CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 115 results for author: <span class="mathjax">Austermann, J E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Austermann, J E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Austermann%2C+J+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Austermann, J E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09241">arXiv:2501.09241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09241">pdf</a>, <a href="https://arxiv.org/format/2501.09241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Characterization of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeff Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koc%2C+M+A">Matthew A. Koc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09241v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09241v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the Large Aperture Telescope Receiver (LATR), the largest cryogenic camera ever built to observe the CMB. Here we report on the validation of the LATR in the laboratory and the subsequent dark testing and validation within the LAT. We show that the LATR meets cryogenic, optical, and detector specifications required for high-sensitivity measurements of the CMB. At the time of writing, the LATR is installed in the LAT with six OTs (corresponding to &gt;31,000 detectors), and the LAT mirrors and remaining seven OTs are undergoing development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'none'; document.getElementById('2501.09241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06890">arXiv:2501.06890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06890">pdf</a>, <a href="https://arxiv.org/format/2501.06890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Measurements of the Temperature and E-mode Polarization of the Cosmic Microwave Background from the Full 500-square-degree SPTpol Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chou%2C+T+-">T. -L. Chou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Citron%2C+R">R. Citron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moran%2C+C+C">C. Corbett Moran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+T+M">T. M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobbs%2C+M+A">M. A. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">D. Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+W">W. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallicchio%2C+J">J. Gallicchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=George%2C+E+M">E. M. George</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+N">N. Gupta</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06890v1-abstract-short" style="display: inline;"> Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50&lt;\ell&lt;8000$. We find the SPTpol datase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06890v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06890v1-abstract-full" style="display: none;"> Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50&lt;\ell&lt;8000$. We find the SPTpol dataset to be self-consistent, passing several internal consistency tests based on maps, frequency bands, bandpowers, and cosmological parameters. The full SPTpol dataset is well-fit by the $螞CDM$ model, for which we find $H_0=70.48\pm2.16$ km s$^{-1}$ Mpc$^{-1}$ and $惟_m=0.271\pm0.026$, when using only the SPTpol data and a Planck-based prior on the optical depth to reionization. The $螞CDM$ parameter constraints are consistent across the 95 GHz-only, 150 GHz-only, $TE$-only, and $EE$-only data splits. Between the $\ell&lt;1000$ and $\ell&gt;1000$ data splits, the $螞CDM$ parameter constraints are borderline consistent at the $\sim2蟽$ level. This consistency improves when including a parameter $A_L$, the degree of lensing of the CMB inferred from the smearing of acoustic peaks. When marginalized over $A_L$, the $螞CDM$ parameter constraints from SPTpol are consistent with those from Planck. The power spectra presented here are the most sensitive measurements of the lensed CMB damping tail to date for roughly $\ell &gt; 1700$ in $TE$ and $\ell &gt; 2000$ in $EE$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06890v1-abstract-full').style.display = 'none'; document.getElementById('2501.06890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07765">arXiv:2412.07765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07765">pdf</a>, <a href="https://arxiv.org/format/2412.07765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Multiprobe Cosmology from the Abundance of SPT Clusters and DES Galaxy Clustering and Weak Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grandis%2C+S">S. Grandis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krause%2C+E">E. Krause</a>, <a href="/search/astro-ph?searchtype=author&amp;query=To%2C+C">C. To</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohr%2C+J+J">J. J. Mohr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a> , et al. (194 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07765v1-abstract-short" style="display: inline;"> Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy pos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07765v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07765v1-abstract-full" style="display: none;"> Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements (3$\times$2pt) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining $螞$CDM parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure $惟_\mathrm{m}=0.300\pm0.017$ and $蟽_8=0.797\pm0.026$. Compared to constraints from Planck primary CMB anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ($1.2蟽$) for the two-parameter difference. We further obtain $S_8\equiv蟽_8(惟_\mathrm{m}/0.3)^{0.5}=0.796\pm0.013$ which is lower than the Planck measurement at the $1.6蟽$ level. The combined SPT cluster, DES 3$\times$2pt, and Planck datasets mildly prefer a non-zero positive neutrino mass, with a 95% upper limit $\sum m_谓&lt;0.25~\mathrm{eV}$ on the sum of neutrino masses. Assuming a $w$CDM model, we constrain the dark energy equation of state parameter $w=-1.15^{+0.23}_{-0.17}$ and when combining with Planck primary CMB anisotropies, we recover $w=-1.20^{+0.15}_{-0.09}$, a $1.7蟽$ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07765v1-abstract-full').style.display = 'none'; document.getElementById('2412.07765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Rev. D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18150">arXiv:2410.18150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18150">pdf</a>, <a href="https://arxiv.org/format/2410.18150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Thermal architecture for a cryogenic super-pressure balloon payload: design and development of the Taurus flight cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bihary%2C+R">Rick Bihary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Durking%2C+M">Malcolm Durking</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gascard%2C+T+J+L+J">Thomas J. L. J. Gascard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18150v1-abstract-short" style="display: inline;"> We describe the cryogenic system being developed for Taurus: a super-pressure balloon-borne microwave polarimeter scheduled to fly in 2027. The Taurus cryogenic system consists of a 660L liquid helium cryostat which achieves a base temperature of &lt;100mK with the help of a capillary-fed superfluid tank and a closed cycle dilution refrigerator. The main tank is supported with fiberglass flexures and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18150v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18150v1-abstract-full" style="display: none;"> We describe the cryogenic system being developed for Taurus: a super-pressure balloon-borne microwave polarimeter scheduled to fly in 2027. The Taurus cryogenic system consists of a 660L liquid helium cryostat which achieves a base temperature of &lt;100mK with the help of a capillary-fed superfluid tank and a closed cycle dilution refrigerator. The main tank is supported with fiberglass flexures and is encased in two layers of vapor-cooled shields which allow Taurus to make full use of the extended flight time offered by the super-pressure balloon platform. The Taurus cryostat is projected to hold for over 50 days while weighing under 1000lbs. We present the design, testing, and thermal analysis of the Taurus cryogenic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18150v1-abstract-full').style.display = 'none'; document.getElementById('2410.18150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIE 2024 Conference 13094, Paper 13094-112 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01438">arXiv:2407.01438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01438">pdf</a>, <a href="https://arxiv.org/format/2407.01438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Instrument Overview of Taurus: A Balloon-borne CMB and Dust Polarization Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bihary%2C+R">Rick Bihary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Durkin%2C+M">Malcolm Durkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gascard%2C+T+J+L+J">Thomas J. L. J. Gascard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01438v2-abstract-short" style="display: inline;"> Taurus is a balloon-borne cosmic microwave background (CMB) experiment optimized to map the E-mode polarization and Galactic foregrounds at the largest angular scales ($\ell$ $\lt$ 30) and improve measurements of the optical depth to reionization ($蟿$). This will pave the way for improved measurements of the sum of neutrino masses in combination with high-resolution CMB data while also testing the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01438v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01438v2-abstract-full" style="display: none;"> Taurus is a balloon-borne cosmic microwave background (CMB) experiment optimized to map the E-mode polarization and Galactic foregrounds at the largest angular scales ($\ell$ $\lt$ 30) and improve measurements of the optical depth to reionization ($蟿$). This will pave the way for improved measurements of the sum of neutrino masses in combination with high-resolution CMB data while also testing the $螞CDM$ model on large angular scales and providing high-frequency maps of polarized dust foregrounds to the CMB community. These measurements take advantage of the low-loading environment found in the stratosphere and are enabled by NASA&#39;s super-pressure balloon platform, which provides access to 70% of the sky with a launch from Wanaka, New Zealand. Here we describe a general overview of Taurus, with an emphasis on the instrument design. Taurus will employ more than 10,000 100 mK transition edge sensor bolometers distributed across two low-frequency (150, 220 GHz) and one high-frequency (280, 350 GHz) dichroic receivers. The liquid helium cryostat housing the detectors and optics is supported by a lightweight gondola. The payload is designed to meet the challenges in mass, power, and thermal control posed by the super-pressure platform. The instrument and scan strategy are optimized for rigorous control of instrumental systematics, enabling high-fidelity linear polarization measurements on the largest angular scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01438v2-abstract-full').style.display = 'none'; document.getElementById('2407.01438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11992">arXiv:2406.11992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11992">pdf</a>, <a href="https://arxiv.org/format/2406.11992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/09/061">10.1088/1475-7516/2024/09/061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling optical systematics for the Taurus CMB experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gascard%2C+T">Thomas Gascard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I">Ivan Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rooney%2C+C">Christopher Rooney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11992v2-abstract-short" style="display: inline;"> We simulate a variety of optical systematics for Taurus, a balloon-borne cosmic microwave background (CMB) polarisation experiment, to assess their impact on large-scale E-mode polarisation measurements and constraints of the optical depth to reionisation 蟿. We model a one-month flight of Taurus from Wanaka, New Zealand aboard a super-pressure balloon (SPB). We simulate night-time scans of both th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11992v2-abstract-full').style.display = 'inline'; document.getElementById('2406.11992v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11992v2-abstract-full" style="display: none;"> We simulate a variety of optical systematics for Taurus, a balloon-borne cosmic microwave background (CMB) polarisation experiment, to assess their impact on large-scale E-mode polarisation measurements and constraints of the optical depth to reionisation 蟿. We model a one-month flight of Taurus from Wanaka, New Zealand aboard a super-pressure balloon (SPB). We simulate night-time scans of both the CMB and dust foregrounds in the 150GHz band, one of Taurus&#39;s four observing bands. We consider a variety of possible systematics that may affect Taurus&#39;s observations, including non-gaussian beams, pointing reconstruction error, and half-wave plate (HWP) non-idealities. For each of these, we evaluate the residual power in the difference between maps simulated with and without the systematic, and compare this to the expected signal level corresponding to Taurus&#39;s science goals. Our results indicate that most of the HWP-related systematics can be mitigated to be smaller than sample variance by calibrating with Planck&#39;s TT spectrum and using an achromatic HWP model, with a preference for five layers of sapphire to ensure good systematic control. However, additional beam characterization will be required to mitigate far-sidelobe pickup from dust on larger scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11992v2-abstract-full').style.display = 'none'; document.getElementById('2406.11992v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 tables, 7 figures, this version as published in JCAP after minor revisions to v1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP09(2024)061 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06868">arXiv:2405.06868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06868">pdf</a>, <a href="https://arxiv.org/format/2405.06868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Pre-deployment Performance of a Large Aperture Telescope Optics Tube in the 90 and 150 GHz Spectral Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C+E">Carlos E. Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lessler%2C+C+S">Claire S. Lessler</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06868v1-abstract-short" style="display: inline;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06868v1-abstract-full" style="display: none;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious new instrument suite, initially comprising three 0.5 m small-aperture telescopes and one 6 m large aperture telescope, is designed using a common combination of new technologies and new implementations to realize an observatory significantly more capable than the previous generation. In this paper, we present the pre-deployment performance of the first mid-frequency &#34;optics tube&#34; which will be fielded on the large aperture telescope with sensitivity to the 90 and 150 GHz spectral bands. This optics tube contains lenses, filters, detectors, and readout components, all of which operate at cryogenic temperatures. It is one of seven that form the core of the large aperture telescope receiver in its initial deployment. We describe this optics tube, including details of comprehensive testing methods, new techniques for beam and passband characterization, and its measured performance. The performance metrics include beams, optical efficiency, passbands, and forecasts for the on-sky performance of the system. We forecast a sensitivity that exceeds the requirements of the large aperture telescope with greater than 30% margin in each spectral band, and predict that the instrument will realize diffraction-limited performance and the expected detector passbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'none'; document.getElementById('2405.06868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05550">arXiv:2405.05550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05550">pdf</a>, <a href="https://arxiv.org/format/2405.05550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Design, integration, and testing of the small aperture telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsan%2C+T">Tran Tsan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spisak%2C+J">Jake Spisak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M">Michael Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seibert%2C+J">Joseph Seibert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jacob Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+S+M">Sean M. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bixler%2C+B">Bryce Bixler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corbett%2C+L">Lance Corbett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Day-Weiss%2C+S">Samuel Day-Weiss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05550v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05550v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35$^\circ$ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and $&lt;0.1$ K focal plane that holds $&gt;12,000$ TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'none'; document.getElementById('2405.05550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02337">arXiv:2403.02337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02337">pdf</a>, <a href="https://arxiv.org/format/2403.02337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.121004">10.1103/PhysRevLett.133.121004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Constraints on the Epoch of Reionization Using the non-Gaussianity of the Kinematic Sunyaev-Zel{&#39;}dovich Effect from the South Pole Telescope and {\it Herschel}-SPIRE Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Raghunathan%2C+S">S. Raghunathan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benabed%2C+K">K. Benabed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J">J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryant%2C+L">L. Bryant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camphuis%2C+E">E. Camphuis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cecil%2C+T+W">T. W. Cecil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chichura%2C+P+M">P. M. Chichura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chou%2C+T+-">T. -L. Chou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Citron%2C+R">R. Citron</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02337v2-abstract-short" style="display: inline;"> We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{&#39;}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $渭{\rm K-arcmin}$ i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02337v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02337v2-abstract-full" style="display: none;"> We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{&#39;}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $渭{\rm K-arcmin}$ in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at $10.3蟽$ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the \textsc{Agora} simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this non-detection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of $螖z_{\rm re, 50} &lt; 4.5$ (95\% C.L). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, {\it Planck}&#39;s optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02337v2-abstract-full').style.display = 'none'; document.getElementById('2403.02337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures (3 in main text and 2 in Appendix); Accepted for publication in PRL; Some texts have been moved to Appendix; Minor change in Fig. 2 to include nomalization; Data products and plotting scripts can be downloaded from https://github.com/sriniraghunathan/kSZ_4pt_SPT_SPIRE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 121004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14370">arXiv:2401.14370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14370">pdf</a>, <a href="https://arxiv.org/format/2401.14370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/ad2e11">10.1088/1538-3873/ad2e11 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The BLAST Observatory: A Sensitivity Study for Far-IR Balloon-borne Polarimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+BLAST+Observatory+Collaboration"> The BLAST Observatory Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J+E">James E. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molinari%2C+S">Sergio Molinari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C+E">Carole E. Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaskuri%2C+A">Anna Vaskuri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+D">Jordan D. Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zannoni%2C+M">Mario Zannoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14370v2-abstract-short" style="display: inline;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'inline'; document.getElementById('2401.14370v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14370v2-abstract-full" style="display: none;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum - wavelengths that are inaccessible from the ground. In this paper we address the sensitivity achievable by a Super Pressure Balloon (SPB) polarimetry mission, using as an example the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) Observatory. By launching from Wanaka, New Zealand, BLAST Observatory can obtain a 30-day flight with excellent sky coverage - overcoming limitations of past experiments that suffered from short flight duration and/or launch sites with poor coverage of nearby star-forming regions. This proposed polarimetry mission will map large regions of the sky at sub-arcminute resolution, with simultaneous observations at 175, 250, and 350 $渭m$, using a total of 8274 microwave kinetic inductance detectors. Here, we describe the scientific motivation for the BLAST Observatory, the proposed implementation, and the forecasting methods used to predict its sensitivity. We also compare our forecasted experiment sensitivity with other facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'none'; document.getElementById('2401.14370v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PASP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 PASP 136 035003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02075">arXiv:2401.02075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02075">pdf</a>, <a href="https://arxiv.org/format/2401.02075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grandis%2C+S">S. Grandis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohr%2C+J+J">J. J. Mohr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bayliss%2C+M">M. Bayliss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02075v2-abstract-short" style="display: inline;"> We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel&#39;dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02075v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02075v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02075v2-abstract-full" style="display: none;"> We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel&#39;dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range $0.25-1.78$ over a total sky area of 5,200 deg$^2$. We use DES Year 3 weak-lensing data for 688 clusters with redshifts $z&lt;0.95$ and HST weak-lensing data for 39 clusters with $0.6&lt;z&lt;1.7$. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat $螞$CDM cosmology, and marginalizing over the sum of massive neutrinos, we measure $惟_\mathrm{m}=0.286\pm0.032$, $蟽_8=0.817\pm0.026$, and the parameter combination $蟽_8\,(惟_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016$. Our measurement of $S_8\equiv蟽_8\,\sqrt{惟_\mathrm{m}/0.3}=0.795\pm0.029$ and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by $1.1蟽$. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses $\sum m_谓&lt;0.18$ eV. When additionally allowing the dark energy equation of state parameter $w$ to vary, we obtain $w=-1.45\pm0.31$ from our cluster-based analysis. In combination with Planck data, we measure $w=-1.34^{+0.22}_{-0.15}$, or a $2.2蟽$ difference with a cosmological constant. We use the cluster abundance to measure $蟽_8$ in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the $螞$CDM model fit to Planck primary CMB data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02075v2-abstract-full').style.display = 'none'; document.getElementById('2401.02075v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. D. arXiv v2 corresponds to published article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07512">arXiv:2311.07512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07512">pdf</a>, <a href="https://arxiv.org/format/2311.07512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2311.07512">10.21105/astro.2311.07512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy Clusters Discovered via the Thermal Sunyaev-Zel&#39;dovich Effect in the 500-square-degree SPTpol Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashby%2C+M+L+N">M. L. N. Ashby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calzadilla%2C+M">M. Calzadilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07512v2-abstract-short" style="display: inline;"> We present a catalog of 689 galaxy cluster candidates detected at significance $尉&gt;4$ via their thermal Sunyaev-Zel&#39;dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07512v2-abstract-full').style.display = 'inline'; document.getElementById('2311.07512v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07512v2-abstract-full" style="display: none;"> We present a catalog of 689 galaxy cluster candidates detected at significance $尉&gt;4$ via their thermal Sunyaev-Zel&#39;dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with $\sim94\%$ purity. The sample has an approximately redshift-independent mass threshold at redshift $z&gt;0.25$ and spans $1.5 \times 10^{14} &lt; M_{500c} &lt; 9.1 \times 10^{14}$ $M_\odot/h_{70}$ \ and $0.03&lt;z\lesssim1.6$ in mass and redshift, respectively; 21\% of the confirmed clusters are at $z&gt;1$. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered $尉$ by a median value of 0.032, or $\sim0.8\%$ of the $尉=4$ threshold value, and $\sim7\%$ of candidates have a predicted contamination greater than $螖尉= 1$. With the exception of a small number of systems $(&lt;1\%)$, an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/data/sptpol_500d_clusters/index.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07512v2-abstract-full').style.display = 'none'; document.getElementById('2311.07512v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches version accepted by OJA. 19 pages + references, 14 figures, cluster candidate table provided in Appendix. Data products available at https://pole.uchicago.edu/public/data/sptpol_500d_clusters/index.html and an interactive sky server at https://skyviewer.ncsa.