CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 134 results for author: <span class="mathjax">Dicker, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Dicker%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dicker, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dicker%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dicker, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09241">arXiv:2501.09241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09241">pdf</a>, <a href="https://arxiv.org/format/2501.09241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Characterization of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeff Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koc%2C+M+A">Matthew A. Koc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09241v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09241v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the Large Aperture Telescope Receiver (LATR), the largest cryogenic camera ever built to observe the CMB. Here we report on the validation of the LATR in the laboratory and the subsequent dark testing and validation within the LAT. We show that the LATR meets cryogenic, optical, and detector specifications required for high-sensitivity measurements of the CMB. At the time of writing, the LATR is installed in the LAT with six OTs (corresponding to &gt;31,000 detectors), and the LAT mirrors and remaining seven OTs are undergoing development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'none'; document.getElementById('2501.09241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08103">arXiv:2411.08103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08103">pdf</a>, <a href="https://arxiv.org/format/2411.08103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The thermodynamic structure and large-scale structure filament in MACS J0717.5+3745 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Breuer%2C+J+P">J. P. Breuer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werner%2C+N">N. Werner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pl%C5%A1ek%2C+T">T. Pl拧ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mernier%2C+F">F. Mernier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umetsu%2C+K">K. Umetsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simionescu%2C+A">A. Simionescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dibblee-Barkman%2C+T">T. Dibblee-Barkman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">C. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">C. L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08103v2-abstract-short" style="display: inline;"> We present the results of Chandra and XMM-Newton X-ray imaging and spatially-resolved spectroscopy, as well as new MUSTANG2 90~GHz observations of the thermal Sunyaev-Zeldovich effect from MACS J0717.5+3745, an intermediate redshift ($z=0.5458$) and exceptionally massive ($3.5 \pm 0.6\ times 10^{15}~\rm M_\odot$) Frontier Fields cluster experiencing multiple mergers and hosting an apparent X-ray b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08103v2-abstract-full').style.display = 'inline'; document.getElementById('2411.08103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08103v2-abstract-full" style="display: none;"> We present the results of Chandra and XMM-Newton X-ray imaging and spatially-resolved spectroscopy, as well as new MUSTANG2 90~GHz observations of the thermal Sunyaev-Zeldovich effect from MACS J0717.5+3745, an intermediate redshift ($z=0.5458$) and exceptionally massive ($3.5 \pm 0.6\ times 10^{15}~\rm M_\odot$) Frontier Fields cluster experiencing multiple mergers and hosting an apparent X-ray bright large scale structure filament. Thermodynamical maps are produced from Chandra, XMM-Newton, and ROSAT data using a new method for modeling the astrophysical and instrumental backgrounds. The temperature peak of $24 \pm 4$ keV is also the pressure peak of the cluster and closely correlates spatially with the Sunyaev-Zeldovich peak from the MUSTANG2 data. The cluster center hosts shock fronts to the north and south, for which we report estimates for the shock Mach numbers of $M = 1.6 \pm 0.4$ and $M = 1.9 \pm 0.3$, respectively. Bayesian X-ray Analysis methods were used to disentangle different projected spectral signatures for the filament structure, with Akaike and Bayes criteria being used to select the most appropriate model to describe the various temperature components. We report an X-ray filament temperature of $3.1_{-0.3}^{+0.6}$ keV and a density $(3.78\pm0.05)\times10^{-4}\,{\rm cm^{-3}}$, corresponding to an overdensity of $\sim400$ relative to the critical density of the Universe. We estimate the hot gas mass of the filament to be $\sim6.1\times10^{12}~\rm M_\odot$, while its total projected weak lensing measured mass is $\sim(6.8\pm2.7)\times10^{13}~\rm M_\odot$, indicating a hot baryon fraction of 4--10\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08103v2-abstract-full').style.display = 'none'; document.getElementById('2411.08103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10+1 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02177">arXiv:2408.02177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02177">pdf</a>, <a href="https://arxiv.org/format/2408.02177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The RAdio Galaxy Environment Reference Survey (RAGERS): Evidence of an anisotropic distribution of submillimeter galaxies in the 4C 23.56 protocluster at z=2.48 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhou%2C+D">Dazhi Zhou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T+R">Thomas R. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gullberg%2C+B">Bitten Gullberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cornish%2C+T">Thomas Cornish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">Claudia D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+J+F+W">Jeff F. W. Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Q+D">Q. Daniel Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+R">Ran Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brinch%2C+M">Malte. Brinch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+X">Xue-Jian Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lauritsen%2C+L+R+B">Lynge R. B. Lauritsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vijayan%2C+A+P">Aswin P. Vijayan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vizgan%2C+D">David Vizgan</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02177v1-abstract-short" style="display: inline;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02177v1-abstract-full" style="display: none;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial distribution of submillimeter-bright galaxies (SMGs) in the field of 4C\,23.56, a well-known H$z$RG at $z=2.48$. We used SCUBA-2 data ($蟽\,{\sim}\,0.6$\,mJy) to estimate the $850\,{\rm 渭m}$ source number counts and examine the radial and azimuthal overdensities of the $850\,{\rm 渭m}$ sources in the vicinity of the H$z$RG. The angular distribution of SMGs is inhomogeneous around the H$z$RG 4C\,23.56, with fewer sources oriented along the radio jet. We also find a significant overdensity of bright SMGs (${\rm S}_{850\rm\,渭m}\geq5\,$mJy). Faint and bright SMGs exhibit different spatial distributions. The former are concentrated in the core region, while the latter prefer the outskirts of the H$z$RG field. High-resolution observations show that the seven brightest SMGs in our sample are intrinsically bright, suggesting that the overdensity of bright SMGs is less likely due to the source multiplicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'none'; document.getElementById('2408.02177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, 5 tables, accepted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09669">arXiv:2407.09669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09669">pdf</a>, <a href="https://arxiv.org/format/2407.09669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019247">10.1117/12.3019247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Dark Characterization of the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M+J">Michael J. Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C">Carlos Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R+J">Robert J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09669v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09669v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'none'; document.getElementById('2407.09669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01844">arXiv:2406.01844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01844">pdf</a>, <a href="https://arxiv.org/format/2406.01844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019196">10.1117/12.3019196 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Studies of Detector Yield and Readout Noise From the First Large-Scale Deployment of Microwave Multiplexing at the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01844v1-abstract-short" style="display: inline;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile&#39;s Atacama Desert. During its survey, the observatory&#39;s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01844v1-abstract-full" style="display: none;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile&#39;s Atacama Desert. During its survey, the observatory&#39;s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes&#39; receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory&#39;s large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'none'; document.getElementById('2406.01844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 1 table. To be presented at SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII. 1310223 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06868">arXiv:2405.06868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06868">pdf</a>, <a href="https://arxiv.org/format/2405.06868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Pre-deployment Performance of a Large Aperture Telescope Optics Tube in the 90 and 150 GHz Spectral Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C+E">Carlos E. Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lessler%2C+C+S">Claire S. Lessler</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06868v1-abstract-short" style="display: inline;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06868v1-abstract-full" style="display: none;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious new instrument suite, initially comprising three 0.5 m small-aperture telescopes and one 6 m large aperture telescope, is designed using a common combination of new technologies and new implementations to realize an observatory significantly more capable than the previous generation. In this paper, we present the pre-deployment performance of the first mid-frequency &#34;optics tube&#34; which will be fielded on the large aperture telescope with sensitivity to the 90 and 150 GHz spectral bands. This optics tube contains lenses, filters, detectors, and readout components, all of which operate at cryogenic temperatures. It is one of seven that form the core of the large aperture telescope receiver in its initial deployment. We describe this optics tube, including details of comprehensive testing methods, new techniques for beam and passband characterization, and its measured performance. The performance metrics include beams, optical efficiency, passbands, and forecasts for the on-sky performance of the system. We forecast a sensitivity that exceeds the requirements of the large aperture telescope with greater than 30% margin in each spectral band, and predict that the instrument will realize diffraction-limited performance and the expected detector passbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'none'; document.getElementById('2405.06868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05550">arXiv:2405.05550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05550">pdf</a>, <a href="https://arxiv.org/format/2405.05550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Design, integration, and testing of the small aperture telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsan%2C+T">Tran Tsan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spisak%2C+J">Jake Spisak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M">Michael Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seibert%2C+J">Joseph Seibert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jacob Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+S+M">Sean M. