CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;43 of 43 results for author: <span class="mathjax">Xie, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Xie%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xie, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xie%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xie, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03802">arXiv:2412.03802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03802">pdf</a>, <a href="https://arxiv.org/format/2412.03802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-Chip Enhanced Biphoton Generation with Incoherent Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yue-Wei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Heng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yin-Hai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wu-Zhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Ming-Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ren-Hui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Meng-Yu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03802v1-abstract-short" style="display: inline;"> On-chip quantum photon sources are pivotal components in integrated photonics, driving significant advancements in quantum information technologies over recent decades. Traditionally, the coherence of the pump beam has been considered a critical property in ensuring the quality of the source. In this work, we produce a photon-pair source via spontaneous four-wave mixing pumped by temporally incohe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03802v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03802v1-abstract-full" style="display: none;"> On-chip quantum photon sources are pivotal components in integrated photonics, driving significant advancements in quantum information technologies over recent decades. Traditionally, the coherence of the pump beam has been considered a critical property in ensuring the quality of the source. In this work, we produce a photon-pair source via spontaneous four-wave mixing pumped by temporally incoherent light in a standard silicon nanowire. Compared to a coherent laser, the incoherence improves pump utilization efficiency, which results in higher source brightness. Additionally, its spectrally uncorrelated nature of incoherent light is transferred to the generated photon source, allowing high-purity state preparation without the need for narrow filtering. Experimentally, we demonstrate the advantages using an amplified spontaneous emission source over a continuous-wave laser. With temporally incoherent pumping, the photon pair generation rate increases by 40%. The coincidence-to-accidental ratio and heralded second-order autocorrelation exhibit improved performance at low power. Our work expands the scope of incoherently pumped quantum states and provides a method for generating photon sources using a more readily accessible light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03802v1-abstract-full').style.display = 'none'; document.getElementById('2412.03802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16835">arXiv:2411.16835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16835">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A fluorescent-protein spin qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feder%2C+J+S">Jacob S. Feder</a>, <a href="/search/physics?searchtype=author&amp;query=Soloway%2C+B+S">Benjamin S. Soloway</a>, <a href="/search/physics?searchtype=author&amp;query=Verma%2C+S">Shreya Verma</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+Z+Z">Zhi Z. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Kifle%2C+B">Bethel Kifle</a>, <a href="/search/physics?searchtype=author&amp;query=Riendeau%2C+E+G">Emmeline G. Riendeau</a>, <a href="/search/physics?searchtype=author&amp;query=Tsaturyan%2C+Y">Yeghishe Tsaturyan</a>, <a href="/search/physics?searchtype=author&amp;query=Weiss%2C+L+R">Leah R. Weiss</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mouzhe Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jun Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Esser-Kahn%2C+A">Aaron Esser-Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Gagliardi%2C+L">Laura Gagliardi</a>, <a href="/search/physics?searchtype=author&amp;query=Awschalom%2C+D+D">David D. Awschalom</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+P+C">Peter C. Maurer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16835v1-abstract-short" style="display: inline;"> Optically-addressable spin qubits form the foundation of a new generation of emerging nanoscale sensors. The engineering of these sensors has mainly focused on solid-state systems such as the nitrogen-vacancy (NV) center in diamond. However, NVs are restricted in their ability to interface with biomolecules due to their bulky diamond host. Meanwhile, fluorescent proteins have become the gold stand&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16835v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16835v1-abstract-full" style="display: none;"> Optically-addressable spin qubits form the foundation of a new generation of emerging nanoscale sensors. The engineering of these sensors has mainly focused on solid-state systems such as the nitrogen-vacancy (NV) center in diamond. However, NVs are restricted in their ability to interface with biomolecules due to their bulky diamond host. Meanwhile, fluorescent proteins have become the gold standard in bioimaging, as they are genetically encodable and easily integrated with biomolecules. While fluorescent proteins have been suggested to possess a metastable triplet state, they have not been investigated as qubit sensors. Here, we realize an optically-addressable spin qubit in the Enhanced Yellow Fluorescent Protein (EYFP) enabled by a novel spin-readout technique. A near-infrared laser pulse allows for triggered readout of the triplet state with up to 44% spin contrast. Using coherent microwave control of the EYFP spin at liquid-nitrogen temperatures, we measure a spin-lattice relaxation time of $(141 \pm 5)$ 渭s, a $(16 \pm 2)$ 渭s coherence time under Carr-Purcell-Meiboom-Gill (CPMG) decoupling, and a predicted oscillating (AC) magnetic field sensitivity with an upper bound of $183 \, \mathrm{fT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically-detected magnetic resonance at room temperature in aqueous solution with contrast up to 3%, and measure a static (DC) field sensitivity with an upper bound of $93 \, \mathrm{pT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. Our results establish fluorescent proteins as a powerful new qubit sensor platform and pave the way for applications in the life sciences that are out of reach for solid-state technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16835v1-abstract-full').style.display = 'none'; document.getElementById('2411.16835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16616">arXiv:2409.16616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16616">pdf</a>, <a href="https://arxiv.org/format/2409.16616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Broadband measurement of Feibelman&#39;s quantum surface response functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yipu Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yonggen Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Huirong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Maohai Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+T">Thomas Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16616v2-abstract-short" style="display: inline;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16616v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16616v2-abstract-full" style="display: none;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation of a $d$-parameter database for interfaces of interest in nano-optics. However, accurate first-principles calculations of $d$-parameters face computational challenges, whereas existing measurements of $d$-parameters are scarce and restricted to narrow spectral windows. We demonstrate a general broadband ellipsometric approach to measure $d$-parameters at a gold--air interface across the visible--ultraviolet regimes. Gold is found to spill in and spill out at different frequencies. We also observe gold&#39;s Bennett mode, a surface-dipole resonance associated with a pole of the $d$-parameter, around 2.5 eV. Our measurements give rise to and are further validated by the passivity and Kramers--Kronig causality analysis of $d$-parameters. Our work advances the understanding of quantum surface response and may enable applications like enhanced electron field emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'none'; document.getElementById('2409.16616v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04183">arXiv:2408.04183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04183">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Enhanced Polarimetric Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Meng-Yu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+S">Su-Jian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yin-Hai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ren-Hui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Hua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Ming-Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yue-Wei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04183v1-abstract-short" style="display: inline;"> Polarimetric imaging, a technique that captures the invisible polarization-related properties of given materials, has broad applications from fundamental physics to advanced fields such as target recognition, stress detection, biomedical diagnosis and remote sensing. The introduction of quantum sources into classical imaging systems has demonstrated distinct advantages, yet few studies have explor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04183v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04183v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04183v1-abstract-full" style="display: none;"> Polarimetric imaging, a technique that captures the invisible polarization-related properties of given materials, has broad applications from fundamental physics to advanced fields such as target recognition, stress detection, biomedical diagnosis and remote sensing. The introduction of quantum sources into classical imaging systems has demonstrated distinct advantages, yet few studies have explored their combination with polarimetric imaging. In this study, we present a quantum polarimetric imaging system that integrates polarization-entangled photon pairs into a polarizer-sample-compensator-analyzer (PSRA)-type polarimeter. Our system visualizes the birefringence properties of a periodical-distributed anisotropic material under decreasing illumination levels and diverse disturbing light sources. Compared to the classical system, the quantum approach reveals the superior sensitivity and robustness in low-light conditions, particularly useful in biomedical studies where the low illumination and non-destructive detection are urgently needed. The study also highlights the nonlocality of entangled photons in birefringence measurement, indicating the potential of quantum polarimetric system in the remote sensing domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04183v1-abstract-full').style.display = 'none'; document.getElementById('2408.04183v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01914">arXiv:2407.01914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01914">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Switchable Ferroelectricity in Subnano Silicon Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=deng%2C+S">Shihan deng</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Muting Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuwen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+X">Xizhi Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+J">Jianxin Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chaoyu He</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01914v1-abstract-short" style="display: inline;"> Recent advancements underscore the critical need to develop ferroelectric materials compatible with silicon. We systematically explore possible ferroelectric silicon quantum films and discover a low-energy variant (hex-OR-2*2-P) with energy just 1 meV/atom above the ground state (hex-OR-2*2). Both hex-OR-2*2 and hex-OR-2*2-P are confirmed to be dynamically and mechanically stable semiconductors wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01914v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01914v1-abstract-full" style="display: none;"> Recent advancements underscore the critical need to develop ferroelectric materials compatible with silicon. We systematically explore possible ferroelectric silicon quantum films and discover a low-energy variant (hex-OR-2*2-P) with energy just 1 meV/atom above the ground state (hex-OR-2*2). Both hex-OR-2*2 and hex-OR-2*2-P are confirmed to be dynamically and mechanically stable semiconductors with indirect gaps of 1.323 eV and 1.311 eV, respectively. The ferroelectric hex-OR-2*2-P exhibits remarkable in-plane spontaneous polarization up to 120 Pc/m and is protected by a potential barrier (13.33 meV/atom) from spontaneously transitioning to hex-OR-22. To simulate the switching ferroelectricity in electric fields of the single-element silicon bilayer, we develop a method that simultaneously learns interatomic potentials and Born effective charges (BEC) in a single equivariant model with a physically informed loss. Our method demonstrates good performance on several ferroelectrics. Simulations of hex-OR-2*2-P silicon suggest a depolarization temperature of approximately 300 K and a coercive field of about 0.05 V/脜. These results indicate that silicon-based ferroelectric devices are feasible, and the ground state phase of the silicon bilayer (hex-OR-2*2) is an ideal system. Our