CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 109 results for author: <span class="mathjax">Ma, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ma%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ma, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ma%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ma, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11942">arXiv:2502.11942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11942">pdf</a>, <a href="https://arxiv.org/format/2502.11942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Sharp-PINNs: staggered hard-constrained physics-informed neural networks for phase field modelling of corrosion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+N">Nanxi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">Chuanjie Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rujin Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A">Airong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Sifan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11942v1-abstract-short" style="display: inline;"> Physics-informed neural networks have shown significant potential in solving partial differential equations (PDEs) across diverse scientific fields. However, their performance often deteriorates when addressing PDEs with intricate and strongly coupled solutions. In this work, we present a novel Sharp-PINN framework to tackle complex phase field corrosion problems. Instead of minimizing all governi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11942v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11942v1-abstract-full" style="display: none;"> Physics-informed neural networks have shown significant potential in solving partial differential equations (PDEs) across diverse scientific fields. However, their performance often deteriorates when addressing PDEs with intricate and strongly coupled solutions. In this work, we present a novel Sharp-PINN framework to tackle complex phase field corrosion problems. Instead of minimizing all governing PDE residuals simultaneously, the Sharp-PINNs introduce a staggered training scheme that alternately minimizes the residuals of Allen-Cahn and Cahn-Hilliard equations, which govern the corrosion system. To further enhance its efficiency and accuracy, we design an advanced neural network architecture that integrates random Fourier features as coordinate embeddings, employs a modified multi-layer perceptron as the primary backbone, and enforces hard constraints in the output layer. This framework is benchmarked through simulations of corrosion problems with multiple pits, where the staggered training scheme and network architecture significantly improve both the efficiency and accuracy of PINNs. Moreover, in three-dimensional cases, our approach is 5-10 times faster than traditional finite element methods while maintaining competitive accuracy, demonstrating its potential for real-world engineering applications in corrosion prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11942v1-abstract-full').style.display = 'none'; document.getElementById('2502.11942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07180">arXiv:2502.07180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07180">pdf</a>, <a href="https://arxiv.org/format/2502.07180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Soliton microcombs in X-cut LiNbO3 microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+B">Binbin Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+X">Xiaomin Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guanyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+D">Du Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhenyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+S">Shuting Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+G">Guowei Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07180v1-abstract-short" style="display: inline;"> Chip-scale integration of optical frequency combs, particularly soliton microcombs, enables miniaturized instrumentation for timekeeping, ranging, and spectroscopy. Although soliton microcombs have been demonstrated on various material platforms, realizing complete comb functionality on photonic chips requires the co-integration of high-speed modulators and efficient frequency doublers, features t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07180v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07180v1-abstract-full" style="display: none;"> Chip-scale integration of optical frequency combs, particularly soliton microcombs, enables miniaturized instrumentation for timekeeping, ranging, and spectroscopy. Although soliton microcombs have been demonstrated on various material platforms, realizing complete comb functionality on photonic chips requires the co-integration of high-speed modulators and efficient frequency doublers, features that are available in a monolithic form on X-cut thin-film lithium niobate (TFLN). However, the pronounced Raman nonlinearity associated with extraordinary light in this platform has so far precluded soliton microcomb generation. Here, we report the generation of transverse-electric-polarized soliton microcombs with a 25 GHz repetition rate in high-Q microresonators on X-cut TFLN chips. By precisely orienting the racetrack microresonator relative to the optical axis, we mitigate Raman nonlinearity and enable soliton formation under continuous-wave laser pumping. Moreover, the soliton microcomb spectra are extended to 350 nm with pulsed laser pumping. This work expands the capabilities of TFLN photonics and paves the way for the monolithic integration of fast-tunable, self-referenced microcombs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07180v1-abstract-full').style.display = 'none'; document.getElementById('2502.07180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14047">arXiv:2412.14047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14047">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Combined selective plane illumination microscopy (SPIM) and full-field optical coherence tomography (FF-OCT) for in vivo imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Lyraki%2C+O">Olga Lyraki</a>, <a href="/search/physics?searchtype=author&amp;query=Wehner%2C+D">Daniel Wehner</a>, <a href="/search/physics?searchtype=author&amp;query=Guck%2C+J">Jochen Guck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14047v1-abstract-short" style="display: inline;"> Selective plane illumination microscopy (SPIM), also known as light sheet fluorescence microscopy, provides high specificity through fluorescence labeling. However, it lacks complementary structural information from the surrounding context, which is essential for the comprehensive analysis of biological samples. Here, we present a high-resolution, multimodal imaging system that integrates SPIM wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14047v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14047v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14047v1-abstract-full" style="display: none;"> Selective plane illumination microscopy (SPIM), also known as light sheet fluorescence microscopy, provides high specificity through fluorescence labeling. However, it lacks complementary structural information from the surrounding context, which is essential for the comprehensive analysis of biological samples. Here, we present a high-resolution, multimodal imaging system that integrates SPIM with full-field optical coherence tomography (FF-OCT), without requiring modifications to the existing SPIM setup. Both SPIM and FF-OCT offer low phototoxicity and intrinsic optical sectioning, making them well-suited for in vivo imaging. Their shared detection path enables seamless and efficient co-registration of fluorescence and structural data. We demonstrate the functionality of this combined system by performing in vivo imaging of zebrafish larvae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14047v1-abstract-full').style.display = 'none'; document.getElementById('2412.14047v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07531">arXiv:2412.07531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07531">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multifunctional Portable Optical Measuring Instrument Based on Y-Fiber Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Juntao He</a>, <a href="/search/physics?searchtype=author&amp;query=Dang%2C+Y">Yikai Dang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haoqi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shaohua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yingke Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruiyun Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yingyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+P">Peilin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jianguo Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yong Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07531v1-abstract-short" style="display: inline;"> Based on grating diffraction principle, optical fiber transmission principle and optical interference principle, a multi-functional portable optical measuring instrument is constructed in this paper. The optical measurement visualization spectrometer based on CCD photoelectric image sensor is designed and assembled. The &#34;Y&#34; optical signal transmission fiber optical path suitable for multi-function&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07531v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07531v1-abstract-full" style="display: none;"> Based on grating diffraction principle, optical fiber transmission principle and optical interference principle, a multi-functional portable optical measuring instrument is constructed in this paper. The optical measurement visualization spectrometer based on CCD photoelectric image sensor is designed and assembled. The &#34;Y&#34; optical signal transmission fiber optical path suitable for multi-function measurement is improved and designed. The multi-function optical measurement system is built by combining with remote controlled multi-color LED lights. The spectral analysis, solution concentration monitoring and film thickness measurement are realized. The experimental results show that the observable wavelength range of the spectrometer is about 340-1050nm and the resolution is 1nm. The solution concentration can be obtained by measuring absorbance with optical fiber spectrometer. The film thickness measuring instrument can accurately measure the thickness of the micron film, and the measurement accuracy can reach 1.25 渭m. It is proved that the instrument integrates multiple functions, has high measurement accuracy and wide range, and realizes non-contact measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07531v1-abstract-full').style.display = 'none'; document.getElementById('2412.07531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07528">arXiv:2412.07528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07528">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Film Thickness Gauge Based on Interferometric Principle of Y-shaped Optical Fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Juntao He</a>, <a href="/search/physics?searchtype=author&amp;query=Dang%2C+Y">Yikai Dang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haoqi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shaohua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yingke Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruiyun Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yingyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+P">Peilin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jianguo Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yong Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07528v1-abstract-short" style="display: inline;"> In this paper, a thin film thickness gauge based on the interferometric principle of Y-shaped optical fiber is proposed to achieve accurate measurement of film thickness. In this paper, the optical fiber, the interferometric principle and the film thickness calculation principle are introduced, and the interferometric thickness measurement system based on Y-shaped optical fiber is constructed. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07528v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07528v1-abstract-full" style="display: none;"> In this paper, a thin film thickness gauge based on the interferometric principle of Y-shaped optical fiber is proposed to achieve accurate measurement of film thickness. In this paper, the optical fiber, the interferometric principle and the film thickness calculation principle are introduced, and the interferometric thickness measurement system based on Y-shaped optical fiber is constructed. The system uses the special structure of Y-shaped optical fiber to transmit the optical signal generated by the light source to the surface of the thin film, and obtains coherent optical signals of different wavelengths through reflection and interference. The spectrometer is used to receive and interpret these interference signals, and the thickness of the film is calculated according to the wavelength difference of the peak positions of the adjacent stages, combined with the refractive index of the film. In the specific design, the paper elaborates on the design of each part of the instrument, including the selection and parameter setting of the light source, Y-fiber and spectrometer. Among them, the Y-shaped optical fiber, as the core component of the instrument, has the function of transmitting optical signals and detecting optical signals on the surface of thin films. At the same time, the paper also introduces the housing packaging and internal assembly process of the instrument to ensure the portability and stability of the instrument. The results show that the thickness gauge has high measurement accuracy and stability, which can meet the needs of practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07528v1-abstract-full').style.display = 'none'; document.getElementById('2412.07528v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00522">arXiv:2412.00522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00522">pdf</a>, <a href="https://arxiv.org/format/2412.00522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Extending the atomic decomposition and many-body representation, a chemistry-motivated monomer-centered approach for machine learning potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Q">Qi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruitao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+C">Chen Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Conte%2C+R">Riccardo Conte</a>, <a href="/search/physics?searchtype=author&amp;query=Nandi%2C+A">Apurba Nandi</a>, <a href="/search/physics?searchtype=author&amp;query=Pandey%2C+P">Priyanka Pandey</a>, <a href="/search/physics?searchtype=author&amp;query=Houston%2C+P+L">Paul L. Houston</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D+H">Dong H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+J+M">Joel