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bixler%2C+B">Bryce Bixler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corbett%2C+L">Lance Corbett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Day-Weiss%2C+S">Samuel Day-Weiss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05550v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05550v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35$^\circ$ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and $&lt;0.1$ K focal plane that holds $&gt;12,000$ TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'none'; document.getElementById('2405.05550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09855">arXiv:2403.09855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09855">pdf</a>, <a href="https://arxiv.org/format/2403.09855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad4e35">10.3847/1538-4357/ad4e35 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitive 3mm Imaging of Discrete Sources in the Fields of tSZ-Selected Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S">Saianeesh Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">Mathew Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09855v2-abstract-short" style="display: inline;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09855v2-abstract-full" style="display: none;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to known radio sources, and of these, 5 show signs of significant variability, either with time or in spectral index. The remaining sources have no clear counterparts at other wavelengths. Searches for galaxy clusters via the tSZ effect strongly rely on observations at 90 GHz, and the sources found have the potential to bias mass estimates of clusters. We compare our results to the simulation Websky that can be used to estimate the source contamination in galaxy cluster catalogs. While the simulation showed a good match to our observations at the clusters&#39; centers, it does not match our source distribution further out. Sources over 104&#34; from a cluster&#39;s center bias the tSZ signal high, for some of our sources, by over 50%. When averaged over the whole cluster population the effect is smaller but still at a level of 1 to 2%. We also discovered that unlike previous measurements and simulations we see an enhancement of source counts in the outer regions of the clusters and fewer sources than expected in the centers of this tSZ selected sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'none'; document.getElementById('2403.09855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures and 2 tables Extended version of figure 4 is included and the full data for table 1 can be found as the auxiliary file tab1.txt</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ,970,2024,84 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18645">arXiv:2402.18645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18645">pdf</a>, <a href="https://arxiv.org/format/2402.18645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449786">10.1051/0004-6361/202449786 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The conceptual design of the 50-meter Atacama Large Aperture Submillimeter Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Timpe%2C+M">Martin Timpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiselev%2C+A">Aleksej Kiselev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+M">Manuel Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaercher%2C+H">Hans Kaercher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichert%2C+M">Matthias Reichert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dubois-dit-Bonclaude%2C+P">Pierre Dubois-dit-Bonclaude</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bok%2C+D">Daniel Bok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahl%2C+E">Erik Dahl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macintosh%2C+M">Mike Macintosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viole%2C+I">Isabelle Viole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sartori%2C+S">Sabrina Sartori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venegas%2C+G+A+V">Guillermo Andr茅s Valenzuela Venegas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zeyringer%2C+M">Marianne Zeyringer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Michael Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poppi%2C+S">Sergio Poppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olguin%2C+R">Rodrigo Olguin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18645v6-abstract-short" style="display: inline;"> The (sub)millimeter sky contains a vast wealth of information that is both complementary and inaccessible to other wavelengths. Over half the light we receive is observable at (sub)millimeter wavelengths, yet we have mapped only a small portion of the sky at sufficient spatial resolution and sensitivity to detect and resolve distant galaxies or star forming cores within their large-scale environme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18645v6-abstract-full').style.display = 'inline'; document.getElementById('2402.18645v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18645v6-abstract-full" style="display: none;"> The (sub)millimeter sky contains a vast wealth of information that is both complementary and inaccessible to other wavelengths. Over half the light we receive is observable at (sub)millimeter wavelengths, yet we have mapped only a small portion of the sky at sufficient spatial resolution and sensitivity to detect and resolve distant galaxies or star forming cores within their large-scale environments. For decades the astronomical community has highlighted the need for a large, high-throughput (sub-)mm ($位\sim 0.35-10$ mm) single dish. The Atacama Large Aperture Submillimeter Telescope (AtLAST), with its 50-m aperture and $2^\circ$ maximal field of view, aims to be such a facility. We present here the preliminary design concept for AtLAST, developed through an EU Horizon 2020-funded design study. Our design approach begins with a long lineage of (sub)millimeter telescopes, relies on calculations and simulations to realize the optics, and uses finite element analysis to optimize the designs for the mechanical structure and subsystems. The demanding technical requirements for AtLAST, set by transformative science goals, have motivated the design effort to combine novel concepts with lessons learned from the past experience of previous efforts. The result is an innovative rocking chair design with six instrument bays, two of which are mounted on Nasmyth platforms, inside a large receiver cabin. Ultimately, AtLAST aims to achieve a surface accuracy of $\leq 20~渭$m root mean square half wavefront error, corresponding a Ruze efficiency $&gt;50\%$ at 950~GHz. We conclude that closed-loop metrology of the active primary surface will likely be required to achieve our surface accuracy goal. In the next phase of the project, we will prototype and test such metrology on existing platforms, with a goal of delivering a mature, construction-ready design by the end of this decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18645v6-abstract-full').style.display = 'none'; document.getElementById('2402.18645v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted 2025-Jan-14. 28 pages, 22 figures, 6 tables. Supplementary materials that were previously in Appendix B &amp; C can be found on Zenodo at https://zenodo.org/records/14673697</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 694, A142 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10731">arXiv:2402.10731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10731">pdf</a>, <a href="https://arxiv.org/format/2402.10731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.33232/001c.127571">10.33232/001c.127571 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> maria: A novel simulator for forecasting (sub-)mm observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+T+W">T. W. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">C. Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">S. K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasia%2C+E">E. Rasia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">C. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=W%C3%BCrzinger%2C+J">J. W眉rzinger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10731v3-abstract-short" style="display: inline;"> Millimeter-wave single-dish telescopes offer two key advantages compared to interferometers: they can efficiently map larger portions of the sky, and they can recover larger spatial scales. Nonetheless, fluctuations in the atmosphere limit the accurate retrieval of signals from astronomical sources. To efficiently reduce atmospheric noise and filtering effects in current and future facilities, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10731v3-abstract-full').style.display = 'inline'; document.getElementById('2402.10731v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10731v3-abstract-full" style="display: none;"> Millimeter-wave single-dish telescopes offer two key advantages compared to interferometers: they can efficiently map larger portions of the sky, and they can recover larger spatial scales. Nonetheless, fluctuations in the atmosphere limit the accurate retrieval of signals from astronomical sources. To efficiently reduce atmospheric noise and filtering effects in current and future facilities, we introduce {\tt maria}, a versatile and user-friendly multi-purpose telescope simulator that optimizes scanning strategies and instrument designs, produces synthetic time-ordered data, time streams, and maps from hydrodynamical simulations, thereby enabling a fair comparison between theory and observations. Each mock observatory scans through the atmosphere in a configurable pattern over the celestial object. We generate evolving and location-and-time-specific weather for each of the fiducial sites using a combination of satellite and ground-based measurements. While {\tt maria} is a generic virtual telescope, this study specifically focuses on mimicking broadband bolometers observing at 100 GHz. We compare the mock time streams with real MUSTANG-2 observations and find that they are quantitatively similar by conducting a k-sample Anderson-Darling test resulting in a p-value of p&lt;0.001. Subsequently, we image the TODs to create noise maps and realistic mock observations of clusters of galaxies for both MUSTANG-2 and an instrument concept for the 50m Atacama Large Aperture Submillimeter Telescope (AtLAST). Furthermore, using {\tt maria}, we find that a 50m dish provides the highest levels of correlation of atmospheric signals across adjacent detectors compared to smaller apertures (e.g., 42-cm and 6-m), facilitating removal of atmospheric signal on large scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10731v3-abstract-full').style.display = 'none'; document.getElementById('2402.10731v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14370">arXiv:2401.14370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14370">pdf</a>, <a href="https://arxiv.org/format/2401.14370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/ad2e11">10.1088/1538-3873/ad2e11 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The BLAST Observatory: A Sensitivity Study for Far-IR Balloon-borne Polarimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+BLAST+Observatory+Collaboration"> The BLAST Observatory Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J+E">James E. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molinari%2C+S">Sergio Molinari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C+E">Carole E. Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaskuri%2C+A">Anna Vaskuri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+D">Jordan D. Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zannoni%2C+M">Mario Zannoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14370v2-abstract-short" style="display: inline;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'inline'; document.getElementById('2401.14370v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14370v2-abstract-full" style="display: none;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum - wavelengths that are inaccessible from the ground. In this paper we address the sensitivity achievable by a Super Pressure Balloon (SPB) polarimetry mission, using as an example the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) Observatory. By launching from Wanaka, New Zealand, BLAST Observatory can obtain a 30-day flight with excellent sky coverage - overcoming limitations of past experiments that suffered from short flight duration and/or launch sites with poor coverage of nearby star-forming regions. This proposed polarimetry mission will map large regions of the sky at sub-arcminute resolution, with simultaneous observations at 175, 250, and 350 $渭m$, using a total of 8274 microwave kinetic inductance detectors. Here, we describe the scientific motivation for the BLAST Observatory, the proposed implementation, and the forecasting methods used to predict its sensitivity. We also compare our forecasted experiment sensitivity with other facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'none'; document.getElementById('2401.14370v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PASP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 PASP 136 035003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10952">arXiv:2308.10952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10952">pdf</a>, <a href="https://arxiv.org/format/2308.10952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.23919/URSIGASS57860.2023.10265372">10.23919/URSIGASS57860.2023.10265372 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress in the Design of the Atacama Large Aperture Submillimeter Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichert%2C+M">Matthias Reichert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P">Patricio Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaercher%2C+H">Hans Kaercher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bok%2C+D">Daniel Bok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahl%2C+E">Erik Dahl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dubois-dit-Bonclaude%2C+P">Pierre Dubois-dit-Bonclaude</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiselev%2C+A">Aleksej Kiselev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Timpe%2C+M">Martin Timpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerer%2C+T">Thomas Zimmerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macintosh%2C+M">Mike Macintosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Michael Niemack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10952v1-abstract-short" style="display: inline;"> The Atacama Large Aperture Submillimeter Telescope (AtLAST) aims to be the premier next generation large diameter (50 meter) single dish observatory capable of observations across the millimeter/submillimeter spectrum, from 30~GHz to 1~THz. AtLAST will be sited in Chile at approximately 5100 meters above sea level, high in the Atacama Desert near Llano de Chajnantor. The novel rocking-chair telesc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10952v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10952v1-abstract-full" style="display: none;"> The Atacama Large Aperture Submillimeter Telescope (AtLAST) aims to be the premier next generation large diameter (50 meter) single dish observatory capable of observations across the millimeter/submillimeter spectrum, from 30~GHz to 1~THz. AtLAST will be sited in Chile at approximately 5100 meters above sea level, high in the Atacama Desert near Llano de Chajnantor. The novel rocking-chair telescope design allows for a unprecedentedly wide field of view (FoV) of 1-2$^\circ$ diameter, a large receiver cabin housing six major instruments, and high structural stability during fast scanning operations (up to $\sim 3^\circ$ per second in azimuth). Here we describe the current status of, and expected outcomes for, the antenna design study, which will be completed in 2024. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10952v1-abstract-full').style.display = 'none'; document.getElementById('2308.10952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for the URSI GASS 2023, Sapporo, Japan, 19-26 August 2023. 4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12931">arXiv:2307.12931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12931">pdf</a>, <a href="https://arxiv.org/format/2307.12931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.501744">10.1364/AO.501744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Freeform three-mirror anastigmatic large-aperture telescope and receiver optics for CMB-S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B">Bradford Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J">John Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emerson%2C+N">Nick Emerson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Natoli%2C+T">Tyler Natoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padin%2C+S">Stephen Padin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruhl%2C+J">John Ruhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+t+C">the CMB-S4 collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12931v1-abstract-short" style="display: inline;"> CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large and small aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12931v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12931v1-abstract-full" style="display: none;"> CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large and small aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput, large-aperture (5-meter diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicate expected optical performance and mechanical tolerance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12931v1-abstract-full').style.display = 'none'; document.getElementById('2307.12931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05790">arXiv:2305.05790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05790">pdf</a>, <a href="https://arxiv.org/format/2305.05790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd3f0">10.3847/1538-4357/acd3f0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferences from surface brightness fluctuations of Zwicky 3146 via the Sunyaev-Zeldovich effect and X-ray observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schellenberger%2C+G">Gerrit Schellenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forman%2C+W">William Forman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khatri%2C+R">Rishi Khatri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kraft%2C+R">Ralph Kraft</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nulsen%2C+P">Paul Nulsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+Y">Yuanyuan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05790v1-abstract-short" style="display: inline;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05790v1-abstract-full" style="display: none;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to infer pressure and density fluctuations from the SZ and X-ray data, respectively. In the central region (Ring 1, $r &lt; 100^{\prime\prime} = 440$ kpc, in our analysis) we find fluctuation spectra that suggest injection scales around 200 kpc ($\sim 140$ kpc from pressure fluctuations and $\sim 250$ kpc from density fluctuations). When comparing the pressure and density fluctuations in the central region, we observe a change in the effective thermodynamic state from large to small scales, from isobaric (likely due to the slow sloshing) to adiabatic (due to more vigorous motions). By leveraging scalings from hydrodynamical simulations, we find an average 3D Mach number $\approx0.5$. We further compare our results to other studies of Zwicky 3146 and, more broadly, to other studies of fluctuations in other clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'none'; document.getElementById('2305.05790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ; 22 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02353">arXiv:2305.02353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02353">pdf</a>, <a href="https://arxiv.org/format/2305.02353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1270">10.1093/mnras/stad1270 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Witnessing the intracluster medium assembly at the cosmic noon in JKCS041 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreon%2C+S">S. Andreon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">C. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aussel%2C+H">H. Aussel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">T. Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ladjelate%2C+B">B. Ladjelate</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">I. Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">B. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raichoor%2C+A">A. Raichoor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">C. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trinchieri%2C+G">G. Trinchieri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02353v1-abstract-short" style="display: inline;"> In this work we study the intracluster medium of a galaxy cluster at the cosmic noon: JKCS041 at z=1.803. A 28h long Sunyaev-Zel&#39;dovich (SZ) observation using MUSTANG-2 allows us to detect JKCS041, even if intrinsically extremely faint compared to other SZ-detected clusters. We found that the SZ peak is offset from the X-ray center by about 220 kpc in the direction of the brightest cluster galaxy,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02353v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02353v1-abstract-full" style="display: none;"> In this work we study the intracluster medium of a galaxy cluster at the cosmic noon: JKCS041 at z=1.803. A 28h long Sunyaev-Zel&#39;dovich (SZ) observation using MUSTANG-2 allows us to detect JKCS041, even if intrinsically extremely faint compared to other SZ-detected clusters. We found that the SZ peak is offset from the X-ray center by about 220 kpc in the direction of the brightest cluster galaxy, which we interpret as due to the cluster being observed just after first passage of a major merger. JKCS041 has a low central pressure and a low Compton Y compared to local clusters selected by their intracluster medium (ICM), likely because the cluster is still in the process of assembly but also in part because of a hard-to-quantify bias in current local ICM-selected samples. JKCS041 has a 0.5 dex fainter Y signal than another less massive z~1.8 cluster, exemplifying how much different weak-lensing mass and SZ mass can be at high redshift. The observations we present provide us with the measurement of the most distant resolved pressure profile of a galaxy cluster. Comparison with a library of plausibly descendants shows that JKCS041 pressure profile will likely increase by about 0.7 dex in the next 10 Gyr at all radii. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02353v1-abstract-full').style.display = 'none'; document.getElementById('2305.02353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 &lt; 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07675">arXiv:2212.07675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07675">pdf</a>, <a href="https://arxiv.org/ps/2212.07675">ps</a>, <a href="https://arxiv.org/format/2212.07675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245000">10.1051/0004-6361/202245000 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Navarro-Almaida%2C+D">D. Navarro-Almaida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bop%2C+C+T">C. T. Bop</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lique%2C+F">F. Lique</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Esplugues%2C+G">G. Esplugues</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez-Baras%2C+M">M. Rodr铆guez-Baras</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kramer%2C+C">C. Kramer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">C. E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuente%2C+A">A. Fuente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caselli%2C+P">P. Caselli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rivi%C3%A9re-Marichalar%2C+P">P. Rivi茅re-Marichalar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kirk%2C+J+M">J. M. Kirk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chac%C3%B3n-Tanarro%2C+A">A. Chac贸n-Tanarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roueff%2C+E">E. Roueff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">T. Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">I. Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">B. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">C. L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07675v1-abstract-short" style="display: inline;"> HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07675v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07675v1-abstract-full" style="display: none;"> HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 $渭$m allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H$^{13}$CN/HN$^{13}$C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index $(尾\sim 1.34-2.09)$ shows a tentative anticorrelation with the H$^{13}$CN/HN$^{13}$C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07675v1-abstract-full').style.display = 'none'; document.getElementById('2212.07675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 670, A110 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05468">arXiv:2208.05468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05468">pdf</a>, <a href="https://arxiv.org/format/2208.05468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: Design of the Mod-Cam receiver and 280 GHz MKID instrument module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C">Christopher Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herter%2C+T+L">Terry L. Herter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+J">Jenna Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05468v1-abstract-short" style="display: inline;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05468v1-abstract-full" style="display: none;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-850 GHz broadband and spectroscopic measurements with microwave kinetic inductance detectors (MKIDs). CCAT-prime will address a suite of science goals, from Big Bang cosmology to star formation and galaxy evolution over cosmic time. Mod-Cam deployment on FYST with a 280 GHz instrument module containing MKID arrays is planned for early science observations in 2024. Mod-Cam will be used to test instrument modules for Prime-Cam, which can house up to seven instrument modules. We discuss the design and status of the 0.9 m diameter, 1.8 m long Mod-Cam receiver and 40 cm diameter 280 GHz instrument module, with cold stages at 40 K, 4 K, 1 K, and 100 mK. We also describe the instrument module&#39;s cryogenic readout designs to enable the readout of more than 10,000 MKIDs across 18 networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'none'; document.getElementById('2208.05468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02292">arXiv:2208.02292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02292">pdf</a>, <a href="https://arxiv.org/format/2208.02292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.472459">10.1364/AO.472459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Broadband Metamaterial Anti-Reflection Cuttings for Large Aperture Alumina Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jackson%2C+R">Rebecca Jackson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerman%2C+J">Jerry Zimmerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puglisi%2C+G">Giuseppe Puglisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02292v2-abstract-short" style="display: inline;"> We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic&#39;s surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02292v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02292v2-abstract-full" style="display: none;"> We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic&#39;s surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level control over reflections at angles of incidence up to 20$^\circ$. The ARCs were demonstrated on four 42 cm diameter filters covering the 75-170 GHz band and a 50 mm diameter prototype covering the 200-300 GHz band. The reflection and transmission of these samples were measured using a broadband coherent source that covers frequencies from 20 GHz to 1.2 THz. These measurements demonstrate percent-level control over reflectance across the targeted pass-bands and a rapid reduction in transmission as the wavelength approaches the length scale of the metamaterial structure where scattering dominates the optical response. The latter behavior enables the use of the metamaterial ARC as a scattering filter in this limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02292v2-abstract-full').style.display = 'none'; document.getElementById('2208.02292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, published in Applied Optics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-569-PPD-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 61, 8904-8911 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14212">arXiv:2207.14212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14212">pdf</a>, <a href="https://arxiv.org/format/2207.14212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Development and Validation of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B">Bradley Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+J">Jenna Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nguyen%2C+D+V">David V. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robe%2C+J">Julia Robe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R+J">Robert J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14212v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14212v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14212v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sensor (TES) detectors at 100 mK across 7 optics tubes (OT), all within the Large Aperture Telescope Receiver (LATR). Additionally, the LATR has the capability to expand to 62,000 TES across 13 OTs. The LAT will be capable of making arcminute-resolution observations of the CMB, with detector bands centered at 30, 40, 90, 150, 230, and 280 GHz. We have rigorously tested the LATR systems prior to deployment in order to fully characterize the instrument and show that it can achieve the desired sensitivity levels. We show that the LATR meets cryogenic and mechanical requirements, and maintains acceptably low baseline readout noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14212v1-abstract-full').style.display = 'none'; document.getElementById('2207.14212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10012">arXiv:2207.10012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10012">pdf</a>, <a href="https://arxiv.org/format/2207.10012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical design concept of the CMB-S4 large-aperture telescopes and cameras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B">Bradford Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J">John Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emerson%2C+N">Nick Emerson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padin%2C+S">Stephen Padin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruhl%2C+J">John Ruhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+t+C">the CMB-S4 collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10012v1-abstract-short" style="display: inline;"> CMB-S4 -- the next-generation ground-based cosmic microwave background (CMB) experiment - will significantly advance the sensitivity of CMB measurements and improve our understanding of the origin and evolution of the universe. CMB-S4 will deploy large-aperture telescopes fielding hundreds of thousands of detectors at millimeter wavelengths. We present the baseline optical design concept of the la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10012v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10012v1-abstract-full" style="display: none;"> CMB-S4 -- the next-generation ground-based cosmic microwave background (CMB) experiment - will significantly advance the sensitivity of CMB measurements and improve our understanding of the origin and evolution of the universe. CMB-S4 will deploy large-aperture telescopes fielding hundreds of thousands of detectors at millimeter wavelengths. We present the baseline optical design concept of the large-aperture CMB-S4 telescopes, which consists of two optical configurations: (i) a new off-axis, three-mirror, free-form anastigmatic design and (ii) the existing coma-corrected crossed-Dragone design. We also present an overview of the optical configuration of the array of silicon optics cameras that will populate the focal plane with 85 diffraction-limited optics tubes covering up to 9 degrees of field of view, up to $1.1 \, \rm mm$ in wavelength. We describe the computational optimization methods that were put in place to implement the families of designs described here and give a brief update on the current status of the design effort. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10012v1-abstract-full').style.display = 'none'; document.getElementById('2207.10012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07100">arXiv:2207.07100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07100">pdf</a>, <a href="https://arxiv.org/format/2207.07100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244547">10.1051/0004-6361/202244547 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GBT/MUSTANG-2 9&#34; resolution imaging of the SZ effect in MS0735.6+7421: Confirmation of the SZ Cavities through direct imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Churazov%2C+E">Eugene Churazov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">Tracy E Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathon Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sunyaev%2C+R">Rashid Sunyaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07100v4-abstract-short" style="display: inline;"> Mechanical feedback from active galactic nuclei (AGN) is thought to be the dominant feedback mechanism quenching cooling flows and star formation in galaxy cluster cores. However, the mechanisms by which AGN couple to the intracluster medium (ICM) are not well understood. The nature of pressure supporting the cavities is not known. Using the MUSTANG-2 instrument on the Green Bank Telescope (GBT),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07100v4-abstract-full').style.display = 'inline'; document.getElementById('2207.07100v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07100v4-abstract-full" style="display: none;"> Mechanical feedback from active galactic nuclei (AGN) is thought to be the dominant feedback mechanism quenching cooling flows and star formation in galaxy cluster cores. However, the mechanisms by which AGN couple to the intracluster medium (ICM) are not well understood. The nature of pressure supporting the cavities is not known. Using the MUSTANG-2 instrument on the Green Bank Telescope (GBT), we aimed to measure thermal Sunyaev-Zeldovich (SZ) effect signals associated with the X-ray cavities in MS0735.6+7421, a moderate mass cluster hosting one of the most energetic AGN outbursts known. We use these measurements to infer the level of non-thermal sources of pressure, such as magnetic fields and turbulence, as well as relativistic and cosmic ray components, supporting the cavities. We used preconditioned gradient descent to fit a model for the cluster, cavities, and central point source directly to the time ordered data of the MUSTANG-2 signal. We use this model to probe the thermodynamic state of the cavities. We have shown that the SZ signal associated with the cavities is suppressed compared to the expectations for a thermal plasma with the temperature $\sim$few tens keV. The smallest value of the suppression factor $f$ that is consistent with the data is $\sim$0.4, lower than inferred in earlier work. Larger values of $f$ are possible once the contribution of the cocoon shock surrounding the bubbles is taken into account. The baseline model with this particular geometrical setup yields best-fitting value f~0.5, which at face value implies a mix of thermal and non-thermal pressure support. Larger values of $f$ (up to 1, i.e. no tSZ signal from the bubbles) are still possible when allowing for variations in the line-of-sight geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07100v4-abstract-full').style.display = 'none'; document.getElementById('2207.07100v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 667, L6 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05728">arXiv:2203.05728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05728">pdf</a>, <a href="https://arxiv.org/format/2203.05728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 CMB-HD White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Collaboration%2C+T+C">The CMB-HD Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">Kaustuv Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boylan-Kolchin%2C+M">Michael Boylan-Kolchin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brinckmann%2C+T">Thejs Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+C+M">Caitlin M. Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clesse%2C+S">Sebastien Clesse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedderke%2C+M+A">Michael A. Fedderke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+G+M">George M. Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grin%2C+D">Daniel Grin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05728v1-abstract-short" style="display: inline;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05728v1-abstract-full" style="display: none;"> CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel&#39;dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (&lt; 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05728v1-abstract-full').style.display = 'none'; document.getElementById('2203.05728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. Note some text overlap with CMB-HD Astro2020 APC and RFI (arXiv:1906.10134, arXiv:2002.12714). Science case further broadened and updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06094">arXiv:2201.06094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06094">pdf</a>, <a href="https://arxiv.org/format/2201.06094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0093857">10.1063/5.0093857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Design and Measured Performance of a Carbon Fiber Strut for a Cryogenic Truss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P">Peter Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shroyer%2C+J+E">Jordan E. Shroyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spisak%2C+J">Jacob Spisak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+D">Delwin Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A">Adrian Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M">Michael Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teply%2C+G">Grant Teply</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsan%2C+T">Tran Tsan</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06094v2-abstract-short" style="display: inline;"> We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory Small Aperture Telescope (SAT). The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06094v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06094v2-abstract-full" style="display: none;"> We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory Small Aperture Telescope (SAT). The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cryogenically cycling and destructively pull-testing strut samples, (ii) non-destructively pull-testing the final truss, and (iii) measuring the thermal conductivity of the carbon fiber tubes. We found that the strut strength is limited by the mounting fasteners and the strut end caps, not the epoxy adhesive or the carbon fiber tube. This result is consistent with our numerical predictions. Our thermal measurements suggest that the conductive heat load through the struts (from 4 K to 1 K) will be less than 1 mW. This strut design may be a promising candidate for use in other cryogenic support structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06094v2-abstract-full').style.display = 'none'; document.getElementById('2201.06094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 93, 055106 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12239">arXiv:2112.12239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12239">pdf</a>, <a href="https://arxiv.org/format/2112.12239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac85e5">10.3847/1538-4357/ac85e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Massive and Distant Clusters of WISE Survey XI: Stellar Mass Fractions and Luminosity Functions of MaDCoWS Clusters at $z \sim 1$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Decker%2C+B">Bandon Decker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saha%2C+R">Ripon Saha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+T">Thomas Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muhibullah%2C+M">Mustafa Muhibullah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanford%2C+S+A">S. Adam Stanford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thongkham%2C+K">Khunanon Thongkham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wylezalek%2C+D">Dominika Wylezalek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruppin%2C+F">Florian Ruppin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12239v1-abstract-short" style="display: inline;"> We present stellar mass fractions and composite luminosity functions (LFs) for a sample of \Ncl\ clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) at a redshift range of $0.951 \leq z \leq 1.43$. Using SED fitting of optical and deep mid-infrared photometry, we establish the membership of objects along the lines-of-sight to these clusters and calculate the stellar masses of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12239v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12239v1-abstract-full" style="display: none;"> We present stellar mass fractions and composite luminosity functions (LFs) for a sample of \Ncl\ clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) at a redshift range of $0.951 \leq z \leq 1.43$. Using SED fitting of optical and deep mid-infrared photometry, we establish the membership of objects along the lines-of-sight to these clusters and calculate the stellar masses of member galaxies. We find stellar mass fractions for these clusters largely consistent with previous works, including appearing to display a negative correlation with total cluster mass. We measure a composite $3.6~\mathrm{渭m}$ LF down to $m^*+2.5$ for all 12 clusters. Fitting a Schechter function to the LF, we find a characteristic $3.6~\mathrm{渭m}$ magnitude of $m^*=19.83\pm0.12$ and faint-end slope of $伪=-0.81\pm0.10$ for the full sample at a mean redshift of $\bar{z} = 1.18$. We also divide the clusters into high- and low-redshift bins at $\bar{z}=1.29$ and $\bar{z}=1.06$ respectively and measure a composite LF for each bin. We see a small, but statistically significant evolution in $m^*$ and $伪$ -- consistent with passive evolution -- when we study the joint fit to the two parameters, which is probing the evolution of faint cluster galaxies at $z\sim1$. This highlights the importance of deep IR data in studying the evolution of cluster galaxy populations at high-redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12239v1-abstract-full').style.display = 'none'; document.getElementById('2112.12239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05514">arXiv:2110.05514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.05514">pdf</a>, <a href="https://arxiv.org/format/2110.05514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4506">10.3847/1538-4357/ac4506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio and X-ray observations of the luminous Fast Blue Optical Transient AT2020xnd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J+S">Joe S. Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthews%2C+D">David Matthews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brethauer%2C+D">Daniel Brethauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppejans%2C+D">Deanne Coppejans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wieringa%2C+M+H">Mark H. Wieringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeMarchi%2C+L">Lindsay DeMarchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">Tanmoy Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Migliori%2C+G">Giulia Migliori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bietenholz%2C+M">Michael Bietenholz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacobson-Gal%C3%A1n%2C+W+V">W. V. Jacobson-Gal谩n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milisavljevic%2C+D">Dan Milisavljevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motta%2C+S+E">Sara E. Motta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramirez-Ruiz%2C+E">Enrico Ramirez-Ruiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+L">Lauren Rhodes</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05514v1-abstract-short" style="display: inline;"> We present deep X-ray and radio observations of the Fast Blue Optical Transient (FBOT) AT2020xnd/ZTF20acigmel at $z=0.2433$ from $13$d to $269$d after explosion. AT2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT2018cow. AT2020xnd shows luminous radio emission reaching $L_谓\approx8\times10^{29}$ergs$^{-1}$Hz$^{-1}$ at 20GHz and $75$d post exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05514v1-abstract-full').style.display = 'inline'; document.getElementById('2110.05514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05514v1-abstract-full" style="display: none;"> We present deep X-ray and radio observations of the Fast Blue Optical Transient (FBOT) AT2020xnd/ZTF20acigmel at $z=0.2433$ from $13$d to $269$d after explosion. AT2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT2018cow. AT2020xnd shows luminous radio emission reaching $L_谓\approx8\times10^{29}$ergs$^{-1}$Hz$^{-1}$ at 20GHz and $75$d post explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at $L_{X}\approx6\times10^{42}$ergs$^{-1}$. Interpreting the radio emission in the context of synchrotron radiation from the explosion&#39;s shock interaction with the environment we find that AT2020xnd launched a high-velocity outflow ($v\sim$0.1-0.2$c$) propagating into a dense circumstellar medium (effective $\dot M\approx10^{-3}M_{\rm{sol}}$yr$^{-1}$ for an assumed wind velocity of $v_w=1000$kms$^{-1}$). Similar to AT2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT2020xnd a high-redshift analog to AT2018cow, and establish AT2020xnd as the fourth member of the class of optically-luminous FBOTs with luminous multi-wavelength counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05514v1-abstract-full').style.display = 'none'; document.getElementById('2110.05514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures, 6 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15319">arXiv:2109.15319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.15319">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.444848">10.1364/OE.444848 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Large Diameter Millimeter-Wave Low-Pass Filter Made of Alumina with Laser Ablated Anti-Reflection Coating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wen%2C+Q">Qi Wen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cray%2C+S">Scott Cray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasebe%2C+T">Takashi Hasebe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iida%2C+T">Teruhito Iida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konishi%2C+K">Kuniaki Konishi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuwata-Gonokami%2C+M">Makoto Kuwata-Gonokami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mio%2C+N">Norikatsu Mio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+H">Haruyuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yamada%2C+R">Ryohei Yamada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yumoto%2C+J">Junji Yumoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15319v2-abstract-short" style="display: inline;"> We fabricated a 302 mm diameter low-pass filter made of alumina that has an anti-reflection coating (ARC) made with laser-ablated sub-wavelength structures (SWS). The filter has been integrated into and is operating with the MUSTANG2 instrument, which is coupled to the Green Bank Telescope. The average transmittance of the filter in the MUSTANG2 operating band between 75 and 105 GHz is 98%. Reflec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15319v2-abstract-full').style.display = 'inline'; document.getElementById('2109.15319v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15319v2-abstract-full" style="display: none;"> We fabricated a 302 mm diameter low-pass filter made of alumina that has an anti-reflection coating (ARC) made with laser-ablated sub-wavelength structures (SWS). The filter has been integrated into and is operating with the MUSTANG2 instrument, which is coupled to the Green Bank Telescope. The average transmittance of the filter in the MUSTANG2 operating band between 75 and 105 GHz is 98%. Reflective loss due to the ARC is 1%. The difference in transmission between the s- and p-polarization states is less than 1%. To within 1% accuracy we observe no variance in these results when transmission is measured in six independent filter spatial locations. The alumina filter replaced a prior MUSTANG2 Teflon filter. Data taken with the filter heat sunk to its nominal 40 K stage show performance consistent with expectations: a reduction of about 50% in filters-induced optical power load on the 300 mK stage, and in in-band optical loading on the detectors. It has taken less than 4 days to laser-ablate the SWS on both sides of the alumina disk. This is the first report of an alumina filter with SWS ARC deployed with an operating instrument, and the first demonstration of a large area fabrication of SWS with laser ablation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15319v2-abstract-full').style.display = 'none'; document.getElementById('2109.15319v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version reflects the published version; 21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express (2021), Volume 29, #25/6, Pg 41745 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06725">arXiv:2107.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06725">pdf</a>, <a href="https://arxiv.org/format/2107.