findings highlight the promise of pure silicon ferroelectric materials for future experimental synthesis and applications in memory devices, sensors, and energy converters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01914v1-abstract-full').style.display = 'none'; document.getElementById('2407.01914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06927">arXiv:2403.06927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06927">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Effective multiband synthetic four-wave mixing by cascading quadratic processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Zheng Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+S">Su-Jian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yin-Hai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yue-Wei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wu-Zhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ren-Hui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Ming-Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Meng-Yu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06927v1-abstract-short" style="display: inline;"> Four wave mixing (FWM) is an important way to generate supercontinuum and frequency combs in the mid-infrared band. Here, we obtain simultaneous synthetic FWM in the visible and mid-infrared bands by cascading quadratic nonlinear processes in a periodically poled lithium niobate crystal (PPLN), which has a 110dB(at 3000nm) higher conversion efficiency than the FWM directly generated by third-order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06927v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06927v1-abstract-full" style="display: none;"> Four wave mixing (FWM) is an important way to generate supercontinuum and frequency combs in the mid-infrared band. Here, we obtain simultaneous synthetic FWM in the visible and mid-infrared bands by cascading quadratic nonlinear processes in a periodically poled lithium niobate crystal (PPLN), which has a 110dB(at 3000nm) higher conversion efficiency than the FWM directly generated by third-order susceptibilities in bulk PPLN crystals. A general model of this process is developed that is in full agreement with the experimental verifications. The frequency difference between the new frequency components can be freely tuned by changing the frequency difference of the dual pump lasers. Furthermore, by increasing the conversion bandwidth and efficiency of the cascaded processes, it is feasible to generate frequency combs in three bands the visible, near-infrared and mid-infrared bands simultaneously through high-order cascaded processes. This work opens up a new avenue toward free-tuning multiband frequency comb generation with multi-octaves frequency spanning, which will have significant applications in fields such as mid-infrared gas sensing, lidar and precision spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06927v1-abstract-full').style.display = 'none'; document.getElementById('2403.06927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18852">arXiv:2402.18852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18852">pdf</a>, <a href="https://arxiv.org/format/2402.18852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous vibrational resonance in the amplitude and phase quadratures of an optical field based on Kerr nonlinearity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yinuo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+S">Shan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Cuicui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+Z">Zhenglu Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Min Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+B">Bixuan Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18852v1-abstract-short" style="display: inline;"> Vibrational resonance (VR) is a nonlinear phenomenon in which the system response to a weak signal can be resonantly enhanced by applying a high-frequency modulation signal with an appropriate amplitude. The majority of VR research has focused on amplifying the amplitude or intensity of the system response to a weak signal, whereas the study of the phase information of system responses in VR remai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18852v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18852v1-abstract-full" style="display: none;"> Vibrational resonance (VR) is a nonlinear phenomenon in which the system response to a weak signal can be resonantly enhanced by applying a high-frequency modulation signal with an appropriate amplitude. The majority of VR research has focused on amplifying the amplitude or intensity of the system response to a weak signal, whereas the study of the phase information of system responses in VR remains limited. Here, we investigate the VR phenomena in both amplitude and phase quadratures of an optical field in a Kerr nonlinear cavity driven by a near-resonant weak signal and a far-detuned modulation signal. Analytical and numerical results demonstrated that the resonant enhancement in the amplitude and phase quadratures of the system response to a weak signal simultaneously occurs as the amplitude of the modulation signal is varied. There is a linear relation between the amplitude and frequency of the modulation signal for achieving an optimal VR effect. Furthermore, we generalized our study to investigate the quadrature at an arbitrary phase and determined that the VR enhancement sensitively depends on the phase. Our findings not only broaden the scope of VR research by incorporating phase information but also introduces an approach for amplifying an optical field by manipulating another optical field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18852v1-abstract-full').style.display = 'none'; document.getElementById('2402.18852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17401">arXiv:2402.17401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17401">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum entanglement enabled ellipsometer for phase retardance measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Meng-Yu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+S">Su-Jian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yin-Hai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Zheng Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Ming-Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ren-Hui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17401v1-abstract-short" style="display: inline;"> An ellipsometer is a vital precision tool used for measuring optical parameters with wide applications in many fields, including accurate measurements in film thickness, optical constants, structural profiles, etc. However, the precise measurement of photosensitive materials meets huge obstacles because of the excessive input photons, therefore the requirement of enhancing detection accuracy under&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17401v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17401v1-abstract-full" style="display: none;"> An ellipsometer is a vital precision tool used for measuring optical parameters with wide applications in many fields, including accurate measurements in film thickness, optical constants, structural profiles, etc. However, the precise measurement of photosensitive materials meets huge obstacles because of the excessive input photons, therefore the requirement of enhancing detection accuracy under low incident light intensity is an essential topic in the precision measurement. In this work, by combining a polarization-entangled photon source with a classical transmission-type ellipsometer, the quantum ellipsometer with the PSA (Polarizer-Sample-Analyzer) and the Senarmount method is constructed firstly to measure the phase retardation of the birefringent materials. The experimental results show that the accuracy can reach to nanometer scale at extremely low input intensity, and the stability are within 1% for all specimens tested with a compensator involved. Our work paves the way for precision measurement at low incident light intensity, with potential applications in measuring photosensitive materials, active-biological samples and other remote monitoring scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17401v1-abstract-full').style.display = 'none'; document.getElementById('2402.17401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. This work has been submitted for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12734">arXiv:2312.12734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12734">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dynamically tunable electromagnetically induced transparency-like metamaterial structure based on polarization sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Di%2C+K">Ke Di</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Meng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhaoyang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Renpu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+J">Jiajia Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12734v1-abstract-short" style="display: inline;"> In this paper, we propose a plasmon-induced transparency (PIT) metamaterial structure composed of Ag nanomaterials with polarization sensitivity. The metamaterial model consists of three bright modes with different resonant frequencies. The optical properties of the structure are further investigated using finite difference time domain (FDTD) method. The results show that the conversion between si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12734v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12734v1-abstract-full" style="display: none;"> In this paper, we propose a plasmon-induced transparency (PIT) metamaterial structure composed of Ag nanomaterials with polarization sensitivity. The metamaterial model consists of three bright modes with different resonant frequencies. The optical properties of the structure are further investigated using finite difference time domain (FDTD) method. The results show that the conversion between single-band PIT and dual-band PIT effects can be achieved by changing the polarization degree of the incident light, the number of transparent windows can be changed from one to two, and the process is accompanied by the conversion of bright and dark modes and the change of the resonance wavelength of the transmission peak. In addition, When the light is polarized in the Y-direction, the two transparency windows have different refractive index sensitivities, with FOM values of 5.94/RIU and 5.65/RIU, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12734v1-abstract-full').style.display = 'none'; document.getElementById('2312.12734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02446">arXiv:2312.02446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electrical control and transport of tightly bound interlayer excitons in a MoSe2/hBN/MoSe2 heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+R">Ruihao Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Suji Park</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Houk Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02446v2-abstract-short" style="display: inline;"> Controlling interlayer excitons in van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02446v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02446v2-abstract-full" style="display: none;"> Controlling interlayer excitons in van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe2/hBN/MoSe2 heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ~180 meV through the Stark effect, and exhibit a sizable binding energy of ~81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding ten micrometers, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02446v2-abstract-full').style.display = 'none'; document.getElementById('2312.02446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08663">arXiv:2311.08663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08663">pdf</a>, <a href="https://arxiv.org/ps/2311.08663">ps</a>, <a href="https://arxiv.org/format/2311.08663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Influence maximization in multilayer networks based on adaptive coupling degree </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Su-Su Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+X">Xiu-Xiu Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08663v1-abstract-short" style="display: inline;"> Influence Maximization(IM) aims to identify highly influential nodes to maximize influence spread in a network. Previous research on the IM problem has mainly concentrated on single-layer networks, disregarding the comprehension of the coupling structure that is inherent in multilayer networks. To solve the IM problem in multilayer networks, we first propose an independent cascade model (MIC) in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08663v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08663v1-abstract-full" style="display: none;"> Influence Maximization(IM) aims to identify highly influential nodes to maximize influence spread in a network. Previous research on the IM problem has mainly concentrated on single-layer networks, disregarding the comprehension of the coupling structure that is inherent in multilayer networks. To solve the IM problem in multilayer networks, we first propose an independent cascade model (MIC) in a multilayer network where propagation occurs simultaneously across different layers. Consequently, a heuristic algorithm, i.e., Adaptive Coupling Degree (ACD), which selects seed nodes with high spread influence and a low degree of overlap of influence, is proposed to identify seed nodes for IM in a multilayer network. By conducting experiments based on MIC, we have demonstrated that our proposed method is superior to the baselines in terms of influence spread and time cost in 6 synthetic and 4 real-world multilayer networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08663v1-abstract-full').style.display = 'none'; document.getElementById('2311.08663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15465">arXiv:2310.15465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15465">pdf</a>, <a href="https://arxiv.org/ps/2310.15465">ps</a>, <a href="https://arxiv.org/format/2310.15465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> A universal meta-heuristic framework for influence maximization in hypergraphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+X">Xiu-Xiu Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zi-Ke Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15465v1-abstract-short" style="display: inline;"> Influence maximization (IM) aims to select a small number of nodes that are able to maximize their influence in a network and covers a wide range of applications. Despite numerous attempts to provide effective solutions in ordinary networks, higher-order interactions between entities in various real-world systems are not usually taken into account. In this paper, we propose a versatile meta-heuris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15465v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15465v1-abstract-full" style="display: none;"> Influence maximization (IM) aims to select a small number of nodes that are able to maximize their influence in a network and covers a wide range of applications. Despite numerous attempts to provide effective solutions in ordinary networks, higher-order interactions between entities in various real-world systems are not usually taken into account. In this paper, we propose a versatile meta-heuristic approach, hyper genetic algorithm (HGA), to tackle the IM problem in hypergraphs, which is based on the concept of genetic evolution. Systematic validations in synthetic and empirical hypergraphs under both simple and complex contagion models indicate that HGA achieves universal and plausible performance compared to baseline methods. We explore the cause of the excellent performance of HGA through ablation studies and correlation analysis. The findings show that the solution of HGA is distinct from that of other prior methods. Moreover, a closer look at the local topological features of the seed nodes acquired by different algorithms reveals that the selection of seed nodes cannot be based on a single topological characteristic, but should involve a combination of multiple topological features to address the IM problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15465v1-abstract-full').style.display = 'none'; document.getElementById('2310.15465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00033">arXiv:2310.00033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> OriWheelBot: An origami-wheeled robot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pang%2C+Z">Zufeng Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhiyong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+G">Guilin Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Z">Zhoucheng Su</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kaiyue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+D">Dezheng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zenan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shouyan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yang Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y+M">Yi Min Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenpei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhuangjian Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00033v1-abstract-short" style="display: inline;"> Origami-inspired robots with multiple advantages, such as being lightweight, requiring less assembly, and exhibiting exceptional deformability, have received substantial and sustained attention. However, the existing origami-inspired robots are usually of limited functionalities and developing feature-rich robots is very challenging. Here, we report an origami-wheeled robot (OriWheelBot) with vari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00033v1-abstract-full').style.display = 'inline'; document.getElementById('2310.00033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00033v1-abstract-full" style="display: none;"> Origami-inspired robots with multiple advantages, such as being lightweight, requiring less assembly, and exhibiting exceptional deformability, have received substantial and sustained attention. However, the existing origami-inspired robots are usually of limited functionalities and developing feature-rich robots is very challenging. Here, we report an origami-wheeled robot (OriWheelBot) with variable width and outstanding sand walking versatility. The OriWheelBot&#39;s ability to adjust wheel width over obstacles is achieved by origami wheels made of Miura origami. An improved version, called iOriWheelBot, is also developed to automatically judge the width of the obstacles. Three actions, namely direct pass, variable width pass, and direct return, will be carried out depending on the width of the channel between the obstacles. We have identified two motion mechanisms, i.e., sand-digging and sand-pushing, with the latter being more conducive to walking on the sand. We have systematically examined numerous sand walking characteristics, including carrying loads, climbing a slope, walking on a slope, and navigating sand pits, small rocks, and sand traps. The OriWheelBot can change its width by 40%, has a loading-carrying ratio of 66.7% on flat sand and can climb a 17-degree sand incline. The OriWheelBot can be useful for planetary subsurface exploration and disaster area rescue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00033v1-abstract-full').style.display = 'none'; document.getElementById('2310.00033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 papes, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04633">arXiv:2308.04633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological interfacial states in ferroelectric domain walls of two-dimensional bismuth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+W">Wei Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Muting Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yingwei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a>, <a href="/search/physics?searchtype=author&amp;query=Bellaiche%2C+L">Laurent Bellaiche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04633v3-abstract-short" style="display: inline;"> Using machine learning methods, we explore different types of domain walls in the recently unveiled single-element ferroelectric, the bismuth monolayer [Nature 617, 67 (2023)]. Remarkably, our investigation reveals that the charged domain wall configuration exhibits lower energy compared to the uncharged domain wall structure. We also demonstrate that the experimentally discovered tail-to-tail dom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04633v3-abstract-full').style.display = 'inline'; document.getElementById('2308.04633v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04633v3-abstract-full" style="display: none;"> Using machine learning methods, we explore different types of domain walls in the recently unveiled single-element ferroelectric, the bismuth monolayer [Nature 617, 67 (2023)]. Remarkably, our investigation reveals that the charged domain wall configuration exhibits lower energy compared to the uncharged domain wall structure. We also demonstrate that the experimentally discovered tail-to-tail domain wall maintains topological interfacial states caused by the change in the Z_2 number between ferroelectric and paraelectric states. Interestingly, due to the intrinsic built-in electric fields in asymmetry DW configurations, we find that the energy of topological interfacial states splits, resulting in an accidental band crossing at the Fermi level. Our study suggests that domain walls in two-dimensional bismuth hold potential as a promising platform for the development of ferroelectric domain wall devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04633v3-abstract-full').style.display = 'none'; document.getElementById('2308.04633v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11199">arXiv:2306.11199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Liuxin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+R">Ruihao Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Suji Park</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Houk Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Hafezi%2C+M">Mohammad Hafezi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11199v1-abstract-short" style="display: inline;"> Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently significant efforts have focused on exploring excitons in solids as a pathway to achieving nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light-matter interactions require large oscillator strength and short radiative lifetime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11199v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11199v1-abstract-full" style="display: none;"> Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently significant efforts have focused on exploring excitons in solids as a pathway to achieving nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light-matter interactions require large oscillator strength and short radiative lifetime of the excitons, which limits their interaction strength and nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses by exploiting the coupling between excitons and carriers in an atomically thin semiconductor of trilayer tungsten diselenide. By controlling the electric field and electrostatic doping of the trilayer, we observe the hybridization between intralayer and interlayer excitons along with the formation of Fermi polarons due to the interactions between excitons and free carriers. We find substantial optical nonlinearity can be achieved under both continuous wave and pulsed laser excitation, where the resonance of the hole-doped Fermi polaron blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the strong interactions between excitons and free charges with optically induced valley polarization. Our results establish that atomically thin heterostructures are a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics, and open avenues for exploring many-body physics in hybrid Fermionic-Bosonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11199v1-abstract-full').style.display = 'none'; document.getElementById('2306.11199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures with SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04408">arXiv:2306.04408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04408">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xinghan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mouzhe Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Addhya%2C+A">Anchita Addhya</a>, <a href="/search/physics?searchtype=author&amp;query=Linder%2C+A">Avery Linder</a>, <a href="/search/physics?searchtype=author&amp;query=Zvi%2C+U">Uri Zvi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Stella Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xiaofei Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Deshmukh%2C+T+D">Tanvi D. Deshmukh</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yuzi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hammock%2C+I+N">Ian N. Hammock</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zixi Li</a>, <a href="/search/physics?searchtype=author&amp;query=DeVault%2C+C+T">Clayton T. DeVault</a>, <a href="/search/physics?searchtype=author&amp;query=Butcher%2C+A">Amy Butcher</a>, <a href="/search/physics?searchtype=author&amp;query=Esser-Kahn%2C+A+P">Aaron P. Esser-Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Awschalom%2C+D+D">David D. Awschalom</a>, <a href="/search/physics?searchtype=author&amp;query=Delegan%2C+N">Nazar Delegan</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+P+C">Peter C. Maurer</a>, <a href="/search/physics?searchtype=author&amp;query=Heremans%2C+F+J">F. Joseph Heremans</a>, <a href="/search/physics?searchtype=author&amp;query=High%2C+A+A">Alexander A. High</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04408v2-abstract-short" style="display: inline;"> Diamond has superlative material properties for a broad range of quantum and electronic technologies. However, heteroepitaxial growth of single crystal diamond remains limited, impeding integration and evolution of diamond-based technologies. Here, we directly bond single-crystal diamond membranes to a wide variety of materials including silicon, fused silica, sapphire, thermal oxide, and lithium&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04408v2-abstract-full').style.display = 'inline'; document.getElementById('2306.04408v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04408v2-abstract-full" style="display: none;"> Diamond has superlative material properties for a broad range of quantum and electronic technologies. However, heteroepitaxial growth of single crystal diamond remains limited, impeding integration and evolution of diamond-based technologies. Here, we directly bond single-crystal diamond membranes to a wide variety of materials including silicon, fused silica, sapphire, thermal oxide, and lithium niobate. Our bonding process combines customized membrane synthesis, transfer, and dry surface functionalization, allowing for minimal contamination while providing pathways for near unity yield and scalability. We generate bonded crystalline membranes with thickness as low as 10 nm, sub-nm interfacial regions, and nanometer-scale thickness variability over 200 by 200 $渭m^2$ areas. We measure spin coherence times $T_2$ for nitrogen-vacancy centers in bonded membranes of up to 623(21) $渭$s, suitable for advanced quantum applications. We demonstrate multiple methods for integrating high quality factor nanophotonic cavities with the diamond heterostructures, highlighting the platform versatility in