M. Bowman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00522v1-abstract-short" style="display: inline;"> Most widely used machine learned (ML) potentials for condensed phase applications rely on many-body permutationally invariant polynomial (PIP) or atom-centered neural networks (NN). However, these approaches often lack chemical interpretability in atomistic energy decomposition and the computational efficiency of traditional force fields has not been fully achieved. Here, we present a novel method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00522v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00522v1-abstract-full" style="display: none;"> Most widely used machine learned (ML) potentials for condensed phase applications rely on many-body permutationally invariant polynomial (PIP) or atom-centered neural networks (NN). However, these approaches often lack chemical interpretability in atomistic energy decomposition and the computational efficiency of traditional force fields has not been fully achieved. Here, we present a novel method that combines aspects of both approaches, and achieves state-of-the-art balance of accuracy and force field-level speed. This method utilizes a monomer-centered representation, where the potential energy is decomposed into the sum of chemically meaningful monomeric energies. Without sophisticated neural network design, the structural descriptors of monomers are described by 1-body and 2-body effective interactions, enforced by appropriate sets of PIPs as inputs to the feed forward NN. We demonstrate the performance of this method through systematic assessments of models for gas-phase water trimer, liquid water, and also liquid CO2. The high accuracy, fast speed, and flexibility of this method provide a new route for constructing accurate ML potentials and enabling large-scale quantum and classical simulations for complex molecular systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00522v1-abstract-full').style.display = 'none'; document.getElementById('2412.00522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05571">arXiv:2410.05571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05571">pdf</a>, <a href="https://arxiv.org/format/2410.05571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.111.024067">10.1103/PhysRevD.111.024067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A novel stacked hybrid autoencoder for imputing LISA data gaps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruiting Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+E">Jeong Eun Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Edwards%2C+M+C">Matthew C. Edwards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05571v1-abstract-short" style="display: inline;"> The Laser Interferometer Space Antenna (LISA) data stream will contain gaps with missing or unusable data due to antenna repointing, orbital corrections, instrument malfunctions, and unknown random processes. We introduce a new deep learning model to impute data gaps in the LISA data stream. The stacked hybrid autoencoder combines a denoising convolutional autoencoder (DCAE) with a bi-directional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05571v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05571v1-abstract-full" style="display: none;"> The Laser Interferometer Space Antenna (LISA) data stream will contain gaps with missing or unusable data due to antenna repointing, orbital corrections, instrument malfunctions, and unknown random processes. We introduce a new deep learning model to impute data gaps in the LISA data stream. The stacked hybrid autoencoder combines a denoising convolutional autoencoder (DCAE) with a bi-directional gated recurrent unit (BiGRU). The DCAE is used to extract relevant features in the corrupted data, while the BiGRU captures the temporal dynamics of the gravitational-wave signals. We show for a massive black hole binary signal, corrupted by data gaps of various numbers and duration, that we yield an overlap of greater than 99.97% when the gaps do not occur in the merging phase and greater than 99% when the gaps do occur in the merging phase. However, if data gaps occur during merger time, we show that we get biased astrophysical parameter estimates, highlighting the need for &#34;protected periods,&#34; where antenna repointing does not occur during the predicted merger time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05571v1-abstract-full').style.display = 'none'; document.getElementById('2410.05571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05541">arXiv:2410.05541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dilated space-and-wavelength selective crosspoint optical switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Ziyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bohao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wonfor%2C+A">Adrian Wonfor</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05541v2-abstract-short" style="display: inline;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05541v2-abstract-full" style="display: none;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In this work, we propose a new type of dilated crosspoint topology, which efficiently handles both space and wavelength selective switching, while reducing the required switching element count by an order of magnitude compared to reported designs. To the best of our knowledge, our design requires the fewest switching elements for an equivalent routing paths number and it fully cancels the first-order in-band crosstalk. We demonstrate such an ultra-compact space-and-wavelength-selective switch (SWSS) at a scale of $4\times 4\times 4位$ on the silicon-on-insulator (SOI) platform. Experimental results reveal that the switch achieves an insertion loss ranging from 2.3 dB to 8.6 dB and crosstalk levels in between -35.3 dB and -59.7 dB. The add-drop microring-resonators (MRRs) are equipped with micro-heaters, exhibiting a rise and fall time of 46 $渭$s and 0.33 $渭$s, respectively. These performance characteristics highlight the switch&#39;s ultra-low element count and crosstalk with low insertion loss, making it a promising candidate for advanced data center applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v2-abstract-full').style.display = 'none'; document.getElementById('2410.05541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17559">arXiv:2409.17559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17559">pdf</a>, <a href="https://arxiv.org/format/2409.17559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Zak Phase Induced Topological Nonreciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Han Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17559v1-abstract-short" style="display: inline;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17559v1-abstract-full" style="display: none;"> Topological physics provides novel insights for designing functional photonic devices, such as magnetic-free optical diodes, which are important in optical engineering and quantum information processing. Past efforts mostly focus on the topological edge modes in two-dimensional (2D) photonic Chern lattices, which, however, require delicate fabrication and temporal modulation. In particular, the 1D nonreciprocal edge mode needs to be embedded in a 2D lattice, contradicting with the compactness of integrated photonics. To address these challenges, we investigate the optical nonreciprocity of the 1D Su-Schrieffer-Heeger (SSH) superradiance lattices in room-temperature atoms. The probe fields propagating in two opposite directions perceive two different SSH topological phases, which have different absorption spectra due to the interplay between the Zak phase and the thermal motion of atoms, resulting in optical nonreciprocity. Our findings reveal the relationship between 1D topological matter and optical nonreciprocity, simplifying the design of topologically resilient nonreciprocal devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17559v1-abstract-full').style.display = 'none'; document.getElementById('2409.17559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05878">arXiv:2408.05878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05878">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Drone based superconducting single photon detection system with detection efficiency more than 90% </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruoyan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhimin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+X">Xiaojun Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">You Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">ChengJun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jiamin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+L">Liangliang Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaofu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L">Lixing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05878v1-abstract-short" style="display: inline;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05878v1-abstract-full" style="display: none;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographical constraints. We herein designed and manufactured the first drone based SSPD system with a SDE as high as 91.8%. This drone based SSPD system is established with high performance NbTiN SSPDs, self-developed miniature liquid helium dewar, and homemade integrated electric setups, which is able to be launched in complex topographical conditions. Such a drone based SSPD system may open the use of SSPDs for applications that demand high-SDE in complex environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'none'; document.getElementById('2408.05878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00324">arXiv:2408.00324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00324">pdf</a>, <a href="https://arxiv.org/ps/2408.00324">ps</a>, <a href="https://arxiv.org/format/2408.00324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of plasma nonuniformity on zero frequency zonal structure generation by drift Alfven wave instabilities in toroidal plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+Z">Zhiyong Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+G">Guangyu Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruirui Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00324v1-abstract-short" style="display: inline;"> Effects of plasma nonuniformity on zero frequency zonal structure (ZFZS) excitation by drift Alfven wave (DAW) instabilities in toroidal plasmas are investigated using nonlinear gyrokinetic theory. The governing equations describing nonlinear interactions among ZFZS and DAWs are derived, with the contribution of DAWs self-beating and radial modulation accounted for on the same footing. The obtaine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00324v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00324v1-abstract-full" style="display: none;"> Effects of plasma nonuniformity on zero frequency zonal structure (ZFZS) excitation by drift Alfven wave (DAW) instabilities in toroidal plasmas are investigated using nonlinear gyrokinetic theory. The governing equations describing nonlinear interactions among ZFZS and DAWs are derived, with the contribution of DAWs self-beating and radial modulation accounted for on the same footing. The obtained equations are then used to derive the nonlinear dispersion relation, which is then applied to investigate ZFZS generation in several scenarios. In particular, it is found that, the condition for zonal flow excitation by kinetic ballooning mode (KBM) could be sensitive to plasma parameters, and more detailed investigation is needed to understand KBM nonlinear saturation, crucial for bulk plasma transport in future reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00324v1-abstract-full').style.display = 'none'; document.getElementById('2408.00324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Nuclear Fusion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00287">arXiv:2408.00287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00287">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Construction of various time-dependent Hamiltonians on a single photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ye%2C+R">Rui Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guangzhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+X">Xiaotian Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Piyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+X">Xin Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chunhua Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00287v1-abstract-short" style="display: inline;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00287v1-abstract-full" style="display: none;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film lithium niobate chip. Such an integrated microresonator holds high quality factor to 10^6, and supports the construction of the synthetic frequency lattice with effective lattice sites up to 152 under the electro-optic modulation. By further applying a bichromatic modulation composed of two radio-frequency signals oppositely detuned from the resonant frequency in the microresonator, we build different time-dependent Hamiltonians with the time-varying nearest-neighbor coupling strength in synthetic frequency lattice. We measure the temporal features from capturing the dynamic band structures of the lattice and demonstrate a variety of time-dependent synthetic lattice models by engineering the driven pattern of the modulation, highlighting great flexibility of the microresonator. Our work shows a photonic chip for simulating versatile time-dependent Hamiltonians, which pushes forward quantum simulations in integrated photonics with great experimental tunability and reconfigurability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'none'; document.getElementById('2408.00287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02494">arXiv:2406.02494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02494">pdf</a>, <a href="https://arxiv.org/format/2406.02494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.183403">10.1103/PhysRevLett.133.183403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Velocity Scanning Tomography for Room-Temperature Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yunzhou Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J">Jianhao Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Han Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02494v1-abstract-short" style="display: inline;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02494v1-abstract-full" style="display: none;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'none'; document.getElementById('2406.02494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00471">arXiv:2406.00471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00471">pdf</a>, <a href="https://arxiv.org/format/2406.00471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Machine-learning wall-model large-eddy simulation accounting for isotropic roughness under local equilibrium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Lozano-Duran%2C+A">Adrian