CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Takaku, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Takaku%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Takaku, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Takaku%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Takaku, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02724">arXiv:2406.02724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02724">pdf</a>, <a href="https://arxiv.org/format/2406.02724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The LiteBIRD mission to explore cosmic inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">T. Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aizawa%2C+K">K. Aizawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akamatsu%2C+H">H. Akamatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akizawa%2C+R">R. Akizawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+A">A. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basyrov%2C+A">A. Basyrov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolami%2C+M">M. Bortolami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F">F. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brinckmann%2C+T">T. Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carinos%2C+E">E. Carinos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carones%2C+A">A. Carones</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02724v1-abstract-short" style="display: inline;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan&#39;s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02724v1-abstract-full" style="display: none;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan&#39;s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2\,$渭$K-arcmin and a resolution of 0.5$^\circ$ at 100\,GHz. Its primary goal is to measure the tensor-to-scalar ratio $r$ with an uncertainty $未r = 0.001$, including systematic errors and margin. If $r \geq 0.01$, LiteBIRD expects to achieve a $&gt;5蟽$ detection in the $\ell=$2-10 and $\ell=$11-200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD&#39;s scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD&#39;s synergies with concurrent CMB projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'none'; document.getElementById('2406.02724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 1 table, SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07999">arXiv:2311.07999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07999">pdf</a>, <a href="https://arxiv.org/format/2311.07999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/05/018">10.1088/1475-7516/2024/05/018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of half-wave plate systematics on the measurement of CMB $B$-mode polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Monelli%2C+M">Marta Monelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+E">Eiichiro Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">Giampaolo Pisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07999v2-abstract-short" style="display: inline;"> Polarization of the cosmic microwave background (CMB) can help probe the fundamental physics behind cosmic inflation via the measurement of primordial $B$ modes. As this requires exquisite control over instrumental systematics, some next-generation CMB experiments plan to use a rotating half-wave plate (HWP) as polarization modulator. However, the HWP non-idealities, if not properly treated in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07999v2-abstract-full').style.display = 'inline'; document.getElementById('2311.07999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07999v2-abstract-full" style="display: none;"> Polarization of the cosmic microwave background (CMB) can help probe the fundamental physics behind cosmic inflation via the measurement of primordial $B$ modes. As this requires exquisite control over instrumental systematics, some next-generation CMB experiments plan to use a rotating half-wave plate (HWP) as polarization modulator. However, the HWP non-idealities, if not properly treated in the analysis, can result in additional systematics. In this paper, we present a simple, semi-analytical end-to-end model to propagate the HWP non-idealities through the macro-steps that make up any CMB experiment (observation of multi-frequency maps, foreground cleaning, and power spectra estimation) and compute the HWP-induced bias on the estimated tensor-to-scalar ratio, $r$. We find that the effective polarization efficiency of the HWP suppresses the polarization signal, leading to an underestimation of $r$. Laboratory measurements of the properties of the HWP can be used to calibrate this effect, but we show how gain calibration of the CMB temperature can also be used to partially mitigate it. On the basis of our findings, we present a set of recommendations for the HWP design that can help maximize the benefits of gain calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07999v2-abstract-full').style.display = 'none'; document.getElementById('2311.07999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages + appendices and bibliography, 7 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP05(2024)018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13219">arXiv:2210.13219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13219">pdf</a>, <a href="https://arxiv.org/format/2210.13219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02846-1">10.1007/s10909-022-02846-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vibration characteristics of a continuously rotating superconducting magnetic bearing and potential influence to TES and SQUID </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sugiyama%2C+S">Shinya Sugiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoshino%2C+Y">Yurika Hoshino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katsuda%2C+S">Satoru Katsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+K">Kunimoto Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+K">Kosuke Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tashiro%2C+M">Makoto Tashiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Terada%2C+Y">Yukikatsu