CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;41 of 41 results for author: <span class="mathjax">An, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=An%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="An, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=An%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="An, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18988">arXiv:2411.18988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18988">pdf</a>, <a href="https://arxiv.org/format/2411.18988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Ground electron calibration of the Gamma-ray Transient Monitor onboard DRO-A Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yu-Hui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Le%2C+Q">Qi Le</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Cong-Zhan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei-Bin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jian-Li Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+B">Bing-Lin Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">He Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18988v1-abstract-short" style="display: inline;"> The Gamma-Ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite, with the scientific objective of detecting gamma-ray bursts in the energy range of 20 keV to 1 MeV. The GTM is equipped with five Gamma-Ray Transient Probes (GTPs), utilizing silicon photomultiplier (SiPM) arrays coupled with NaI(Tl) scintillators for signal readout. To test the pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18988v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18988v1-abstract-full" style="display: none;"> The Gamma-Ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite, with the scientific objective of detecting gamma-ray bursts in the energy range of 20 keV to 1 MeV. The GTM is equipped with five Gamma-Ray Transient Probes (GTPs), utilizing silicon photomultiplier (SiPM) arrays coupled with NaI(Tl) scintillators for signal readout. To test the performance of the GTP in detecting electrons, we independently developed a continuous-energy-tunable, low-current, quasi-single-electron accelerator, and used this facility for ground-based electron calibration of the GTP. This paper provides a detailed description of the operational principles of the unique electron accelerator and comprehensively presents the process and results of electron calibration for the GTP. The calibration results indicate that the dead time for normal signals is less than 4 $渭$s, while for overflow signals, it is approximately 70 $渭$s, consistent with the design specifications. The GTP&#39;s time-recording capability is working correctly, accurately recording overflow events. The GTP responds normally to electrons in the 0.4-1.4 MeV energy range. The ground-based electron calibration validates the design of the GTP and enhances the probe&#39;s mass model, laying the foundation for payload development, in-orbit observation strategies, and scientific data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18988v1-abstract-full').style.display = 'none'; document.getElementById('2411.18988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09695">arXiv:2408.09695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09695">pdf</a>, <a href="https://arxiv.org/format/2408.09695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> LightWeather: Harnessing Absolute Positional Encoding to Efficient and Scalable Global Weather Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Y">Yisong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Z">Zezhi Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chengqing Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yujie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhulin An</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yongjun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09695v1-abstract-short" style="display: inline;"> Recently, Transformers have gained traction in weather forecasting for their capability to capture long-term spatial-temporal correlations. However, their complex architectures result in large parameter counts and extended training times, limiting their practical application and scalability to global-scale forecasting. This paper aims to explore the key factor for accurate weather forecasting and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09695v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09695v1-abstract-full" style="display: none;"> Recently, Transformers have gained traction in weather forecasting for their capability to capture long-term spatial-temporal correlations. However, their complex architectures result in large parameter counts and extended training times, limiting their practical application and scalability to global-scale forecasting. This paper aims to explore the key factor for accurate weather forecasting and design more efficient solutions. Interestingly, our empirical findings reveal that absolute positional encoding is what really works in Transformer-based weather forecasting models, which can explicitly model the spatial-temporal correlations even without attention mechanisms. We theoretically prove that its effectiveness stems from the integration of geographical coordinates and real-world time features, which are intrinsically related to the dynamics of weather. Based on this, we propose LightWeather, a lightweight and effective model for station-based global weather forecasting. We employ absolute positional encoding and a simple MLP in place of other components of Transformer. With under 30k parameters and less than one hour of training time, LightWeather achieves state-of-the-art performance on global weather datasets compared to other advanced DL methods. The results underscore the superiority of integrating spatial-temporal knowledge over complex architectures, providing novel insights for DL in weather forecasting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09695v1-abstract-full').style.display = 'none'; document.getElementById('2408.09695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11462">arXiv:2405.11462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11462">pdf</a>, <a href="https://arxiv.org/format/2405.11462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Exciton polariton critical non-Hermitian skin effect with spin-momentum-locked gains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingran Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+L">Lingyu Tian</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhiyuan An</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+Q">Qihua Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S">Sanjib Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11462v1-abstract-short" style="display: inline;"> The critical skin effect, an intriguing phenomenon in non-Hermitian systems, displays sensitivity to system size and manifests distinct dynamical behaviors. In this work, we propose a novel scheme to achieve the critical non-Hermitian skin effect of exciton polaritons in an elongated microcavity system. We show that by utilising longitudinal-transverse spin splitting and spin-momentum-locked gain,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11462v1-abstract-full" style="display: none;"> The critical skin effect, an intriguing phenomenon in non-Hermitian systems, displays sensitivity to system size and manifests distinct dynamical behaviors. In this work, we propose a novel scheme to achieve the critical non-Hermitian skin effect of exciton polaritons in an elongated microcavity system. We show that by utilising longitudinal-transverse spin splitting and spin-momentum-locked gain, a critical non-Hermitian skin effect can be achieved in a continuous system without the need of an underlying lattice. We find that a phase transition can be induced by changing the cavity detuning with respect to the exciton energy. We identify a measurable order parameter associated with this phase transition and demonstrate the corresponding critical behavior. Our work offers a flexible approach to manipulate non-Hermitian phases of exciton polaritons, thereby expanding the potential applications of polaritonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11462v1-abstract-full').style.display = 'none'; document.getElementById('2405.11462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07276">arXiv:2405.07276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07276">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nimb.2024.165407">10.1016/j.nimb.2024.165407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bremsstrahlung of 5-25 keV electrons incident on MoSi$_2$, TiB$_2$ and ZrB$_2$ thick solid conductive compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Heng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhu An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jingjun Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Hong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07276v1-abstract-short" style="display: inline;"> Absolute measurements were conducted to study the bremsstrahlung emission from ~5-25 keV electrons incident on three thick solid conductive compounds of MoSi$_2$, TiB$_2$ and ZrB$_2$. The additivity approximation was applied in the Monte Carlo PENELOPE simulations for compounds and mixtures. The results showed that in general the experimental bremsstrahlung spectra were in good agreement with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07276v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07276v1-abstract-full" style="display: none;"> Absolute measurements were conducted to study the bremsstrahlung emission from ~5-25 keV electrons incident on three thick solid conductive compounds of MoSi$_2$, TiB$_2$ and ZrB$_2$. The additivity approximation was applied in the Monte Carlo PENELOPE simulations for compounds and mixtures. The results showed that in general the experimental bremsstrahlung spectra were in good agreement with the Monte Carlo simulation results, suggesting the feasibility of the additivity approximation in Monte Carlo simulations for the studied cases even in the absolute measurements and that the significant differences between experiments and Monte Carlo simulations near the Duane-Hunt limit for insulating targets in previous studies do not appear in the present studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07276v1-abstract-full').style.display = 'none'; document.getElementById('2405.07276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11380">arXiv:2404.11380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11380">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-hermitian magnonic knobbing between electromagnetically induced reflection and transparancy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Youcai Han</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+C">Changhao Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Rao%2C+Z">Zejin Rao</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+J">Jie Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+Y">Yiming Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+L">Liping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">CanMing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11380v1-abstract-short" style="display: inline;"> Manipulation of wave propagation through open resonant systems has attracted tremendous interest. When accessible to the open system, the system under study is prone to tempering to out of equilibrium, and a lack of reciprocity is the rule rather than the exception. Open systems correspond to non-hermitian Hamiltonians with very unique properties such as resulting exceptional points and ideal isol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11380v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11380v1-abstract-full" style="display: none;"> Manipulation of wave propagation through open resonant systems has attracted tremendous interest. When accessible to the open system, the system under study is prone to tempering to out of equilibrium, and a lack of reciprocity is the rule rather than the exception. Open systems correspond to non-hermitian Hamiltonians with very unique properties such as resulting exceptional points and ideal isolation. Here, we have found a highly sensitive modulation for the intersection of resonant patch antennas with respect to cavity magnonic coupling by means of an open coupling system of three resonant modes. Two types of crossings are implemented in this study: the first type of crossing remotely controls the sharp switching of the transmission line &#39;s transmittance, while regulating the repulsive behavior of its zero-reflection states. The second type of crossing corresponds to the modulation of non-reciprocal phase transitions, which enables a more desirable isolation effect. Three different coupling models are realized by a non-Hermitian scattering Hamiltonian, revealing distinct spatial overlaps between modes. This elucidates that dissipative coupling of at least two modes to the environment is crucial for non-reciprocal transport. Our work not only reveals the versatility of cavity magnonic systems but also provides a way to design functional devices for general wave optics using patch antenna crossings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11380v1-abstract-full').style.display = 'none'; document.getElementById('2404.11380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01098">arXiv:2404.01098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01098">pdf</a>, <a href="https://arxiv.org/format/2404.01098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Measurement of three-body recombination coefficient of ultracold lithium and strontium atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bo-Yang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi-Fan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zi-He