Lozano-Duran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00471v1-abstract-short" style="display: inline;"> We introduce a wall model (WM) for large-eddy simulation (LES) applicable to rough surfaces with Gaussian and non-Gaussian distributions for both transitionally and fully rough regimes. The model is applicable to arbitrary complex geometries where roughness elements are assumed to be underresolved. The wall model is implemented using a feedforward neural network, with the geometric properties of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00471v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00471v1-abstract-full" style="display: none;"> We introduce a wall model (WM) for large-eddy simulation (LES) applicable to rough surfaces with Gaussian and non-Gaussian distributions for both transitionally and fully rough regimes. The model is applicable to arbitrary complex geometries where roughness elements are assumed to be underresolved. The wall model is implemented using a feedforward neural network, with the geometric properties of the roughness topology and near-wall flow quantities serving as input. The optimal set of non-dimensional input features is identified using information theory, selecting variables that maximize information about the output while minimizing redundancy among inputs. The model incorporates a confidence score based on Gaussian process modeling, enabling the detection of low model performance for unseen rough surfaces. The model is trained using a direct numerical simulation roughness database comprising approximately 200 cases. The roughness geometries for the database are selected from a large repository through active learning. This approach ensures that the rough surfaces incorporated into the database are the most informative. The model performance is evaluated both a-priori and a-posteriori in WMLES of turbulent channel flows with rough walls. Over 120 channel flow cases are considered, including untrained roughness geometries, roughness Reynolds numbers, and grid resolutions for both transitionally- and fully-rough regimes. The results show that the rough-wall model predicts the wall shear stress within 15% accuracy. The model is also assessed on a high-pressure turbine blade with two different rough surfaces. The WM predicts the skin friction and the mean velocity deficit within 10% accuracy except the region with shock waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00471v1-abstract-full').style.display = 'none'; document.getElementById('2406.00471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00276">arXiv:2406.00276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00276">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tao%2C+S">Shengyu Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mengtian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zixi Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruifei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Che%2C+Y">Yunhong Che</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xin Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+L">Lin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiangyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zihao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+H">Heng Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+T">Tingwei Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+X">Xiao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yaojun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Wenjun Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zhongling Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+H">Han Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiaosong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=ZHou%2C+G">Guangmin ZHou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00276v1-abstract-short" style="display: inline;"> Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed mac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00276v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00276v1-abstract-full" style="display: none;"> Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00276v1-abstract-full').style.display = 'none'; document.getElementById('2406.00276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; G.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19989">arXiv:2405.19989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19989">pdf</a>, <a href="https://arxiv.org/ps/2405.19989">ps</a>, <a href="https://arxiv.org/format/2405.19989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-locked broadband Raman-electro-optic microcomb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pi-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+F">Fang-Wen Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19989v1-abstract-short" style="display: inline;"> Optical frequency combs (OFCs), composed of equally spaced frequency tones, have spurred advancements in communications, spectroscopy, precision measurement and fundamental physics research. A prevalent method for generating OFCs involves the electro-optic (EO) effect, i.e., EO comb, renowned for its rapid tunability via precise microwave field control. Recent advances in integrated lithium niobat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19989v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19989v1-abstract-full" style="display: none;"> Optical frequency combs (OFCs), composed of equally spaced frequency tones, have spurred advancements in communications, spectroscopy, precision measurement and fundamental physics research. A prevalent method for generating OFCs involves the electro-optic (EO) effect, i.e., EO comb, renowned for its rapid tunability via precise microwave field control. Recent advances in integrated lithium niobate (LN) photonics have greatly enhanced the efficiency of EO effect, enabling the generation of broadband combs with reduced microwave power. However, parasitic nonlinear effects, such as Raman scattering and four-wave mixing, often emerge in high quality nonlinear devices, impeding the expansion of comb bandwidth and the minimization of frequency noise. Here, we tame these nonlinear effects and present a novel type of OFC, i.e., the self-locked Raman-electro-optic (REO) microcomb by leveraging the collaboration of EO, Kerr and Raman scattering processes. The spectral width of the REO microcomb benefits from the Raman gain and Kerr effect, encompassing nearly 1400 comb lines spanning over 300 nm with a fine repetition rate of 26.03 GHz, much larger than the pure EO combs. Remarkably, the system can maintain a self-locked low-noise state in the presence of multiple nonlinearities without the need for external active feedback. Our approach points to a direction for improving the performance of microcombs and paves the way for exploring new nonlinear physics, such as new laser locking techniques, through the collaboration of inevitable multiple nonlinear effects in integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19989v1-abstract-full').style.display = 'none'; document.getElementById('2405.19989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11221">arXiv:2405.11221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11221">pdf</a>, <a href="https://arxiv.org/format/2405.11221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Real-time equilibrium reconstruction by neural network based on HL-3 tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+G">Guohui Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Songfen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zongyu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xinwen Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+A">Ao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shuo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+W">Wulyu Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11221v1-abstract-short" style="display: inline;"> A neural network model, EFITNN, has been developed capable of real-time magnetic equilibrium reconstruction based on HL-3 tokamak magnetic measurement signals. The model processes inputs from 68 channels of magnetic measurement data gathered from 1159 HL-3 experimental discharges, including plasma current, loop voltage, and the poloidal magnetic fields measured by equilibrium probes. The outputs o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11221v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11221v1-abstract-full" style="display: none;"> A neural network model, EFITNN, has been developed capable of real-time magnetic equilibrium reconstruction based on HL-3 tokamak magnetic measurement signals. The model processes inputs from 68 channels of magnetic measurement data gathered from 1159 HL-3 experimental discharges, including plasma current, loop voltage, and the poloidal magnetic fields measured by equilibrium probes. The outputs of the model feature eight key plasma parameters, alongside high-resolution ($129\times129$) reconstructions of the toroidal current density $J_{\text P}$ and poloidal magnetic flux profiles $唯_{rz}$. Moreover, the network&#39;s architecture employs a multi-task learning structure, which enables the sharing of weights and mutual correction among different outputs, and lead to increase the model&#39;s accuracy by up to 32%. The performance of EFITNN demonstrates remarkable consistency with the offline EFIT, achieving average $R^2 = 0.941, 0.997$ and $0.959$ for eight plasma parameters, $唯_{rz}$ and $J_{\text P}$, respectively. The model&#39;s robust generalization capabilities are particularly evident in its successful predictions of quasi-snowflake (QSF) divertor configurations and its adept handling of data from shot numbers or plasma current intervals not previously encountered during training. Compared to numerical methods, EFITNN significantly enhances computational efficiency with average computation time ranging from 0.08ms to 0.45ms, indicating its potential utility in real-time isoflux control and plasma profile management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11221v1-abstract-full').style.display = 'none'; document.getElementById('2405.11221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11153">arXiv:2405.11153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11153">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dual-color Coherent Perfect Absorber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+B">Boyi Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jintian Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+J">Jiankun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yicheng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruixin Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Ya Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+L">Li Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wenjie Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11153v1-abstract-short" style="display: inline;"> Perfect absorption of light critically affects light-matter interaction for various applications. Coherent perfect absorbers (CPA) gain the unique capability of controlling light with light in a linear fashion. Multi-color CPAs [Phys. Rev. Lett. 107, 033901] are highly desirable for broadband and nonlinear light-to-light coherent control, however, the experimental demonstration has still remained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11153v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11153v1-abstract-full" style="display: none;"> Perfect absorption of light critically affects light-matter interaction for various applications. Coherent perfect absorbers (CPA) gain the unique capability of controlling light with light in a linear fashion. Multi-color CPAs [Phys. Rev. Lett. 107, 033901] are highly desirable for broadband and nonlinear light-to-light coherent control, however, the experimental demonstration has still remained elusive. Here we experimentally observe a dual-color version of CPA (DC-CPA) through a second harmonic generation in a single whispering-gallery-mode microcavity. The DC-CPA enables simultaneous perfect absorption of both the incoming fundamental wave and its second harmonic. Similar to its linear counterpart, coherent control in the DC-CPA can be also realized by tuning the relative phase and intensity between the two-colored waves through nonlinear interference instead of the linear one. This scheme breaks the linear boundary of the traditional CPA into a multi-frequency domain and paves the way toward all-optically signal processing and quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11153v1-abstract-full').style.display = 'none'; document.getElementById('2405.11153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19584">arXiv:2404.19584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19584">pdf</a>, <a href="https://arxiv.org/format/2404.19584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO$_3$ microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lv%2C+X">Xiaomin Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+B">Binbin Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhenyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+D">Du Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guanyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+G">Guowei Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19584v1-abstract-short" style="display: inline;"> Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO$_3$ has complicated the formation of Kerr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19584v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19584v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19584v1-abstract-full" style="display: none;"> Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO$_3$ has complicated the formation of Kerr microcombs. Until now, dark pulse microcombs, requiring a double balance between Kerr nonlinearity and normal group velocity dispersion as well as gain and loss, have remained elusive in LiNbO$_3$ microresonators. Here, by incorporating dissipation engineering, we demonstrate dark pulse microcombs with 25 GHz repetition frequency and 200 nm span in a high-$Q$ LiNbO$_3$ microresonator. Resonances near the Raman-active wavelengths are strongly damped by controlling phase-matching conditions of a specially designed pulley coupler. The coherence and tunability of the dark pulse microcombs are also investigated. Our work provides a solution to realize high-power microcombs operating at microwave rates on LiNbO$_3$ chips, promising new opportunities for the monolithic integration of applications spanning communication to microwave photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19584v1-abstract-full').style.display = 'none'; document.getElementById('2404.19584v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14132">arXiv:2403.14132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14132">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing sensitivity of atomic microwave receiver combining laser arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Bo Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruiqi Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sang%2C+D">Di