00803v2-abstract-short" style="display: inline;"> In this paper, a dataset of one-dimensional powder diffraction patterns was designed with new strategy to train Convolutional Neural Networks for predicting space groups. The diffraction pattern was calculated based on lattice parameters and Extinction Laws, instead of the traditional approach of generating it from a crystallographic database. This paper demonstrates that the new strategy is more… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00803v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00803v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00803v2-abstract-full" style="display: none;"> In this paper, a dataset of one-dimensional powder diffraction patterns was designed with new strategy to train Convolutional Neural Networks for predicting space groups. The diffraction pattern was calculated based on lattice parameters and Extinction Laws, instead of the traditional approach of generating it from a crystallographic database. This paper demonstrates that the new strategy is more effective than the conventional method. As a result, the model trained on the cubic and tetragonal training set from the newly designed dataset achieves prediction accuracy that matches the theoretical maximums calculated based on Extinction Laws. These results demonstrate that machine learning-based prediction can be both physically reasonable and reliable. Additionally, the model trained on our newly designed dataset shows excellent generalization capability, much better than the one trained on a traditionally designed dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00803v2-abstract-full').style.display = 'none'; document.getElementById('2411.00803v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00077">arXiv:2411.00077</a> <span> [<a href="https://arxiv.org/pdf/2411.00077">pdf</a>, <a href="https://arxiv.org/format/2411.00077">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Seven-octave ultrabroadband metamaterial absorbers via Q-weighted mode density modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+N">Nengyin Wang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">Sibo Huang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhiling Zhou</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+D+P">Din Ping Tsai</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jie Zhu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00077v1-abstract-short" style="display: inline;"> Absorption is a crucial parameter in shaping wave propagation dynamics, yet achieving ultra-broadband absorption remains highly challenging, particularly in balancing low-frequency and broad bandwidth. Here, we present a metamaterial absorber (MMA) capable of achieving simultaneous spectral coverage across a seven-octave range of near-perfect absorption from 100 Hz to 12,800 Hz by engineering the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00077v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00077v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00077v1-abstract-full" style="display: none;"> Absorption is a crucial parameter in shaping wave propagation dynamics, yet achieving ultra-broadband absorption remains highly challenging, particularly in balancing low-frequency and broad bandwidth. Here, we present a metamaterial absorber (MMA) capable of achieving simultaneous spectral coverage across a seven-octave range of near-perfect absorption from 100 Hz to 12,800 Hz by engineering the quality-factor-weighted (Q-weighted) mode density. The Q-weighted mode density considers mode density, resonant frequencies, radiative loss, and intrinsic loss of multiple resonant modes, providing a comprehensive approach to govern broadband absorption properties. By optimizing the number of resonant modes and managing intrinsic losses, our approach achieves an intensive Q-weighted mode density across an ultra-wide bandwidth, enabling ultra-broadband absorption with high efficiency. These findings significantly advance the bandwidth capabilities of state-of-the-art MMAs and pave the way for the development of ultra-broadband metamaterial devices across various wave systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00077v1-abstract-full').style.display = 'none'; document.getElementById('2411.00077v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23659">arXiv:2410.23659</a> <span> [<a href="https://arxiv.org/pdf/2410.23659">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> SUANPAN: Scalable Photonic Linear Vector Machine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Ziyue Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chen Li</a>, <a href="/search/physics?searchtype=author&query=Ran%2C+Y">Yuqia Ran</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongzhuo Li</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hao Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Y">Yu Ye</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+F">Fei Qiao</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+C">Cun-Zheng Ning</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiaxing Wang</a>, <a href="/search/physics?searchtype=author&query=Chang-Hasnain%2C+C+J">Connie J. Chang-Hasnain</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yidong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23659v1-abstract-short" style="display: inline;"> Photonic linear operation is a promising approach to handle the extensive vector multiplications in artificial intelligence techniques due to the natural bosonic parallelism and high-speed information transmission of photonics. Although it is believed that maximizing the interaction of the light beams is necessary to fully utilize the parallelism and tremendous efforts have been made in past decad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23659v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23659v1-abstract-full" style="display: none;"> Photonic linear operation is a promising approach to handle the extensive vector multiplications in artificial intelligence techniques due to the natural bosonic parallelism