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Open Journal of Astrophysics, Volume 7, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 &lt; 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05196">arXiv:2304.05196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05196">pdf</a>, <a href="https://arxiv.org/format/2304.05196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Namikawa%2C+T">Toshiya Namikawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05196v1-abstract-short" style="display: inline;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a prof&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05196v1-abstract-full" style="display: none;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator, together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, $A_{\mathrm{lens}}$, biased by less than $0.2蟽$. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, incurring either a large noise cost, or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests performed on the ACT DR6 data which test for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'none'; document.getElementById('2304.05196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Companion paper to Qu et al and Madhavacheril et al</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14749">arXiv:2302.14749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14749">pdf</a>, <a href="https://arxiv.org/format/2302.14749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acbf45">10.3847/2041-8213/acbf45 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Millimeter-wave, Gamma-ray, and Optical Monitoring of the Blazar PKS 2326-502 During a Flaring State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hood%2C+J+C">J. C. Hood II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simpson%2C+A">A. Simpson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDaniel%2C+A">A. McDaniel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+A">A. Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajello%2C+M">M. Ajello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chou%2C+T">T-L. Chou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Citron%2C+R">R. Citron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moran%2C+C+C">C. Corbett Moran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+T+M">T. M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobbs%2C+M+A">M. A. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+W">W. Everett</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14749v1-abstract-short" style="display: inline;"> Including millimeter-wave (mm-wave) data in multi-wavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence mm-wave AGN monitoring over large fractions of sky. We report on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14749v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14749v1-abstract-full" style="display: none;"> Including millimeter-wave (mm-wave) data in multi-wavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence mm-wave AGN monitoring over large fractions of sky. We report on a pilot study using data from the SPTpol instrument on the South Pole Telescope (SPT), which was designed to observe the CMB at arcminute and larger angular scales. Between 2013 and 2016, SPTpol was used primarily to observe a single 500 deg^2 field, covering the entire field several times per day with detectors sensitive to radiation in bands centered at 95 and 150 GHz. We use SPT 150 GHz observations to create AGN light curves, and we compare these mm-wave light curves to those at other wavelengths, in particular gamma-ray and optical. In this Letter, we focus on a single source, PKS 2326-502, which has extensive, day-timescale monitoring data in gamma-ray, optical, and now mm-wave between 2013 and 2016. We find PKS 2326-502 to be in a flaring state in the first two years of this monitoring, and we present a search for evidence of correlated variability between mm-wave, optical R band, and gamma-ray observations. This pilot study is paving the way for AGN monitoring with current and upcoming CMB experiments such as SPT-3G, Simons Observatory, and CMB-S4, including multi-wavelength studies with facilities such as VRO-LSST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14749v1-abstract-full').style.display = 'none'; document.getElementById('2302.14749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, accepted to Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09864">arXiv:2209.09864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09864">pdf</a>, <a href="https://arxiv.org/format/2209.09864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2630574">10.1117/12.2630574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of the Low Frequency Telescope Focal Plane Detector Modules for LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raum%2C+C">Christopher Raum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farias%2C+N">Nicole Farias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bogdan%2C+A">Andrew Bogdan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hornsby%2C+A">Amber Hornsby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rotermund%2C+K">Kaja Rotermund</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elleflot%2C+T">Tucker Elleflot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaehnig%2C+G">Greg Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halverson%2C+N">Nils Halverson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tomasso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hazumi%2C+M">Masashi Hazumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stever%2C+S">Samantha Stever</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minami%2C+Y">Yuto Minami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Russell%2C+M">Megan Russell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09864v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09864v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mission&#39;s frequency range. The low frequency telescope will map synchrotron radiation from the Galactic foreground and the cosmic microwave background. We discuss the design, fabrication, and characterization of the low-frequency focal plane modules for low-frequency telescope, which has a total bandwidth ranging from 34 to 161 GHz. There will be a total of 4 different pixel types with 8 overlapping bands to cover the full frequency range. These modules are housed in a single low-frequency focal plane unit which provides thermal isolation, mechanical support, and radiative baffling for the detectors. The module design implements multi-chroic lenslet-coupled sinuous antenna arrays coupled to transition edge sensor bolometers read out with frequency-domain mulitplexing. While this technology has strong heritage in ground-based cosmic microwave background experiments, the broad frequency coverage, low optical loading conditions, and the high cosmic ray background of the space environment require further development of this technology to be suitable for LiteBIRD. In these proceedings, we discuss the optical and bolometeric characterization of a triplexing prototype pixel with bands centered on 78, 100, and 140 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'none'; document.getElementById('2209.09864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Astronomical Telescope + Instrumentation (AS22)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 12190-30 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00603">arXiv:2209.00603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00603">pdf</a>, <a href="https://arxiv.org/format/2209.00603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Tolerance Analysis of Octave Bandwidth Millimeter-Wave Planar Orthomode Transducer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">Jeffrey J. McMahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00603v1-abstract-short" style="display: inline;"> Planar Orthomode Transducers (OMTs) are commonly used for polarization measurements at millimeter wavelengths. We present an optical coupling study of an octave bandwidth planar OMT in circular waveguide based on 3D electromagnetic simulations. We quantify results through metrics such as co- and cross- polar coupling, reflection, and waveguide leakage as a function of the OMT construction geometry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00603v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00603v1-abstract-full" style="display: none;"> Planar Orthomode Transducers (OMTs) are commonly used for polarization measurements at millimeter wavelengths. We present an optical coupling study of an octave bandwidth planar OMT in circular waveguide based on 3D electromagnetic simulations. We quantify results through metrics such as co- and cross- polar coupling, reflection, and waveguide leakage as a function of the OMT construction geometry. We evaluate the tolerance of these metrics to the waveguide backshort distance, probe impedance, waveguide gap size, and waveguide-to-probe misalignment. Two probe geometries are studied: the `classic&#39; shape used in several previous experiments, and a new `wineglass&#39; geometry. The bandwidth ratio of both optimized OMTs is 2.0:1, defined where co-polar coupling exceeds 80%. The average co-polar coupling, cross-polar coupling, reflection, and waveguide leakage of the classic probe is approximately 93%, $&lt;$-50 dB, 5% and 2%, respectively and depends slightly on the exact frequency range. The wineglass probe co-polar coupling is $\sim$ 2% larger. Radial waveguide misalignment at the level of 4% of the waveguide radius can result in up to a 10% reduction in co-polar coupling and -20 dB cross-polar coupling in one polarization. These results may be used to guide the detector module designs of future Cosmic Microwave Background experiments and beyond <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00603v1-abstract-full').style.display = 'none'; document.getElementById('2209.00603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10634">arXiv:2208.10634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10634">pdf</a>, <a href="https://arxiv.org/format/2208.10634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: The 850 GHz camera for Prime-Cam on FYST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+D">Jordan D. Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgoyne%2C+J">James Burgoyne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A">Abigail Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devina%2C+J">Jesslyn Devina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fich%2C+M">Mike Fich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henke%2C+D">Doug Henke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herter%2C+T">Terry Herter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knee%2C+L+B+G">Lewis B. G. Knee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+K+M">Kayla M. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G">Gordon Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsuchitori%2C+J">Joel Tsuchitori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Lanen%2C+J">Jeff Van Lanen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M">Michael Vissers</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10634v1-abstract-short" style="display: inline;"> The Fred Young Submillimeter Telescope (FYST) at the Cerro-Chajnantor Atacama Telescope prime (CCAT- prime) Facility will host Prime-Cam as a powerful, first generation camera with imaging polarimeters working at several wavelengths and spectroscopic instruments aimed at intensity mapping during the Epoch of Reionization. Here we introduce the 850 GHz (350 micron) instrument module. This will be t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10634v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10634v1-abstract-full" style="display: none;"> The Fred Young Submillimeter Telescope (FYST) at the Cerro-Chajnantor Atacama Telescope prime (CCAT- prime) Facility will host Prime-Cam as a powerful, first generation camera with imaging polarimeters working at several wavelengths and spectroscopic instruments aimed at intensity mapping during the Epoch of Reionization. Here we introduce the 850 GHz (350 micron) instrument module. This will be the highest frequency module in Prime-Cam and the most novel for astronomical and cosmological surveys, taking full advantage of the atmospheric transparency at the high 5600 meter CCAT-prime siting on Cerro Chajnantor. With a 1.1 deg diameter field, the 850 GHz module will deploy ~40,000 Kinetic Inductance Detectors (KIDs) with Silicon platelet feedhorn coupling (both fabricated at NIST), and will provide unprecedented broadband intensity and polarization measurement capabilities. The 850 GHz module will be key to addressing pressing astrophysical questions regarding galaxy formation, Big Bang cosmology, and star formation within our own Galaxy. We present the motivation and overall design for the module, and initial laboratory characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10634v1-abstract-full').style.display = 'none'; document.getElementById('2208.10634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, accepted for publication in SPIE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09560">arXiv:2208.09560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09560">pdf</a>, <a href="https://arxiv.org/format/2208.09560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: Optical and cryogenic design of the 850 GHz module for Prime-Cam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spencer%2C+L+D">Locke D. Spencer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devina%2C+J">Jesslyn Devina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henke%2C+D">Doug Henke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Mike Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+K+M">Kayla M. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+D">Jordan D. Wheeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09560v1-abstract-short" style="display: inline;"> Prime-Cam is a first-generation instrument for the Cerro Chajnantor Atacama Telescope-prime (CCAT-prime) Facility. The 850$~$GHz module for Prime-Cam will probe the highest frequency of all the instrument modules. We describe the parameter space of the 850$~$GHz optical system between the F$位$ spacing, beam size, pixel sensitivity, and detector count. We present the optimization of an optical desi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09560v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09560v1-abstract-full" style="display: none;"> Prime-Cam is a first-generation instrument for the Cerro Chajnantor Atacama Telescope-prime (CCAT-prime) Facility. The 850$~$GHz module for Prime-Cam will probe the highest frequency of all the instrument modules. We describe the parameter space of the 850$~$GHz optical system between the F$位$ spacing, beam size, pixel sensitivity, and detector count. We present the optimization of an optical design for the 850$~$GHz instrument module for CCAT-prime. We further describe the development of the cryogenic RF chain design to accommodate $&gt;$30 readout lines to read 41,400 kinetic inductance detectors (KIDs) within the cryogenic testbed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09560v1-abstract-full').style.display = 'none'; document.getElementById('2208.09560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07465">arXiv:2208.07465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07465">pdf</a>, <a href="https://arxiv.org/format/2208.07465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: RFSoC Based Readout for Frequency Multiplexed Kinetic Inductance Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephenson%2C+R+C">Ryan C. Stephenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roberson%2C+C+A">Cody A. Roberson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weeks%2C+E+L">Eric L. Weeks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgoyne%2C+J">James Burgoyne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+M">Philip M. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fich%2C+M">Michel Fich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C+E">Christopher E. Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+Z">Zachary Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nikola%2C+T">Thomas Nikola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+K+M">Kayla M. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sriram%2C+A">Adhitya Sriram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G+J">Gordon J. Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szakiel%2C+E">Erik Szakiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsuchitori%2C+J">Joel Tsuchitori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+D">Jordan D. Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+t+C">the CCAT-prime collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07465v1-abstract-short" style="display: inline;"> The Prime-Cam instrument on the Fred Young Submillimeter Telescope (FYST) is expected to be the largest deployment of millimeter and submillimeter sensitive kinetic inductance detectors to date. To read out these arrays efficiently, a microwave frequency multiplexed readout has been designed to run on the Xilinx Radio Frequency System on a Chip (RFSoC). The RFSoC has dramatically improved every ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07465v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07465v1-abstract-full" style="display: none;"> The Prime-Cam instrument on the Fred Young Submillimeter Telescope (FYST) is expected to be the largest deployment of millimeter and submillimeter sensitive kinetic inductance detectors to date. To read out these arrays efficiently, a microwave frequency multiplexed readout has been designed to run on the Xilinx Radio Frequency System on a Chip (RFSoC). The RFSoC has dramatically improved every category of size, weight, power, cost, and bandwidth over the previous generation readout systems. We describe a baseline firmware design which can read out four independent RF networks each with 500 MHz of bandwidth and 1000 detectors for ~30 W. The overall readout architecture is a combination of hardware, gateware/firmware, software, and network design. The requirements of the readout are driven by the 850 GHz instrument module of the 7-module Prime-Cam instrument. These requirements along with other constraints which have led to critical design choices are highlighted. Preliminary measurements of the system phase noise and dynamic range are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07465v1-abstract-full').style.display = 'none'; document.getElementById('2208.07465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05869">arXiv:2204.05869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05869">pdf</a>, <a href="https://arxiv.org/format/2204.05869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561743">10.1117/12.2561743 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Assembly development for the Simons Observatory focal plane readout module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothar%2C+N+F">Nicholas F. Cothar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sonka%2C+R+F">Rita F. Sonka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05869v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a suite of instruments sensitive to temperature and polarization of the cosmic microwave background (CMB) to be located at Cerro Toco in the Atacama Desert in Chile. Five telescopes, one large aperture telescope and four small aperture telescopes, will host roughly 70,000 highly multiplexed transition edge sensor (TES) detectors operated at 100 mK. Each SO focal plan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05869v2-abstract-full').style.display = 'inline'; document.getElementById('2204.05869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05869v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a suite of instruments sensitive to temperature and polarization of the cosmic microwave background (CMB) to be located at Cerro Toco in the Atacama Desert in Chile. Five telescopes, one large aperture telescope and four small aperture telescopes, will host roughly 70,000 highly multiplexed transition edge sensor (TES) detectors operated at 100 mK. Each SO focal plane module (UFM) couples 1,764 TESes to microwave resonators in a microwave multiplexing (uMux) readout circuit. Before detector integration, the 100 mK uMux components are packaged into multiplexing modules (UMMs), which are independently validated to ensure they meet SO performance specifications. Here we present the assembly developments of these UMM readout packages for mid frequency (90/150 GHz) and ultra high frequency (220/280 GHz) UFMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05869v2-abstract-full').style.display = 'none'; document.getElementById('2204.05869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 1145317 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01406">arXiv:2202.01406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.01406">pdf</a>, <a href="https://arxiv.org/format/2202.01406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac89ec">10.3847/1538-4357/ac89ec <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asteroid Measurements at Millimeter Wavelengths with the South Pole Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chichura%2C+P+M">P. M. Chichura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+A">A. Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patel%2C+C">C. Patel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ossa-Jaen%2C+N">N. Ossa-Jaen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avva%2C+J+S">J. S. Avva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+P+S">P. S. Barry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benabed%2C+K">K. Benabed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryant%2C+L">L. Bryant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrum%2C+K">K. Byrum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carter%2C+F+W">F. W. Carter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cecil%2C+T+W">T. W. Cecil</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01406v2-abstract-short" style="display: inline;"> We present the first measurements of asteroids in millimeter wavelength (mm) data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two $\sim270$ deg$^2$ sky regions near the ecliptic plane, each observed with the SPTpol camera $\sim100$ times over one month. We subtract the mean of all maps of a given field, removing st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01406v2-abstract-full').style.display = 'inline'; document.getElementById('2202.01406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01406v2-abstract-full" style="display: none;"> We present the first measurements of asteroids in millimeter wavelength (mm) data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two $\sim270$ deg$^2$ sky regions near the ecliptic plane, each observed with the SPTpol camera $\sim100$ times over one month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids$\text{ -- }$(324) Bamberga, (13) Egeria, and (22) Kalliope$\text{ -- }$with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids&#39; effective emissivities, brightness temperatures, and light curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of $0.66 \pm 0.11$ at 2.0 mm and $&lt;0.47$ at 3.2mm. We predict the asteroids detectable in other SPT datasets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which has $\sim10 \times$ the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future datasets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01406v2-abstract-full').style.display = 'none'; document.getElementById('2202.01406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 ApJ 936 173 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10364">arXiv:2107.10364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10364">pdf</a>, <a href="https://arxiv.org/format/2107.10364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac9838">10.3847/1538-4365/ac9838 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+C">CCAT-Prime collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aravena%2C+M">M. Aravena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">B. Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertoldi%2C+F">F. Bertoldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">F. Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">P. C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broughton%2C+C">C. Broughton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">R. Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">S. C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charmetant%2C+M">M. Charmetant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">S. K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">D. T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">N. F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dev%2C+A">A. Dev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Douglas%2C+K">K. Douglas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">C. J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ebina%2C+H">H. Ebina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Erler%2C+J">J. Erler</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10364v3-abstract-short" style="display: inline;"> We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Corn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10364v3-abstract-full').style.display = 'inline'; document.getElementById('2107.10364v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10364v3-abstract-full" style="display: none;"> We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Cornell University and sited at more than 5600 meters on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way galaxy. Prime-Cam on the FYST will have a mapping speed that is over ten times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10364v3-abstract-full').style.display = 'none'; document.getElementById('2107.10364v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 16 figures. Resubmitted to ApJSS July 11, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04611">arXiv:2107.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04611">pdf</a>, <a href="https://arxiv.org/format/2107.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3391">10.1093/mnras/stab3391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">Eleonora Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">Paolo de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">Luca Lamagna</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04611v2-abstract-short" style="display: inline;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04611v2-abstract-full" style="display: none;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by $37&#39;$, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at $&gt;5蟽$. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$ associated with the filament, comprising about $8\%$ of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim}1.9\,\mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm0.24)\times10^{-4}\,\mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\,\mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution ($12.7&#34;$ effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'none'; document.getElementById('2107.