Sang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yanli Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yi Lin</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qiang An</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Y">Yunqi Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14132v3-abstract-short" style="display: inline;"> Rydberg atom,which exhibits a strong response to weak electric(E) fields,is regarded as a promising atomic receiver to surpass sensitivity of conventional receivers. However, its sensitivity is strongly limited by the noise coming from both classical and quantum levels and how to enhance it significantly remains challenging. Here we experimentally prove that the sensitivity of Rydberg atomic recei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14132v3-abstract-full').style.display = 'inline'; document.getElementById('2403.14132v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14132v3-abstract-full" style="display: none;"> Rydberg atom,which exhibits a strong response to weak electric(E) fields,is regarded as a promising atomic receiver to surpass sensitivity of conventional receivers. However, its sensitivity is strongly limited by the noise coming from both classical and quantum levels and how to enhance it significantly remains challenging. Here we experimentally prove that the sensitivity of Rydberg atomic receiver can be increased to 23 nV/cm/Hz1/2 by combining laser arrays. Theoretically, we demonstrate that multiple beams illuminating on a PD perform better than multiple PDs for laser arrays.In our experiment,10 dB SNR enhancement is achieved by utilizing 2 * 2 probe beam arrays, compared to the performance of a laser beam,and it can be enhanced further just by adding a resonator. The results could offer an avenue for the design and optimization of ultrahigh-sensitivity Rydberg atomic receivers and promote applications in cosmology, meteorology, communication, and microwave quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14132v3-abstract-full').style.display = 'none'; document.getElementById('2403.14132v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02866">arXiv:2403.02866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Unlocking Electro-optic Resonant Phase Shifting for Multi-dimensional, Ultra-dynamic Photonic Switches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+L">Lingzhi Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R+V">Richard V. Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02866v3-abstract-short" style="display: inline;"> Optical circuit switching is connection-oriented, being deterministic through the reservation of a complete wavelength channel or spatial path for a certain period. However, this comes at a trade-off against link dynamics, and overall capacity can thus be constrained by the time slot reservations, especially for switches with microsecond- to millisecond-scale reconfiguration times. For data-intens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02866v3-abstract-full').style.display = 'inline'; document.getElementById('2403.02866v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02866v3-abstract-full" style="display: none;"> Optical circuit switching is connection-oriented, being deterministic through the reservation of a complete wavelength channel or spatial path for a certain period. However, this comes at a trade-off against link dynamics, and overall capacity can thus be constrained by the time slot reservations, especially for switches with microsecond- to millisecond-scale reconfiguration times. For data-intensive applications, the communication patterns associated with random data sets typically yield short-lived flows. This situation calls for a new multi-dimensional switching paradigm that fully exploits not only the space and wavelength domains but also with nanosecond-scale reconfigurable capability in the time domain to enable ultra-dynamic links. In this work, we focus on the exploitation of micro-ring resonant phase shifters (RPSs) that are wavelength selective for optical switching in a single plane. By proposing an innovative analytical method with transmission circle chart, we fully unlock the power of RPS with nanosecond-scale reconfigurability and the capability to arbitrarily manipulate its phase and amplitude. Such a compact model offers fresh insights into designs with under and critically coupled RPSs beyond the commonly explored over-coupling condition. This creates not only versatile switch elements but also perfect absorbers for robust multi-wavelength operations. The proposed device can bring about a breakthrough in the optical switching capacity that potentially addresses the challenges faced by modern data center networks, as well as other photonic circuits for high-throughput signal processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02866v3-abstract-full').style.display = 'none'; document.getElementById('2403.02866v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18858">arXiv:2402.18858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18858">pdf</a>, <a href="https://arxiv.org/format/2402.18858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Graphics Processing Unit/Artificial Neural Network-accelerated large-eddy simulation of turbulent combustion: Application to swirling premixed flames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenhua An</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18858v1-abstract-short" style="display: inline;"> Within the scope of reacting flow simulations, the real-time direct integration (DI) of stiff ordinary differential equations (ODE) for the computation of chemical kinetics stands as the primary demand on computational resources. Meanwhile, as the number of transport equations that need to be solved increases, the computational cost grows more substantially, particularly for those combustion model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18858v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18858v1-abstract-full" style="display: none;"> Within the scope of reacting flow simulations, the real-time direct integration (DI) of stiff ordinary differential equations (ODE) for the computation of chemical kinetics stands as the primary demand on computational resources. Meanwhile, as the number of transport equations that need to be solved increases, the computational cost grows more substantially, particularly for those combustion models involving direct coupling of chemistry and flow such as the transported probability density function model. In the current study, an integrated Graphics Processing Unit-Artificial Neural Network (GPU-ANN) framework is introduced to comply with heavy computational costs while maintaining high fidelity. Within this framework, a GPU-based solver is employed to solve partial differential equations and compute thermal and transport properties, and an ANN is utilized to replace the calculation of reaction rates. Large eddy simulations of two swirling flames provide a robust validation, affirming and extending the GPU-ANN approach&#39;s applicability to challenging scenarios. The simulation results demonstrate a strong correlation in the macro flame structure and statistical characteristics between the GPU-ANN approach and the traditional Central Processing Unit (CPU)-based solver with DI. This comparison indicates that the GPU-ANN approach is capable of attaining the same degree of precision as the conventional CPU-DI solver, even in more complex scenarios. In addition, the overall speed-up factor for the GPU-ANN approach is over two orders of magnitude. This study establishes the potential groundwork for widespread application of the proposed GPU-ANN approach in combustion simulations, addressing various and complex scenarios based on detailed chemistry, while significantly reducing computational costs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18858v1-abstract-full').style.display = 'none'; document.getElementById('2402.18858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08930">arXiv:2402.08930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08930">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202301351">10.1002/lpor.202301351 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subwavelength Photorefractive Grating in a Thin-Film Lithium Niobate Microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hou%2C+J">Jiankun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jiefu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruixin Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+B">Boyi Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yicheng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jintian Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoshun Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Ya Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+L">Li Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wenjie Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08930v1-abstract-short" style="display: inline;"> Subwavelength gratings play a fundamental and pivotal role in numerous science and applications for wave manipulation, exhibiting distinctive features such as filtering, phase manipulation, and anti-reflection. However, conventional fabrication methods for ultrasmall periodic structures are constrained by the fundamental optical diffraction limit, making it challenging to produce subwavelength gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08930v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08930v1-abstract-full" style="display: none;"> Subwavelength gratings play a fundamental and pivotal role in numerous science and applications for wave manipulation, exhibiting distinctive features such as filtering, phase manipulation, and anti-reflection. However, conventional fabrication methods for ultrasmall periodic structures are constrained by the fundamental optical diffraction limit, making it challenging to produce subwavelength gratings for optics. Here, we demonstrate a novel technique to build a reconfigurable subwavelength photorefractive grating (SPG) in a thin-film lithium niobate on the platform of an optical microcavity. Such SPGs are optically induced through the photorefractive effect and the subwavelength features originate from the spatial phase modulations of the pump&#39;s standing wave. The resulting SPGs lead to the mode splitting of two counter-propagating modes inside the microcavity, exhibiting an Electromagnetically Induced Transparency (EIT)-like transmission spectrum. Moreover, the unique subwavelength characteristic of SPGs enables first-order quasi-phase-matching for backward second-harmonic generation, a long-standing problem in nonlinear optics. Also, free-space-to-chip vertical nonlinear frequency conversion can be achieved in a similar manner. These results provide a flexible approach towards fabricating subwavelength gratings, which holds significant potential in various applications such as nonlinear frequency conversion, optical communication, sensing, and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08930v1-abstract-full').style.display = 'none'; document.getElementById('2402.08930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06200">arXiv:2402.06200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06200">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.256902">10.1103/PhysRevLett.132.256902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced Frequency Conversion in Parity-Time Symmetry Line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hou%2C+J">Jiankun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jiefu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruixin Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+B">Boyi Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yicheng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jintian Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoshun Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Ya Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+L">Li Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wenjie Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06200v1-abstract-short" style="display: inline;"> Non-Hermitian degeneracies reveal intriguing and non-trivial behaviors in open physical systems. Examples like Parity-Time (PT) symmetry breaking, topological encircling chirality, and enhanced sensing near an exceptional point (EP) are often associated with the abrupt nature of the phase transition around these degeneracies. Here we experimentally observe a cavity-enhanced second-harmonic frequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06200v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06200v1-abstract-full" style="display: none;"> Non-Hermitian degeneracies reveal intriguing and non-trivial behaviors in open physical systems. Examples like Parity-Time (PT) symmetry breaking, topological encircling chirality, and enhanced sensing near an exceptional point (EP) are often associated with the abrupt nature of the phase transition around these degeneracies. Here we experimentally observe a cavity-enhanced second-harmonic frequency (SHG) conversion on a PT symmetry line, i.e. a set consisting of open-ended isofrequency or isoloss lines, both terminated at EPs on the Riemann surface in parameter space. The enhancement factor can reach as high as 300, depending on the crossing point whether in the symmetry or the broken phase of the PT line. Moreover, such enhancement of SHG enables sensitive distance sensing with a nanometer resolution. Our works may pave the way for practical applications in sensing, frequency conversion, and coherent wave control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06200v1-abstract-full').style.display = 'none'; document.getElementById('2402.06200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17495">arXiv:2312.17495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17495">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.csbj.2024.04.030">10.1016/j.csbj.2024.04.