An</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+L">Li-Yang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Zhu-Xiong Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tey%2C+M+K">Meng Khoon Tey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01098v1-abstract-short" style="display: inline;"> We report on the observation of a conspicuous loss in an ultracold mixture of $^{7}$Li and $^{88}$Sr atoms confined in a far-off-resonance optical dipole trap. We attribute the trap loss to the three-body inelastic Li-Sr-Sr collision and extract the corresponding three-body recombination coefficient $K_3$ at $T\sim 18.5,45,70,600$ $渭K$. The measured three-body recombination coefficient is about tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01098v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01098v1-abstract-full" style="display: none;"> We report on the observation of a conspicuous loss in an ultracold mixture of $^{7}$Li and $^{88}$Sr atoms confined in a far-off-resonance optical dipole trap. We attribute the trap loss to the three-body inelastic Li-Sr-Sr collision and extract the corresponding three-body recombination coefficient $K_3$ at $T\sim 18.5,45,70,600$ $渭K$. The measured three-body recombination coefficient is about two to three orders of magnitude larger than the typical values convenient for realizing quantum degenerate gases. It also indicates a potentially large $s$-wave scattering length between the bosonic $^{7}$Li and $^{88}$Sr atoms, and essentially rules out the prospect of realizing $^7$Li and $^{88}$Sr mixtures of high phase space density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01098v1-abstract-full').style.display = 'none'; document.getElementById('2404.01098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18858">arXiv:2402.18858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18858">pdf</a>, <a href="https://arxiv.org/format/2402.18858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Graphics Processing Unit/Artificial Neural Network-accelerated large-eddy simulation of turbulent combustion: Application to swirling premixed flames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+R">Runze Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenhua An</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+X">Zhi X. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18858v1-abstract-short" style="display: inline;"> Within the scope of reacting flow simulations, the real-time direct integration (DI) of stiff ordinary differential equations (ODE) for the computation of chemical kinetics stands as the primary demand on computational resources. Meanwhile, as the number of transport equations that need to be solved increases, the computational cost grows more substantially, particularly for those combustion model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18858v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18858v1-abstract-full" style="display: none;"> Within the scope of reacting flow simulations, the real-time direct integration (DI) of stiff ordinary differential equations (ODE) for the computation of chemical kinetics stands as the primary demand on computational resources. Meanwhile, as the number of transport equations that need to be solved increases, the computational cost grows more substantially, particularly for those combustion models involving direct coupling of chemistry and flow such as the transported probability density function model. In the current study, an integrated Graphics Processing Unit-Artificial Neural Network (GPU-ANN) framework is introduced to comply with heavy computational costs while maintaining high fidelity. Within this framework, a GPU-based solver is employed to solve partial differential equations and compute thermal and transport properties, and an ANN is utilized to replace the calculation of reaction rates. Large eddy simulations of two swirling flames provide a robust validation, affirming and extending the GPU-ANN approach&#39;s applicability to challenging scenarios. The simulation results demonstrate a strong correlation in the macro flame structure and statistical characteristics between the GPU-ANN approach and the traditional Central Processing Unit (CPU)-based solver with DI. This comparison indicates that the GPU-ANN approach is capable of attaining the same degree of precision as the conventional CPU-DI solver, even in more complex scenarios. In addition, the overall speed-up factor for the GPU-ANN approach is over two orders of magnitude. This study establishes the potential groundwork for widespread application of the proposed GPU-ANN approach in combustion simulations, addressing various and complex scenarios based on detailed chemistry, while significantly reducing computational costs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18858v1-abstract-full').style.display = 'none'; document.getElementById('2402.18858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07513">arXiv:2401.07513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07513">pdf</a>, <a href="https://arxiv.org/format/2401.07513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2458-9">10.1007/s11433-024-2458-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector performance of the Gamma-ray Transient Monitor onboard DRO-A Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chen-Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jia-Cong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiang-Yang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=liu%2C+Y">Ya-Qing liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiao-Yun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07513v2-abstract-short" style="display: inline;"> Gamma-ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 keV to 1 MeV. GTM is equipped with 5 Gamma-ray Transient Probe (GTP) detector modules, utilizing the NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP makes use of a dedicated dua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07513v2-abstract-full').style.display = 'inline'; document.getElementById('2401.07513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07513v2-abstract-full" style="display: none;"> Gamma-ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 keV to 1 MeV. GTM is equipped with 5 Gamma-ray Transient Probe (GTP) detector modules, utilizing the NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP makes use of a dedicated dual-channel coincident readout design. In this work, we firstly studied the impact of different coincidence times on detection efficiency and ultimately selected the 500 ns time coincidence window for offline data processing. To test the performance of GTPs and validate the Monte Carlo simulated energy response, we conducted comprehensive ground calibration tests using Hard X-ray Calibration Facility (HXCF) and radioactive sources, including energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively presented the ground calibration results, and validated the design and mass model of GTP detector. These work paved the road for the in-flight observation and science data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07513v2-abstract-full').style.display = 'none'; document.getElementById('2401.07513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 25 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 67, 111013 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00226">arXiv:2401.00226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00226">pdf</a>, <a href="https://arxiv.org/format/2401.00226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Intrinsic Energy Resolution of LaBr$_3$(Ce) Crystal for GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng-Er Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00226v1-abstract-short" style="display: inline;"> The intrinsic resolution is the primary limitation on the total energy resolution of LaBr$_3$(Ce) crystal. This intrinsic resolution arises from two effects: fluctuations occurring in the process of energy transfer to luminescent centers within the LaBr$_3$(Ce) crystal and the LaBr$_3$(Ce) crystal&#39;s non-proportional luminescence. Presently, experimental measurements regarding the intrinsic resolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00226v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00226v1-abstract-full" style="display: none;"> The intrinsic resolution is the primary limitation on the total energy resolution of LaBr$_3$(Ce) crystal. This intrinsic resolution arises from two effects: fluctuations occurring in the process of energy transfer to luminescent centers within the LaBr$_3$(Ce) crystal and the LaBr$_3$(Ce) crystal&#39;s non-proportional luminescence. Presently, experimental measurements regarding the intrinsic resolution of LaBr$_3$(Ce) crystal are scarce, and the underlying physical mechanisms remain incompletely understood. In this paper, we aim to elucidate the concept of intrinsic resolution. We investigated the entire physical process of luminescence following energy deposition in the LaBr$_3$(Ce) crystal, quantifying the various components in the total energy resolution. We conducted a series of experimental measurements and Geant4 simulations, determining the intrinsic resolution of LaBr$_3$(Ce) crystal to 100 keV electrons as 2.12%. The non-proportionality contributes significantly at 1.43%, while fluctuations in the energy transfer process accounted for 0.27%. It is evident that non-proportionality in light output constitutes the primary source of intrinsic resolution. Horizontal and vertical unevenness in light collection contributed 0.25% and 0.07%, respectively. Statistical fluctuations showed the largest impact on the total energy resolution, at 2.86%. The contribution from fluctuations in single-photoelectron events was 0.77%. Furthermore, we reconstructed the photon response using Geant4, and the consistency between the simulated relative light yield and the experimentally measured one confirmed the reliability of the LaBr$_3$(Ce) detector mass model employed in the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00226v1-abstract-full').style.display = 'none'; document.getElementById('2401.00226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16658">arXiv:2312.16658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16658">pdf</a>, <a href="https://arxiv.org/format/2312.16658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Energy Response of LaBr3(Ce), LaBr3(Ce,Sr) and NaI(Tl) Crystals for GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng-Er Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Huang Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun-Jie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiang-Yang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Ya-Qing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yan-Bing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiao-Yun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jia-Cong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16658v1-abstract-short" style="display: inline;"> The GECAM series of satellites utilize LaBr3(Ce), LaBr3(Ce,Sr), and NaI(Tl) crystals as sensitive materials for gamma-ray detectors (GRDs). To investigate the non-linearity in the detection of low-energy gamma rays and address errors in the E-C relationship calibration, comprehensive tests and comparative studies of the non-linearity of these three crystals were conducted using Compton electrons,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16658v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16658v1-abstract-full" style="display: none;"> The GECAM series of satellites utilize LaBr3(Ce), LaBr3(Ce,Sr), and NaI(Tl) crystals as sensitive materials for gamma-ray detectors (GRDs). To investigate the non-linearity in the detection of low-energy gamma rays and address errors in the E-C relationship calibration, comprehensive tests and comparative studies of the non-linearity of these three crystals were conducted using Compton electrons, radioactive sources, and mono-energetic X-rays. The non-linearity test results for Compton electrons and X-rays displayed substantial differences, with all three crystals showing higher non-linearity for X-rays and gamma-rays than for Compton electrons. Despite LaBr3(Ce) and LaBr3(Ce,Sr) crystals having higher absolute light yields, they exhibited a noticeable non-linear decrease in light yield, especially at energies below 400 keV. The NaI(Tl) crystal demonstrated excess light output in the 6~200 keV range, reaching a maximum excess of 9.2% at 30 keV in X-ray testing and up to 15.5% at 14 keV during Compton electron testing, indicating a significant advantage in the detection of low-energy gamma rays. Furthermore, this paper explores the underlying causes of the observed non-linearity in these crystals. This study not only elucidates the detector responses of GECAM, but also marks the inaugural comprehensive investigation into the non-linearity of domestically produced lanthanum bromide and sodium iodide crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16658v1-abstract-full').style.display = 'none'; document.getElementById('2312.16658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01665">arXiv:2312.01665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01665">pdf</a>, <a href="https://arxiv.org/format/2312.01665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.fuel.2024.131964">10.1016/j.fuel.2024.131964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evaluation of flamelet-based models for liquid ammonia combustion in a temporally evolving mixing layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenhua An</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+J">Jiangkuan Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Pillai%2C+A+L">Abhishek