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2679">10.1093/mnras/stab2679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of compact sources in galaxy clusters using MUSTANG2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mates%2C+J+A+B">J. A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06725v2-abstract-short" style="display: inline;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'inline'; document.getElementById('2107.06725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06725v2-abstract-full" style="display: none;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source&#39;s flux density, spectral index, and angular separation from the cluster&#39;s center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'none'; document.getElementById('2107.06725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 10 figures, 2 tables, with 4 pages of online only figures at end. Published on-line in MNRAS on 22/9/2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04611">arXiv:2107.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04611">pdf</a>, <a href="https://arxiv.org/format/2107.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3391">10.1093/mnras/stab3391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">Eleonora Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">Paolo de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">Luca Lamagna</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04611v2-abstract-short" style="display: inline;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04611v2-abstract-full" style="display: none;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by $37&#39;$, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at $&gt;5蟽$. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$ associated with the filament, comprising about $8\%$ of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim}1.9\,\mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm0.24)\times10^{-4}\,\mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\,\mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution ($12.7&#34;$ effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'none'; document.getElementById('2107.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 3 tables. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3391/6442294</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14797">arXiv:2106.14797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14797">pdf</a>, <a href="https://arxiv.org/format/2106.14797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2232">10.3847/1538-4357/ac2232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory microwave SQUID multiplexing detector module design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">Jim A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M+B">Megan B. Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14797v2-abstract-short" style="display: inline;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14797v2-abstract-full" style="display: none;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing ($渭$mux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a $95\%$ yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 $\mathrm{pA/\sqrt{Hz}}$. This impacts the projected SO mapping speed by $&lt; 8\%$, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'none'; document.getElementById('2106.14797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 ApJ 922 38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11327">arXiv:2106.11327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11327">pdf</a>, <a href="https://arxiv.org/format/2106.11327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1639">10.1093/mnras/stab1639 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamic evolution of the $z=1.75$ galaxy cluster IDCS J1426.5+3508 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreon%2C+S">S. Andreon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">C. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castagna%2C+F">F. Castagna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ragagnin%2C+A">A. Ragagnin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">B. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">C. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanchfield%2C+S">S. Stanchfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11327v2-abstract-short" style="display: inline;"> We present resolved thermodynamic profiles out to 500 kpc, about $r_{500}$, of the $z=1.75$ galaxy cluster IDCS J1426.5+3508 with 40 kpc resolution. Thanks to the combination of Sunyaev-Zel&#39;dovich and X-ray datasets, IDCS J1426.5+3508 becomes the most distant cluster with resolved thermodynamic profiles. These are derived assuming a non-parametric pressure profile and a very flexible model for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11327v2-abstract-full').style.display = 'inline'; document.getElementById('2106.11327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11327v2-abstract-full" style="display: none;"> We present resolved thermodynamic profiles out to 500 kpc, about $r_{500}$, of the $z=1.75$ galaxy cluster IDCS J1426.5+3508 with 40 kpc resolution. Thanks to the combination of Sunyaev-Zel&#39;dovich and X-ray datasets, IDCS J1426.5+3508 becomes the most distant cluster with resolved thermodynamic profiles. These are derived assuming a non-parametric pressure profile and a very flexible model for the electron density profile. The shape of the pressure profile is flatter than the universal pressure profile. The IDCS J1426.5+3508 temperature profile is increasing radially out to 500 kpc. To identify the possible future evolution of IDCS J1426.5+3508 , we compared it with its local descendants that numerical simulations show to be $0.65\pm0.12$ dex more massive. We found no evolution at 30 kpc, indicating a fine tuning between cooling and heating at small radii. At $30&lt;r&lt;300$ kpc, our observations show that entropy and heat must be deposited with little net gas transfer, while at 500 kpc the gas need to be replaced by a large amount of cold, lower entropy gas, consistent with theoretical expectation of a filamentary gas stream, which brings low entropy gas to 500 kpc and energy at even smaller radii. At $r \gtrsim 400$ kpc the polytropic index takes a low value, which indicates the presence of a large amount of non-thermal pressure. Our work also introduces a new definition of the evolutionary rate, which uses unscaled radii, unscaled thermodynamic quantities, and different masses at different redshifts to compare ancestors and descendants. It has the advantage of separating cluster evolution, dependence on mass, pseudo-evolution and returns a number with unique interpretation, unlike other definitions used in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11327v2-abstract-full').style.display = 'none'; document.getElementById('2106.11327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, in press. In v2 we only corrected author affiliations and spelling</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13432">arXiv:2105.13432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13432">pdf</a>, <a href="https://arxiv.org/format/2105.13432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5d4f">10.3847/1538-4357/ac5d4f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of 90 GHz dust emissivity on molecular cloud and filament scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Friesen%2C+R">Rachel Friesen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillaci%2C+A">Alessandro Schillaci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A">Amelia Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13432v2-abstract-short" style="display: inline;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13432v2-abstract-full" style="display: none;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corresponding to 0.25 pc at 400 pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend the 120&#34;-scale investigation to other regions covered in the Herschel Gould Belt Survey (HGBS) specifically: the dense filaments in the southerly regions of Orion A; Orion B; and Serpens-S. Our dataset in aggregate covers approximately 10 square degrees, with continuum photometry spanning from 160um to 3mm. These OMC 2/3 data display excess emission at 3mm, though less (10.9% excess) than what is seen at higher resolution. Strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average excess of 42.4% and 30/46 slices showing an inconsistency with the modified blackbody to at least 4蟽. Applying this analysis to the other targeted regions, we lay the groundwork for future high-resolution analyses. Additionally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody (MBB), we find that they have significant drawbacks, requiring many spectral points or lacking experimental data coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'none'; document.getElementById('2105.13432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 929 (2022) 102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00068">arXiv:2105.00068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.00068">pdf</a>, <a href="https://arxiv.org/format/2105.00068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141200">10.1051/0004-6361/202141200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey: Sunyaev-Zeldovich effect confirmation of MaDCoWS candidates using ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">Kenda Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00068v2-abstract-short" style="display: inline;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'inline'; document.getElementById('2105.00068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00068v2-abstract-full" style="display: none;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area mm-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ) selected clusters, as part of its Data Release 5 (DR5). Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel, and ACT 224~GHz data to assess the impact of contaminating sources on the SZ signals. We then use a hierarchical Bayesian model to fit the mass-richness scaling relation. We find that MaDCoWS clusters have submillimeter contamination which is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. We find the best fit ACT SZ mass vs. MaDCoWS richness scaling relation has a slope of $魏= 1.84^{+0.15}_{-0.14}$, where the slope is defined as $M\propto 位_{15}^魏$ where $位_{15}$ is the richness. Additionally, we find that the approximate level of in-fill of the ACT and MaDCoWS cluster SZ signals to be at the percent level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'none'; document.getElementById('2105.00068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 Figures; accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A135 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10264">arXiv:2104.10264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10264">pdf</a>, <a href="https://arxiv.org/format/2104.10264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2307">10.3847/1538-4357/ac2307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A search for Planet 9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Engelen%2C+A">Alexander Van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A+B">Arthur B. Kosowsky</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10264v2-abstract-short" style="display: inline;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'inline'; document.getElementById('2104.10264v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10264v2-abstract-full" style="display: none;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 AU to 775 AU. The search covers the whole 18,000 square degrees of the ACT survey, though a slightly deeper search is performed for the parts of the sky consistent with Planet 9&#39;s expected orbital inclination. No significant detections are found, which is used to place limits on the mm-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9 respectively. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown Solar system object within our survey area brighter than 4--12 mJy (depending on position) at 150 GHz with current distance $300 \text{ AU} &lt; r &lt; 600 \text{ AU}$ and heliocentric angular velocity $1.5&#39;/\text{yr} &lt; v \cdot \frac{500 \text{ AU}}{r} &lt; 2.3&#39;\text{yr}$, corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 AU, reaching 5--15 mJy by 1500 AU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'none'; document.getElementById('2104.10264v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 5 tables, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09511">arXiv:2104.09511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09511">pdf</a>, <a href="https://arxiv.org/format/2104.09511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2515-5172/abf9ab">10.3847/2515-5172/abf9ab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: the Large Aperture Telescope (LAT) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09511v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09511v2-abstract-full').style.display = 'inline'; document.getElementById('2104.09511v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09511v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09511v2-abstract-full').style.display = 'none'; document.getElementById('2104.09511v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Research Notes AAS, 5, 100 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02747">arXiv:2103.02747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02747">pdf</a>, <a href="https://arxiv.org/format/2103.02747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac0db7">10.3847/1538-4365/ac0db7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A+O">Andrew O. Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02747v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02747v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02747v1-abstract-full" style="display: none;"> The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02747v1-abstract-full').style.display = 'none'; document.getElementById('2103.02747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02129">arXiv:2102.02129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.02129">pdf</a>, <a href="https://arxiv.org/format/2102.02129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562647">10.1117/12.2562647 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Integration and Testing Program for the Simons Observatory Large Aperture Telescope Optics Tubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C">Carlos Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G">Grace Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seibert%2C+J">Joseph Seibert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02129v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02129v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02129v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). The 6~m Large Aperture Telescope (LAT), which will target the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. Each optics tube is comprised of three silicon lenses, IR blocking filters, and three dual-polarization, dichroic TES detector wafers. The scientific objectives of the SO project require these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the SO LATR optics tubes that will verify the design and assembly of the optics tubes before they are shipped to the SO site and installed in the LATR cryostat. The program includes a quick turn-around test cryostat that is used to cool single optics tubes and validate the cryogenic performance and detector readout assembly. We discuss the optical design specifications the optics tubes must meet to be deployed on sky and the suite of optical test equipment that is prepared to measure these requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02129v1-abstract-full').style.display = 'none'; document.getElementById('2102.02129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 1145318 (31 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11917">arXiv:2101.11917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.11917">pdf</a>, <a href="https://arxiv.org/ps/2101.11917">ps</a>, <a href="https://arxiv.org/format/2101.11917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562016">10.1117/12.2562016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simons Observatory Small Aperture Telescope overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazako%2C+A">Andrew Bazako</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasegawa%2C+M">Masaya Hasegawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hattori%2C+M">Makoto Hattori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">Charles A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11917v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment from the Atacama Desert in Chile comprising three small-aperture telescopes (SATs) and one large-aperture telescope (LAT). In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11917v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11917v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment from the Atacama Desert in Chile comprising three small-aperture telescopes (SATs) and one large-aperture telescope (LAT). In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. In this work, we focus on the SATs which are optimized to search for primordial gravitational waves that are detected as parity-odd polarization patterns called a B-modes on degree scales in the CMB. Each SAT employs a single optics tube with TES arrays operating at 100 mK. The high throughput optics system has a 42 cm aperture and a 35-degree field of view coupled to a 36 cm diameter focal plane. The optics consist of three metamaterial anti-re ection coated silicon lenses. Cryogenic ring baffles with engineered blackbody absorbers are installed in the optics tube to minimize the stray light. The entire optics tube is cooled to 1 K. A cryogenic continuously rotating half-wave plate near the sky side of the aperture stop helps to minimize the effect of atmospheric uctuations. The telescope warm baffling consists of a forebaffle, an elevation stage mounted co-moving shield, and a fixed ground shield that together control the far side-lobes and mitigates ground-synchronous systematics. We present the status of the SAT development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11917v1-abstract-full').style.display = 'none'; document.getElementById('2101.11917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11445, Ground-based and Airborne Telescopes VIII, 114457L (18 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10298">arXiv:2101.10298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.10298">pdf</a>, <a href="https://arxiv.org/format/2101.10298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561720">10.1117/12.2561720 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Fabrication of Metamaterial Anti-Reflection Coatings for the Simons Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">Jeffrey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooperrider%2C+L">Leah Cooperrider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jackson%2C+R">Rebecca Jackson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10298v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10298v2-abstract-full').style.display = 'inline'; document.getElementById('2101.10298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10298v2-abstract-full" style="display: none;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). These telescopes require 33 highly transparent, large aperture, refracting optics. To this end, we developed mechanically robust, highly efficient, metamaterial anti-reflection (AR) coatings with octave bandwidth coverage for silicon optics up to 46 cm in diameter for the 22-55, 75-165, and 190-310 GHz bands. We detail the design, the manufacturing approach to fabricate the SO lenses, their performance, and possible extensions of metamaterial AR coatings to optical elements made of harder materials such as alumina. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10298v2-abstract-full').style.display = 'none'; document.getElementById('2101.10298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 1 table, SPIE Astronomical Telescopes + Instrumentation 2020, Paper Number: 11451-199</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11451, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV, 114515T (16 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07862">arXiv:2012.07862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07862">pdf</a>, <a href="https://arxiv.org/format/2012.07862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2576151">10.1117/12.2576151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07862v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07862v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $&lt;$ 100 mK on a 1.7 m diameter focal plane. The unprecedented scale of the LATR drives a complex design. In this paper, we will first provide an overview of the LATR design. Integration and validation of the LATR design are discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing ($渭$Mux) readout system implemented in the LATR and demonstrate the operation of dark prototype TES bolometers. The $渭$Mux readout technology enables one coaxial loop to read out $\mathcal{O}(10^3)$ TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime and CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'none'; document.getElementById('2012.07862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, submitted to the 2020 SPIE Astronomical Telescopes + Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.04532">arXiv:2012.04532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.04532">pdf</a>, <a href="https://arxiv.org/format/2012.04532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2021.3069294">10.1109/TASC.2021.3069294 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Brad Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S">Shannon Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S">Shawn Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+D">Duc-Thuong Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krachmalnicoff%2C+N">Nicoletta Krachmalnicoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mates%2C+J">John Mates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Michael Niemack</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.04532v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field $\sim$70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04532v1-abstract-full').style.display = 'inline'; document.getElementById('2012.04532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.04532v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field $\sim$70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SO Universal Focal Plane Modules (UFMs) each contain a 150 mm diameter TES detector array, horn or lenslet optical coupling, cold readout components, and magnetic shielding. SO will use a microwave SQUID multiplexing ($渭$MUX) readout at an initial multiplexing factor of $\sim$1000; the cold (100 mK) readout components are packaged in a $渭$MUX readout module, which is part of the UFM, and can also be characterized independently. The 100 mK stage TES bolometer arrays and microwave SQUIDs are sensitive to magnetic fields, and their measured response will vary with the degree to which they are magnetically shielded. We present measurements of the magnetic pickup of test microwave SQUID multiplexers as a study of various shielding configurations for the Simons Observatory. We discuss how these measurements motivated the material choice and design of the UFM magnetic shielding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04532v1-abstract-full').style.display = 'none'; document.getElementById('2012.04532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, conference proceedings submitted to IEEE Transactions on Applied Superconductivity</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Applied Superconductivity, vol. 31, issue 5, id. 3069294 (Aug 2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01376">arXiv:2012.01376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01376">pdf</a>, <a href="https://arxiv.org/format/2012.01376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Balloon-Borne Large Aperture Submillimeter Telescope Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S">Susan Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lourie%2C+N+P">Nathan P. Lourie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01376v1-abstract-short" style="display: inline;"> The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01376v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01376v1-abstract-full" style="display: none;"> The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L $^4$He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a $^3$He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70$\%$ will be dedicated to observations for BLAST scientific goals and the remaining 30$\%$ will be open to proposals from the wider astronomical community through a shared-risk proposals program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01376v1-abstract-full').style.display = 'none'; document.getElementById('2012.01376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Ground-based and Airborne Telescopes VIII, December 13-18, 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07974">arXiv:2011.07974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07974">pdf</a>, <a href="https://arxiv.org/format/2011.07974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561315">10.1117/12.2561315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Large