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrating Chemical Language and Molecular Graph in Multimodal Fused Deep Learning for Drug Property Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+X">Xiaohua Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+L">Liangxu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Rongzhi Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+S">Shan Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiaojun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17495v2-abstract-short" style="display: inline;"> Accurately predicting molecular properties is a challenging but essential task in drug discovery. Recently, many mono-modal deep learning methods have been successfully applied to molecular property prediction. However, the inherent limitation of mono-modal learning arises from relying solely on one modality of molecular representation, which restricts a comprehensive understanding of drug molecul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17495v2-abstract-full').style.display = 'inline'; document.getElementById('2312.17495v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17495v2-abstract-full" style="display: none;"> Accurately predicting molecular properties is a challenging but essential task in drug discovery. Recently, many mono-modal deep learning methods have been successfully applied to molecular property prediction. However, the inherent limitation of mono-modal learning arises from relying solely on one modality of molecular representation, which restricts a comprehensive understanding of drug molecules and hampers their resilience against data noise. To overcome the limitations, we construct multimodal deep learning models to cover different molecular representations. We convert drug molecules into three molecular representations, SMILES-encoded vectors, ECFP fingerprints, and molecular graphs. To process the modal information, Transformer-Encoder, bi-directional gated recurrent units (BiGRU), and graph convolutional network (GCN) are utilized for feature learning respectively, which can enhance the model capability to acquire complementary and naturally occurring bioinformatics information. We evaluated our triple-modal model on six molecule datasets. Different from bi-modal learning models, we adopt five fusion methods to capture the specific features and leverage the contribution of each modal information better. Compared with mono-modal models, our multimodal fused deep learning (MMFDL) models outperform single models in accuracy, reliability, and resistance capability against noise. Moreover, we demonstrate its generalization ability in the prediction of binding constants for protein-ligand complex molecules in the refined set of PDBbind. The advantage of the multimodal model lies in its ability to process diverse sources of data using proper models and suitable fusion methods, which would enhance the noise resistance of the model while obtaining data diversity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17495v2-abstract-full').style.display = 'none'; document.getElementById('2312.17495v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16387">arXiv:2312.16387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16387">pdf</a>, <a href="https://arxiv.org/format/2312.16387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A comprehensive study on the accuracy and generalization of deep learning-generated chemical ODE integrators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Ruixin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16387v1-abstract-short" style="display: inline;"> The application of deep neural networks (DNNs) holds considerable promise as a substitute for the direct integration of chemical source terms in combustion simulations. However, challenges persist in ensuring high precision and generalisation across various different fuels and flow conditions. In this study, we propose and validate a consistent DNN approach for chemistry integration in a range of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16387v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16387v1-abstract-full" style="display: none;"> The application of deep neural networks (DNNs) holds considerable promise as a substitute for the direct integration of chemical source terms in combustion simulations. However, challenges persist in ensuring high precision and generalisation across various different fuels and flow conditions. In this study, we propose and validate a consistent DNN approach for chemistry integration in a range of fuels and premixed flame configurations. This approach generates thermochemical base state from a set of low-dimensional laminar flames, followed by an effective perturbation strategy to enhance the coverage of the composition space for higher generalisation ability. A constraint criterion based on heat release rate is then employed to remove the nonphysical perturbed states for improved accuracy.Without specific tuning, three DNNs are consistently trained for three representative fuels, i.e., hydrogen, ethylene and Jet-A. Comprehensive validations are conducted using 1-D laminar flames and two typical turbulent premixed flames. The DNN model predictions on various physical characteristics, including laminar and turbulent flame speeds, dynamic flame structures influenced by turbulence-chemistry interactions, and conditional scalar profiles, all exhibit good agreement with the results obtained from direct integration. This demonstrates the exceptional accuracy and generalisation ability of the proposed DNN approach. Furthermore, when the DNN is used in the simulation, a significant speed-up for the chemistry integration is achieved, approximately 50 for the ethylene/air flame and 90 for the Jet-A/air flame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16387v1-abstract-full').style.display = 'none'; document.getElementById('2312.16387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13513">arXiv:2312.13513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13513">pdf</a>, <a href="https://arxiv.org/format/2312.13513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An integrated framework for accelerating reactive flow simulation using GPU and machine learning models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yingrui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jiayang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+X">Xinyu Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13513v1-abstract-short" style="display: inline;"> Recent progress in artificial intelligence (AI) and high-performance computing (HPC) have brought potentially game-changing opportunities in accelerating reactive flow simulations. In this study, we introduce an open-source computational fluid dynamics (CFD) framework that integrates the strengths of machine learning (ML) and graphics processing unit (GPU) to demonstrate their combined capability.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13513v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13513v1-abstract-full" style="display: none;"> Recent progress in artificial intelligence (AI) and high-performance computing (HPC) have brought potentially game-changing opportunities in accelerating reactive flow simulations. In this study, we introduce an open-source computational fluid dynamics (CFD) framework that integrates the strengths of machine learning (ML) and graphics processing unit (GPU) to demonstrate their combined capability. Within this framework, all computational operations are solely executed on GPU, including ML-accelerated chemistry integration, fully-implicit solving of PDEs, and computation of thermal and transport properties, thereby eliminating the CPU-GPU memory copy overhead. Optimisations both within the kernel functions and during the kernel launch process are conducted to enhance computational performance. Strategies such as static data reorganisation and dynamic data allocation are adopted to reduce the GPU memory footprint. The computational performance is evaluated in two turbulent flame benchmarks using quasi-DNS and LES modelling, respectively. Remarkably, while maintaining a similar level of accuracy to the conventional CPU/CVODE-based solver, the GPU/ML-accelerated approach shows an overall speedup of over two orders of magnitude for both cases. This result highlights that high-fidelity turbulent combustion simulation with finite-rate chemistry that requires normally hundreds of CPUs can now be performed on portable devices such as laptops with a medium-end GPU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13513v1-abstract-full').style.display = 'none'; document.getElementById('2312.13513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07024">arXiv:2312.07024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Second-harmonic generation with a 440,000% W-1 conversion efficiency in a lithium niobate microcavity without periodic poling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhenzhong Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+D">Di Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guoquan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jingjun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07024v1-abstract-short" style="display: inline;"> Thin-film lithium niobate (TFLN) enables extremely high-efficiency second-order nonlinear optical effects due to large nonlinear coefficient d33 and strong optical field localization. Here, we first designed and fabricated a pulley-waveguide-coupled microring resonator with an intrinsic quality factor above 9.4 x10^5 on the reverse-polarized double-layer X-cut TFLN. In such a TFLN resonator withou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07024v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07024v1-abstract-full" style="display: none;"> Thin-film lithium niobate (TFLN) enables extremely high-efficiency second-order nonlinear optical effects due to large nonlinear coefficient d33 and strong optical field localization. Here, we first designed and fabricated a pulley-waveguide-coupled microring resonator with an intrinsic quality factor above 9.4 x10^5 on the reverse-polarized double-layer X-cut TFLN. In such a TFLN resonator without fine domain structures, second harmonic generation with an absolute (normalized) conversion efficiency of 30% (440,000% W-1), comparable to that in periodically poled lithium niobate (PPLN) microring resonators, was realized with a sub-microwatt continuous pump. This work reduces the dependence of high-efficiency nonlinear frequency conversion on PPLN microcavities that are difficult to prepare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07024v1-abstract-full').style.display = 'none'; document.getElementById('2312.07024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05800">arXiv:2312.05800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05800">pdf</a>, <a href="https://arxiv.org/format/2312.05800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> GPU-accelerated Large Eddy Simulation of turbulent stratified flames with machine learning chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Ruixin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05800v1-abstract-short" style="display: inline;"> Stratified premixed combustion, known for its capability to expand flammability limits and reduce overall-lean combustion instability, has been widely adopted to comply with increasingly stringent environmental regulations. Numerous numerical simulations with different combustion models and mesh resolutions have been conducted on laboratory-scale flames to further understand the stratified premixe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05800v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05800v1-abstract-full" style="display: none;"> Stratified premixed combustion, known for its capability to expand flammability limits and reduce overall-lean combustion instability, has been widely adopted to comply with increasingly stringent environmental regulations. Numerous numerical simulations with different combustion models and mesh resolutions have been conducted on laboratory-scale flames to further understand the stratified premixed combustion. However, the trade-off between the high-fidelity and low computational cost for simulating laboratory-scale flames still remains, particularly for those combustion models involving direct coupling of chemistry and flow. In the present study, a GPU-based solver is employed to solve partial differential equations and calculate the thermal and transport properties, while an artificial neural network (ANN) is introduced to replace reaction rate calculation. Particular emphasis is placed on evaluating the proposed GPU-ANN approach through the large eddy simulation of the Cambridge stratified flame. The simulation results show good agreement for the flow and flame statistics between the GPU-ANN approach and the conventional CPU-based solver with direct integration (DI). The comparison suggests that the GPU-ANN approach can achieve the same level of accuracy as the conventional CPU-DI solver. In addition, the overall speed-up factor for the GPU-ANN approach is over two orders of magnitude. This study lays the potential groundwork for fully resolved laboratory-scale flame simulations based on detailed chemistry with much more affordable computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05800v1-abstract-full').style.display = 'none'; document.getElementById('2312.05800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05782">arXiv:2312.05782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05782">pdf</a>, <a href="https://arxiv.org/format/2312.05782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Cellular uptake of active nonspherical nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+K">Ke Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chen-Xu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05782v1-abstract-short" style="display: inline;"> Due to the potential applications in biomedical engineering, it becomes more and more important to understand the process of engulfment and internalization of nanoparticles (NPs) by cell membranes. Despite the fact that the interaction between cell membranes and passive particles has been widely studied, the interaction between cell membranes and self-propelled nonspherical NPs remains to be eluci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05782v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05782v1-abstract-full" style="display: none;"> Due to the potential applications in biomedical engineering, it becomes more and more important to understand the process of engulfment and internalization of nanoparticles (NPs) by cell membranes. Despite the fact that the interaction between cell membranes and passive particles has been widely studied, the interaction between cell membranes and self-propelled nonspherical NPs remains to be elucidated. Here we present a theoretical model to systematically investigate the influence of the active force, aspect ratio of NPs, particle size and membrane properties (adhesion energy density and membrane tension) on the cellular uptake of a nonspherical nanoparticle. It is found that the active force generated by an NP can trigger a type of first-order wrapping transition from a small partial wrapping state to a large one. In addition, the phase diagram in the force-aspect ratio (particle size, adhesion energy density and membrane tension) space displays more complex behaviors compared with that for the passive wrapping mediated merely by adhesion. These results may provide a useful guidance to the study of activity-driven cellular entry of active particles into cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05782v1-abstract-full').style.display = 'none'; document.getElementById('2312.05782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04830">arXiv:2312.04830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04830">pdf</a>, <a href="https://arxiv.org/format/2312.04830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Detailed simulation of LOX/GCH4 flame-vortex interaction in supercritical Taylor-Green flows with machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jiayang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yifan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+Z">Zifeng Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yuqing Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Ruixin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04830v1-abstract-short" style="display: inline;"> Accurate and affordable simulation of supercritical reacting flow is of practical importance for developing advanced engine systems for liquid rockets, heavy-duty powertrains, and next-generation gas turbines. In this work, we present detailed numerical simulations of LOX/GCH4 flame-vortex interaction under supercritical conditions. The well-established benchmark configuration of three-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04830v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04830v1-abstract-full" style="display: none;"> Accurate and affordable simulation of supercritical reacting flow is of practical importance for developing advanced engine systems for liquid rockets, heavy-duty powertrains, and next-generation gas turbines. In this work, we present detailed numerical simulations of LOX/GCH4 flame-vortex interaction under supercritical conditions. The well-established benchmark configuration of three-dimensional Taylor-Green vortex (TGV) embedded with a diffusion flame is modified for real fluid simulations. Both ideal gas and Peng-Robinson (PR) cubic equation of states are studied to reveal the real fluid effects on the TGV evolution and flame-vortex interaction. The results show intensified flame stretching and quenching arising from the intrinsic large density gradients of real gases, as compared to that for the idea gases. Furthermore, to reduce the computational cost associated with real fluid thermophysical property calculations, a machine learning-based strategy utilising deep neural networks (DNNs) is developed and then assessed using the three-dimensional reactive TGV. Generally good prediction accuracy is achieved by the DNN, meanwhile providing a computational speed-up of 13 times over the convectional approach. The profound physics involved in flame-vortex interaction under supercritical conditions demonstrated by this study provides a benchmark for future related studies, and the machine learning modelling approach proposed is promising for practical high-fidelity simulation of supercritical combustion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04830v1-abstract-full').style.display = 'none'; document.getElementById('2312.04830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00854">arXiv:2312.00854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00854">pdf</a>, <a href="https://arxiv.org/format/2312.00854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> </div> <p class="title is-5 mathjax"> A Probabilistic Neural Twin for Treatment Planning in Peripheral Pulmonary Artery Stenosis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+D">John D. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+J">Jakob Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Pfaller%2C+M+R">Martin R. Pfaller</a>, <a href="/search/physics?searchtype=author&amp;query=Szafron%2C+J+M">Jason M. Szafron</a>, <a href="/search/physics?searchtype=author&amp;query=Menon%2C+K">Karthik Menon</a>, <a href="/search/physics?searchtype=author&amp;query=Zanoni%2C+A">Andrea Zanoni</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+M+R">Michael R. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Feinstein%2C+J+A">Jeffrey A. Feinstein</a>, <a href="/search/physics?searchtype=author&amp;query=Kreutzer%2C+J">Jacqueline Kreutzer</a>, <a href="/search/physics?searchtype=author&amp;query=Marsden%2C+A+L">Alison L. Marsden</a>, <a href="/search/physics?searchtype=author&amp;query=Schiavazzi%2C+D+E">Daniele E. Schiavazzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00854v1-abstract-short" style="display: inline;"> The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00854v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00854v1-abstract-full" style="display: none;"> The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilsitic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00854v1-abstract-full').style.display = 'none'; document.getElementById('2312.00854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18419">arXiv:2311.18419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18419">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Incoherent illumination for motion-based imaging through thick scattering medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=She%2C+M">Mingzhu She</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+A">Anda Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Weili Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18419v1-abstract-short" style="display: inline;"> Object-motion-based speckle correlation can recover hidden objects from any inhomogeneous medium, which takes advantage of the inherent connection that the cross-correlation between speckle patterns can reflect the autocorrelation of object, providing a route for imaging through or inside thick scattering media. However, once the object is phase-modulated, the above-mentioned relation will not be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18419v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18419v1-abstract-full" style="display: none;"> Object-motion-based speckle correlation can recover hidden objects from any inhomogeneous medium, which takes advantage of the inherent connection that the cross-correlation between speckle patterns can reflect the autocorrelation of object, providing a route for imaging through or inside thick scattering media. However, once the object is phase-modulated, the above-mentioned relation will not be satisfied under coherent illumination, and the objects cannot be recovered using the existing approaches. Here, we propose an incoherent illumination method for object-motion-based imaging. Theoretical analysis and experimental results show that the cross-correlation between the object-motion-based speckle patterns can be directly used to represent the intensity autocorrelation of the object, making it possible to recover hidden objects regardless of whether the object is phase-modulated or not. Moreover, the proposed approach has a lower root-mean-square error for extracting the autocorrelation patterns of the hidden object. The proposed imaging mechanism blazes a way of imaging moving objects with scattering-induced or intrinsic phase profile, which is in favor of complex imaging scenarios such as inhomogeneous object imaging, deep tissue imaging, and passive lighting scattering imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18419v1-abstract-full').style.display = 'none'; document.getElementById('2311.18419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05837">arXiv:2311.05837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05837">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-efficiency edge couplers enabled by vertically tapering on lithium-niobate photonic chips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+D">Di Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xuanyi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qifan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guoquan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jingjun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05837v1-abstract-short" style="display: inline;"> In the past decade, photonic integrated circuits (PICs) based on thin-film lithium niobate (TFLN) have advanced in various fields, including optical communication, nonlinear photonics, and quantum optics. A critical component is an efficient edge coupler connecting PICs to light sources or detectors. Here, we propose an innovative edge coupler design with a wedge-shaped TFLN waveguide and a silico&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05837v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05837v1-abstract-full" style="display: none;"> In the past decade, photonic integrated circuits (PICs) based on thin-film lithium niobate (TFLN) have advanced in various fields, including optical communication, nonlinear photonics, and quantum optics. A critical component is an efficient edge coupler connecting PICs to light sources or detectors. Here, we propose an innovative edge coupler design with a wedge-shaped TFLN waveguide and a silicon oxynitride (SiON) cladding. Experimental results show that the coupling loss between the TFLN PIC and a 3-渭m mode field diameter (MFD) lensed fiber is low at 1.52 dB/facet, with the potential for improvement to 0.43 dB/facet theoretically. The coupling loss between the edge coupler and a UHNA7 fiber with an MFD of 3.2 渭m is reduced to 0.92 dB/facet. This design maintains robust fabrication and alignment tolerance. Importantly, the minimum linewidth of the TFLN waveguide of the coupler (600 nm) can be easily achieved using foundry-available i-line stepper lithography. This work benefits the development of TFLN integrated platforms, such as on-chip electro-optic modulators, frequency comb generation, and quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05837v1-abstract-full').style.display = 'none'; document.getElementById('2311.05837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17839">arXiv:2310.17839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17839">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Orbital-angular-momentum dependent speckles for spatial mode sorting and multiplexed data transmission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+K+H">Ke Hai Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+S">Jing Song He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W+L">Wei Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+D+Y">Dian Yuan Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Gomes%2C+A+S+L">Anderson S. L. Gomes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17839v1-abstract-short" style="display: inline;"> Characterizing the orbital angular momentum (OAM) of a vortex beam is critically important for OAM-encoded data transfer. However, in typical OAM-based applications where vortex beams transmit through diffusers, the accompanying scattering effect tends to be either deliberately prevented, or characterized and then modulated actively based on complex wavefront shaping and interferometry techniques.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17839v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17839v1-abstract-full" style="display: none;"> Characterizing the orbital angular momentum (OAM) of a vortex beam is critically important for OAM-encoded data transfer. However, in typical OAM-based applications where vortex beams transmit through diffusers, the accompanying scattering effect tends to be either deliberately prevented, or characterized and then modulated actively based on complex wavefront shaping and interferometry techniques. Here, we aim to investigate the characteristics of blurred speckles obtained after a vortex beam transmits through a ground glass diffuser. It is theoretically and experimentally demonstrated that a cross-correlation annulus can be identified by implementing the cross-correlation operation between speckle patterns corresponding to vortex beams with different OAM values. Besides, it is worth noting that, the size of the cross-correlation annulus is determined by the absolute value of the topological charge difference between the two corresponding vortex beams. Based on this mechanism, the OAM modes can be easily sorted from the incoherently measured OAM-dependent speckles as well as their cross-correlation. Furthermore, to make full use of the orthogonal feature of the OAM-dependent speckles, demultiplexing of OAM-encoded data transfer is verified using a ground glass diffuser. Both 8-bit grayscale and 24-bit RGB OAM-encoded data transfers are carried out in experiments with superior error rates. We can conclude that the OAM-dependent speckles can be not only utilized as a competitive candidate for the OAM mode sorting function in a simple way but also provide an efficient method for the demultiplexing of OAM-encoded data transfer in a practical application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17839v1-abstract-full').style.display = 'none'; document.getElementById('2310.17839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11935">arXiv:2306.11935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11935">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202300378">10.1002/qute.202300378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting nanowire diode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaofu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Huan%2C+Q">Qingchang Huan</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruoyan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L">Lixing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11935v1-abstract-short" style="display: inline;"> Semiconducting diode with nonreciprocal transport effect underlies the cornerstone of contemporary integrated circuits (ICs) technology. Due to isotropic superconducting properties and the lack of breaking of inversion symmetry for conventional s-wave superconductors, such a superconducting peer is absent. Recently, a series of superconducting structures, including superconducting superlattice and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11935v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11935v1-abstract-full" style="display: none;"> Semiconducting diode with nonreciprocal transport effect underlies the cornerstone of contemporary integrated circuits (ICs) technology. Due to isotropic superconducting properties and the lack of breaking of inversion symmetry for conventional s-wave superconductors, such a superconducting peer is absent. Recently, a series of superconducting structures, including superconducting superlattice and quantum-material-based superconducting Josephson junction, have exhibited a superconducting diode effect in terms of polarity-dependent critical current. However, due to complex structures, these composite systems are not able to construct large-scale integrated superconducting circuits. Here, we demonstrated the minimal superconducting electric component-superconducting nanowire-based diode with a nonreciprocal transport effect under a perpendicular magnetic field, in which the superconducting to normal metallic phase transition relies on the polarity and amplitude of the bias current. Our nanowire diodes can be reliably operated nearly at all temperatures below the critical temperature, and the rectification efficiency at 2 K can be more than 24%. Moreover, the superconducting nanowire diode is able to rectify both square wave and sine wave signals without any distortion. Combining the superconducting nanowire-based diodes and transistors, superconducting nanowires hold the possibility to construct novel low-dissipation superconducting ICs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11935v1-abstract-full').style.display = 'none'; document.getElementById('2306.11935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10515">arXiv:2305.10515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10515">pdf</a>, <a href="https://arxiv.org/format/2305.10515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05065">10.1088/1748-0221/19/05/P05065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb upgrade I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/physics?