Lakshman Pillai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurose%2C+R">Ryoichi Kurose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01665v1-abstract-short" style="display: inline;"> Liquid ammonia combustion can be enhanced by co-firing with small molecular fuels such as methane, and liquid ammonia will undergo flash evaporation due to its relatively low saturation pressure. These characteristics, involving the presence of multiple fuel streams, a rapid phase change process, and strong heat loss, pose challenges for flamelet modeling of liquid ammonia combustion. To address t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01665v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01665v1-abstract-full" style="display: none;"> Liquid ammonia combustion can be enhanced by co-firing with small molecular fuels such as methane, and liquid ammonia will undergo flash evaporation due to its relatively low saturation pressure. These characteristics, involving the presence of multiple fuel streams, a rapid phase change process, and strong heat loss, pose challenges for flamelet modeling of liquid ammonia combustion. To address these issues, this study aims to evaluate the effectiveness of flamelet-based models for liquid ammonia combustion in a turbulent mixing layer. Specifically, the extended flamelet/progress variable (E-FPV), extended flamelet-generated manifolds (E-FGM), and extended hybrid (E-Hybrid) models are developed and assessed. Firstly, a three-dimensional Point-Particle Direct Numerical Simulation (PP-DNS) with detailed chemistry is performed, where the turbulent flow is fully resolved, and the ammonia droplets are described by the Lagrangian method, to investigate the combustion characteristics of a liquid ammonia/methane co-fired flame and to provide state-of-the-art validation data for flamelet modeling. The PP-DNS results reveal distinct stages in the liquid ammonia/methane co-fired flame. The phase change process introduces significant heat loss due to the high latent heat of liquid ammonia. Subsequently, flamelet-based models are developed to account for the complex fuel streams, rapid phase change process, and strong local heat loss. The performance of these models is evaluated through a priori analysis by comparing the predictions with the PP-DNS results. The a priori results show that the E-FGM model outperforms the E-FPV and E-Hybrid models. This superior performance can be attributed to the rapid flash evaporation and sufficient mixing of the superheated ammonia, resulting in the dominance of the premixed combustion mode in liquid ammonia combustion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01665v1-abstract-full').style.display = 'none'; document.getElementById('2312.01665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06908">arXiv:2308.06908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06908">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Recent developments in comprehensive analytical instruments for the culture heritage objects-A review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuanjun Xu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhu An</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+N">Ning Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Ze He</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zihan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06908v1-abstract-short" style="display: inline;"> This paper introduces the necessity and significance of the investigation of cultural heritage objects. The multi-technique method is useful for the study of cultural heritage objects, but a comprehensive analytical instrument is a better choice since it can guarantee that different types of information are always obtained from the same analytical point on the surface of cultural heritage objects,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06908v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06908v1-abstract-full" style="display: none;"> This paper introduces the necessity and significance of the investigation of cultural heritage objects. The multi-technique method is useful for the study of cultural heritage objects, but a comprehensive analytical instrument is a better choice since it can guarantee that different types of information are always obtained from the same analytical point on the surface of cultural heritage objects, which may be crucial for some situations. Thus, the X-ray fluorescence (XRF)/X-ray diffraction (XRD) and X-ray fluorescence (XRF)/Raman spectroscopy (RS) comprehensive analytical instruments are more and more widely used to study cultural heritage objects. The two types of comprehensive analytical instruments are discussed in detail and the XRF/XRD instruments are further classified into different types on the basis of structure, type and number of detectors. A new comprehensive analytical instrument prototype that can perform XRF, XRD and RS measurements simultaneously has been successfully developed by our team and the preliminary application has shown the analysis performance and application potential. This overview contributes to better understand the research progress and development tendency of comprehensive analytical instruments for the study of cultural heritage objects. The new comprehensive instruments will make researchers obtain more valuable information on cultural heritage objects and further promote the study on cultural heritage objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06908v1-abstract-full').style.display = 'none'; document.getElementById('2308.06908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07799">arXiv:2303.07799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07799">pdf</a>, <a href="https://arxiv.org/format/2303.07799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Frequency Chirping of Electromagnetic Ion Cyclotron Waves in Earth&#39;s Magnetosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zeyu An</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+X">Xin Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Zonca%2C+F">Fulvio Zonca</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07799v1-abstract-short" style="display: inline;"> Electromagnetic ion cyclotron waves are known to exhibit frequency chirping, contributing to the rapid scattering and acceleration of energetic particles. However, the physical mechanism of chirping remains elusive. Here, we propose a new model to explain the chirping and provide direct observational evidence for validation. Our results relate the frequency chirping of the wave to both the wave am&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07799v1-abstract-full').style.display = 'inline'; document.getElementById('2303.07799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07799v1-abstract-full" style="display: none;"> Electromagnetic ion cyclotron waves are known to exhibit frequency chirping, contributing to the rapid scattering and acceleration of energetic particles. However, the physical mechanism of chirping remains elusive. Here, we propose a new model to explain the chirping and provide direct observational evidence for validation. Our results relate the frequency chirping of the wave to both the wave amplitude and magnetic field inhomogeneity for the first time. The general applicability of the model&#39;s underlying principle opens a new path toward understanding the frequency chirping of other waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07799v1-abstract-full').style.display = 'none'; document.getElementById('2303.07799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00687">arXiv:2303.00687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00687">pdf</a>, <a href="https://arxiv.org/format/2303.00687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Ground calibration of Gamma-Ray Detectors of GECAM-C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wen-Xi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+R">Rui. Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan-Qiu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+W">Wang-Chen Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jia-Cong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Ce. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D">Dong-Ya Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D">Dong-Jie Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yan-Guo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mao-Shun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xiao-Hua Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Ya-Qing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+L">Li-Ming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+W">Wen-Jun Tan</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00687v3-abstract-short" style="display: inline;"> As a new member of GECAM mission, GECAM-C (also named High Energy Burst Searcher, HEBS) was launched onboard the SATech-01 satellite on July 27th, 2022, which is capable to monitor gamma-ray transients from $\sim$ 6 keV to 6 MeV. As the main detector, there are 12 gamma-ray detectors (GRDs) equipped for GECAM-C. In order to verify the GECAM-C GRD detector performance and to validate the Monte Carl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00687v3-abstract-full').style.display = 'inline'; document.getElementById('2303.00687v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00687v3-abstract-full" style="display: none;"> As a new member of GECAM mission, GECAM-C (also named High Energy Burst Searcher, HEBS) was launched onboard the SATech-01 satellite on July 27th, 2022, which is capable to monitor gamma-ray transients from $\sim$ 6 keV to 6 MeV. As the main detector, there are 12 gamma-ray detectors (GRDs) equipped for GECAM-C. In order to verify the GECAM-C GRD detector performance and to validate the Monte Carlo simulations of detector response, comprehensive on-ground calibration experiments have been performed using X-ray beam and radioactive sources, including Energy-Channel relation, energy resolution, detection efficiency, SiPM voltage-gain relation and the non-uniformity of positional response. In this paper, the detailed calibration campaigns and data analysis results for GECAM-C GRDs are presented, demonstrating the excellent performance of GECAM-C GRD detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00687v3-abstract-full').style.display = 'none'; document.getElementById('2303.00687v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">third version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00537">arXiv:2303.00537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00537">pdf</a>, <a href="https://arxiv.org/format/2303.00537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The performance of SiPM-based gamma-ray detector (GRD) of GECAM-C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dali Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiangyang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinqiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xilei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yaqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaojing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wenxi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+R">Rui Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D">Dongya Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Peiyi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanqiu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+W">Wangchen Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+W">Wenjun Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Ce Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuo Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+Q">Qibin Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yanbing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinzhou Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00537v2-abstract-short" style="display: inline;"> As a new member of GECAM mission, the GECAM-C (also called High Energy Burst Searcher, HEBS) is a gamma-ray all-sky monitor onboard SATech-01 satellite, which was launched on July 27th, 2022 to detect gamma-ray transients from 6 keV to 6 MeV, such as Gamma-Ray Bursts (GRBs), high energy counterpart of Gravitational Waves (GWs) and Fast Radio Bursts (FRBs), and Soft Gamma-ray Repeaters (SGRs). Toge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00537v2-abstract-full').style.display = 'inline'; document.getElementById('2303.00537v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00537v2-abstract-full" style="display: none;"> As a new member of GECAM mission, the GECAM-C (also called High Energy Burst Searcher, HEBS) is a gamma-ray all-sky monitor onboard SATech-01 satellite, which was launched on July 27th, 2022 to detect gamma-ray transients from 6 keV to 6 MeV, such as Gamma-Ray Bursts (GRBs), high energy counterpart of Gravitational Waves (GWs) and Fast Radio Bursts (FRBs), and Soft Gamma-ray Repeaters (SGRs). Together with GECAM-A and GECAM-B launched in December 2020, GECAM-C will greatly improve the monitoring coverage, localization, as well as temporal and spectral measurements of gamma-ray transients. GECAM-C employs 12 SiPM-based Gamma-Ray Detectors (GRDs) to detect gamma-ray transients . In this paper, we firstly give a brief description of the design of GECAM-C GRDs, and then focus on the on-ground tests and in-flight performance of GRDs. We also did the comparison study of the SiPM in-flight performance between GECAM-C and GECAM-B. The results show GECAM-C GRD works as expected and is ready to make scientific observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00537v2-abstract-full').style.display = 'none'; document.getElementById('2303.00537v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06219">arXiv:2302.06219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06219">pdf</a>, <a