Aperture Submillimetre Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sartori%2C+S">Sabrina Sartori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duran%2C+C">Carlos Duran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C">Chris Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%A4rcher%2C+H">Hans K盲rcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawabe%2C+R">Ryohei Kawabe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geach%2C+J">James Geach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07974v2-abstract-short" style="display: inline;"> The coldest and densest structures of gas and dust in the Universe have unique spectral signatures across the (sub-)millimetre bands ($谓\approx 30-950$~GHz). The current generation of single dish facilities has given a glimpse of the potential for discovery, while sub-mm interferometers have presented a high resolution view into the finer details of known targets or in small-area deep fields. Howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07974v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07974v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07974v2-abstract-full" style="display: none;"> The coldest and densest structures of gas and dust in the Universe have unique spectral signatures across the (sub-)millimetre bands ($谓\approx 30-950$~GHz). The current generation of single dish facilities has given a glimpse of the potential for discovery, while sub-mm interferometers have presented a high resolution view into the finer details of known targets or in small-area deep fields. However, significant advances in our understanding of such cold and dense structures are now hampered by the limited sensitivity and angular resolution of our sub-mm view of the Universe at larger scales. In this context, we present the case for a new transformational astronomical facility in the 2030s, the Atacama Large Aperture Submillimetre Telescope (AtLAST). AtLAST is a concept for a 50-m-class single dish telescope, with a high throughput provided by a 2~deg - diameter Field of View, located on a high, dry site in the Atacama with good atmospheric transmission up to $谓\sim 1$~THz, and fully powered by renewable energy. We envision AtLAST as a facility operated by an international partnership with a suite of instruments to deliver the transformative science that cannot be achieved with current or in-construction observatories. As an 50m-diameter telescope with a full complement of advanced instrumentation, including highly multiplexed high-resolution spectrometers, continuum cameras and integral field units, AtLAST will have mapping speeds hundreds of times greater than current or planned large aperture ($&gt;$ 12m) facilities. By reaching confusion limits below L$_*$ in the distant Universe, resolving low-mass protostellar cores at the distance of the Galactic Centre, and directly mapping both the cold and the hot (the Sunyaev-Zeldovich effect) circumgalactic medium of galaxies, AtLAST will enable a fundamentally new understanding of the sub-mm Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07974v2-abstract-full').style.display = 'none'; document.getElementById('2011.07974v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, to be submitted to SPIE Astronomical telescopes &amp; Instruments 2020, Ground-based and Airborne Telescopes VIII (conference 11445, abstract 290)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the SPIE, Volume 11445, id. 114452F 20 pp. (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02233">arXiv:2010.02233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02233">pdf</a>, <a href="https://arxiv.org/format/2010.02233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.411711">10.1364/AO.411711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Metamaterial Microwave Absorber (MMA) and its Cryogenic Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+T">Tom Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hattori%2C+M">Makoto Hattori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F">Frederick Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teply%2C+G+P">Grant P. Teply</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02233v3-abstract-short" style="display: inline;"> Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02233v3-abstract-full').style.display = 'inline'; document.getElementById('2010.02233v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02233v3-abstract-full" style="display: none;"> Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25\% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1\% up to 65$\circ$ angles of incidence, and control of wide angle scattering below 0.01\%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02233v3-abstract-full').style.display = 'none'; document.getElementById('2010.02233v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, published in Applied Optics, selected as &#34;Editor&#39;s pick&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Optics, Vol. 60, Issue 4, pp. 864-874 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11043">arXiv:2009.11043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11043">pdf</a>, <a href="https://arxiv.org/format/2009.11043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abd023">10.3847/1538-4365/abd023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Catalog of &gt; 4000 Sunyaev-Zel&#39;dovich Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rozo%2C+E">E. Rozo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">E. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aros-Bunster%2C+C">C. Aros-Bunster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11043v2-abstract-short" style="display: inline;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11043v2-abstract-full" style="display: none;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 &lt; z &lt; 1.91 (median z = 0.52). The catalog contains 222 z &gt; 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c &gt; 3.8 x 10$^{14}$ MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio &gt; 5 in maps filtered at an angular scale of 2.4&#39;. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg$^2$), the Hyper Suprime-Cam Subaru Strategic Program (469 deg$^2$), and the Kilo Degree Survey (825 deg$^2$). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'none'; document.getElementById('2009.11043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 27 figures, accepted for publication in ApJS; v1.0 catalogs will be available from LAMBDA https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm; v1.0 catalogs available from https://astro.ukzn.ac.za/~mjh/ACTDR5/v1.0/ until then</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10138">arXiv:2009.10138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10138">pdf</a>, <a href="https://arxiv.org/format/2009.10138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.411533">10.1364/AO.411533 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Modeling Optical Systematics in the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dachlythra%2C+N">Nadia Dachlythra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F+T">Frederick T. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10138v1-abstract-short" style="display: inline;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10138v1-abstract-full" style="display: none;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'none'; document.getElementById('2009.10138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 60, 823-837 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07772">arXiv:2009.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07772">pdf</a>, <a href="https://arxiv.org/format/2009.07772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abbccb">10.3847/2041-8213/abbccb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Weighing distant clusters with the most ancient light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07772v2-abstract-short" style="display: inline;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'inline'; document.getElementById('2009.07772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07772v2-abstract-full" style="display: none;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of $ \langle z \rangle = 1.08$. There are no current optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of $4.2 蟽$. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro-Frenk-White density profiles, we infer a mean mass of $\langle M_{500c}\rangle = \left(1.7 \pm 0.4 \right)\times10^{14}\,\mathrm{M}_\odot$. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable Universe, beyond the capabilities of optical weak lensing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'none'; document.getElementById('2009.07772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, matches version accepted in ApJL, code available at https://github.com/ACTCollaboration/madcows_lensing/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15155">arXiv:2006.15155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15155">pdf</a>, <a href="https://arxiv.org/format/2006.15155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aba0b2">10.3847/1538-4357/aba0b2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Massive and Distant Clusters of WISE Survey IX: High Radio Activity in a Merging Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A">Anthony Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberts%2C+S">Stacey Alberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T">Tracy Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+T">Thomas Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decker%2C+B">Bandon Decker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenhardt%2C+P">Peter Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mo%2C+W">Wenli Mo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pope%2C+A">Alexandra Pope</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanford%2C+S">Spencer Stanford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wylezalek%2C+D">Dominika Wylezalek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zago%2C+F">Fernando Zago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15155v3-abstract-short" style="display: inline;"> We present a multi-wavelength investigation of the radio galaxy population in the galaxy cluster MOO J1506+5137 at $z$=1.09$\pm$0.03, which in previous work we identified as having multiple complex radio sources. The combined dataset used in this work includes data from the Low-Frequency Array Two-metre Sky Survey (LoTSS), NSF&#39;s Karl G. Jansky Very Large Array (VLA), the Robert C. Byrd Green Bank&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15155v3-abstract-full').style.display = 'inline'; document.getElementById('2006.15155v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15155v3-abstract-full" style="display: none;"> We present a multi-wavelength investigation of the radio galaxy population in the galaxy cluster MOO J1506+5137 at $z$=1.09$\pm$0.03, which in previous work we identified as having multiple complex radio sources. The combined dataset used in this work includes data from the Low-Frequency Array Two-metre Sky Survey (LoTSS), NSF&#39;s Karl G. Jansky Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), the Spitzer Space Telescope, and the Dark Energy Camera Legacy Survey (DECaLS). We find that there are five radio sources which are all located within 500 kpc ($\sim$1$^{\prime}$) of the cluster center and have radio luminosities $P_{\mathrm{1.4GHz}}$ &gt; 1.6$\times$10$^{24}$ W Hz$^{-1}$. The typical host galaxies are among the highest stellar mass galaxies in the cluster. The exceptional radio activity among the massive galaxy population appears to be linked to the dynamical state of the cluster. The galaxy distribution suggests an ongoing merger, with a subgroup found to the northwest of the main cluster. Further, two of the five sources are classified as bent-tail sources with one being a potential wide-angle tail (WAT)/hybrid morphology radio source (HyMoRS) indicating a dynamic environment. The cluster also lies in a region of the mass-richness plane occupied by other merging clusters in the Massive and Distant Clusters of WISE Survey (MaDCoWS). The data suggest that during the merger phase radio activity can be dramatically enhanced, which would contribute to the observed trend of increased radio activity in clusters with increasing redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15155v3-abstract-full').style.display = 'none'; document.getElementById('2006.15155v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages and 8 figures. Accepted in ApJ for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2020 ApJ 898 2 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10