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/physics?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Achard%2C+C">C. Achard</a>, <a href="/search/physics?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/physics?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afsharnia%2C+H">H. Afsharnia</a>, <a href="/search/physics?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/physics?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/physics?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/physics?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/physics?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/physics?searchtype=author&amp;query=Amato%2C+S">S. Amato</a> , et al. (1298 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10515v2-abstract-short" style="display: inline;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their select&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10515v2-abstract-full" style="display: none;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment&#39;s tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment&#39;s software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'none'; document.getElementById('2305.10515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2022-002.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2022-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02590">arXiv:2305.02590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02590">pdf</a>, <a href="https://arxiv.org/ps/2305.02590">ps</a>, <a href="https://arxiv.org/format/2305.02590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photorefraction-assisted self-emergence of dissipative Kerr solitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pi-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zheng-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+D">De-Yong He</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Junqiu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02590v1-abstract-short" style="display: inline;"> Generated in high-Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter-wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks and frequency synthesizers, octave-spanning soliton microcombs generated in dispersion optimized microresonator a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02590v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02590v1-abstract-full" style="display: none;"> Generated in high-Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter-wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks and frequency synthesizers, octave-spanning soliton microcombs generated in dispersion optimized microresonator are required, which allow self-referencing for full frequency stabilization. In addition, field-deployable applications require the generation of such soliton microcombs simple, deterministic, and reproducible. Here, we demonstrate a novel scheme to generate self-emerging solitons in integrated lithium niobate microresonators. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f-3f self-referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, we observe a spontaneous yet deterministic single-soliton formation. The soliton is immune to external perturbation and can operate continuously over 13 hours without active feedback control. Finally, via integration with a pre-programed DFB laser, we demonstrate turnkey soliton generation. With further improvement of microresonator Q and hybrid integration with chip-scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics and optical telecommunications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02590v1-abstract-full').style.display = 'none'; document.getElementById('2305.02590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01165">arXiv:2305.01165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01165">pdf</a>, <a href="https://arxiv.org/format/2305.01165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-similarity-based super-resolution of photoacoustic angiography from hand-drawn doodles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yuanzheng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wangting Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sihua Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yansong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+X">Xun Guan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01165v1-abstract-short" style="display: inline;"> Deep-learning-based super-resolution photoacoustic angiography (PAA) is a powerful tool that restores blood vessel images from under-sampled images to facilitate disease diagnosis. Nonetheless, due to the scarcity of training samples, PAA super-resolution models often exhibit inadequate generalization capabilities, particularly in the context of continuous monitoring tasks. To address this challen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01165v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01165v1-abstract-full" style="display: none;"> Deep-learning-based super-resolution photoacoustic angiography (PAA) is a powerful tool that restores blood vessel images from under-sampled images to facilitate disease diagnosis. Nonetheless, due to the scarcity of training samples, PAA super-resolution models often exhibit inadequate generalization capabilities, particularly in the context of continuous monitoring tasks. To address this challenge, we propose a novel approach that employs a super-resolution PAA method trained with forged PAA images. We start by generating realistic PAA images of human lips from hand-drawn curves using a diffusion-based image generation model. Subsequently, we train a self-similarity-based super-resolution model with these forged PAA images. Experimental results show that our method outperforms the super-resolution model trained with authentic PAA images in both original-domain and cross-domain tests. Specially, our approach boosts the quality of super-resolution reconstruction using the images forged by the deep learning model, indicating that the collaboration between deep learning models can facilitate generalization, despite limited initial dataset. This approach shows promising potential for exploring zero-shot learning neural networks for vision tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01165v1-abstract-full').style.display = 'none'; document.getElementById('2305.01165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10843">arXiv:2303.10843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10843">pdf</a>, <a href="https://arxiv.org/format/2303.10843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Boundary layer transition due to distributed roughness: Effect of roughness spacing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Mahesh%2C+K">Krishnan Mahesh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10843v1-abstract-short" style="display: inline;"> The influence of roughness spacing on boundary layer transition over distributed roughness elements is studied using direct numerical simulation (DNS) and global stability analysis, and compared to isolated roughness elements at the same Reh. Small spanwise spacing ($位_z = 2.5h$) inhibits the formation of counter-rotating vortices (CVP) and as a result, hairpin vortices are not generated and the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10843v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10843v1-abstract-full" style="display: none;"> The influence of roughness spacing on boundary layer transition over distributed roughness elements is studied using direct numerical simulation (DNS) and global stability analysis, and compared to isolated roughness elements at the same Reh. Small spanwise spacing ($位_z = 2.5h$) inhibits the formation of counter-rotating vortices (CVP) and as a result, hairpin vortices are not generated and the downstream shear layer is steady. For $位_z = 5h$, the CVP and hairpin vortices are induced by the first row of roughness, perturbing the downstream shear layer and causing transition. The temporal periodicity of the primary hairpin vortices appears to be independent of the streamwise spacing. Distributed roughness leads to a lower critical Reh for instability to occur and a more significant breakdown of the boundary layer compared to isolated roughness. When the streamwise spacing is comparable to the region of flow separation ($位_x = 5h$), the high-momentum fluid barely moves downward into the cavities and the wake flow has little impact on the following roughness elements. The leading unstable varicose mode is associated with the central low-speed streaks along the aligned roughness elements, and its frequency is close to the shedding frequency of hairpin vortices in the isolated case. For larger streamwise spacing ($位_x = 10h$), two distinct modes are obtained from global stability analysis. The first mode shows varicose symmetry, corresponding to the primary hairpin vortex shedding induced by the first-row roughness. The high-speed streaks formed in the longitudinal grooves are also found to be unstable and interacting with the varicose mode. The second mode is a sinuous mode with lower frequency, induced as the wake flow of the first-row roughness runs into the second row. It extracts most energy from the spanwise shear between the high- and low-speed streaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10843v1-abstract-full').style.display = 'none'; document.getElementById('2303.10843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09722">arXiv:2303.09722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09722">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.488292">10.1364/AO.488292 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-efficiency broadband fiber-to-chip coupler using a 3D nanoprinting microfiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+D">Dong-Hui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xing-Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei-Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruo-Yan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jia-Min Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yu-Ze Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhi-Gang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L">Li-Xing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09722v2-abstract-short" style="display: inline;"> We propose a method for coupling a tapered optical fiber to an inverted tapered SiN waveguide by fabricating a microfiber using 3D nanoprinting lithography. The microfiber consists of three parts: a tapered cladding cap, an S-bend, and a straight part, all composed of high-refractive-index material. Light is adiabatically coupled from the tapered fiber to the printed microfiber through the claddin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09722v2-abstract-full').style.display = 'inline'; document.getElementById('2303.09722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09722v2-abstract-full" style="display: none;"> We propose a method for coupling a tapered optical fiber to an inverted tapered SiN waveguide by fabricating a microfiber using 3D nanoprinting lithography. The microfiber consists of three parts: a tapered cladding cap, an S-bend, and a straight part, all composed of high-refractive-index material. Light is adiabatically coupled from the tapered fiber to the printed microfiber through the cladding cap. The light is then transmitted through the S-bend and the straight part with low loss and is finally coupled to the waveguide through the evanescent field. In the simulation, our design can achieve a high coupling efficiency (TE mode) of ~97% at a wavelength of 1542 nm with a wide bandwidth of ~768 nm at the 1-dB cut-off criterion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09722v2-abstract-full').style.display = 'none'; document.getElementById('2303.09722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05871">arXiv:2302.05871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05871">pdf</a>, <a href="https://arxiv.org/format/2302.05871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.483431">10.1364/OL.483431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second harmonic and cascaded third harmonic generation in generalized quasi-periodic poled lithium niobate waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhenzhong Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guoquan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jingjun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05871v1-abstract-short" style="display: inline;"> Lithium niobate (LN) thin film has recently emerged as an important platform for nonlinear optical investigations for its large $蠂^{(2)}$ nonlinear coefficients and ability of light localization. In this paper, we report the first fabrication of LN on insulator (LNOI) ridge waveguides with generalized quasi-periodic poled superlattices using the electric field polarization technique and microfabri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05871v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05871v1-abstract-full" style="display: none;"> Lithium niobate (LN) thin film has recently emerged as an important platform for nonlinear optical investigations for its large $蠂^{(2)}$ nonlinear coefficients and ability of light localization. In this paper, we report the first fabrication of LN on insulator (LNOI) ridge waveguides with generalized quasi-periodic poled superlattices using the electric field polarization technique and microfabrication techniques. Benefiting from the abundant reciprocal vectors, we observed efficient second-harmonic and cascaded third-harmonic signals in the same device, with the normalized conversion efficiency 1735% W$^{-1}$cm$^{-2}$ and 0.41% W$^{-2}$cm$^{-4}$, respectively. This work opens a new direction of nonlinear integrated photonics based on LN thin film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05871v1-abstract-full').style.display = 'none'; document.getElementById('2302.05871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03205">arXiv:2301.03205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03205">pdf</a>, <a href="https://arxiv.org/format/2301.03205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0128962">10.1063/5.0128962 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced photovoltaic effect in graphene-silicon Schottky junction under mechanical manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pu%2C+D">Dong Pu</a>, <a href="/search/physics?searchtype=author&amp;query=Anwar%2C+M+A">Muhammad Abid Anwar</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiachao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Renwei Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+X">Xin Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+J">Jian Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+F">Feng Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03205v1-abstract-short" style="display: inline;"> Graphene-silicon Schottky junction (GSJ) which has the potential for large-scale manufacturing and integration can bring new opportunities to Schottky solar cells for photovoltaic (PV) power conversion. However, the essential power conversion limitation for these devices lies in the small open-circuit voltage ($V_{oc}$), which depends on the Schottky barrier height (SBH). In this study, we introdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03205v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03205v1-abstract-full" style="display: none;"> Graphene-silicon Schottky junction (GSJ) which has the potential for large-scale manufacturing and integration can bring new opportunities to Schottky solar cells for photovoltaic (PV) power conversion. However, the essential power conversion limitation for these devices lies in the small open-circuit voltage ($V_{oc}$), which depends on the Schottky barrier height (SBH). In this study, we introduce an electromechanical method based on the flexoelectric effect to enhance the PV efficiency in GSJ. By atomic force microscope (AFM) tip-based indentation and in situ current measurement, the current-voltage (I-V) responses under flexoelectric strain gradient are obtained. The $V_{oc}$ is observed to increase for up to 20$\%$, leading to an evident improvement of the power conversion efficiency. Our studies suggest that strain gradient may offer unprecedented opportunities for the development of GSJ based flexo-photovoltaic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03205v1-abstract-full').style.display = 'none'; document.getElementById('2301.03205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. The following article has been accepted by Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01464">arXiv:2301.01464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01464">pdf</a>, <a href="https://arxiv.org/format/2301.01464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0141186">10.1063/5.0141186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-frequency shear Alfv茅n waves at DIII-D: theoretical interpretation of experimental observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Ruirui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Heidbrink%2C+W+W">W. W. Heidbrink</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zonca%2C+F">Fulvio Zonca</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+Z">Zhiyong Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01464v1-abstract-short" style="display: inline;"> The linear properties of the low-frequency shear Alfv茅n waves such as those associated with the beta-induced Alfv茅n eigenmodes (BAEs) and the low-frequency modes observed in reversed-magnetic-shear DIII-D discharges (W. Heidbrink, et al 2021 Nucl. Fusion 61 066031) are theoretically investigated and delineated based on the theoretical framework of the general fishbone-like dispersion relation (GFL&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01464v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01464v1-abstract-full" style="display: none;"> The linear properties of the low-frequency shear Alfv茅n waves such as those associated with the beta-induced Alfv茅n eigenmodes (BAEs) and the low-frequency modes observed in reversed-magnetic-shear DIII-D discharges (W. Heidbrink, et al 2021 Nucl. Fusion 61 066031) are theoretically investigated and delineated based on the theoretical framework of the general fishbone-like dispersion relation (GFLDR). By adopting representative experimental equilibrium profiles, it is found that the low-frequency modes and BAEs are, respectively, the reactive-type and dissipative-type unstable modes with dominant Alfv茅nic polarization, thus the former being more precisely called low-frequency Alfv茅n modes (LFAMs). More specifically, due to different instability mechanisms, the maximal drive of BAEs occurs, in comparison to LFAMs, when the minimum of the safety factor ($q_{min}$) deviates from a rational number. Meanwhile, the BAE eigenfunction peaks at the radial position of the maximum energetic particle pressure gradient, resulting in a large deviation from the $q_{min}$ surface. Moreover, the ascending frequency spectrum patterns of the experimentally observed BAEs and LFAMs can be theoretically reproduced by varying $q_{min}$ and also be well interpreted based on the GFLDR. The present analysis illustrates the solid predictive capability of the GFLDR and its practical usefulness in enhancing the interpretative capability of both experimental and numerical simulation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01464v1-abstract-full').style.display = 'none'; document.getElementById('2301.01464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04898">arXiv:2212.04898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04898">pdf</a>, <a href="https://arxiv.org/format/2212.04898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.273603">10.1103/PhysRevLett.129.273603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet superradiance lattices in thermal atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J">Jianhao Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Han Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04898v1-abstract-short" style="display: inline;"> Floquet modulation has been widely used in optical lattices for coherent control of quantum gases, in particular for synthesizing artificial gauge fields and simulating topological matters. However, such modulation induces heating which can overwhelm the signal of quantum dynamics in ultracold atoms. Here we report that the thermal motion, instead of being a noise source, provides a new control kn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04898v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04898v1-abstract-full" style="display: none;"> Floquet modulation has been widely used in optical lattices for coherent control of quantum gases, in particular for synthesizing artificial gauge fields and simulating topological matters. However, such modulation induces heating which can overwhelm the signal of quantum dynamics in ultracold atoms. Here we report that the thermal motion, instead of being a noise source, provides a new control knob in Floquet-modulated superradiance lattices, which are momentum-space tight-binding lattices of collectively excited states of atoms. The Doppler shifts combined with Floquet modulation provide effective forces along arbitrary directions in a lattice in frequency and momentum dimensions. Dynamic localization, dynamic delocalization and chiral edge currents can be simultaneously observed from a single transport spectrum of superradiance lattices in thermal atoms. Our work paves a way for simulating Floquet topological matters in room-temperature atoms and facilitates their applications in photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04898v1-abstract-full').style.display = 'none'; document.getElementById('2212.04898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 273603 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05332">arXiv:2211.05332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05332">pdf</a>, <a href="https://arxiv.org/format/2211.05332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous stable rotation of flocking flexible active matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+G">Gaoxiao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+Z">Zhihong You</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chen-Xu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05332v2-abstract-short" style="display: inline;"> In nature, active matter, such as worms or dogs, tend to spontaneously form a stable rotational cluster when they flock to the same food source on an unregulated and unconfined surface. {In this paper we present an $n$-node flexible active matter model to study the collective motion due to the flocking of individual agents on a two-dimensional surface, and confirm that there exists a spontaneous s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05332v2-abstract-full').style.display = 'inline'; document.getElementById('2211.05332v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05332v2-abstract-full" style="display: none;"> In nature, active matter, such as worms or dogs, tend to spontaneously form a stable rotational cluster when they flock to the same food source on an unregulated and unconfined surface. {In this paper we present an $n$-node flexible active matter model to study the collective motion due to the flocking of individual agents on a two-dimensional surface, and confirm that there exists a spontaneous stable cluster rotation synchronizing with a chirality produced by the alignment of their bodies under the impetus of the active force.} A prefactor of 1.86 is obtained for the linear relationship between normalized angular velocity and chirality. The angular velocity of such a rotation is found to be dependent on the individual flexibility, the number of nodes in each individual, and the magnitude of the active force. The conclusions well explain the spontaneous stable rotation of clusters that exists in many flexible active matter, like worms or {dogs}, when they flock to the same single source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05332v2-abstract-full').style.display = 'none'; document.getElementById('2211.05332v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.15920">arXiv:2210.15920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.15920">pdf</a>, <a href="https://arxiv.org/ps/2210.15920">ps</a>, <a href="https://arxiv.org/format/2210.15920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Locating the eigenshield of a network via perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+M">Ming-Yang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+M+S">Manuel Sebastian Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+H">Hao Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Rui Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi-Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.15920v1-abstract-short" style="display: inline;"> The functions of complex networks are usually determined by a small set of vital nodes. Finding the best set of vital nodes (eigenshield nodes) is critical to the network&#39;s robustness against rumor spreading and cascading failures, which makes it one of the fundamental problems in network science. The problem is challenging as it requires to maximize the influence of nodes in the set while simulta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15920v1-abstract-full').style.display = 'inline'; document.getElementById('2210.15920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.15920v1-abstract-full" style="display: none;"> The functions of complex networks are usually determined by a small set of vital nodes. Finding the best set of vital nodes (eigenshield nodes) is critical to the network&#39;s robustness against rumor spreading and cascading failures, which makes it one of the fundamental problems in network science. The problem is challenging as it requires to maximize the influence of nodes in the set while simultaneously minimizing the redundancies between the set&#39;s nodes. However, the redundancy mechanism is rarely investigated by previous studies. Here we introduce the matrix perturbation framework to find a small ``eigenshield&#34; set of nodes that, when removed, lead to the largest drop in the network&#39;s spectral radius. We show that finding the ``eigenshield&#34; nodes can be translated into the optimization of an objective function that simultaneously accounts for the individual influence of each node and redundancy between different nodes. We analytically quantify the influence redundancy that explains why an important node might play an insignificant role in the ``eigenshield&#34; node set. Extensive experiments under diverse influence maximization problems, ranging from network dismantling to spreading maximization, demonstrate that the eigenshield detection tends to significantly outperforms state-of-the-art methods across most problems. Our findings shed light on the mechanisms that may lie at the core of the function of vital nodes in complex network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15920v1-abstract-full').style.display = 'none'; document.getElementById('2210.15920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07094">arXiv:2210.07094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07094">pdf</a>, <a href="https://arxiv.org/format/2210.07094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2023.108842">10.1016/j.cpc.2023.108842 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DeepFlame: A deep learning empowered open-source platform for reacting flow simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Minqi Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Tianhan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z+J">Zhi-Qin John Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07094v2-abstract-short" style="display: inline;"> In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and pre-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07094v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07094v2-abstract-full" style="display: none;"> In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and pre-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interfacing (the core of DeepFlame) is minimised to achieve a simple and clear workflow for code maintenance, extension and upgrading. As a demonstration, we apply our recent work on deep learning for predicting chemical kinetics (Zhang et al. Combust. Flame vol. 245 pp. 112319, 2022) to highlight the potential of machine learning in accelerating reacting flow simulation. A thorough code validation is conducted via a broad range of canonical cases to assess its accuracy and efficiency. The results demonstrate that the convection-diffusion-reaction algorithms implemented in DeepFlame are robust and accurate for both steady-state and transient processes. In addition, a number of methods aiming to further improve the computational efficiency, e.g. dynamic load balancing and adaptive mesh refinement, are explored. Their performances are also evaluated and reported. With the deep learning method implemented in this work, a speed-up of two orders of magnitude is achieved in a simple hydrogen ignition case when performed on a medium-end graphics processing unit (GPU). Further gain in computational efficiency is expected for hydrocarbon and other complex fuels. A similar level of acceleration is obtained on an AI-specific chip - deep computing unit (DCU), highlighting the potential of DeepFlame in leveraging the next-generation computing architecture and hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07094v2-abstract-full').style.display = 'none'; document.getElementById('2210.07094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ma%2C+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10