href="https://arxiv.org/format/2302.06219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dyadic Green Function Approach to Multichromophoric Forster Resonance Energy Transfer under Electromagnetic Fluctuations near Metallic Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+C">Changhao Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06219v1-abstract-short" style="display: inline;"> The near-field spectroscopic information is critically important to determine the Forster resonant energy transfer(FRET) rate and the distance dependence in the vicinity of metal surfaces. The high density of evanescent near-field modes in the vicinity of a metal surface can strongly modulate the FRET in multichromophoric systems. Based on the previous generalized FRET [A. Poudel, X. Chen and M. R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06219v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06219v1-abstract-full" style="display: none;"> The near-field spectroscopic information is critically important to determine the Forster resonant energy transfer(FRET) rate and the distance dependence in the vicinity of metal surfaces. The high density of evanescent near-field modes in the vicinity of a metal surface can strongly modulate the FRET in multichromophoric systems. Based on the previous generalized FRET [A. Poudel, X. Chen and M. Ratner, J. Phys. Chem. Lett. 7(2016) 955], the theory of FRET is generalized for the multichromophore aggregates and nonequilibrium situations in the vicinity of evanescent surface electromagnetic waves of nanophotonic structures. The classic dyadic green function (DGF) approach to multichromophoric FRET (MC-FRET) in the existence of evanescent near-field is established. The classic DGF approach provides a microscopic understanding of the interaction between the emission and absorption spectral coupling and the evanescent electromagnetic field. The MC-FRET of the ring structures demonstrates complicated distance dependence in the vicinity of the silver thin film. Given the analytic expression of hyperbolic multi-layer thin film, the generalized coupling due to the metallic thin film is determined by the scattering DGF above the metal surface. The decomposition of the reduced scattering DGF by ignoring $S$ wave in the evanescent wave shows how the interface of the metallic thin films modulates the MC-FRET. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06219v1-abstract-full').style.display = 'none'; document.getElementById('2302.06219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13387">arXiv:2207.13387</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Surface quantum dots with pure, coherent, and blinking-free single photon emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X">Xin Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jingzhong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Pengji Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fandrich%2C+T">Tom Fandrich</a>, <a href="/search/physics?searchtype=author&amp;query=Rugeramigabo%2C+E+P">Eddy P. Rugeramigabo</a>, <a href="/search/physics?searchtype=author&amp;query=K%C5%99%C3%A1pek%2C+V">Vlastimil K艡谩pek</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+C">Chenxi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Benthin%2C+F">Frederik Benthin</a>, <a href="/search/physics?searchtype=author&amp;query=Keil%2C+R">Robert Keil</a>, <a href="/search/physics?searchtype=author&amp;query=Brechtken%2C+B">Benedikt Brechtken</a>, <a href="/search/physics?searchtype=author&amp;query=Haug%2C+R+J">Rolf J. Haug</a>, <a href="/search/physics?searchtype=author&amp;query=Oestreich%2C+M">Michael Oestreich</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiteng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+C">Constantin Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhao An</a>, <a href="/search/physics?searchtype=author&amp;query=Zopf%2C+M">Michael Zopf</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+F">Fei Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13387v2-abstract-short" style="display: inline;"> The surface of semiconductor nanostructures has a major impact on their electronic and optical properties. Disorder and defects in the surface layer typically cause degradation of charge carrier transport and radiative recombination dynamics. However, surface vicinity is inevitable for many scalable nano-optical applications. Epitaxially grown quantum dots are the best candidate for high-performan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13387v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13387v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13387v2-abstract-full" style="display: none;"> The surface of semiconductor nanostructures has a major impact on their electronic and optical properties. Disorder and defects in the surface layer typically cause degradation of charge carrier transport and radiative recombination dynamics. However, surface vicinity is inevitable for many scalable nano-optical applications. Epitaxially grown quantum dots are the best candidate for high-performance single photon emission and show great potential for quantum technologies. Yet, these emitters only reveal their excellent properties if they are deeply embedded in a semiconductor host. Until today, quantum dots close to surfaces yield weak, broad, and unstable emissions. Here, we show the complete restoration of optical properties from quantum dots grown directly on a semiconductor surface. The vanishing luminescence from the as-grown sample turns into bright, ultra-stable, coherent and blinking-free single photon emission after sulphur passivation. Under quasi-resonant excitation, single photons are generated with 98.8% purity, 77% indistinguishability, linewidths down to 4 $渭$eV and 99.69% persistency across 11 orders of magnitude in time. The emission is stable even after two years and when being subjected to nanomanufacturing processes. Some long-standing stumbling blocks for surface-dominated quantum dots are thereby removed, unveiling new possibilities for hybrid nano-devices and applications in quantum communication or sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13387v2-abstract-full').style.display = 'none'; document.getElementById('2207.13387v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">New experiments show that the results have to be re-interpreted, most likely leading to a new manuscript</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07379">arXiv:2207.07379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07379">pdf</a>, <a href="https://arxiv.org/format/2207.07379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2021GL097636">10.1029/2021GL097636 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of two dune growth mechanisms in a landscape-scale experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=L%C3%BC%2C+P">Ping L眉</a>, <a href="/search/physics?searchtype=author&amp;query=Narteau%2C+C">Cl茅ment Narteau</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhibao Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Claudin%2C+P">Philippe Claudin</a>, <a href="/search/physics?searchtype=author&amp;query=Rodriguez%2C+S">S茅bastien Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhishan An</a>, <a href="/search/physics?searchtype=author&amp;query=Gadal%2C+C">Cyril Gadal</a>, <a href="/search/physics?searchtype=author&amp;query=Pont%2C+S+C+d">Sylvain Courrech du Pont</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07379v1-abstract-short" style="display: inline;"> In landscape-scale experiments at the edge of the Gobi desert, we show that various dune types develop simultaneously under natural wind conditions. Using 4 years of high-resolution topographic data, we demonstrate that, depending on sand availability, the same wind regime can lead to two different dune orientations, which reflect two independent dune growth mechanisms. As periodic oblique dunes e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07379v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07379v1-abstract-full" style="display: none;"> In landscape-scale experiments at the edge of the Gobi desert, we show that various dune types develop simultaneously under natural wind conditions. Using 4 years of high-resolution topographic data, we demonstrate that, depending on sand availability, the same wind regime can lead to two different dune orientations, which reflect two independent dune growth mechanisms. As periodic oblique dunes emerge from a sand bed and develop to 2 meters in height, we analyze defect dynamics that drive the non-linear phase of pattern coarsening. Starting from conical sand heaps deposited on gravels, we observe the transition from dome to barchan and asymmetric barchan shapes. We identify a minimum size for arm elongation and evaluate the contribution of wind reversals to its longitudinal alignment. These experimental field observations support existing theoretical models of dune dynamics boosting confidence in their applicability for quantitative predictions of dune evolution under various wind regimes and bed conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07379v1-abstract-full').style.display = 'none'; document.getElementById('2207.07379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophysical Research Letters, e2021GL097636 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02024">arXiv:2207.02024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Prediction of High Curie Temperature, Large Magnetic Crystal Anisotropy in 2D Ferromagnetic Co$_2$Ge$_2$Te$_6$ Monolayer and Multilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Z">Zhaoyong Guan</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Ziyuan An</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yuzheng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Y">Ya Su</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yanyan Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+S">Shuang Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02024v1-abstract-short" style="display: inline;"> The Co$_2$Ge$_2$Te$_6$ shows intrinsic ferromagnetic (FM) order, which origins from superexchange interaction between Co and Te atoms, with higher Curie temperature ($T_c$) of 161 K. Co$_2$Ge$_2$Te$_6$ monolayer (ML) is half-metal (HM), and spin-$尾$ electron is a semiconductor with gap of 1.311 eV. Co$_2$Ge$_2$Te$_6$ ML tends in-plane anisotropy (IPA), with magnetic anisotropy energy (MAE) of -10.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02024v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02024v1-abstract-full" style="display: none;"> The Co$_2$Ge$_2$Te$_6$ shows intrinsic ferromagnetic (FM) order, which origins from superexchange interaction between Co and Te atoms, with higher Curie temperature ($T_c$) of 161 K. Co$_2$Ge$_2$Te$_6$ monolayer (ML) is half-metal (HM), and spin-$尾$ electron is a semiconductor with gap of 1.311 eV. Co$_2$Ge$_2$Te$_6$ ML tends in-plane anisotropy (IPA), with magnetic anisotropy energy (MAE) of -10.2 meV/f.u.. Co$_2$Ge$_2$Te$_6$ ML shows good dynamical and thermal stability. Most interestingly, bilayers present ferromagnetic half-metallicity independent of the stacking orders. Notley, the multilayers ($N\ge 6$) present ferromagnetic HM, while the magnetoelectronic properties are related with the stacking patterns in thinner multilayers. Moreover, the magnetoelectronic properties are dependent on the stacking orders of bulk. The magnetic order with multilayers is determined by the super-super exchange and weak van der Waals (vdW) interaction. Co$_2$Ge$_2$Te$_6$ with intrinsic ferromagnetism, good stability of ferromagnetism and half-metallicity could help researchers to investigate its wide application in the spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02024v1-abstract-full').style.display = 'none'; document.getElementById('2207.02024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 Pages, 9 Figures. arXiv admin note: substantial text overlap with arXiv:2205.01498</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01498">arXiv:2205.01498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01498">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Carrier Doping Modulates 2D Intrinsic Ferromagnetic Mn2Ge2Te6 Monolayer High Curie Temperature, Large Magnetic Crystal Anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Ziyuan An</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Y">Ya Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+S">Shuang Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Z">Zhaoyong Guan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01498v1-abstract-short" style="display: inline;"> The Mn2Ge2Te6 shows intrinsic ferromagnetic (FM) order, with Curie temperature (Tc) of 316 K. The FM order origins from superexchange interaction between Mn and Te atoms. Mn2Ge2Te6 is half-metal (HM), and spin-\b{eta} electron is a semiconductor with gap of 1.462 eV. Mn2Ge2Te6 tends in-plane anisotropy (IPA), with magnetic anisotropy energy (MAE) of -13.2 meV/f.u.. The Mn2Ge2Te6 shows good dynamic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01498v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01498v1-abstract-full" style="display: none;"> The Mn2Ge2Te6 shows intrinsic ferromagnetic (FM) order, with Curie temperature (Tc) of 316 K. The FM order origins from superexchange interaction between Mn and Te atoms. Mn2Ge2Te6 is half-metal (HM), and spin-\b{eta} electron is a semiconductor with gap of 1.462 eV. Mn2Ge2Te6 tends in-plane anisotropy (IPA), with magnetic anisotropy energy (MAE) of -13.2 meV/f.u.. The Mn2Ge2Te6 shows good dynamical and thermal stability. Moreover, Mn2Ge2Te6 presents good ferromagnetic and half-metallic stability under charge doping. The carriers doping could effectively tune magnetic and electronic properties. Specifically, the magnetic moment, exchange parameter, and MAE could be efficiently tuned. The total magnetic moment changes linearly with charges doping. The exchange parameters could be controlled by the doping carriers. The carriers doping could modulate MAE to -18.4 (+0.4 e), -0.85 (-1.6 e), 1.31 (-2.4 e) meV/f.u., by changing hybridization between Te atoms&#39; py and pz orbitals. Mn2Ge2Te6 with intrinsic ferromagnetism, high tunable MAE, good stability of ferromagnetism and half-metallicity could help researchers to investigate its wide application in the electronics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01498v1-abstract-full').style.display = 'none'; document.getElementById('2205.01498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 2 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05314">arXiv:2112.05314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05314">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Design and Performance of Charged Particle Detector onboard the GECAM Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y+B">Y. B. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+L">X. L. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">S. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W+X">W. X. Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">K. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X+H">X. H. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D+Y">D. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C+Y">C. Y. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z+H">Z. H. An</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+J">J. J. He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X+J">X. J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S+L">S. L. Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X+Y">X. Y. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D+L">D. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X+Y">X. Y. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C+Y">C. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Z">Z. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y+Y">Y. Y. Du</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05314v1-abstract-short" style="display: inline;"> The Gravitational Wave highly energetic Electromagnetic Counterpart All-sky Monitor (GECAM) is dedicated to detecting gravitational wave gamma-ray bursts. It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena. GECAM consists of two microsatellites, each equipped with 8 charged particle detectors (CPDs) and 25 gamma-ray detectors (GRDs). The CPD is us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05314v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05314v1-abstract-full" style="display: none;"> The Gravitational Wave highly energetic Electromagnetic Counterpart All-sky Monitor (GECAM) is dedicated to detecting gravitational wave gamma-ray bursts. It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena. GECAM consists of two microsatellites, each equipped with 8 charged particle detectors (CPDs) and 25 gamma-ray detectors (GRDs). The CPD is used to measure charged particles in the space environment, monitor energy and flow intensity changes, and identify between gamma-ray bursts and space charged particle events in conjunction with GRD. CPD uses plastic scintillator as the sensitive material for detection, silicon photomultiplier (SiPM) array as the optically readable device, and the inlaid Am-241 radioactive source as the onboard calibration means. In this paper, we will present the working principle, physical design, functional implementation and preliminary performance test results of the CPD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05314v1-abstract-full').style.display = 'none'; document.getElementById('2112.05314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to RDTM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04772">arXiv:2112.04772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04772">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Inflight performance of the GECAM Gamma-ray and Charge particle Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X+Y">X. Y. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S+L">S. L. Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">K. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D+L">D. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z+H">Z. H. An</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y+B">Y. B. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Z">Z. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y+Y">Y. Y. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">M. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+R">R. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D+Y">D. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+J">J. J. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D+J">D. J. Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+G">Y. G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C+Y">C. Y. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q+X">Q. X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+F">X. F. Li</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04772v1-abstract-short" style="display: inline;"> The GECAM mission consists of two identical microsatellites (GECAM-A and GECAM-B). Each satellite is equipped with 25 gamma-ray detectors (GRD) and 8 charged particle detectors (CPD). The main scientific objective of the GECAM mission is to detect gamma-ray bursts (GRBs) associated with the gravitational wave events produced by the merging of binary compact stars. After the launch on Dec. 10, 2020&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04772v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04772v1-abstract-full" style="display: none;"> The GECAM mission consists of two identical microsatellites (GECAM-A and GECAM-B). Each satellite is equipped with 25 gamma-ray detectors (GRD) and 8 charged particle detectors (CPD). The main scientific objective of the GECAM mission is to detect gamma-ray bursts (GRBs) associated with the gravitational wave events produced by the merging of binary compact stars. After the launch on Dec. 10, 2020 , we carried out a series of on orbit tests. This paper introduces the test results of the GECAM-B satellite. According to the in-flight performance, the energy band for gamma-ray detection of GECAM-B is from about 7 keV to 3.5 MeV. GECAM-B can achieve prompt localization of GRBs. For the first time, GECAM-B realized a quasi-real-time transmission of trigger information using Beidou-3 RDSS. Keywords GECAM, gamma-ray burst, gravitational wave, GRD, CPD <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04772v1-abstract-full').style.display = 'none'; document.getElementById('2112.04772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01796">arXiv:2110.01796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01796">pdf</a>, <a href="https://arxiv.org/format/2110.01796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.166222">10.1016/j.nima.2021.166222 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gain stabilization and consistency correction approach for multiple SiPM-based gamma-ray detectors on GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dali Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinqiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiangyang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shaolin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xilei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+R">Rui Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhengwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D">Dongjie Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yanguo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xiaohua Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaojing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yaqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wenxi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaoyun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Ce Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chaoyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuo Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+Q">Qibin Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01796v3-abstract-short" style="display: inline;"> Each satellite of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM, mission) consists of 25 SiPM based gamma-ray detectors (GRDs). Although SiPM based GRD has merits of compact size and low bias-voltage, the drift of the SiPM gain with temperature is a severe problem for GRD performance. An adaptive voltage supply source was designed to automatically adjust the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01796v3-abstract-full').style.display = 'inline'; document.getElementById('2110.01796v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01796v3-abstract-full" style="display: none;"> Each satellite of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM, mission) consists of 25 SiPM based gamma-ray detectors (GRDs). Although SiPM based GRD has merits of compact size and low bias-voltage, the drift of the SiPM gain with temperature is a severe problem for GRD performance. An adaptive voltage supply source was designed to automatically adjust the SiPM bias voltage to compensate the temperature effects and keep the gain stable. This approach has been proved to be effective during both the on-ground and in-flight tests. The in-flight measured variation of the SiPM gain is within 2%. To reduce the gain non-uniformity of GRDs, an iterative bias voltage adjustment approach is proposed and implemented. The gain non-uniformity is reduced from 17% to 0.6%. In this paper, the gain stabilization and consistency correction approach are presented and discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01796v3-abstract-full').style.display = 'none'; document.getElementById('2110.01796v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00235">arXiv:2109.00235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00235">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quality assurance test and Failure Analysis of SiPM Arrays of GECAM Satellites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D+L">D. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">M. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+L">X. L. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z+H">Z. H. An</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X+Y">X. Y. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Z">Z. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y+Y">Y. Y. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+R">R. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">K. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+D+Y">D. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+J">J. J. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D+J">D. J. Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+G">Y. G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C+Y">C. Y. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+F">X. F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M+S">M. S. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X+H">X. H. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X+J">X. J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00235v2-abstract-short" style="display: inline;"> The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) satellite consists of two small satellites. Each GECAM payload contains 25 gamma ray detectors (GRD) and 8 charged particle detectors (CPD). GRD is the main detector which can detect gamma-rays and particles and localize the Gamma-Ray Bursts (GRB),while CPD is used to help GRD to discriminate gamma-ray bursts an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00235v2-abstract-full').style.display = 'inline'; document.getElementById('2109.00235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00235v2-abstract-full" style="display: none;"> The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) satellite consists of two small satellites. Each GECAM payload contains 25 gamma ray detectors (GRD) and 8 charged particle detectors (CPD). GRD is the main detector which can detect gamma-rays and particles and localize the Gamma-Ray Bursts (GRB),while CPD is used to help GRD to discriminate gamma-ray bursts and charged particle bursts. The GRD makes use of lanthanum bromide (LaBr3) crystal readout by SiPM. As the all available SiPM devices belong to commercial grade, quality assurance tests need to be performed in accordance with the aerospace specifications. In this paper, we present the results of quality assurance tests, especially a detailed mechanism analysis of failed devices during the development of GECAM. This paper also summarizes the application experience of commercial-grade SiPM devices in aerospace payloads, and provides suggestions for forthcoming SiPM space applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00235v2-abstract-full').style.display = 'none'; document.getElementById('2109.00235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> RDTM-D-21-00057R4.2021.9.