and high-speed information transmission of photonics. Although it is believed that maximizing the interaction of the light beams is necessary to fully utilize the parallelism and tremendous efforts have been made in past decades, the achieved dimensionality of vector-matrix multiplication is very limited due to the difficulty of scaling up a tightly interconnected or highly coupled optical system. Additionally, there is still a lack of a universal photonic computing architecture that can be readily merged with existing computing system to meet the computing power demand of AI techniques. Here, we propose a programmable and reconfigurable photonic linear vector machine to perform only the inner product of two vectors, formed by a series of independent basic computing units, while each unit is just one pair of light-emitter and photodetector. Since there is no interaction among light beams inside, extreme scalability could be achieved by simply duplicating the independent basic computing unit while there is no requirement of large-scale analog-to-digital converter and digital-to-analog converter arrays. Our architecture is inspired by the traditional Chinese Suanpan or abacus and thus is denoted as photonic SUANPAN. As a proof of principle, SUANPAN architecture is implemented with an 8*8 vertical cavity surface emission laser array and an 8*8 MoTe2 two-dimensional material photodetector array. We believe that our proposed photonic SUANPAN is capable of serving as a fundamental linear vector machine that can be readily merged with existing electronic digital computing system and is potential to enhance the computing power for future various AI applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23659v1-abstract-full').style.display = 'none'; document.getElementById('2410.23659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21776">arXiv:2410.21776</a> <span> [<a href="https://arxiv.org/pdf/2410.21776">pdf</a>, <a href="https://arxiv.org/format/2410.21776">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> DiffusionVel: Multi-Information Integrated Velocity Inversion Using Generative Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jianping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21776v1-abstract-short" style="display: inline;"> Full waveform inversion (FWI) is capable of reconstructing subsurface properties with high resolution from seismic data. However, conventional FWI faces challenges such as cycle-skipping and high computational costs. Recently, deep learning method has emerged as a promising solution for efficient velocity estimation. We develop DiffusionVel, a data-driven technique based on the state-of-the-art ge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21776v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21776v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21776v1-abstract-full" style="display: none;"> Full waveform inversion (FWI) is capable of reconstructing subsurface properties with high resolution from seismic data. However, conventional FWI faces challenges such as cycle-skipping and high computational costs. Recently, deep learning method has emerged as a promising solution for efficient velocity estimation. We develop DiffusionVel, a data-driven technique based on the state-of-the-art generative diffusion models (GDMs) with integration of multiple information including seismic data, background velocity, geological knowledge, and well logs. We use two separate conditional GDMs, namely the seismic-data GDM and the well-log GDM, and an unconditional GDM, i.e., the geology-oriented GDM, to adapt the generated velocity model to the constraints of seismic data, well logs, and prior geological knowledge, respectively. Besides, the background velocity can be incorporated into the generated velocity model with a low-pass filter. The generation of these GDM are then combined together with a weighted summation in the sampling process. We can flexibly control the constraints from each information by adjusting the weighting factors. We make a comprehensive comparison between the proposed DiffusionVel and three previously-developed methods including conventional FWI, InversionNet, and VelocityGAN by using the OpenFWI datasets and the Hess VTI model example. The test results demonstrate that the proposed DiffusionVel method predicts the velocity model reasonably by integrating multiple information effectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21776v1-abstract-full').style.display = 'none'; document.getElementById('2410.21776v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submited to Geophysics for peer reviews</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20378">arXiv:2410.20378</a> <span> [<a href="https://arxiv.org/pdf/2410.20378">pdf</a>, <a href="https://arxiv.org/format/2410.20378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Massive Retail Location Choice as a Human Flow-Covering Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongmou Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hezhishi Jiang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yihang Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Q">Qing Lu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+L">Liyan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20378v1-abstract-short" style="display: inline;"> In this article we reframe the classic problem of massive location choice for retail chains, introducing an alternative approach. Traditional methodologies of massive location choice models encounter limitations rooted in assumptions such as power-law distance decay and oversimplified travel patterns. In response, we present a spatial operations research model aimed at maximizing customer coverage… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20378v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20378v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20378v1-abstract-full" style="display: none;"> In this article we reframe the classic problem of massive location choice for retail chains, introducing an alternative approach. Traditional