Terada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13219v1-abstract-short" style="display: inline;"> We measured the vibration of a prototype superconducting magnetic bearing (SMB) operating at liquid nitrogen temperature. This prototype system was designed as a breadboard model for LiteBIRD low-frequency telescope (LFT) polarization modulator unit. We set an upper limit of the vibration amplitude at $36~\mathrm{渭m}$ at the rotational synchronous frequency. During the rotation, the amplitude of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13219v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13219v1-abstract-full" style="display: none;"> We measured the vibration of a prototype superconducting magnetic bearing (SMB) operating at liquid nitrogen temperature. This prototype system was designed as a breadboard model for LiteBIRD low-frequency telescope (LFT) polarization modulator unit. We set an upper limit of the vibration amplitude at $36~\mathrm{渭m}$ at the rotational synchronous frequency. During the rotation, the amplitude of the magnetic field produced varies. From this setup, we compute the static and AC amplitude of the magnetic fields produced by the SMB magnet at the location of the LFT focal plane as $0.24~\mathrm{G}$ and $3\times10^{-5}$$~\mathrm{G}$, respectively. From the AC amplitude, we compute TES critical temperature variation of $7\times10^{-8}$$~\mathrm{K}$ and fractional change of the SQUID flux is $未桅/桅_0|_{ac}=3.1\times10^{-5}$. The mechanical vibration can be also estimated to be $3.6\times 10^{-2}$$~\mathrm{N}$ at the rotation mechanism location. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13219v1-abstract-full').style.display = 'none'; document.getElementById('2210.13219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, accepted for publication in Journal of Low Temperature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2022): 1-9 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03673">arXiv:2208.03673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03673">pdf</a>, <a href="https://arxiv.org/format/2208.03673">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Testbed preparation of a small prototype polarization modulator for LiteBIRD low-frequency telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+T+D">Thuong D. Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasebe%2C+T">Takashi Hasebe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+K">Kunimoto Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iida%2C+T">Teruhito Iida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoshino%2C+Y">Yurika Hoshino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sugiyama%2C+S">Shinya Sugiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ishino%2C+H">Hirokazu Ishino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03673v1-abstract-short" style="display: inline;"> LiteBIRD is the Cosmic Microwave Background (CMB) radiation polarization satellite mission led by ISAS/JAXA. The main scientific goal is to search for primordial gravitational wave signals generated from the inflation epoch of the Universe. LiteBIRD telescopes employ polarization modulation units (PMU) using continuously rotating half-wave plates (HWP). The PMU is a crucial component to reach unpr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03673v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03673v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03673v1-abstract-full" style="display: none;"> LiteBIRD is the Cosmic Microwave Background (CMB) radiation polarization satellite mission led by ISAS/JAXA. The main scientific goal is to search for primordial gravitational wave signals generated from the inflation epoch of the Universe. LiteBIRD telescopes employ polarization modulation units (PMU) using continuously rotating half-wave plates (HWP). The PMU is a crucial component to reach unprecedented sensitivity by mitigating systematic effects, including 1/f noise. We have developed a 1/10 scale prototype PMU of the LiteBIRD LFT, which has a 5-layer achromatic HWP and a diameter of 50 mm, spanning the observational frequency range of 34-161 GHz. The HWP is mounted on a superconducting magnetic bearing (SMB) as a rotor and levitated by a high-temperature superconductor as a stator. In this study, the entire PMU system is cooled down to 10 K in the cryostat chamber by a 4-K Gifford-McMahon (GM) cooler. We propagate an incident coherent millimeter-wave polarized signal throughout the rotating HWP and detect the modulated signal. We study the modulated optical signal and any rotational synchronous signals from the rotation mechanism. We describe the testbed system and the preliminary data acquired from this setup. This testbed is built to integrate the broadband HWP PMU and evaluate the potential systematic effects in the optical data. This way, we can plan with a full-scale model, which takes a long time for preparation and testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03673v1-abstract-full').style.display = 'none'; document.getElementById('2208.03673v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02952">arXiv:2208.02952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02952">pdf</a>, <a href="https://arxiv.org/format/2208.02952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-023-02939-5">10.1007/s10909-023-02939-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling TES non-linearity induced by a rotating HWP in a CMB polarimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+K">Kunimoto Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sugiyama%2C+S">Shinya Sugiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoshino%2C+Y">Yurika Hoshino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02952v1-abstract-short" style="display: inline;"> Most upcoming CMB experiments are planning to deploy between a few thousand and a few hundred thousand TES bolometers in order to drastically increase sensitivity and unveil the B-mode signal. Differential systematic effects and $1/f$ noise are two of the challenges that need to be overcome in order to achieve this result. In recent years, rotating Half-Wave Plates have become increasingly more