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09548">arXiv:2107.09548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09548">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Progress of microscopic thermoelectric effects studied by micro-and nano-thermometric techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xue Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+R">Ruijie Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+H">Huanyi Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+W">Weikang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09548v1-abstract-short" style="display: inline;"> Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09548v1-abstract-full').style.display = 'inline'; document.getElementById('2107.09548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09548v1-abstract-full" style="display: none;"> Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green energy-recycling method, while thermoelectric Peltier effect can be employed for heat management by actively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough. However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09548v1-abstract-full').style.display = 'none'; document.getElementById('2107.09548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14026">arXiv:2106.14026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14026">pdf</a>, <a href="https://arxiv.org/format/2106.14026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-021-09776-y">10.1007/s10686-021-09776-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and test of a portable Gamma-Ray Burst simulator for GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Can Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuo Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shaolin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N">Nian Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiangyang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinqiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chaoyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D">Dongjie Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiongtao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zijian Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yuxuan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dali Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaoyun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yupeng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yusa Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14026v2-abstract-short" style="display: inline;"> The main scientific goal of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is to monitor various types of Gamma-Ray Bursts (GRB) originated from merger of binary compact stars, which could also produce gravitational wave, and collapse of massive stars. In order to study the response of GECAM Gamma-Ray Detectors (GRDs) to high-energy bursts and test the in-fl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14026v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14026v2-abstract-full" style="display: none;"> The main scientific goal of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is to monitor various types of Gamma-Ray Bursts (GRB) originated from merger of binary compact stars, which could also produce gravitational wave, and collapse of massive stars. In order to study the response of GECAM Gamma-Ray Detectors (GRDs) to high-energy bursts and test the in-flight trigger and localization software of GECAM before the launch, a portable GRB simulator device is designed and implemented based on grid controlled X-ray tube (GCXT) and direct digital synthesis (DDS) technologies. The design of this GRB simulator which modulates X-ray flux powered by high voltage up to 20 kV is demonstrated, and the time jitter (FWHM) of the device is about 0.9 $渭$s. Before the launch in December, 2020, both two GECAM satellites were irradiated by different types of GRBs (including short and long bursts in duration) generated by this GRB simulator. The light curves detected with GECAM/GRDs are consistent with the programmed input functions within statistical uncertainties, indicating the good performance of both the GRDs and the GRB simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14026v2-abstract-full').style.display = 'none'; document.getElementById('2106.14026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, accepted to be published in Experimental Astronomy on 09 July 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13117">arXiv:2106.13117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13117">pdf</a>, <a href="https://arxiv.org/format/2106.13117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2024105118">10.1073/pnas.2024105118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct validation of dune instability theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=L%C3%BC%2C+P">Ping L眉</a>, <a href="/search/physics?searchtype=author&amp;query=Narteau%2C+C">Cl茅ment Narteau</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhibao Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Claudin%2C+P">Philippe Claudin</a>, <a href="/search/physics?searchtype=author&amp;query=Rodriguez%2C+S">S茅bastien Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhishan An</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez-Cascales%2C+L">Laura Fernandez-Cascales</a>, <a href="/search/physics?searchtype=author&amp;query=Gadal%2C+C">Cyril Gadal</a>, <a href="/search/physics?searchtype=author&amp;query=Pont%2C+S+C+d">Sylvain Courrech du Pont</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13117v1-abstract-short" style="display: inline;"> Modern dune fields are valuable sources of information for the large-scale analysis of terrestrial and planetary environments and atmospheres, but their study relies on understanding the small-scale dynamics that constantly generate new dunes and reshape older ones. Here we designed a landscape-scale experiment at the edge of the Gobi desert, China, to quantify the development of incipient dunes u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13117v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13117v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13117v1-abstract-full" style="display: none;"> Modern dune fields are valuable sources of information for the large-scale analysis of terrestrial and planetary environments and atmospheres, but their study relies on understanding the small-scale dynamics that constantly generate new dunes and reshape older ones. Here we designed a landscape-scale experiment at the edge of the Gobi desert, China, to quantify the development of incipient dunes under the natural action of winds. High-resolution topographic data documenting 42~months of bedform dynamics are examined to provide a spectral analysis of dune pattern formation. We identified two successive phases in the process of dune growth, from the initial flat sand bed to a meter-high periodic pattern. We focus on the initial phase, when the linear regime of dune instability applies, and measure the growth rate of dunes of different wavelengths. We identify the existence of a maximum growth rate, which readily explains the mechanism by which dunes select their size, leading to the prevalence of a 15~m-wavelength pattern. We quantitatively compare our experimental results to the prediction of the dune instability theory using transport and flow parameters independently measured in the field. The remarkable agreement between theory and observations demonstrates that the linear regime of dune growth is permanently expressed on low-amplitude bed topography, before larger regular patterns and slip faces eventually emerge. Our experiment underpin existing theoretical models for the early development of eolian dunes, which can now be used to provide reliable insights into atmospheric and surface processes on Earth and other planetary bodies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13117v1-abstract-full').style.display = 'none'; document.getElementById('2106.13117v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 19 figures (supplementary material included)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the National Academy of Sciences, 118(17) (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11139">arXiv:2106.11139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11139">pdf</a>, <a href="https://arxiv.org/ps/2106.11139">ps</a>, <a href="https://arxiv.org/format/2106.11139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A simulation study of a windowless gas stripping room in an E//B neutral particle analyzer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yuan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Wei-Ping Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+P">Pei-Pei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+G">Guo-Feng Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jing-Jun Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xing-Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiao-Bing Luo</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhu An</a>, <a href="/search/physics?searchtype=author&amp;query=Wada%2C+R">Roy Wada</a>, <a href="/search/physics?searchtype=author&amp;query=Zang%2C+L">Lin-Ge Zang</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+Y">Yu-Fan Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhong-Bing Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11139v1-abstract-short" style="display: inline;"> Neutral Particle Analyzer (NPA) is one of the crucial diagnostic devices on Tokamak facilities. Stripping unit is one of the main parts of the NPA. A windowless gas stripping room with two differential pipes is adopted in a parallel direction of electric and magnetic fields (E//B) NPA. The pressure distributions in the stripping chamber are simulated by Ansys Fluent together with MolFlow+. Based o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11139v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11139v1-abstract-full" style="display: none;"> Neutral Particle Analyzer (NPA) is one of the crucial diagnostic devices on Tokamak facilities. Stripping unit is one of the main parts of the NPA. A windowless gas stripping room with two differential pipes is adopted in a parallel direction of electric and magnetic fields (E//B) NPA. The pressure distributions in the stripping chamber are simulated by Ansys Fluent together with MolFlow+. Based on the pressure distributions extracted from the simulation, the stripping efficiency of the E//B NPA is studied with GEANT4. The hadron reaction physics is modified to track the charge state of each particle in a cross section base method in GEANT4. The transmission rates ($R$) and the stripping efficiencies $f_{+1}$ are examined for the particle energy ranging from 20 to 200 keV at the input pressure ($P_0$) ranging from 20 to 400 Pa. According to the combined global efficiency, $R \times f_{+1}$, $P_0$ = 240 Pa is obtained as the optimum pressure for the maximum global efficiency in the incident energy range investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11139v1-abstract-full').style.display = 'none'; document.getElementById('2106.11139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14723">arXiv:2104.14723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.14723">pdf</a>, <a href="https://arxiv.org/format/2104.14723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.160502">10.1103/PhysRevLett.127.160502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-Device-Independent Verification of a Quantum Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y">Yong Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+P">Peng-Fei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+B">Bing Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Y">Yu-Qiang Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xi-Yu Luo</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zi-Ye An</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+X">Xiao-Hui Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14723v1-abstract-short" style="display: inline;"> In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electromagnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform joint Bel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14723v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14723v1-abstract-full" style="display: none;"> In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electromagnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform joint Bell-state measurement (BSM). Quantum state for each photon is chosen based on a quantum random number generator respectively in each run. By evaluating correlations between the random states and BSM results, we certify that our memory is genuinely entanglement-preserving. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14723v1-abstract-full').style.display = 'none'; document.getElementById('2104.14723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01987">arXiv:2101.01987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01987">pdf</a>, <a href="https://arxiv.org/format/2101.01987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.013706">10.1103/PhysRevA.102.013706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Creation of Single Rydberg Excitations via Adiabatic Passage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+M">Ming-Ti Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jian-Long Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+P">Peng-Fei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zi-Ye An</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+X">Xiao-Hui Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01987v1-abstract-short" style="display: inline;"> In an atomic ensemble, quantum information is typically carried as single collective excitations. It is very advantageous if the creation of single excitations is efficient and robust. Rydberg blockade enables deterministic creation of single excitations via collective Rabi oscillation by precisely controlling the pulse area, being sensitive to many experimental parameters. In this paper, we imple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01987v1-abstract-full').style.display = 'inline'; document.getElementById('2101.01987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01987v1-abstract-full" style="display: none;"> In an atomic ensemble, quantum information is typically carried as single collective excitations. It is very advantageous if the creation of single excitations is efficient and robust. Rydberg blockade enables deterministic creation of single excitations via collective Rabi oscillation by precisely controlling the pulse area, being sensitive to many experimental parameters. In this paper, we implement the adiabatic rapid passage technique to the Rydberg excitation process in a mesoscopic atomic ensemble. We make use of a two-photon excitation scheme with an intermediate state off-resonant and sweep the laser frequency of one excitation laser. We find the chirped scheme preserves internal phases of the collective Rydberg excitation and be more robust against variance of laser intensity and frequency detuning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01987v1-abstract-full').style.display = 'none'; document.getElementById('2101.01987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 013706 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.04499">arXiv:1804.04499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.04499">pdf</a>, <a href="https://arxiv.org/format/1804.04499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.12.032">10.1016/j.nima.2018.12.032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Response of GECAM Gamma-Ray Detector Based on LaBr3:Ce and SiPM Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wen-xi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan-Zhang"> Fan-Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yanguo-Li"> Yanguo-Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yan-Bing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yue Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.04499v6-abstract-short" style="display: inline;"> The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) , composed of two small satellites, is a new mission to monitor the Gamma-Ray Bursts (GRBs) coincident with Gravitational Wave (GW) events with a FOV of 100% all-sky.Each GECAM satellite detects and localizes GRBs using 25 compact and novel Gamma-Ray Detectors (GRDs) in 6 keV-5 MeV. Each GRD module is comprised&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04499v6-abstract-full').style.display = 'inline'; document.getElementById('1804.04499v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.04499v6-abstract-full" style="display: none;"> The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) , composed of two small satellites, is a new mission to monitor the Gamma-Ray Bursts (GRBs) coincident with Gravitational Wave (GW) events with a FOV of 100% all-sky.Each GECAM satellite detects and localizes GRBs using 25 compact and novel Gamma-Ray Detectors (GRDs) in 6 keV-5 MeV. Each GRD module is comprised of LaBr3:Ce scintillator, SiPM array and preamplifier. A large dynamic range of GRD is achieved by the high gain and low gain channels of the preamplifier. The energy response of GRD prototype was evaluated using radioactive sources in the range of 5.9-1332.5 keV. A energy resolution of 5.3% at 662 keV was determined from the 137Cs pulse height spectra, which meets the GECAM requirement (&lt; 8% at 662 keV). Energy to channel conversion was evaluated and a nonlinearity correction was performed to reduce the residuals (&lt; 1.5%). Also, a Geant4-based simulated in-flight background and a measured GRD LaBr3:Ce intrinsic activity were used to evaluate the capability of in-flight calibration. These results demonstrate the design of GRD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04499v6-abstract-full').style.display = 'none'; document.getElementById('1804.04499v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07378">arXiv:1803.07378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07378">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Research of migration behavior of space charge packet in polyethylene by electron beam irradiation method under the applied electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Hui Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yewen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+J">Jia Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+F">Feihu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenlian An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07378v1-abstract-short" style="display: inline;"> For accurately obtaining the relationship between the carrier mobility and the applied electric field, a new multi-layer sample has been designed. Polyvinyl fluoride (PVF) films were hot pressed on both sides of linear low density polyethylene( LLDPE) to block the charge injection from the electrode, so as to better observe the migration of irradiated electrons. The new multi-layer sample was firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07378v1-abstract-full').style.display = 'inline'; document.getElementById('1803.07378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07378v1-abstract-full" style="display: none;"> For accurately obtaining the relationship between the carrier mobility and the applied electric field, a new multi-layer sample has been designed. Polyvinyl fluoride (PVF) films were hot pressed on both sides of linear low density polyethylene( LLDPE) to block the charge injection from the electrode, so as to better observe the migration of irradiated electrons. The new multi-layer sample was firstly charged to form a charge packet in the electron beam (e-beam) irradiation setup. And then it was transferred to the Laser Induced Pressure Propagation (LIPP) setup to have the space charge evolution monitored under DC voltages on the order 10-70 kV/mm. The migration of the charge packet has been successfully obtained in this new multi-layer sample. By using the packet front as the reference point, the range of the average mobility of packets at a range from 0.06*10-14 to 1.02*10-14 m2/(V*s) under calibration local field. The experimental results coincide well with the curve relating charge mobility and the electric field predicted from the Gunn effect-like model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07378v1-abstract-full').style.display = 'none'; document.getElementById('1803.07378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.00368">arXiv:1601.00368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.00368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Near-field Nanoscopy of Thermal Evanescent Waves on Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Komiyama%2C+S">S. Komiyama</a>, <a href="/search/physics?searchtype=author&amp;query=Kajihara%2C+Y">Y. Kajihara</a>, <a href="/search/physics?searchtype=author&amp;query=Kosaka%2C+K">K. Kosaka</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+T">T. Ueda</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.00368v2-abstract-short" style="display: inline;"> Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00368v2-abstract-full').style.display = 'inline'; document.getElementById('1601.00368v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.00368v2-abstract-full" style="display: none;"> Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-coupled molecular dynamics. On metal surfaces, relevance of surface plasmon polaritons (SPlPs), coupled to collective motion of conduction electrons, has attracted strong interest, but has not been explicitly clarified up to the present time. Here, using a passive terahertz (THz) near-field microscope with unprecedented high sensitivity, we unveil detailed nature of thermally generated evanescent fields (wavelength:lamda0~14.5micron) on metals at room temperature. Our experimental results unambiguously indicate that the thermal waves are short-wavelength fluctuating electromagnetic fields, from which relevance of SPlPs is ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00368v2-abstract-full').style.display = 'none'; document.getElementById('1601.00368v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00907">arXiv:1510.00907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00907">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/am.2016.166">10.1038/am.2016.166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quasi-two-dimensional Dirac fermions in ZrTe5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiang Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanwen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+C">Chaoyu Song</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+S">Shoudong Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+X">Xing Sui</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Haochi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Sanvito%2C+S">Stefano Sanvito</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+H">Hugen Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00907v2-abstract-short" style="display: inline;"> Since the discovery of graphene, layered materials have attracted extensive interests owing to their unique electronic and optical characteristics. Among them, Dirac semimetal, one of the most appealing categories, has been a long-sought objective in layered systems beyond graphene. Recently, layered pentatelluride ZrTe5 was found to host signatures of Dirac semimetal. However, the low Fermi level&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00907v2-abstract-full').style.display = 'inline'; document.getElementById('1510.00907v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00907v2-abstract-full" style="display: none;"> Since the discovery of graphene, layered materials have attracted extensive interests owing to their unique electronic and optical characteristics. Among them, Dirac semimetal, one of the most appealing categories, has been a long-sought objective in layered systems beyond graphene. Recently, layered pentatelluride ZrTe5 was found to host signatures of Dirac semimetal. However, the low Fermi level in ZrTe5 strongly hinders a comprehensive understanding of the whole picture of electronic states through photoemission measurements, especially in the conduction band. Here, we report the observation of Dirac fermions in ZrTe5 through magneto-optics and magneto-transport. By applying magnetic field, we observe a square-root-B dependence of inter-Landau-level resonance and Shubnikov-de Haas (SdH) oscillations with non-trivial Berry phase, both of which are hallmarks of Dirac fermions. The angular-dependent SdH oscillations show a clear quasi-two-dimensional feature with highly anisotropic Fermi surface and band topology, in stark contrast to the 3D Dirac semimetal such as Cd3As2. This is further confirmed by the angle-dependent Berry phase measurements and the observation of bulk quantum Hall plateaus. The unique band dispersion is theoretically understood: the system is at the critical point between a 3D Dirac semimetal and a topological insulator phase. With the confined interlayer dispersion and reducible dimensionality, our work establishes ZrTe5 as an ideal platform for exploring exotic physical phenomena of Dirac fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00907v2-abstract-full').style.display = 'none'; document.getElementById('1510.00907v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NPG Asia Materials (2016) 8, e325 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2579">arXiv:1405.2579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2579">pdf</a>, <a href="https://arxiv.org/ps/1405.2579">ps</a>, <a href="https://arxiv.org/format/1405.2579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Accurately Estimating the State of a Geophysical System with Sparse Observations: Predicting the Weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhe An</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+D">Daniel Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Abarbanel%2C+H+D+I">Henry D. I. Abarbanel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2579v1-abstract-short" style="display: inline;"> Utilizing the information in observations of a complex system to make accurate predictions through a quantitative model when observations are completed at time $T$, requires an accurate estimate of the full state of the model at time $T$. When the number of measurements $L$ at each observation time within the observation window is larger than a sufficient minimum value $L_s$, the impediments in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2579v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2579v1-abstract-full" style="display: none;"> Utilizing the information in observations of a complex system to make accurate predictions through a quantitative model when observations are completed at time $T$, requires an accurate estimate of the full state of the model at time $T$. When the number of measurements $L$ at each observation time within the observation window is larger than a sufficient minimum value $L_s$, the impediments in the estimation procedure are removed. As the number of available observations is typically such that $L \ll L_s$, additional information from the observations must be presented to the model. We show how, using the time delays of the measurements at each observation time, one can augment the information transferred from the data to the model, removing the impediments to accurate estimation and permitting dependable prediction. We do this in a core geophysical fluid dynamics model, the shallow water equations, at the heart of numerical weather prediction. The method is quite general, however, and can be utilized in the analysis of a broad spectrum of complex systems where measurements are sparse. When the model of the complex system has errors, the method still enables accurate estimation of the state of the model and thus evaluation of the model errors in a manner separated from uncertainties in the data assimilation procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2579v1-abstract-full').style.display = 'none'; document.getElementById('1405.2579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.1796">arXiv:1211.1796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.1796">pdf</a>, <a