methodologies of massive location choice models encounter limitations rooted in assumptions such as power-law distance decay and oversimplified travel patterns. In response, we present a spatial operations research model aimed at maximizing customer coverage, using massive individual trajectories as a "sampling" of human flows, and thus the model is robust. Formulating the retail location selection problem as a set-covering problem, we propose a greedy solution. Through a case study in Shenzhen utilizing real-world individual trajectory data, our approach demonstrates substantial improvements over prevailing location choices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20378v1-abstract-full').style.display = 'none'; document.getElementById('2410.20378v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20073">arXiv:2410.20073</a> <span> [<a href="https://arxiv.org/pdf/2410.20073">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Super-resolved virtual staining of label-free tissue using diffusion models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yijie Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Luzhe Huang</a>, <a href="/search/physics?searchtype=author&query=Pillar%2C+N">Nir Pillar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuzhu Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hanlong Chen</a>, <a href="/search/physics?searchtype=author&query=Ozcan%2C+A">Aydogan Ozcan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20073v1-abstract-short" style="display: inline;"> Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20073v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20073v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20073v1-abstract-full" style="display: none;"> Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20073v1-abstract-full').style.display = 'none'; document.getElementById('2410.20073v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 Pages, 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18896">arXiv:2410.18896</a> <span> [<a href="https://arxiv.org/pdf/2410.18896">pdf</a>, <a href="https://arxiv.org/format/2410.18896">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Convolutional Filter for Seismic Noise Attenuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peng%2C+J">Junheng Peng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&query=LIu%2C+Y">Yingtian LIu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingwei Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huating Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18896v1-abstract-short" style="display: inline;"> Seismic exploration is currently the most mature approach for studying subsurface structures, yet the presence of noise greatly restricts its imaging accuracy. Previous methods still face significant challenges: traditional computational methods are often computationally complex and their effectiveness is hard to guarantee; deep learning approaches rely heavily on datasets, and the complexity of n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18896v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18896v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18896v1-abstract-full" style="display: none;"> Seismic exploration is currently the most mature approach for studying subsurface structures, yet the presence of noise greatly restricts its imaging accuracy. Previous methods still face significant challenges: traditional computational methods are often computationally complex and their effectiveness is hard to guarantee; deep learning approaches rely heavily on datasets, and the complexity of network training makes them difficult to apply in practical field scenarios. In this paper, we proposed a method that has only 2464 learnable parameters, and its parameter constraints rely on priors rather than requiring training data. The three priors we proposed can effectively attenuate random noise while significantly reducing signal leakage, ensuring that the separated noise remains as independent as possible from the processed data. We validated our method on National Petroleum Reserve-Alaska Survey, and the results indicate that our proposed approach effectively enhances noise elimination and seismic data resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18896v1-abstract-full').style.display = 'none'; document.getElementById('2410.18896v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, this manuscript has been submitted to JGR: Machine Learning and Computation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 86-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span> [<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17970">arXiv:2410.17970</a> <span> [<a href="https://arxiv.org/pdf/2410.17970">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Generative Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shiqi Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hanlong Chen</a>, <a href="/search/physics?searchtype=author&query=Ozcan%2C+A">Aydogan Ozcan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17970v1-abstract-short" style="display: inline;"> Generative models cover various application areas, including image, video and music synthesis, natural language processing, and molecular design, among many others. As digital generative models become larger, scalable inference in a fast and energy-efficient manner becomes a challenge. Here, we present optical generative models inspired by diffusion models, where a shallow and fast digital encoder… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17970v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17970v1-abstract-full" style="display: none;"> Generative models cover various application areas, including image, video and music synthesis, natural language processing, and molecular design, among many others. As digital generative models become larger, scalable inference in a fast and energy-efficient manner becomes a challenge. Here, we present optical generative models inspired by diffusion models, where a shallow and fast digital encoder first maps random noise into phase