quantum photonic applications. Furthermore, we show that our ultra-thin diamond membranes are compatible with total internal reflection fluorescence (TIRF) microscopy, which enables interfacing coherent diamond quantum sensors with living cells while rejecting unwanted background luminescence. The processes demonstrated herein provide a full toolkit to synthesize heterogeneous diamond-based hybrid systems for quantum and electronic technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04408v2-abstract-full').style.display = 'none'; document.getElementById('2306.04408v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03793">arXiv:2303.03793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03793">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Roadmap on Deep Learning for Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Volpe%2C+G">Giovanni Volpe</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%A4hlby%2C+C">Carolina W盲hlby</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+L">Lei Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Hecht%2C+M">Michael Hecht</a>, <a href="/search/physics?searchtype=author&amp;query=Yakimovich%2C+A">Artur Yakimovich</a>, <a href="/search/physics?searchtype=author&amp;query=Monakhova%2C+K">Kristina Monakhova</a>, <a href="/search/physics?searchtype=author&amp;query=Waller%2C+L">Laura Waller</a>, <a href="/search/physics?searchtype=author&amp;query=Sbalzarini%2C+I+F">Ivo F. Sbalzarini</a>, <a href="/search/physics?searchtype=author&amp;query=Metzler%2C+C+A">Christopher A. Metzler</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mingyang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kevin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lenton%2C+I+C+D">Isaac C. D. Lenton</a>, <a href="/search/physics?searchtype=author&amp;query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+D">Daniel Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+B">Bijie Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Ozcan%2C+A">Aydogan Ozcan</a>, <a href="/search/physics?searchtype=author&amp;query=Midtvedt%2C+D">Daniel Midtvedt</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sladoje%2C+N">Nata拧a Sladoje</a>, <a href="/search/physics?searchtype=author&amp;query=Lindblad%2C+J">Joakim Lindblad</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+J+T">Jason T. Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Ochoa%2C+M">Marien Ochoa</a>, <a href="/search/physics?searchtype=author&amp;query=Barroso%2C+M">Margarida Barroso</a>, <a href="/search/physics?searchtype=author&amp;query=Intes%2C+X">Xavier Intes</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+T">Tong Qiu</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03793v1-abstract-short" style="display: inline;"> Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03793v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03793v1-abstract-full" style="display: none;"> Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03793v1-abstract-full').style.display = 'none'; document.getElementById('2303.03793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00284">arXiv:2212.00284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00284">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Elastic, piezoelectric coefficients, and internal frictions of a single alpha-quartz crystal determined by partial-electrode electromechanical impedance spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mingyu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Wenshuo Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Faxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00284v1-abstract-short" style="display: inline;"> In this work, all the independent elastic coefficients, piezoelectric coefficients, and internal frictions of a single alpha-quartz crystal are determined using our recently proposed partial-electrode electromechanical impedance spectroscopy (PE-EMIS) at 25 centigrade. In PE-EMIS, the rectangular parallelepiped quartz sample with two small partial electrodes fabricated on a corner is self-excited/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00284v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00284v1-abstract-full" style="display: none;"> In this work, all the independent elastic coefficients, piezoelectric coefficients, and internal frictions of a single alpha-quartz crystal are determined using our recently proposed partial-electrode electromechanical impedance spectroscopy (PE-EMIS) at 25 centigrade. In PE-EMIS, the rectangular parallelepiped quartz sample with two small partial electrodes fabricated on a corner is self-excited/sensed. The conductance spectrum (equivalent to the resonance spectrum) measured by an impedance analyzer under a true free boundary condition is noiseless, allowing the first 100 eigenmodes ranging from 50 to 310kHz to be accurately fitted. To avoid mode misidentification, the off-plane displacement distributions of the quartz sample under different eigenmodes are determined using a scanned-laser vibrometer. The resonance spectrum measured using a commercial sandwich-like RUS apparatus is also presented for comparison, and the results show that the clamping force in sandwich-like RUS shifts the sample&#39;s resonance frequencies, causing 13% and 75% overestimations for the piezoelectric coefficients e11 and e14, respectively. In comparison to the RUS, our proposed PE-EMIS is more effective and convenient, and will be widely used for characterization of piezoelectric crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00284v1-abstract-full').style.display = 'none'; document.getElementById('2212.00284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09306">arXiv:2206.09306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09306">pdf</a>, <a href="https://arxiv.org/ps/2206.09306">ps</a>, <a href="https://arxiv.org/format/2206.09306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The Gender Pay Gap in China: Insights from a Discrimination Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Wei Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Yan-Li Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+J">Jingyi Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Lusi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09306v1-abstract-short" style="display: inline;"> Equal pay is an essential component of gender equality, one of the Sustainable Development Goals of the United Nations. Using resume data of over ten million Chinese online job seekers in 2015, we study the current gender pay gap in China. The results show that on average women only earned 71.57\% of what men earned in China. The gender pay gap exists across all age groups and educational levels.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09306v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09306v1-abstract-full" style="display: none;"> Equal pay is an essential component of gender equality, one of the Sustainable Development Goals of the United Nations. Using resume data of over ten million Chinese online job seekers in 2015, we study the current gender pay gap in China. The results show that on average women only earned 71.57\% of what men earned in China. The gender pay gap exists across all age groups and educational levels. Contrary to the commonly held view that developments in education, economy, and a more open culture would reduce the gender pay gap, the fusion analysis of resume data and socio-economic data presents that they have not helped reach the gender pay equality in China. China seems to be stuck in a place where traditional methods cannot make further progress. Our analysis further shows that 81.47\% of the variance in the gender pay gap can be potentially attributed to discrimination. In particular, compared with the unmarried, both the gender pay gap itself and proportion potentially attributed to discrimination of the married are larger, indicating that married women suffer greater inequality and more discrimination than unmarried ones. Taken together, we suggest that more research attention should be paid to the effect of discrimination in understanding gender pay gap based on the family constraint theory. We also suggest the Chinese government to increase investment in family-supportive policies and grants in addition to female education. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09306v1-abstract-full').style.display = 'none'; document.getElementById('2206.09306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11203">arXiv:2205.11203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.11203">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0120203">10.1063/5.0120203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous emission modulation in biaxial hyperbolic van der Waals material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Haotuo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+Q">Qing Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaohu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11203v1-abstract-short" style="display: inline;"> As a natural van der Waals crystal, 伪-MoO3 has excellent in-plane hyperbolic properties and essential nanophotonics applications. However, its actively tunable properties are generally neglected. In this work, we achieved active modulation of spontaneous emission from a single-layer flat plate using the rotation method for the first time. Numerical results and theoretical analysis show that 伪-MoO3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11203v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11203v1-abstract-full" style="display: none;"> As a natural van der Waals crystal, 伪-MoO3 has excellent in-plane hyperbolic properties and essential nanophotonics applications. However, its actively tunable properties are generally neglected. In this work, we achieved active modulation of spontaneous emission from a single-layer flat plate using the rotation method for the first time. Numerical results and theoretical analysis show that 伪-MoO3 exhibits good tunability when rotated in the y-z or x-y plane. A modulation factor of more than three orders of magnitude can be obtained at 634 cm-1. However, when the rotation is in the x-z plane, the spontaneous emission of the material exhibits strong angle independence. The theoretical formulation and the physical mechanism analysis explain the above phenomenon well. In addition, for the semi-infinite 伪-MoO3 flat structure, we give the distribution of the modulation factor of spontaneous emission with wavenumber and rotation angle. Finally, we extended the calculation results from semi-infinite media to finite thickness films. We obtained the general evolution law of the peak angle of the modulation factor with thickness, increasing the modulation factor to about 2000. We believe that the results of this paper can guide the active modulation of spontaneous emission based on anisotropic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11203v1-abstract-full').style.display = 'none'; document.getElementById('2205.11203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06508">arXiv:2112.06508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06508">pdf</a>, <a href="https://arxiv.org/format/2112.06508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Substantial but heterogeneous impacts of high-speed rail on talent flow in China </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jian Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06508v2-abstract-short" style="display: inline;"> The great expansion of high-speed rail (HSR) in China facilitates communications and interactions among people across cities. Despite extensive literature documenting the effects of HSR on a variety of variables such as local economic development, research collaboration, tourism, and capital mobility, not much is known about how HSR affects the flow of well-educated workers, says talents. Here we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06508v2-abstract-full').style.display = 'inline'; document.getElementById('2112.06508v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06508v2-abstract-full" style="display: none;"> The great expansion of high-speed rail (HSR) in China facilitates communications and interactions among people across cities. Despite extensive literature documenting the effects of HSR on a variety of variables such as local economic development, research collaboration, tourism, and capital mobility, not much is known about how HSR affects the flow of well-educated workers, says talents. Here we estimate talent flow among Chinese cities based on large-scale resume data of online job seekers and explore how it is affected by HSR. Specifically, we employ both a multiple linear regression model that controls for several socioeconomic factors and a two-stage least square regression model that instruments the introduction of HSR to a city to address endogeneity concerns. We find that the introduction of HSR has an overall positive effect on the talent net inflow of a city although both inflow and outflow are increased. Moreover, the effects of HSR on talent flow are rather heterogeneous for cities with different levels of economic development and for talents working in different industries. Specifically, developed cities benefit from HSR, whereas less-developed cities are relatively impaired. Cities connected by HSR show significant advantage in attracting talents from secondary and tertiary industries. These substantial but heterogeneous effects of HSR suggest a critical need for more comprehensive thinking about the long-term benefits of entering the HSR network, especially for less-developed cities and those with comparative advantage in manufacturing and service industries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06508v2-abstract-full').style.display = 'none'; document.getElementById('2112.06508v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12759">arXiv:2109.12759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12759">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0071185">10.1063/5.0071185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting fatigue in aluminum alloys based on internal friction measurement using an electromechanical impedance method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jihua Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mingyu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Faxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12759v1-abstract-short" style="display: inline;"> Detecting mechanical fatigue of metallic components is always a challenge in industries. In this work, we proposed to monitor the low-cycle fatigue of a 6061 aluminum alloy based on internal friction (IF) measurement, which is realized by a quantitative electromechanical impedance (Q-EMI) method using a small piezoelectric wafer bonded on the specimen. Large strain amplitude (3.3*10^-3) was employ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12759v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12759v1-abstract-full" style="display: none;"> Detecting mechanical fatigue of metallic components is always a challenge in industries. In this work, we proposed to monitor the low-cycle fatigue of a 6061 aluminum alloy based on internal friction (IF) measurement, which is realized by a quantitative electromechanical impedance (Q-EMI) method using a small piezoelectric wafer bonded on the specimen. Large strain amplitude (3.3*10^-3) was employed thus the fatigue life can always be below 10^5 cycles. It was found that except for the initial testing stage, the IF always increases steadily with the increasing fatigue cycles. Before the fatigue failure, the IF can reach 2.5 to 3.4 times of the initial value, which is thought to be caused by the micro-cracks forming and growing. In comparison, the resonance frequency of the specimen just drops less than 2% compared with the initial value. Finally, a general fatigue criterion based on IF measurement is suggested for all the metallic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12759v1-abstract-full').style.display = 'none'; document.getElementById('2109.12759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04843">arXiv:2108.04843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.04843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2114186119">10.1073/pnas.2114186119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Biocompatible surface functionalization architecture for a diamond quantum sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mouzhe Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xiaofei Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Rodgers%2C+L+V+H">Lila V. H. Rodgers</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Daohong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chi-Duran%2C+I">Ignacio Chi-Duran</a>, <a href="/search/physics?searchtype=author&amp;query=Toros%2C+A">Adrien Toros</a>, <a href="/search/physics?searchtype=author&amp;query=Quack%2C+N">Niels Quack</a>, <a href="/search/physics?searchtype=author&amp;query=de+Leon%2C+N+P">Nathalie P. de Leon</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+P+C">Peter C. Maurer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04843v1-abstract-short" style="display: inline;"> Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has enabled a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultra-sensitive immunoassays. However, a broader application in the life sciences based on nanoscale nuclear magnetic resonance spectroscopy has b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04843v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04843v1-abstract-full" style="display: none;"> Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has enabled a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultra-sensitive immunoassays. However, a broader application in the life sciences based on nanoscale nuclear magnetic resonance spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate a new approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub-5 nm) functionalization architecture provides precise control over protein adsorption density and results in near-surface qubit coherence approaching 100 渭s. The developed architecture remains chemically stable under physiological conditions for over five days, making our technique compatible with most biophysical and biomedical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04843v1-abstract-full').style.display = 'none'; document.getElementById('2108.04843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09534">arXiv:2008.09534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09534">pdf</a>, <a href="https://arxiv.org/format/2008.09534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aba66a">10.1088/1361-6382/aba66a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The First Round Result from the TianQin-1 Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Yan-Zheng Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+L">Lin Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+B">Bin Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei-Ming Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+D">De-Cong Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yan-Wei Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+H">Hui-Zong Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Gou%2C+X">Xingyu Gou</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+C">Chao-Zheng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+D">De-Feng Gu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zi-Qi He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shuang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuexin Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xiang-Qing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Q">Qinghua Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Ze Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hong-Gang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hong-Yin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhu-Xi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Yu-Rong Liang</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09534v1-abstract-short" style="display: inline;"> The TianQin-1 satellite (TQ-1), which is the first technology demonstration satellite for the TianQin project, was launched on 20 December 2019. The first round of experiment had been carried out from 21 December 2019 until 1 April 2020. The residual acceleration of the satellite is found to be about $1\times10^{-10}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$ and about&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09534v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09534v1-abstract-full" style="display: none;"> The TianQin-1 satellite (TQ-1), which is the first technology demonstration satellite for the TianQin project, was launched on 20 December 2019. The first round of experiment had been carried out from 21 December 2019 until 1 April 2020. The residual acceleration of the satellite is found to be about $1\times10^{-10}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$ and about $5\times10^{-11}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.05~{\rm Hz}\,$, measured by an inertial sensor with a sensitivity of $5\times10^{-12}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The micro-Newton thrusters has demonstrated a thrust resolution of $0.1~渭{\rm N}$ and a thrust noise of $0.3~渭{\rm N}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}$. The residual noise of the satellite with drag-free control is $3\times10^{-9}~{\rm m}/{\rm s}^{2}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The noise level of the optical readout system is about $30~{\rm pm}/{\rm Hz}^{1/2}$ at $0.1~{\rm Hz}\,$. The temperature stability at temperature monitoring position is controlled to be about $\pm3~{\rm mK}$ per orbit, and the mismatch between the center-of-mass of the satellite and that of the test mass is measured with a precision of better than $0.1~{\rm mm}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09534v1-abstract-full').style.display = 'none'; document.getElementById('2008.09534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quantum Grav. 37 (2020) 185013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09820">arXiv:2005.09820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09820">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-photon linear polarimeter based on a superconducting nanowire array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+Q">X. Q. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W+J">W. J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C+J">C. J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L+X">L. X. You</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G+Z">G. Z. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X+M">X. M. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09820v1-abstract-short" style="display: inline;"> Superconducting nanowire single-photon detectors (SNSPDs) have attracted remarkable interest for visible and near infrared single-photon detection, owing to their outstanding performance. Conventional SNSPDs are generally used as binary photon-counting detector. Another important characteristic of light, i.e., polarization, has not been resolved using standalone SNSPDs. In this work, we simulated,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09820v1-abstract-full').style.display = 'inline'; document.getElementById('2005.09820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09820v1-abstract-full" style="display: none;"> Superconducting nanowire single-photon detectors (SNSPDs) have attracted remarkable interest for visible and near infrared single-photon detection, owing to their outstanding performance. Conventional SNSPDs are generally used as binary photon-counting detector. Another important characteristic of light, i.e., polarization, has not been resolved using standalone SNSPDs. In this work, we simulated, fabricated, and characterized a linear polarimeter based on a four-pixel NbN superconducting nanowire array, capable of resolving the polarization state of linearly polarized light at the single-photon level. The detector array design is based on a division of focal plane sensor, in which the orientation of each nanowire division (pixel) is offset by 45 degree. Each single nanowire pixel operates as a combination of photon detector and almost linear polarization filter, with an average polarization extinction ratio of approximately 10. The total system detection efficiency with four pixels is approximately 1% at a total dark count rate of 680 cps, when the detector array is free-space coupled and illuminated with 1550 nm photons. The Stokes parameters are extracted from polarization measurements of the four pixels. The mean errors of the measured AoP and DoLP were about -3 degree and 0.12, respectively. Our results indicate that it is possible to develop a scalable polarization polarimeter or imager based on a superconducting nanowire array. This detector array may find promising application in single-photon polarization detection and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09820v1-abstract-full').style.display = 'none'; document.getElementById('2005.09820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages,10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.05246">arXiv:1912.05246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.05246">pdf</a>, <a href="https://arxiv.org/ps/1912.05246">ps</a>, <a href="https://arxiv.org/format/1912.05246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.053713">10.1103/PhysRevA.102.053713 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon blockade in a bi-mode nonlinear nano-cavity embedded with a quantum-dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xinyun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+Z">Zhenglu Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q">Qin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+S">Shengguo Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Min Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Cunjin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.05246v1-abstract-short" style="display: inline;"> We study the interaction between a quantum-dot and a bi-mode micro/nano-optical cavity composed of second-order nonlinear materials. Compared with the Jaynes-Cummings (J-C) model, except for a coherent weak driving field, a strong pump light illuminates the two-mode optical cavity. Analytical results indicate that the model exhibits abundant non-classical optical phenomena, such as conventional ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05246v1-abstract-full').style.display = 'inline'; document.getElementById('1912.05246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.05246v1-abstract-full" style="display: none;"> We study the interaction between a quantum-dot and a bi-mode micro/nano-optical cavity composed of second-order nonlinear materials. Compared with the Jaynes-Cummings (J-C) model, except for a coherent weak driving field, a strong pump light illuminates the two-mode optical cavity. Analytical results indicate that the model exhibits abundant non-classical optical phenomena, such as conventional photon blockade induced by the nonlinear interaction between polaritons. It constitutes unconventional photon blockade induced by quantum interference due to parametric driving. We compare the photon statistical properties and average photon number of the proposed model, J-C model, and double-mode driven optical cavity under the same parameters and the proposed model can obtain stronger antibunching photons and higher average photon number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05246v1-abstract-full').style.display = 'none'; document.getElementById('1912.05246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 053713 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.03991">arXiv:1910.03991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.03991">pdf</a>, <a href="https://arxiv.org/ps/1910.03991">ps</a>, <a href="https://arxiv.org/format/1910.03991">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ab6014">10.1088/1361-6668/ab6014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of kinetic inductance on the performance of YBCO SQUID magnetometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ruffieux%2C+S">S. Ruffieux</a>, <a href="/search/physics?searchtype=author&amp;query=Kalaboukhov%2C+A">A. Kalaboukhov</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">M. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chukharkin%2C+M">M. Chukharkin</a>, <a href="/search/physics?searchtype=author&amp;query=Pfeiffer%2C+C">C. Pfeiffer</a>, <a href="/search/physics?searchtype=author&amp;query=Sepehri%2C+S">S. Sepehri</a>, <a href="/search/physics?searchtype=author&amp;query=Schneiderman%2C+J+F">J. F. Schneiderman</a>, <a href="/search/physics?searchtype=author&amp;query=Winkler%2C+D">D. Winkler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.03991v1-abstract-short" style="display: inline;"> Inductance is a key parameter when optimizing the performance of superconducting quantum interference device (SQUID) magnetometers made from the high temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) because lower SQUID inductance $L$ leads to lower flux noise, but also weaker coupling to the pickup loop. In order to optimize the SQUID design, we combine inductance simulations and measureme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.03991v1-abstract-full').style.display = 'inline'; document.getElementById('1910.03991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.03991v1-abstract-full" style="display: none;"> Inductance is a key parameter when optimizing the performance of superconducting quantum interference device (SQUID) magnetometers made from the high temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) because lower SQUID inductance $L$ leads to lower flux noise, but also weaker coupling to the pickup loop. In order to optimize the SQUID design, we combine inductance simulations and measurements to extract the different inductance contributions, and measure the dependence of the transfer function $V_桅$ and flux noise $S_桅^{1/2}$ on $L$. A comparison between two samples shows that the kinetic inductance contribution varies strongly with film quality, hence making inductance measurements a crucial part of the SQUID characterization. Thanks to the improved estimation of the kinetic inductance contribution, previously found discrepancies between theoretical estimates and measured values of $V_桅$ and $S_桅^{1/2}$ could to a large extent be avoided. We then use the measurements and improved theoretical estimations to optimize the SQUID geometry and reach a noise level of $S_B^{1/2}$ = 44 fT/$\sqrt{\textrm{Hz}}$ for the best SQUID magnetometer with a 8.6 mm $\times$ 9.2 mm directly coupled pickup loop. Lastly, we demonstrate a method for reliable one-time sensor calibration that is constant in a temperature range of several kelvin despite the presence of temperature dependent coupling contributions, such as the kinetic inductance. The found variability of the kinetic inductance contribution has implications not only for the design of YBCO SQUID magnetometers, but for all narrow linewidth SQUID-based devices operated close to their critical temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.03991v1-abstract-full').style.display = 'none'; document.getElementById('1910.03991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.10282">arXiv:1903.10282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.10282">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Miura-ori tube metamaterial with tunable dynamic property </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ou%2C+H">Haifeng Ou</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+R">Rong Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wei Wei</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiaxi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wei Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+K">Kai Long</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+G">Guilin Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y+M">Yi Min Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.10282v1-abstract-short" style="display: inline;"> Structures and/or materials with engineered functionality, capable of achieving targeted mechanical responses reacting to changes in external excitation, have various potential engineering applications, e.g. aerospace, oceanographic engineering, soft robot, and several others. Yet tunable mechanical performance is normally realized through carefully designing the architecture of structures, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10282v1-abstract-full').style.display = 'inline'; document.getElementById('1903.10282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.10282v1-abstract-full" style="display: none;"> Structures and/or materials with engineered functionality, capable of achieving targeted mechanical responses reacting to changes in external excitation, have various potential engineering applications, e.g. aerospace, oceanographic engineering, soft robot, and several others. Yet tunable mechanical performance is normally realized through carefully designing the architecture of structures, which is usually porous, leading to the complexity of the fabrication of the structures even using the recently emerged 3D printing technique. In this study we show that origami technique can provide an alternative solution to achieving the aim by carefully stacking the classical Miura sheets into the Miura-ori tube metamaterial and tuning the geometric parameters of the origami metamaterial. By combining numerical and experimental methods, we have demonstrated that an extremely broad range of natural frequency and dynamic response of the metamaterial can be achieved. The proposed structure can be easily fabricated from a single thin sheet made of one material and simultaneously owns better mechanical properties than the Miura sheet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.10282v1-abstract-full').style.display = 'none'; document.getElementById('1903.10282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05815">arXiv:1902.05815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05815">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> On unconventional fall of rainbow spring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Jiongzhao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wei Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+H">Huimin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+G">Guilin Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y+M">Yi Min Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05815v2-abstract-short" style="display: inline;"> In this study we experimentally show that a stretched rainbow spring under gravity or extra weight may exhibit unconventional fall motion. Specially, when the rainbow spring is released from a high place, its lower end remains stationary until the spring wires stack together and then all the parts of the rainbow spring falls down together. We utilize a high-speed camera to record the fall process&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05815v2-abstract-full').style.display = 'inline'; document.getElementById('1902.05815v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05815v2-abstract-full" style="display: none;"> In this study we experimentally show that a stretched rainbow spring under gravity or extra weight may exhibit unconventional fall motion. Specially, when the rainbow spring is released from a high place, its lower end remains stationary until the spring wires stack together and then all the parts of the rainbow spring falls down together. We utilize a high-speed camera to record the fall process of one plastic and one metal rainbow spring under different loading conditions to systematically investigate this unconventional physical phenomenon. We use the time of the elastic wave propagating the length of the spring to predict the duration of the lower end of the rainbow spring remaining still. The findings from this study elucidate this physical phenomenon which has potential for the areas requiring temporary absolute space positioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05815v2-abstract-full').style.display = 'none'; document.getElementById('1902.05815v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00328">arXiv:1902.00328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00328">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jeurceramsoc.2018.04.067">10.1016/j.jeurceramsoc.2018.04.067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Roscow%2C+J">James Roscow</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mengying Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Bowen%2C+C">Chris Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00328v1-abstract-short" style="display: inline;"> High performance lead zirconate titanate (PZT) ceramics with aligned porosity for sensing applications were fabricated by an ice-templating method. To demonstrate the enhanced properties of these materials and their potential for sensor and hydrophone applications, the piezoelectric voltage constants hydrostatic parameters and AC conductivity as a function of the porosity in directions both parall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00328v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00328v1-abstract-full" style="display: none;"> High performance lead zirconate titanate (PZT) ceramics with aligned porosity for sensing applications were fabricated by an ice-templating method. To demonstrate the enhanced properties of these materials and their potential for sensor and hydrophone applications, the piezoelectric voltage constants hydrostatic parameters and AC conductivity as a function of the porosity in directions both parallel and perpendicular to the freezing temperature gradient were studied. As the porosity level was increased, PZT poled parallel to the freezing direction exhibited the highest coefficients, and hydrostatic figures of merit compared to the dense and PZT poled perpendicular to the freezing direction. This work demonstrates that piezoelectric ceramics produced with aligned pores by freeze casting are a promising candidate for a range of sensor applications and the polarisation orientation relative to the freezing direction can be used to tailor the microstructure and optimise sensitivity for sensor and hydrostatic transducer applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00328v1-abstract-full').style.display = 'none'; document.getElementById('1902.00328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the European Ceramic Society, 38, 4203, 2018 Volume 38, Issue 12, September 2018, Pages 4203-4211 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00303">arXiv:1902.00303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00303">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C7TA00967D">10.1039/C7TA00967D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mengying Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Roscow%2C+J">James Roscow</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y">Yinxiang Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+K">Kechao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dou Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bowen%2C+C+R">Chris R. Bowen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00303v1-abstract-short" style="display: inline;"> This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze casting. The aligned porous PZT ceramics were characterized in detai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00303v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00303v1-abstract-full" style="display: none;"> This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstrucutre, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of an parallel-aligned PZT harvester element and an AC/DC converter successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol.% porous parallel-connected PZT when subjected to thermal oscillations was 1653 渭J/cm3 respectively, which was 374% higher than that of the dense PZT with an energy density of 446 渭J/cm3. The results are of benefit for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00303v1-abstract-full').style.display = 'none'; document.getElementById('1902.00303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Mater. Chem. A, 2017,5, 6569-6580 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.07784">arXiv:1812.07784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.07784">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Quick and repeatable shear modulus measurement based on torsional resonance and torsional wave propagation using a piezoelectric torsional transducer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mingyu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q+H+F">Qiang Huan Faxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.07784v1-abstract-short" style="display: inline;"> Shear modulus is one of the fundamental mechanical properties of materials, while its quick and accurate measurement is still a challenge. Here we proposed two methods for shear modulus measurement based on torsional resonance and torsional wave propagation using a same piezoelectric torsional transducer. Firstly, the torsional transducer was introduced which consists of two thickness poled, thick&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07784v1-abstract-full').style.display = 'inline'; document.getElementById('1812.07784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.07784v1-abstract-full" style="display: none;"> Shear modulus is one of the fundamental mechanical properties of materials, while its quick and accurate measurement is still a challenge. Here we proposed two methods for shear modulus measurement based on torsional resonance and torsional wave propagation using a same piezoelectric torsional transducer. Firstly, the torsional transducer was introduced which consists of two thickness poled, thickness shear (d15) piezoelectric half-rings. Secondly, the equivalent circuit of the transducer-cylindrical specimen system is derived and the shear modulus can be explicitly obtained using the torsional resonance frequency. The internal friction can also be obtained, which is calculated by using an approximate formula. Then, the principle of shear modulus and internal friction measurement based on torsional wave propagation were presented. Finally, shear modulus and internal friction measurement on four materials including 1045 steel, aluminum, quartz glass and PMMA, were conducted. Results indicate that the measured shear moduli using these two methods are very close to each other, and consistent with the reference values in literatures. The resonance method is quite convenient and highly repeatable, but is typically not suitable for long specimens where the first torsional resonance may not be visible. The wave propagation method is especially suitable for long specimens and high frequency measurement is suggested. The internal frictions measured by these two methods were also close to each other, and the simple wave attenuation method is suggested. The two shear modulus measurement methods proposed in this work are quite reliable and can be widely used in near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07784v1-abstract-full').style.display = 'none'; document.getElementById('1812.07784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.06916">arXiv:1806.06916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.06916">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> On sound insulation of pyramidal lattice sandwich structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T">Tingting Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+G">Guilin Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Qing%2C+Q">Qixiang Qing</a>, <a href="/search/physics?searchtype=author&amp;query=Sedaghati%2C+R">Ramin Sedaghati</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y+M">Yi Min Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.06916v1-abstract-short" style="display: inline;"> Pyramidal lattice sandwich structure (PLSS) exhibits high stiffness and strength-to-weight ratio which can be effectively utilized for designing light-weight load bearing structures for ranging from ground to aerospace vehicles. While these structures provide superior strength to weigh ratio, their sound insulation capacity has not been well understood. The aim of this study is to develop numerica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06916v1-abstract-full').style.display = 'inline'; document.getElementById('1806.06916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.06916v1-abstract-full" style="display: none;"> Pyramidal lattice sandwich structure (PLSS) exhibits high stiffness and strength-to-weight ratio which can be effectively utilized for designing light-weight load bearing structures for ranging from ground to aerospace vehicles. While these structures provide superior strength to weigh ratio, their sound insulation capacity has not been well understood. The aim of this study is to develop numerical and experimental methods to fundamentally investigate the sound insulation property of the pyramidal lattice sandwich structure with solid trusses (PLSSST). A finite element model has been developed to predict the sound transmission loss (STL) of PLSSST and simulation results have been compared with those obtained experimentally. Parametric studies is then performed using the validated finite element model to investigate the effect of different parameters in pyramidal lattice sandwich structure with hollow trusses (PLSSHT), revealing that the pitching angle, the uniform thickness and the length of the hollow truss and the lattice constant have considerable effects on the sound transmission loss. Finally a design optimization strategy has been formulated to optimize PLSSHT in order to maximize STL while meeting mechanical property requirements. It has been shown that STL of the optimal PLSSHT can be increased by almost 10% at the low-frequency band. The work reported here provides useful information for the noise reduction design of periodic lattice structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06916v1-abstract-full').style.display = 'none'; document.getElementById('1806.06916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.04816">arXiv:1803.04816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.04816">pdf</a>, <a href="https://arxiv.org/ps/1803.04816">ps</a>, <a href="https://arxiv.org/format/1803.04816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.052202">10.1103/PhysRevE.98.052202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference effect in the optomechanical stochastic resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Min Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+B">Bixuan Fan</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xiaoli He</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qingqing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.04816v2-abstract-short" style="display: inline;"> In this paper, we study the stochastic resonance (SR) effect in an optomechanical system driven by a strong coupling field and two weak signals in both semiclassical and quantum frameworks. In the semiclassical description, the SR phenomena are found at the cooperation of input signals and system noises. When two signals co-act on our system, the interference effect between the optically induced S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04816v2-abstract-full').style.display = 'inline'; document.getElementById('1803.04816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.04816v2-abstract-full" style="display: none;"> In this paper, we study the stochastic resonance (SR) effect in an optomechanical system driven by a strong coupling field and two weak signals in both semiclassical and quantum frameworks. In the semiclassical description, the SR phenomena are found at the cooperation of input signals and system noises. When two signals co-act on our system, the interference effect between the optically induced SR and the mechanically induced SR can be generated. In particular, a unique beating effect, which makes the SR effect robust against the initial phase difference of two signals, appears in the SR synchronization process with unsynchronized signals. In addition, the quantum stochastic resonance effect is numerically observed in the full quantum framework induced by pure quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04816v2-abstract-full').style.display = 'none'; document.getElementById('1803.04816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 052202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03543">arXiv:1712.03543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03543">pdf</a>, <a href="https://arxiv.org/ps/1712.03543">ps</a>, <a href="https://arxiv.org/format/1712.03543">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2018.07.040">10.1016/j.cnsns.2018.07.040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatiotemporal solitary modes in a twisted cylinder waveguide pipe with the self-focusing Kerr nonlinearity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Hao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+L">Lin Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Maobin Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+W">Weiwen Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhaopin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z">Zhihuan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+C">Chunqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">Shenhe Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03543v1-abstract-short" style="display: inline;"> We study the spatiotemporal solitary modes that propagate in a hollow twisted cylinder waveguide pipe with a self-focusing Kerr nonlinearity. Three generic solitary modes, one belonging to the zero-harmonic (0H) and the other two belonging to the first-harmonic (1H), are found in the first rotational Brillouin zone. The 0H solitary modes can be termed as a quasi-1D (one-dimensional) temporal solit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03543v1-abstract-full').style.display = 'inline'; document.getElementById('1712.03543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03543v1-abstract-full" style="display: none;"> We study the spatiotemporal solitary modes that propagate in a hollow twisted cylinder waveguide pipe with a self-focusing Kerr nonlinearity. Three generic solitary modes, one belonging to the zero-harmonic (0H) and the other two belonging to the first-harmonic (1H), are found in the first rotational Brillouin zone. The 0H solitary modes can be termed as a quasi-1D (one-dimensional) temporal soliton. Their characteristics depend only on the energy flow. The 1H solitary mode can be termed a quasi-2D (two-dimensional) bullet, whose width is much narrower than the angular domain of the waveguide. In contrast to the 0H mode, the characteristics of the 1H solitary mode depend on both their energy flow and the rotating speed of the waveguide. We demonstrate numerically that the 1H solitary modes are stable when their energy flow is smaller than the threshold norm of the \emph{Townes soliton}. The boundaries of the bistable area for these two types of solitary modes are predicted by the analyses via two-mode approximation. This prediction is in accordance with the numerical findings. We also demonstrate analytically that the 1H solitary mode of this system can be applied to emulate the nonlinear dynamics of solitary modes with 1D Rashba spin-orbit (SO) coupling by optics. Two degenerated states of the 1H solitary mode, semi-dipole and mixed mode, are found from this setting via the mechanism of SO coupling. Collisions between the pair of these two types of solitary modes are also discussed in the paper. The pair of the 0H solitary mode features only the elastic collision, whereas the pair of 1H solitary modes can feature both elastic and inelastic collision when the total energy flow of the two modes are smaller or close to the threshold norm of the \emph{Townes soliton}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03543v1-abstract-full').style.display = 'none'; document.getElementById('1712.03543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, 52 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Commun Nonlinear Sci Numer Simulat 67 (2019) 617--626 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> https://doi.org/10.1016/j.cnsns.2018.07.040 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.06816">arXiv:1711.06816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.06816">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Figurative Identification for Superposed OAM Modes in FSO Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+H">Haowei Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mutong Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xinlu Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shanguo Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.06816v1-abstract-short" style="display: inline;"> We demonstrate that a complete projection in Hilbert Space figuratively describes a superposed state, introducing a new scale to qualify an FSO system. Measurement simulation of superposed OAM beam through this projection scheme is given. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.06816v1-abstract-full" style="display: none;"> We demonstrate that a complete projection in Hilbert Space figuratively describes a superposed state, introducing a new scale to qualify an FSO system. Measurement simulation of superposed OAM beam through this projection scheme is given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.06816v1-abstract-full').style.display = 'none'; document.getElementById('1711.06816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00573">arXiv:1709.00573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00573">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.10.014005">10.1103/PhysRevApplied.10.014005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Silicon nitride metalenses for unpolarized high-NA visible imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Z">Zhi-Bin Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Z">Zeng-Kai Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Ming-Yuan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Pang%2C+X">Xiao-Ning Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Ruan%2C+W">Wen-Sheng Ruan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+F">Fu-Li Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-Jie Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Si-Yuan Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+J">Jian-Wen Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00573v1-abstract-short" style="display: inline;"> As one of nanoscale planar structures, metasurface has shown excellent superiorities on manipulating light intensity, phase and/or polarization with specially designed nanoposts pattern. It allows to miniature a bulky optical lens into the chip-size metalens with wavelength-order thickness, playing an unprecedented role in visible imaging systems (e.g. ultrawide-angle lens and telephoto). However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00573v1-abstract-full').style.display = 'inline'; document.getElementById('1709.00573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00573v1-abstract-full" style="display: none;"> As one of nanoscale planar structures, metasurface has shown excellent superiorities on manipulating light intensity, phase and/or polarization with specially designed nanoposts pattern. It allows to miniature a bulky optical lens into the chip-size metalens with wavelength-order thickness, playing an unprecedented role in visible imaging systems (e.g. ultrawide-angle lens and telephoto). However, a CMOS-compatible metalens has yet to be achieved in the visible region due to the limitation on material properties such as transmission and compatibility. Here, we experimentally demonstrate a divergent metalens based on silicon nitride platform with large numerical aperture (NA~0.98) and high transmission (~0.8) for unpolarized visible light, fabricated by a 695-nm-thick hexagonal silicon nitride array with a minimum space of 42 nm between adjacent nanoposts. Nearly diffraction-limit virtual focus spots are achieved within the visible region. Such metalens enables to shrink objects into a micro-scale size field of view as small as a single-mode fiber core. Furthermore, a macroscopic metalens with 1-cm-diameter is also realized including over half billion nanoposts, showing a potential application of wide viewing-angle functionality. Thanks to the high-transmission and CMOS-compatibility of silicon nitride, our findings may open a new door for the miniaturization of optical lenses in the fields of optical fibers, microendoscopes, smart phones, aerial cameras, beam shaping, and other integrated on-chip devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00573v1-abstract-full').style.display = 'none'; document.getElementById('1709.00573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 10, 014005 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00429">arXiv:1609.00429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00429">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-017-9113-4">10.1007/s11433-017-9113-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W+J">W. J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L+X">L. X. You</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+C+L">C. L. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X+Y">X. Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X+M">X. M. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00429v2-abstract-short" style="display: inline;"> The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained from SNSPD made of amorphous WSi which usually operated at sub-kelvin temperatures. We first demonstrate SNSPD made of polycrystalline NbN with SDE of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00429v2-abstract-full').style.display = 'inline'; document.getElementById('1609.00429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00429v2-abstract-full" style="display: none;"> The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained from SNSPD made of amorphous WSi which usually operated at sub-kelvin temperatures. We first demonstrate SNSPD made of polycrystalline NbN with SDE of 90.2% for 1550 nm wavelength at 2.1K, accessible with a compact cryocooler. The SDE saturated to 92.1% when the temperature was lowered to 1.8K. The results lighten the practical and high performance SNSPD to quantum information and other high-end applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00429v2-abstract-full').style.display = 'none'; document.getElementById('1609.00429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics &amp; Astronomy 60(12), 120314(2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.07921">arXiv:1506.07921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.07921">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconducting nanowire single-photon detectors at a wavelength of 940 nm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W+J">W. J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L+X">L. X. You</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y+H">Y. H. He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X+Y">X. Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X+Y">X. Y. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+J">J. J. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q">Q. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+J">S. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X+M">X. M. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.07921v1-abstract-short" style="display: inline;"> We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling fact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07921v1-abstract-full').style.display = 'inline'; document.getElementById('1506.07921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.07921v1-abstract-full" style="display: none;"> We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area (桅 = 10 渭m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time &lt;12 ns, and a timing jitter of ~50 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07921v1-abstract-full').style.display = 'none'; document.getElementById('1506.07921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 5(6): 067129. (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.5109">arXiv:1208.5109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.5109">pdf</a>, <a href="https://arxiv.org/ps/1208.5109">ps</a>, <a href="https://arxiv.org/format/1208.5109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physa.2012.06.035">10.1016/j.physa.2012.06.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An intermediate distribution between Gaussian and Cauchy distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W">Wu-Sheng Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mi Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.5109v1-abstract-short" style="display: inline;"> In this paper, we construct an intermediate distribution linking the Gaussian and the Cauchy distribution. We provide the probability density function and the corresponding characteristic function of the intermediate distribution. Because many kinds of distributions have no moment, we introduce weighted moments. Specifically, we consider weighted moments under two types of weighted functions: the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.5109v1-abstract-full').style.display = 'inline'; document.getElementById('1208.5109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.5109v1-abstract-full" style="display: none;"> In this paper, we construct an intermediate distribution linking the Gaussian and the Cauchy distribution. We provide the probability density function and the corresponding characteristic function of the intermediate distribution. Because many kinds of distributions have no moment, we introduce weighted moments. Specifically, we consider weighted moments under two types of weighted functions: the cut-off function and the exponential function. Through these two types of weighted functions, we can obtain weighted moments for almost all distributions. We consider an application of the probability density function of the intermediate distribution on the spectral line broadening in laser theory. Moreover, we utilize the intermediate distribution to the problem of the stock market return in quantitative finance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.5109v1-abstract-full').style.display = 'none'; document.getElementById('1208.5109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica A 391 (2012) 5411-5421 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9803001">arXiv:physics/9803001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/9803001">pdf</a>, <a href="https://arxiv.org/ps/physics/9803001">ps</a>, <a href="https://arxiv.org/format/physics/9803001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1006/aphy.1997.5767">10.1006/aphy.1997.5767 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overtone spectra and intensities of tetrahedral molecules in boson-realization models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hou%2C+X">Xi-Wen Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mi Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+S">Shi-Hai Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhong-Qi Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9803001v1-abstract-short" style="display: inline;"> The stretching and bending vibrational spectrum and the intensities of infrared transitions in a tetrahedral molecule are studied in two boson-realization models, where the interactions between stretching and bending vibrations are described by a quadratic cross term and by Fermi resonance terms, called harmonically coupled and Fermi resonance boson-realization model, respectively. The later is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9803001v1-abstract-full').style.display = 'inline'; document.getElementById('physics/9803001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9803001v1-abstract-full" style="display: none;"> The stretching and bending vibrational spectrum and the intensities of infrared transitions in a tetrahedral molecule are studied in two boson-realization models, where the interactions between stretching and bending vibrations are described by a quadratic cross term and by Fermi resonance terms, called harmonically coupled and Fermi resonance boson-realization model, respectively. The later is a development of our recent model. As an example, the two models are applied to the overtone spectrum and the intensities of silicon tetrafluorde. Those models provide fits to the published experimental vibrational eigenvalues with standard deviations 1.956 cm$^{-1}$ and 0.908 cm$^{-1}$, respectively. The intensities of infrared transitions of its complete vibrations are calculated in the two models, and results show a good agreement with the observed data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9803001v1-abstract-full').style.display = 'none'; document.getElementById('physics/9803001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages Revtex, no figure, to appear in Annals of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9801012">arXiv:physics/9801012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/9801012">pdf</a>, <a href="https://arxiv.org/ps/physics/9801012">ps</a>, <a href="https://arxiv.org/format/physics/9801012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0009-2614(97)01357-2">10.1016/S0009-2614(97)01357-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Algebraic approach to vibrational spectra of tetrahedral molecules: a case study of silicon tetrafluoride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hou%2C+X">Xi-Wen Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+S">Shi-Hai Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mi Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhong-Qi Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9801012v1-abstract-short" style="display: inline;"> Both the stretch and bend vibrational spectrum and the intensity of infrared transitions in a tetrahedral molecule are studied in a U(2) algebraic model, where the spurious states in the model Hamiltonian and the wavefunctions are exactly removed. As an example, we apply the model to silicon tetrafluoride SiF$_4$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9801012v1-abstract-full" style="display: none;"> Both the stretch and bend vibrational spectrum and the intensity of infrared transitions in a tetrahedral molecule are studied in a U(2) algebraic model, where the spurious states in the model Hamiltonian and the wavefunctions are exactly removed. As an example, we apply the model to silicon tetrafluoride SiF$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9801012v1-abstract-full').style.display = 'none'; document.getElementById('physics/9801012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex, 7 pages, no figure, to appear in Chem. Phys. Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/chem-ph/9604002">arXiv:chem-ph/9604002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/chem-ph/9604002">pdf</a>, <a href="https://arxiv.org/ps/chem-ph/9604002">ps</a>, <a href="https://arxiv.org/format/chem-ph/9604002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.53.2173">10.1103/PhysRevA.53.2173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Boson-realization model for the vibrational spectra of tetrahedral molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhong-Qi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+X">Xi-Wen Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Mi Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="chem-ph/9604002v1-abstract-short" style="display: inline;"> An algebraic model of Boson-realization is proposed to study the vibrational spectra of a tetrahedral molecule, where ten sets of boson creation and annihilation operators are used to construct the Hamiltonian with $T_{d}$ symmetry. There are two schemes in our model. The first scheme provides an eight-parameter fit to the published experimental vibrational eigenvalues of methane with a root-mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('chem-ph/9604002v1-abstract-full').style.display = 'inline'; document.getElementById('chem-ph/9604002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="chem-ph/9604002v1-abstract-full" style="display: none;"> An algebraic model of Boson-realization is proposed to study the vibrational spectra of a tetrahedral molecule, where ten sets of boson creation and annihilation operators are used to construct the Hamiltonian with $T_{d}$ symmetry. There are two schemes in our model. The first scheme provides an eight-parameter fit to the published experimental vibrational eigenvalues of methane with a root-mean-square deviation 11.61 $cm^{-1}$. The second scheme, where the bending oscillators are assumed to be harmonic and the interactions between the bending vibrations are neglected, provided a five-parameter fit with a root-mean-square deviation 12.42 $cm^{-1}$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('chem-ph/9604002v1-abstract-full').style.display = 'none'; document.getElementById('chem-ph/9604002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 1 figure, Latex, Phys. Rev. A. to appear</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10