href="https://arxiv.org/ps/1211.1796">ps</a>, <a href="https://arxiv.org/format/1211.1796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Common dependence on earthquake magnitudes for the trapped particles bursts approaching the earthquake </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Huanyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+X">Xiangcheng Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jilong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+F">Feng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yanbing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinqiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xiaoxia Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaoyun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+F">Feng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+W">Wenqi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hanyi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.1796v2-abstract-short" style="display: inline;"> Trapped particles bursts have long been observed to be frequently occurred several hours before earthquakes, especially for strong earthquakes, from several space experiments during past decades. However, the validity of earthquake origin of particles bursts events is still unsolved. In this paper, we firstly reported the frequency distribution and time evolution of particles bursts within differe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1796v2-abstract-full').style.display = 'inline'; document.getElementById('1211.1796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.1796v2-abstract-full" style="display: none;"> Trapped particles bursts have long been observed to be frequently occurred several hours before earthquakes, especially for strong earthquakes, from several space experiments during past decades. However, the validity of earthquake origin of particles bursts events is still unsolved. In this paper, we firstly reported the frequency distribution and time evolution of particles bursts within different time windows centered around earthquakes for various magnitudes. The results showed nearly the same systematic dependence of particle bursts frequency on earthquake magnitude and characteristic time decay behavior of average number of particles bursts for various magnitudes. These findings should strengthen the validity of earthquake origin of particles bursts and further understanding of particles bursts as possible precursor of earthquake. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1796v2-abstract-full').style.display = 'none'; document.getElementById('1211.1796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.1757">arXiv:1105.1757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.1757">pdf</a>, <a href="https://arxiv.org/ps/1105.1757">ps</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/36/2/007">10.1088/1674-1137/36/2/007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of THGEM detector with mini-rim </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+A">Ai-Wu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Bo-Xiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yu-Guang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hong-Bang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhi-Gang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+F">Feng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+J">Jian Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Z">Zhen Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Q">Qi-Wen Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+L">Li-Jun Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yong-Shuai Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Ying-Biao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jun-Guang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.1757v2-abstract-short" style="display: inline;"> The gas gain and energy resolution of single and double THGEM detectors (5{\times}5cm2 effective area) with mini-rims (rim is less than 10渭m) were studied. The maximum gain can reach 5{\times}103 and 2{\times}105 for single and double THGEM respectively, while the energy resolution of 5.9 keV X-ray varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thickn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.1757v2-abstract-full').style.display = 'inline'; document.getElementById('1105.1757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.1757v2-abstract-full" style="display: none;"> The gas gain and energy resolution of single and double THGEM detectors (5{\times}5cm2 effective area) with mini-rims (rim is less than 10渭m) were studied. The maximum gain can reach 5{\times}103 and 2{\times}105 for single and double THGEM respectively, while the energy resolution of 5.9 keV X-ray varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses.All the experiments were investigated in mixture of noble gases(argon,neon) and small content of other gases(iso-butane,methane) at atmospheric pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.1757v2-abstract-full').style.display = 'none'; document.getElementById('1105.1757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4pages,6figures, it has been submitted to Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.6105">arXiv:1103.6105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.6105">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/35/12/009">10.1088/1674-1137/35/12/009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The fast light of CsI(Na) crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xilei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Junguang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yifang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+L">Liang Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Boxiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+J">Jian Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yuguang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhigang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Z">Zhen Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+A">Aiwu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Q">Qiwen Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+F">Feipeng Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yongshuai Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yingbiao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.6105v1-abstract-short" style="display: inline;"> The responds of different common alkali halide crystals to alpha-rays and gamma-rays are tested in our research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others have not this phenomena. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6105v1-abstract-full').style.display = 'inline'; document.getElementById('1103.6105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.6105v1-abstract-full" style="display: none;"> The responds of different common alkali halide crystals to alpha-rays and gamma-rays are tested in our research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others have not this phenomena. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of the host crystal CsI. Self-absorption limits the emission of fast light of CsI(Tl) and NaI(Tl) crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6105v1-abstract-full').style.display = 'none'; document.getElementById('1103.6105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 11 figures Submit to Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.2727">arXiv:1102.2727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.2727">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2011.03.062">10.1016/j.nima.2011.03.062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron-gamma discrimination of CsI(Na) crystals for dark matter searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xilei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Junguang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yifang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+L">Liang Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Boxiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+J">Jian Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yuguang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhigang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Z">Zhen Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Q">Qiwen Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+F">Feipeng Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yongshuai Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yingbiao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.2727v1-abstract-short" style="display: inline;"> The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 ns, while 纬-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and 纬-ray signals are also different. The study of n/纬 separatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2727v1-abstract-full').style.display = 'inline'; document.getElementById('1102.2727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.2727v1-abstract-full" style="display: none;"> The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 ns, while 纬-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and 纬-ray signals are also different. The study of n/纬 separation shows that the rejection factor can reach an order of 10-7 with signal efficiency more than 80% at an equivalent electron recoil energy of 20 keV or more. Such a property makes CsI(Na) an ideal candidate for dark matter searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2727v1-abstract-full').style.display = 'none'; document.getElementById('1102.2727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A642:52-58,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.0467">arXiv:1010.0467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.0467">pdf</a>, <a href="https://arxiv.org/ps/1010.0467">ps</a>, <a href="https://arxiv.org/format/1010.0467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Scattering and Recombination of Two Triplet Excitons in polymer light-emitting diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Y. Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Di%2C+B">B. Di</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X+J">X. J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y+D">Y. D. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Z. An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.0467v1-abstract-short" style="display: inline;"> The scattering and recombination processes between two triplet excitons in conjugated polymers are investigated by using a nonadiabatic evolution method, based on an extended Su-Schrieffer-Heeger model including interchain interactions. Due to the interchain coupling, the electron and/or hole in the two triplet excitons can exchange. The results show that the recombination induces the formation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0467v1-abstract-full').style.display = 'inline'; document.getElementById('1010.0467v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.0467v1-abstract-full" style="display: none;"> The scattering and recombination processes between two triplet excitons in conjugated polymers are investigated by using a nonadiabatic evolution method, based on an extended Su-Schrieffer-Heeger model including interchain interactions. Due to the interchain coupling, the electron and/or hole in the two triplet excitons can exchange. The results show that the recombination induces the formation of singlet excitons, excited polarons and biexcitons. Moreover, we also find the yields of these products, which can contribute to the emission, increase with the interchain coupling strength, in good agreement with results from experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0467v1-abstract-full').style.display = 'none'; document.getElementById('1010.0467v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0310024">arXiv:physics/0310024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0310024">pdf</a>, <a href="https://arxiv.org/ps/physics/0310024">ps</a>, <a href="https://arxiv.org/format/physics/0310024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1695200">10.1063/1.1695200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band gaps and localization of water waves over one-dimensional topographical bottoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zhong An</a>, <a href="/search/physics?searchtype=author&amp;query=ye%2C+Z">Zhen ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0310024v1-abstract-short" style="display: inline;"> In this paper, the phenomenon of band gaps and Anderson localization of water waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. The results indicate that the range of localization in random bottoms can be coincident with the band gaps for the corresponding periodic bottoms. Inside the gap or localization regime, a collective behavior of water w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0310024v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0310024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0310024v1-abstract-full" style="display: none;"> In this paper, the phenomenon of band gaps and Anderson localization of water waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. The results indicate that the range of localization in random bottoms can be coincident with the band gaps for the corresponding periodic bottoms. Inside the gap or localization regime, a collective behavior of water waves appears. The results are also compared with acoustic and optical situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0310024v1-abstract-full').style.display = 'none'; document.getElementById('physics/0310024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, five figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 84, 2952 (2004) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10