patterns that serve as optical generative seeds for a desired data distribution; a jointly-trained free-space-based reconfigurable decoder all-optically processes these generative seeds to create novel images (never seen before) following the target data distribution. Except for the illumination power and the random seed generation through a shallow encoder, these optical generative models do not consume computing power during the synthesis of novel images. We report the optical generation of monochrome and multi-color novel images of handwritten digits, fashion products, butterflies, and human faces, following the data distributions of MNIST, Fashion MNIST, Butterflies-100, and Celeb-A datasets, respectively, achieving an overall performance comparable to digital neural network-based generative models. To experimentally demonstrate optical generative models, we used visible light to generate, in a snapshot, novel images of handwritten digits and fashion products. These optical generative models might pave the way for energy-efficient, scalable and rapid inference tasks, further exploiting the potentials of optics and photonics for artificial intelligence-generated content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17970v1-abstract-full').style.display = 'none'; document.getElementById('2410.17970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 Pages, 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16067">arXiv:2410.16067</a> <span> [<a href="https://arxiv.org/pdf/2410.16067">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.device.2024.100623">10.1016/j.device.2024.100623 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonvolatile Electrochemical Memory at 600C Enabled by Composition Phase Separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingxian Li</a>, <a href="/search/physics?searchtype=author&query=Jalbert%2C+A+J">Andrew J. Jalbert</a>, <a href="/search/physics?searchtype=author&query=Simakas%2C+L+S">Leah S. Simakas</a>, <a href="/search/physics?searchtype=author&query=Geisler%2C+N+J">Noah J. Geisler</a>, <a href="/search/physics?searchtype=author&query=Watkins%2C+V+J">Virgil J. Watkins</a>, <a href="/search/physics?searchtype=author&query=Cline%2C+L+A">Laszlo A. Cline</a>, <a href="/search/physics?searchtype=author&query=Fuller%2C+E+J">Elliot J. Fuller</a>, <a href="/search/physics?searchtype=author&query=Talin%2C+A+A">A. Alec Talin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiyang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16067v1-abstract-short" style="display: inline;"> CMOS-based microelectronics are limited to ~150掳C and therefore not suitable for the extreme high temperatures in aerospace, energy, and space applications. While wide bandgap semiconductors can provide high-temperature logic, nonvolatile memory devices at high temperatures have been challenging. In this work, we develop a nonvolatile electrochemical memory cell that stores and retains analog and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16067v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16067v1-abstract-full" style="display: none;"> CMOS-based microelectronics are limited to ~150掳C and therefore not suitable for the extreme high temperatures in aerospace, energy, and space applications. While wide bandgap semiconductors can provide high-temperature logic, nonvolatile memory devices at high temperatures have been challenging. In this work, we develop a nonvolatile electrochemical memory cell that stores and retains analog and digital information at temperatures as high as 600 掳C. Through correlative electron microscopy, we show that this high-temperature information retention is a result of composition phase separation between the oxidized and reduced forms of amorphous tantalum oxide. This result demonstrates a memory concept that is resilient at extreme temperatures and reveals phase separation as the principal mechanism that enables nonvolatile information storage in these electrochemical memory cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16067v1-abstract-full').style.display = 'none'; document.getElementById('2410.16067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Device 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15783">arXiv:2410.15783</a> <span> [<a href="https://arxiv.org/pdf/2410.15783">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Approaching High-efficiency Spatial Light Modulation with Lossy Phase-change Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chu%2C+L">Luoyao Chu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+S">Shunyu Yao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuru Li</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+S">Siqing Zeng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhaohui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15783v1-abstract-short" style="display: inline;"> The prevalent high intrinsic absorption in the crystalline state of phase-change materials (PCMs), typically leads to a decline in modulation efficiency for phase-change metasurfaces, underutilizing their potential for quasi-continuous phase-state tuning. This research introduces a concise design approach that maximizes the exploitation of the quasi-continuous phase transition properties of PCM, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15783v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15783v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15783v1-abstract-full" style="display: none;"> The prevalent high intrinsic absorption in the crystalline state of phase-change materials (PCMs), typically leads to a decline in modulation efficiency for phase-change metasurfaces, underutilizing their potential for quasi-continuous phase-state tuning. This research introduces a concise design approach that maximizes the exploitation of the quasi-continuous phase transition properties of PCM, achieving high-efficiency spatial light modulation. By optimizing the metasurface design, the phase modulation process is strategically localized in a low crystallization ratio state, significantly reducing the impact of