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 3 tables. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3391/6442294</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14797">arXiv:2106.14797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14797">pdf</a>, <a href="https://arxiv.org/format/2106.14797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2232">10.3847/1538-4357/ac2232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory microwave SQUID multiplexing detector module design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">Jim A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M+B">Megan B. Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14797v2-abstract-short" style="display: inline;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14797v2-abstract-full" style="display: none;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing ($渭$mux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a $95\%$ yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 $\mathrm{pA/\sqrt{Hz}}$. This impacts the projected SO mapping speed by $&lt; 8\%$, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'none'; document.getElementById('2106.14797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 ApJ 922 38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11202">arXiv:2106.11202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11202">pdf</a>, <a href="https://arxiv.org/format/2106.11202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac374f">10.3847/1538-4365/ac374f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Design and Integrated Performance of SPT-3G </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sobrin%2C+J+A">J. A. Sobrin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">D. Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+A">A. Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montgomery%2C+J">J. Montgomery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nadolski%2C+A">A. Nadolski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahlin%2C+A">A. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderes%2C+E">E. Anderes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avva%2C+J+S">J. S. Avva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aylor%2C+K">K. Aylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+P+S">P. S. Barry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benabed%2C+K">K. Benabed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryant%2C+L">L. Bryant</a> , et al. (98 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11202v2-abstract-short" style="display: inline;"> SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, mill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11202v2-abstract-full').style.display = 'inline'; document.getElementById('2106.11202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11202v2-abstract-full" style="display: none;"> SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95 GHz, 150 GHz, and 220 GHz, with 1.2 arcmin FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, tri-chroic pixels (~16000 detectors) read out using a 68X digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg$^{2}$ of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11202v2-abstract-full').style.display = 'none'; document.getElementById('2106.11202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures. Accepted for publication in ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-291-AE </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 258 42 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03154">arXiv:2103.03154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03154">pdf</a>, <a href="https://arxiv.org/format/2103.03154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abfcc4">10.3847/1538-4365/abfcc4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edwawd V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fichman%2C+K">Kyra Fichman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03154v2-abstract-short" style="display: inline;"> Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~ 2,100 deg^2 of sky; derived power spectra and cosmological likelihoods; a catalog of o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03154v2-abstract-full').style.display = 'inline'; document.getElementById('2103.03154v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03154v2-abstract-full" style="display: none;"> Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~ 2,100 deg^2 of sky; derived power spectra and cosmological likelihoods; a catalog of over 4,000 galaxy clusters; and supporting ancillary products including beam functions and masks. The data and products are described in a suite of ACT papers; here we provide a summary. In order to facilitate ease of access to these data we present a set of Jupyter IPython notebooks developed to introduce users to DR4, DR5, and the tools needed to analyze these data. The data products (excluding simulations) and the set of notebooks are publicly available on the NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA); simulation products are available on the National Energy Research Scientific Computing Center (NERSC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03154v2-abstract-full').style.display = 'none'; document.getElementById('2103.03154v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJS. 21 pages, 8 figures. Data and notebooks available on LAMBDA https://lambda.gsfc.nasa.gov/product/act/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11917">arXiv:2101.11917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.11917">pdf</a>, <a href="https://arxiv.org/ps/2101.11917">ps</a>, <a href="https://arxiv.org/format/2101.11917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562016">10.1117/12.2562016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simons Observatory Small Aperture Telescope overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazako%2C+A">Andrew Bazako</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasegawa%2C+M">Masaya Hasegawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hattori%2C+M">Makoto Hattori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">Charles A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11917v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment from the Atacama Desert in Chile comprising three small-aperture telescopes (SATs) and one large-aperture telescope (LAT). In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11917v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11917v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment from the Atacama Desert in Chile comprising three small-aperture telescopes (SATs) and one large-aperture telescope (LAT). In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. In this work, we focus on the SATs which are optimized to search for primordial gravitational waves that are detected as parity-odd polarization patterns called a B-modes on degree scales in the CMB. Each SAT employs a single optics tube with TES arrays operating at 100 mK. The high throughput optics system has a 42 cm aperture and a 35-degree field of view coupled to a 36 cm diameter focal plane. The optics consist of three metamaterial anti-re ection coated silicon lenses. Cryogenic ring baffles with engineered blackbody absorbers are installed in the optics tube to minimize the stray light. The entire optics tube is cooled to 1 K. A cryogenic continuously rotating half-wave plate near the sky side of the aperture stop helps to minimize the effect of atmospheric uctuations. The telescope warm baffling consists of a forebaffle, an elevation stage mounted co-moving shield, and a fixed ground shield that together control the far side-lobes and mitigates ground-synchronous systematics. We present the status of the SAT development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11917v1-abstract-full').style.display = 'none'; document.getElementById('2101.11917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11445, Ground-based and Airborne Telescopes VIII, 114457L (18 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09608">arXiv:2101.09608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09608">pdf</a>, <a href="https://arxiv.org/format/2101.09608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2560709">10.1117/12.2560709 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The design of the Ali CMB Polarization Telescope receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bai%2C+X">Xiran Bai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Dan T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Y">Yifu Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+Z">Zhi Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+D">Ding Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Pisin Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+G">Guanhua Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S">Shamik Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Givhan%2C+R+C">Richard C. Givhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpel%2C+E+D">Ethan D. Karpel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuo%2C+C">Chao-Lin Kuo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Hong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M">Mingzhe Li</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09608v1-abstract-short" style="display: inline;"> Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250m above sea level. AliCPT-1 is a 90/150 GHz 72 cm aperture, two-lens refracting telescope cooled down to 4 K. Alumina lenses, 800mm in diameter, image the CMB in a 33.4掳 field of view on a 636mm wide focal plane. The modularized focal plane consists of dichroic polariza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09608v1-abstract-full').style.display = 'inline'; document.getElementById('2101.09608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09608v1-abstract-full" style="display: none;"> Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250m above sea level. AliCPT-1 is a 90/150 GHz 72 cm aperture, two-lens refracting telescope cooled down to 4 K. Alumina lenses, 800mm in diameter, image the CMB in a 33.4掳 field of view on a 636mm wide focal plane. The modularized focal plane consists of dichroic polarization-sensitive Transition-Edge Sensors (TESes). Each module includes 1,704 optically active TESes fabricated on a 150mm diameter silicon wafer. Each TES array is read out with a microwave multiplexing readout system capable of a multiplexing factor up to 2,048. Such a large multiplexing factor has allowed the practical deployment of tens of thousands of detectors, enabling the design of a receiver that can operate up to 19 TES arrays for a total of 32,376 TESes. AliCPT-1 leverages the technological advancements in the detector design from multiple generations of previously successful feedhorn-coupled polarimeters, and in the instrument design from BICEP-3, but applied on a larger scale. The cryostat receiver is currently under integration and testing. During the first deployment year, the focal plane will be populated with up to 4 TES arrays. Further TES arrays will be deployed in the following years, fully populating the focal plane with 19 arrays on the fourth deployment year. Here we present the AliCPT-1 receiver design, and how the design has been optimized to meet the experimental requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09608v1-abstract-full').style.display = 'none'; document.getElementById('2101.09608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proc. SPIE, 11453, 114532A (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of SPIE, &#39;Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X&#39;, Volume 11453, 114532A (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08374">arXiv:2101.08374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08374">pdf</a>, <a href="https://arxiv.org/format/2101.08374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.043502">10.1103/PhysRevD.104.043502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Detection of the Pairwise Kinematic Sunyaev-Zel&#39;dovich Effect with SDSS DR15 Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08374v2-abstract-short" style="display: inline;"> We present a 5.4$蟽$ detection of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08374v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08374v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08374v2-abstract-full" style="display: none;"> We present a 5.4$蟽$ detection of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), which overlap with SDSS DR15 over 3,700 sq. deg., and a component-separated map using night-time only observations from 2014-2015 (ACT DR4), overlapping with SDSS DR15 over 2,089 sq. deg. Comparisons of the results from these three maps provide consistency checks in relation to potential frequency-dependent foreground contamination. A total of 343,647 galaxies are used as tracers to identify and locate galaxy groups and clusters from which the kSZ signal is extracted using aperture photometry. We consider the impact of various aperture photometry assumptions and covariance estimation methods on the signal extraction. Theoretical predictions of the pairwise velocities are used to obtain best-fit, mass-averaged, optical depth estimates for each of five luminosity-selected tracer samples. A comparison of the kSZ-derived optical depth measurements obtained here to those derived from the thermal SZ effect for the same sample is presented in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08374v2-abstract-full').style.display = 'none'; document.getElementById('2101.08374v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures. Updated to match published version