material absorption on modulation efficiency. Utilizing GSST as an example, numerical simulations demonstrate a minimum reflectance of 46.5% at the target wavelength of 1550 nm, with a phase modulation depth of 246.6掳. The design is fruther extended to dynamic polarization modulation by incorporating structural anisotropy, enabling independent control of amplitude and phase modulation in orthogonal polarization directions. This strategy not only circumvents the efficiency limitations of crystalline states but also harnesses the full potential of PCMs for multifunctional photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15783v1-abstract-full').style.display = 'none'; document.getElementById('2410.15783v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15779">arXiv:2410.15779</a> <span> [<a href="https://arxiv.org/pdf/2410.15779">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Piezoelectric Manipulation and Engineering for Layertronics in Two-Dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15779v1-abstract-short" style="display: inline;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling stra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15779v1-abstract-full" style="display: none;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling strategy beyond the existing paradigm to realize AVHE and layer Hall effect (LHE) in ferrovalley (FV) systems, and its essential principle can be extended to general valleytronic materials. Through first-principles calculations, we demonstrate that the large polarized electric field of 2.8*106 (1.67*107) V/m can be induced by 0.1% uniaxial strain in FV 2H-LaHF (1T-LaHF) monolayers. In addition, the microscopic mechanism of interlayer antiferromagnetic (AFM) state of 2H-LaHF bilayer is uncovered by the spin Hamiltonian and super-superexchange (SSE) interaction. Our findings pave the way for new explorations of valley Hall-related effect involving piezoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'none'; document.getElementById('2410.15779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15769">arXiv:2410.15769</a> <span> [<a href="https://arxiv.org/pdf/2410.15769">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-layer coupling in altermagnets multilayer: a design principle for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15769v1-abstract-short" style="display: inline;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15769v1-abstract-full" style="display: none;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-layer coupling in odd/even-layer is mapped out based on the comprehensive analysis of spin group symmetry. The spin splitting behavior related with the MzUt, Mz and ML symmetries in AM multilayer can be significantly modulated by magnetic orders, crystal symmetry and external perpendicular gate field (Ez). Due to the spin-compensated bands of sublayers linked by overall Mz and interlayers ML symmetries, the Cr2S2 odd-layer exhibits the unique coexistence of spin splitting and spin degeneracy at high symmetric paths and X/Y valley, respectively. Furthermore, owing to the higher priority of overall ML symmetry compared to interlayers ML symmetry in AM even-layer, the spin-layer coupling of AM multilayer shows strong odd/even-layer dependence. Our work not only offer a new direction for manipulating spin splitting, but also greatly enrich the research on AM monolayer and multilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'none'; document.getElementById('2410.15769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15521">arXiv:2410.15521</a> <span> [<a href="https://arxiv.org/pdf/2410.15521">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Lying mirror </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuhang Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shiqi Chen</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+B">Bijie Bai</a>, <a href="/search/physics?searchtype=author&query=Ozcan%2C+A">Aydogan Ozcan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15521v1-abstract-short" style="display: inline;"> We introduce an all-optical system, termed the "lying mirror", to hide input information by transforming it into misleading, ordinary-looking patterns that effectively camouflage the underlying image data and deceive the observers. This misleading transformation is achieved through passive light-matter interactions of the incident light with an optimized structured diffractive surface, enabling th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15521v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15521v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15521v1-abstract-full" style="display: none;"> We introduce an all-optical system, termed the "lying mirror", to hide input information by transforming it into misleading, ordinary-looking patterns that effectively camouflage the underlying image data and deceive the observers. This misleading transformation is achieved through passive light-matter interactions of the incident light with an optimized structured diffractive surface, enabling the optical concealment of any form of secret input data without any digital computing. These lying mirror designs were shown to camouflage different types of input image data, exhibiting robustness against a range of adversarial manipulations, including random image noise as well as unknown, random rotations, shifts, and scaling of the object features. The feasibility of the lying mirror concept was also validated experimentally using a structured micro-mirror array along with multi-wavelength illumination at 480, 550 and 600 nm, covering the blue, green and red image channels. This framework showcases the power of structured diffractive surfaces for visual information processing and might find various applications in defense, security and entertainment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15521v1-abstract-full').style.display = 'none'; document.getElementById('2410.15521v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 Pages, 8 Figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>