in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 043502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08373">arXiv:2101.08373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08373">pdf</a>, <a href="https://arxiv.org/format/2101.08373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.043503">10.1103/PhysRevD.104.043503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Probing the Baryon Content of SDSS DR15 Galaxies with the Thermal and Kinematic Sunyaev-Zel&#39;dovich Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08373v2-abstract-short" style="display: inline;"> We present high signal-to-noise measurements (up to 12$蟽$) of the average thermal Sunyaev Zel&#39;dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalog overlap with 3,700 sq. deg. of sky observed by the At&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08373v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08373v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08373v2-abstract-full" style="display: none;"> We present high signal-to-noise measurements (up to 12$蟽$) of the average thermal Sunyaev Zel&#39;dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalog overlap with 3,700 sq. deg. of sky observed by the Atacama Cosmology Telescope (ACT) from 2008 to 2018 at 150 and 98 GHz (ACT DR5), and 2,089 sq. deg. of internal linear combination component-separated maps combining ACT and $\it{Planck}$ data (ACT DR4). The corresponding optical depths, $\bar蟿$, which depend on the baryon content of the halos, are estimated using results from cosmological hydrodynamic simulations assuming an AGN feedback radiative cooling model. We estimate the mean mass of the halos in multiple luminosity bins, and compare the tSZ-based $\bar蟿$ estimates to theoretical predictions of the baryon content for a Navarro-Frenk-White profile. We do the same for $\bar蟿$ estimates extracted from fits to pairwise baryon momentum measurements of the kinematic Sunyaev-Zel&#39;dovich effect (kSZ) for the same data set obtained in a companion paper. We find that the $\bar蟿$ estimates from the tSZ measurements in this work and the kSZ measurements in the companion paper agree within $1蟽$ for two out of the three disjoint luminosity bins studied, while they differ by 2-3$蟽$ in the highest luminosity bin. The optical depth estimates account for one third to all of the theoretically predicted baryon content in the halos across luminosity bins. Potential systematic uncertainties are discussed. The tSZ and kSZ measurements provide a step towards empirical Compton-$\bar{y}$-$\bar蟿$ relationships to provide new tests of cluster formation and evolution models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08373v2-abstract-full').style.display = 'none'; document.getElementById('2101.08373v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 043503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05306">arXiv:2101.05306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05306">pdf</a>, <a href="https://arxiv.org/format/2101.05306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Detector fabrication development for the LiteBIRD satellite mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raum%2C+C">Christopher Raum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farias%2C+N">Nicole Farias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sasse%2C+T">Trevor Sasse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kane%2C+E">Elijah Kane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Lanen%2C+J">Jeff Van Lanen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+R">Michael R. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaehnig%2C+G">Greg Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halverson%2C+N">Nils Halverson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghinga%2C+T">Tommaso Ghinga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stever%2C+S">Samantha Stever</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minami%2C+Y">Yuto Minami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Russell%2C+M">Megan Russell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+J">Joseph Siebert</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05306v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led strategic Large-Class satellite mission designed to measure the polarization of the cosmic microwave background and cosmic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020&#39;s. The primary focus of the mission is to measure primordially generated B-mode polarization at large angular scales. Beyond its primary scientific objective LiteBIRD will gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05306v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05306v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led strategic Large-Class satellite mission designed to measure the polarization of the cosmic microwave background and cosmic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020&#39;s. The primary focus of the mission is to measure primordially generated B-mode polarization at large angular scales. Beyond its primary scientific objective LiteBIRD will generate a data-set capable of probing a number of scientific inquiries including the sum of neutrino masses. The primary responsibility of United States will be to fabricate the three flight model focal plane units for the mission. The design and fabrication of these focal plane units is driven by heritage from ground based experiments and will include both lenslet-coupled sinuous antenna pixels and horn-coupled orthomode transducer pixels. The experiment will have three optical telescopes called the low frequency telescope, mid frequency telescope, and high frequency telescope each of which covers a portion of the mission&#39;s frequency range. JAXA is responsible for the construction of the low frequency telescope and the European Consortium is responsible for the mid- and high- frequency telescopes. The broad frequency coverage and low optical loading conditions, made possible by the space environment, require development and adaptation of detector technology recently deployed by other cosmic microwave background experiments. This design, fabrication, and characterization will take place at UC Berkeley, NIST, Stanford, and Colorado University, Boulder. We present the current status of the US deliverables to the LiteBIRD mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05306v1-abstract-full').style.display = 'none'; document.getElementById('2101.05306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE, Cosmology, LiteBIRD, Detectors, TES, Bolometers, Inflation, Sinuous Antenna, Horn Coupled, DfMUX</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02658">arXiv:2101.02658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.02658">pdf</a>, <a href="https://arxiv.org/format/2101.02658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2021.3063334">10.1109/TASC.2021.3063334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In situ Performance of the Low Frequency Arrayfor Advanced ACTPol </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmay%2C+J">Johannes Hubmay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">LymanA. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevens%2C+J+R">Jason R. Stevens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02658v2-abstract-short" style="display: inline;"> The Advanced Atacama Cosmology Telescope Polarimeter (AdvACT) \cite{thornton} is an upgrade for the Atacama Cosmology Telescope using Transition Edge Sensor (TES) detector arrays to measure cosmic microwave background (CMB) temperature and polarization anisotropies in multiple frequencies. The low frequency (LF) array was deployed early 2020. It consists of 292 TES bolometers observing in two band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02658v2-abstract-full').style.display = 'inline'; document.getElementById('2101.02658v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02658v2-abstract-full" style="display: none;"> The Advanced Atacama Cosmology Telescope Polarimeter (AdvACT) \cite{thornton} is an upgrade for the Atacama Cosmology Telescope using Transition Edge Sensor (TES) detector arrays to measure cosmic microwave background (CMB) temperature and polarization anisotropies in multiple frequencies. The low frequency (LF) array was deployed early 2020. It consists of 292 TES bolometers observing in two bands centered at 27 GHz and 39 GHz. At these frequencies, it is sensitive to synchrotron radiation from our galaxy as well as to the CMB, and complements the AdvACT arrays operating at 90, 150 and 230 GHz. We present the initial LF array on-site characterization, including the time constant, optical efficiency and array sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02658v2-abstract-full').style.display = 'none'; document.getElementById('2101.02658v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08636">arXiv:2012.08636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08636">pdf</a>, <a href="https://arxiv.org/format/2012.08636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Planar Silicon Metamaterial Lenslet Arrays for Millimeter-wavelength Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McKenney%2C+C+M">Christopher M. McKenney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halverson%2C+N+W">Nils W. Halverson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaehnig%2C+G">Gregory Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S+A">Sarah A. Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+J+A">Jonathan A. Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08636v1-abstract-short" style="display: inline;"> Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing planar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08636v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08636v1-abstract-full" style="display: none;"> Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing planar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology has many potential advantages compared to conventional hemispherical lenslet arrays, including high precision and homogeneity, planar integrated anti-reflection layers, and a coefficient of thermal expansion matched to the silicon detector wafer. Here we describe the design process for a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on silicon and a combination of metal-mesh and etched-hole metamaterial anti-reflection layers. We optimize the design using a bulk-material model to rapidly simulate and iterate on the lenslet design. We fabricated prototype GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array 90/150~GHz band transition edge sensor (TES) bolometer detector array with sinuous planar antennas. Beam measurements of a prototype lenslet array agree reasonably well with the model simulations. We plan to further optimize the design and combine it with a broadband anti-reflection coating to achieve operation over 70--350~GHz bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08636v1-abstract-full').style.display = 'none'; document.getElementById('2012.08636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, December 13-18, 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08547">arXiv:2012.08547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08547">pdf</a>, <a href="https://arxiv.org/format/2012.08547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2575912">10.1117/12.2575912 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparing complex impedance and bias step measurements of Simons Observatory transition edge sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P">Patricio Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sonka%2C+R+F">Rita F. Sonka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08547v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) will perform ground-based observations of the cosmic microwave background (CMB) with several small and large aperture telescopes, each outfitted with thousands to tens of thousands of superconducting aluminum manganese (AlMn) transition-edge sensor bolometers (TESs). In-situ characterization of TES responsivities and effective time constants will be required multiple ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08547v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08547v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08547v2-abstract-full" style="display: none;"> The Simons Observatory (SO) will perform ground-based observations of the cosmic microwave background (CMB) with several small and large aperture telescopes, each outfitted with thousands to tens of thousands of superconducting aluminum manganese (AlMn) transition-edge sensor bolometers (TESs). In-situ characterization of TES responsivities and effective time constants will be required multiple times each observing-day for calibrating time-streams during CMB map-making. Effective time constants are typically estimated in the field by briefly applying small amplitude square-waves on top of the TES DC biases, and fitting exponential decays in the bolometer response. These so-called &#34;bias step&#34; measurements can be rapidly implemented across entire arrays and therefore are attractive because they take up little observing time. However, individual detector complex impedance measurements, while too slow to implement during observations, can provide a fuller picture of the TES model and a better understanding of its temporal response. Here, we present the results of dark TES characterization of many prototype SO bolometers and compare the effective thermal time constants measured via bias steps to those derived from complex impedance data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08547v2-abstract-full').style.display = 'none'; document.getElementById('2012.08547v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, SPIE Astronomical Telescopes + Instrumentation 2020, Paper Number: 11453-185</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07862">arXiv:2012.07862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07862">pdf</a>, <a href="https://arxiv.org/format/2012.07862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2576151">10.1117/12.2576151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07862v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07862v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $&lt;$ 100 mK on a 1.7 m diameter focal plane. The unprecedented scale of the LATR drives a complex design. In this paper, we will first provide an overview of the LATR design. Integration and validation of the LATR design are discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing ($渭$Mux) readout system implemented in the LATR and demonstrate the operation of dark prototype TES bolometers. The $渭$Mux readout technology enables one coaxial loop to read out $\mathcal{O}(10^3)$ TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime and CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'none'; document.getElementById('2012.07862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, submitted to the 2020 SPIE Astronomical Telescopes + Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01709">arXiv:2012.01709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01709">pdf</a>, <a href="https://arxiv.org/format/2012.01709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac02bb">10.3847/1538-4357/ac02bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal CMB Lensing Reconstruction and Parameter Estimation with SPTpol Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Millea%2C+M">M. Millea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daley%2C+C+M">C. M. Daley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chou%2C+T">T-L. Chou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderes%2C+E">E. Anderes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avva%2C+J+S">J. S. Avva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Citron%2C+R">R. Citron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moran%2C+C+C">C. Corbett Moran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+T+M">T. M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobbs%2C+M+A">M. A. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+W">W. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallicchio%2C+J">J. Gallicchio</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01709v1-abstract-short" style="display: inline;"> We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg$^2$ of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 $渭$K-arcmin in polarization, which are low enough that the typically used quadratic estimator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01709v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01709v1-abstract-full" style="display: none;"> We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg$^2$ of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 $渭$K-arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly sub-optimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be $A_蠁\,{=}\,0.949\,{\pm}\,0.122$ using the Bayesian pipeline, consistent with our QE pipeline result, but with 17\% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist &#34;bias hardening,&#34; and reducing the systematic uncertainty on $A_蠁$ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain $A_蠁$ along with $A_{\rm L}$, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on $A_蠁$ and 7 times lower effective lensing reconstruction noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01709v1-abstract-full').style.display = 'none'; document.getElementById('2012.01709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 14 figures, accompanying software package available at https://cosmicmar.com/CMBLensing.jl</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01376">arXiv:2012.01376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01376">pdf</a>, <a href="https://arxiv.org/format/2012.01376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Balloon-Borne Large Aperture Submillimeter Telescope Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S">Susan Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lourie%2C+N+P">Nathan P. Lourie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01376v1-abstract-short" style="display: inline;"> The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01376v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01376v1-abstract-full" style="display: none;"> The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L $^4$He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a $^3$He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70$\%$ will be dedicated to observations for BLAST scientific goals and the remaining 30$\%$ will be open to proposals from the wider astronomical community through a shared-risk proposals program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01376v1-abstract-full').style.display = 'none'; document.getElementById('2012.01376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Ground-based and Airborne Telescopes VIII, December 13-18, 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01372">arXiv:2012.01372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01372">pdf</a>, <a href="https://arxiv.org/format/2012.01372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2560854">10.1117/12.2560854 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization, deployment, and in-flight performance of the BLAST-TNG cryogenic receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+S">Samuel Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C+E">Christopher E. Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeffrey Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Dale Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lourie%2C+N+P">Nathan P. Lourie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mani%2C+H">Hamdi Mani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McKenney%2C+C">Christopher McKenney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01372v2-abstract-short" style="display: inline;"> The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID pixels, respectively. The pixels are formed from two orthogonally oriented, crossed, linear-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01372v2-abstract-full').style.display = 'inline'; document.getElementById('2012.01372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01372v2-abstract-full" style="display: none;"> The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID pixels, respectively. The pixels are formed from two orthogonally oriented, crossed, linear-polarization sensitive MKID antennae. The arrays are cooled to sub 300mK temperatures and stabilized via a closed cycle $^3$He sorption fridge in combination with a $^4$He vacuum pot. The detectors are read out through a combination of the second-generation Reconfigurable Open Architecture Computing Hardware (ROACH2) and custom RF electronics designed for BLAST-TNG. The firmware and software designed to readout and characterize these detectors was built from scratch by the BLAST team around these detectors, and has been adapted for use by other MKID instruments such as TolTEC and OLIMPO. We present an overview of these systems as well as in-depth methodology of the ground-based characterization and the measured in-flight performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01372v2-abstract-full').style.display = 'none'; document.getElementById('2012.01372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, December 13-18, 2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 1145304 (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01039">arXiv:2012.01039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01039">pdf</a>, <a href="https://arxiv.org/format/2012.01039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2560849">10.1117/12.2560849 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight performance of the BLAST-TNG telescope platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+S">Samuel Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C+E">Christopher E. Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeffrey Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Dale Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lourie%2C+N+P">Nathan P. Lourie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mani%2C+H">Hamdi Mani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McKenney%2C+C">Christopher McKenney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01039v3-abstract-short" style="display: inline;"> The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (BLAST-TNG) was a unique instrument for characterizing the polarized submillimeter sky at high-angular resolution. BLAST-TNG flew from the Long Duration Balloon Facility in Antarctica in January 2020. Despite the short flight duration, the instrument worked very well and is providing significant information about each subsyst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01039v3-abstract-full').style.display = 'inline'; document.getElementById('2012.01039v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01039v3-abstract-full" style="display: none;"> The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (BLAST-TNG) was a unique instrument for characterizing the polarized submillimeter sky at high-angular resolution. BLAST-TNG flew from the Long Duration Balloon Facility in Antarctica in January 2020. Despite the short flight duration, the instrument worked very well and is providing significant information about each subsystem that will be invaluable for future balloon missions. In this contribution, we discuss the performance of telescope and gondola. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01039v3-abstract-full').style.display = 'none'; document.getElementById('2012.01039v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation, Ground-based and Airborne Telescopes VIII</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11445, Ground-based and Airborne Telescopes VIII, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08163">arXiv:2011.08163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08163">pdf</a>, <a href="https://arxiv.org/format/2011.08163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.022004">10.1103/PhysRevD.103.022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=BICEP%2FKeck"> BICEP/Keck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collaborations%2C+S">SPTpol Collaborations</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avva%2C+J+S">J. S. Avva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a> , et al. (117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08163v2-abstract-short" style="display: inline;"> We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with &#34;delensing,&#34; whereby the uncertainty on $r$ contributed by the sample variance of the gravitational lensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08163v2-abstract-full').style.display = 'inline'; document.getElementById('2011.08163v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08163v2-abstract-full" style="display: none;"> We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with &#34;delensing,&#34; whereby the uncertainty on $r$ contributed by the sample variance of the gravitational lensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the polarized CMB with a tracer of the projected large-scale structure. The large-scale-structure tracer used is a map of the cosmic infrared background derived from Planck satellite data, while the polarized CMB map comes from a combination of South Pole Telescope, BICEP/Keck, and Planck data. We expand the BICEP/Keck likelihood analysis framework to accept a lensing template and apply it to the BICEP/Keck data set collected through 2014 using the same parametric foreground modelling as in the previous analysis. From simulations, we find that the uncertainty on $r$ is reduced by $\sim10\%$, from $蟽(r)$= 0.024 to 0.022, which can be compared with a $\sim26\%$ reduction obtained when using a perfect lensing template. Applying the technique to the real data, the constraint on $r$ is improved from $r_{0.05} &lt; 0.090$ to $r_{0.05} &lt; 0.082$ (95\% C.L.). This is the first demonstration of improvement in an $r$ constraint through delensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08163v2-abstract-full').style.display = 'none'; document.getElementById('2011.08163v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures; match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11043">arXiv:2009.11043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11043">pdf</a>, <a href="https://arxiv.org/format/2009.11043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abd023">10.3847/1538-4365/abd023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Catalog of &gt; 4000 Sunyaev-Zel&#39;dovich Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rozo%2C+E">E. Rozo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">E. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aros-Bunster%2C+C">C. Aros-Bunster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11043v2-abstract-short" style="display: inline;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11043v2-abstract-full" style="display: none;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 &lt; z &lt; 1.91 (median z = 0.52). The catalog contains 222 z &gt; 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c &gt; 3.8 x 10$^{14}$ MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio &gt; 5 in maps filtered at an angular scale of 2.4&#39;. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg$^2$), the Hyper Suprime-Cam Subaru Strategic Program (469 deg$^2$), and the Kilo Degree Survey (825 deg$^2$). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'none'; document.getElementById('2009.11043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 27 figures, accepted for publication in ApJS; v1.0 catalogs will be available from LAMBDA https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm; v1.0 catalogs available from https://astro.ukzn.ac.za/~mjh/ACTDR5/v1.0/ until then</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07772">arXiv:2009.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07772">pdf</a>, <a href="https://arxiv.org/format/2009.07772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abbccb">10.3847/2041-8213/abbccb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Weighing distant clusters with the most ancient light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07772v2-abstract-short" style="display: inline;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'inline'; document.getElementById('2009.07772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07772v2-abstract-full" style="display: none;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of $ \langle z \rangle = 1.08$. There are no current optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of $4.2 蟽$. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro-Frenk-White density profiles, we infer a mean mass of $\langle M_{500c}\rangle = \left(1.7 \pm 0.4 \right)\times10^{14}\,\mathrm{M}_\odot$. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable Universe, beyond the capabilities of optical weak lensing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'none'; document.getElementById('2009.07772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, matches version accepted in ApJL, code available at https://github.com/ACTCollaboration/madcows_lensing/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05558">arXiv:2009.05558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05558">pdf</a>, <a href="https://arxiv.org/format/2009.05558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.063514">10.1103/PhysRevD.103.063514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel&#39;dovich Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">Emmanuel Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">Emily Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+K+R">Kirsten R. Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05558v4-abstract-short" style="display: inline;"> The thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05558v4-abstract-full').style.display = 'inline'; document.getElementById('2009.05558v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05558v4-abstract-full" style="display: none;"> The thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection $蔚M_\star c^2$, where $M_\star$ is the stellar mass, to be $蔚=(40\pm9)\times10^{-6}$, and the amplitude of the non-thermal pressure profile to be $伪_{\rm Nth}&lt;0.2$ (2$蟽$), indicating that less than 20% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best-fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half but does not fully reconcile it. Comparing the tSZ measurements to cosmological simulations, we find that simulations underestimate the CGM pressure at large radii while they fare better in comparison with the kSZ measurements. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05558v4-abstract-full').style.display = 'none'; document.getElementById('2009.05558v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected error in the algorithm that calculates the kSZ temperature profile for a given GNFW density model. The value of $\log_{\rm10} 蟻_0$ changed by 0.75$蟽$ in Tab.II and Fig.2, and affected the results in the left panels of Fig. 6. Conclusions are unchanged. Erratum published at https://link.aps.org/doi/10.1103/PhysRevD.107.049903</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 063514 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05557">arXiv:2009.05557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05557">pdf</a>, <a href="https://arxiv.org/format/2009.05557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.063513">10.1103/PhysRevD.103.063513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel&#39;dovich measurements from BOSS CMASS and LOWZ halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">Emmanuel Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05557v2-abstract-short" style="display: inline;"> The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05557v2-abstract-full').style.display = 'inline'; document.getElementById('2009.05557v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05557v2-abstract-full" style="display: none;"> The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5$蟽$, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally $&gt;90蟽$ for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e. the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10$蟽$. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)$蟽$, and leave their interpretation to future work. Our stacking software ThumbStack is publicly available at https://github.com/EmmanuelSchaan/ThumbStack and directly applicable to future Simons Observatory and CMB-S4 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05557v2-abstract-full').style.display = 'none'; document.getElementById('2009.05557v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review D, Editors&#39; Suggestion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 063513 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11663">arXiv:2008.11663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11663">pdf</a>, <a href="https://arxiv.org/format/2008.11663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0bbc">10.3847/1538-4357/ac0bbc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing galaxy evolution in massive clusters using ACT and DES: splashback as a cosmic clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">Susmita Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+T">Tae-hyeon Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jain%2C+B">Bhuvnesh Jain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">Chihway Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wechsler%2C+R+H">Risa H. Wechsler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">Sebastian Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evrard%2C+A+E">August E. Evrard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">Martine Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeffrey McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Frederico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newburgh%2C+L+B">Laura B. Newburgh</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11663v1-abstract-short" style="display: inline;"> We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev--Zeldovich (SZ) effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius for the complete galaxy sample is consistent with theoretical measurements from CDM-only simulations, and is loc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11663v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11663v1-abstract-full" style="display: none;"> We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev--Zeldovich (SZ) effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius for the complete galaxy sample is consistent with theoretical measurements from CDM-only simulations, and is located at $2.4^{+0.3}_{-0.4}$ Mpc $h^{-1}$. We split the sample based on galaxy color and find significant differences in the profile shapes. Red galaxies and those in the green valley show a splashback-like minimum in their slope profile consistent with theoretical predictions, while the bluest galaxies show a weak feature that appears at a smaller radius. We develop a mapping of galaxies to subhalos in $N$-body simulations by splitting subhalos based on infall time onto the cluster halos. We find that the location of the steepest slope and differences in the shapes of the profiles can be mapped to differences in the average time of infall of galaxies of different colors. The minima of the slope in the galaxy profiles trace a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time for galaxies of different colours, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in their clusters for over $3.2 ~\rm Gyrs$, green galaxies about $2.2 ~\rm Gyrs$, while blue galaxies have been accreted most recently and have not reached apocenter. Using the information from the complete radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching in clusters occurs after a delay of about a gigayear, and that galaxies quench rapidly thereafter with an exponential timescale of $0.6$ Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11663v1-abstract-full').style.display = 'none'; document.getElementById('2008.11663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, to be submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07290">arXiv:2007.07290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07290">pdf</a>, <a href="https://arxiv.org/format/2007.07290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/046">10.1088/1475-7516/2020/12/046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR5 maps of 18,000 square degrees of the microwave sky from ACT 2008-2018 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07290v5-abstract-short" style="display: inline;"> This paper presents a maximum-likelihood algorithm for combining sky maps with disparate sky coverage, angular resolution and spatially varying anisotropic noise into a single map of the sky. We use this to merge hundreds of individual maps covering the 2008-2018 ACT observing seasons, resulting in by far the deepest ACT maps released so far. We also combine the maps with the full Planck maps, res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07290v5-abstract-full').style.display = 'inline'; document.getElementById('2007.07290v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07290v5-abstract-full" style="display: none;"> This paper presents a maximum-likelihood algorithm for combining sky maps with disparate sky coverage, angular resolution and spatially varying anisotropic noise into a single map of the sky. We use this to merge hundreds of individual maps covering the 2008-2018 ACT observing seasons, resulting in by far the deepest ACT maps released so far. We also combine the maps with the full Planck maps, resulting in maps that have the best features of both Planck and ACT: Planck&#39;s nearly white noise on intermediate and large angular scales and ACT&#39;s high-resolution and sensitivity on small angular scales. The maps cover over 18,000 square degrees, nearly half the full sky, at 100, 150 and 220 GHz. They reveal 4,000 optically-confirmed clusters through the Sunyaev Zel&#39;dovich effect (SZ) and 18,500 point source candidates at $&gt; 5蟽$, the largest single collection of SZ clusters and millimeter wave sources to date. The multi-frequency maps provide millimeter images of nearby galaxies and individual Milky Way nebulae, and even clear detections of several nearby stars. Other anticipated uses of these maps include, for example, thermal SZ and kinematic SZ cluster stacking, CMB cluster lensing and galactic dust science. The method itself has negligible bias. However, due to the preliminary nature of some of the component data sets, we caution that these maps should not be used for precision cosmological analysis. The maps are part of ACT DR5, and are available on LAMBDA at https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm. There is also a web atlas at https://phy-act1.princeton.edu/public/snaess/actpol/dr5/atlas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07290v5-abstract-full').style.display = 'none'; document.getElementById('2007.07290v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 29 figures, data release on lambda. Published in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07289">arXiv:2007.07289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07289">pdf</a>, <a href="https://arxiv.org/format/2007.07289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/045">10.1088/1475-7516/2020/12/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B">Brian Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campusano%2C+L+E">Luis E. Campusano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrero%2C+F">Felipe Carrero</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07289v2-abstract-short" style="display: inline;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $&gt;$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07289v2-abstract-full" style="display: none;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $&gt;$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a &#34;CMB-only&#34; spectrum that extends to $\ell=4000$. At large angular scales, foreground emission at 150 GHz is $\sim$1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for $螞$CDM for the ACT data alone with a prior on the optical depth of $蟿=0.065\pm0.015$. $螞$CDM is a good fit. The best-fit model has a reduced $蠂^2$ of 1.07 (PTE=0.07) with $H_0=67.9\pm1.5$ km/s/Mpc. We show that the lensing BB signal is consistent with $螞$CDM and limit the celestial EB polarization angle to $蠄_P =-0.07^{\circ}\pm0.09^{\circ}$. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'none'; document.getElementById('2007.07289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 27 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Austermann%2C+J+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10