po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02952v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02952v1-abstract-full" style="display: none;"> Most upcoming CMB experiments are planning to deploy between a few thousand and a few hundred thousand TES bolometers in order to drastically increase sensitivity and unveil the B-mode signal. Differential systematic effects and $1/f$ noise are two of the challenges that need to be overcome in order to achieve this result. In recent years, rotating Half-Wave Plates have become increasingly more popular as a solution to mitigate these effects, especially for those experiments that are targeting the largest angular scales. However, other effects may appear when a rotating HWP is being employed. In this paper we focus on HWP synchronous signals, which are due to intensity to polarization leakage induced by a rotating cryogenic multi-layer sapphire HWP employed as the first optical element of the telescope system. We use LiteBIRD LFT as a case study and we analyze the interaction between these spurious signals and TES bolometers, to determine whether this signal can contaminate the bolometer response. We present the results of simulations for a few different TES model assumptions and different spurious signal amplitudes. Modelling these effects is fundamental to find what leakage level can be tolerated and minimize non-linearity effects of the bolometer response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02952v1-abstract-full').style.display = 'none'; document.getElementById('2208.02952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, submitted to the Journal of Low Temperature Physics: LTD19 Special Edition</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13292">arXiv:2207.13292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13292">pdf</a>, <a href="https://arxiv.org/format/2207.13292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2630091">10.1117/12.2630091 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing magnetic interference between TES detectors and the telescope environment for future CMB satellite missions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+T+D">Thuong Duc Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasebe%2C+T">Takashi Hasebe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoshino%2C+Y">Yurika Hoshino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+K">Kunimoto Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A">Adrian Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sugiyama%2C+S">Shinya Sugiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raum%2C+C">Christopher Raum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westbrook%2C+B">Benjamin Westbrook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13292v2-abstract-short" style="display: inline;"> The two most common components of several upcoming CMB experiments are large arrays of superconductive TES (Transition-Edge Sensor) detectors and polarization modulator units, e.g. continuously-rotating Half-Wave Plates (HWP). A high detector count is necessary to increase the instrument raw sensitivity, however past experiments have shown that systematic effects are becoming one of the main limit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13292v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13292v2-abstract-full" style="display: none;"> The two most common components of several upcoming CMB experiments are large arrays of superconductive TES (Transition-Edge Sensor) detectors and polarization modulator units, e.g. continuously-rotating Half-Wave Plates (HWP). A high detector count is necessary to increase the instrument raw sensitivity, however past experiments have shown that systematic effects are becoming one of the main limiting factors to reach the sensitivity required to detect primordial $B$-modes. Therefore, polarization modulators have become popular in recent years to mitigate several systematic effects. Polarization modulators based on HWP technologies require a rotating mechanism to spin the plate and modulate the incoming polarized signal. In order to minimize heat dissipation from the rotating mechanism, which is a stringent requirement particularly for a space mission like $LiteBIRD$, we can employ a superconductive magnetic bearing to levitate the rotor and achieve contactless rotation. A disadvantage of this technique is the associated magnetic fields generated by those systems. In this paper we investigate the effects on a TES detector prototype and find no detectable $T_c$ variations due to an applied constant (DC) magnetic field, and a non-zero TES response to varying (AC) magnetic fields. We quantify a worst-case TES responsivity to the applied AC magnetic field of $\sim10^5$ pA/G, and give a preliminary interpretation of the pick-up mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13292v2-abstract-full').style.display = 'none'; document.getElementById('2207.13292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, 2 tables, SPIE Astronomical Telescopes + Instrumentation 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc.SPIE Int.Soc.Opt.Eng. 12190 (2022) 1107 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02773">arXiv:2202.02773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02773">pdf</a>, <a href="https://arxiv.org/format/2202.02773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac150">10.1093/ptep/ptac150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=LiteBIRD+Collaboration"> LiteBIRD Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bautista%2C+L">L. Bautista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brilenkov%2C+M">M. Brilenkov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carones%2C+A">A. Carones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casas%2C+F+J">F. J. Casas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catalano%2C+A">A. Catalano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+V">V. Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheung%2C+K">K. Cheung</a> , et al. (166 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02773v3-abstract-short" style="display: inline;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'inline'; document.getElementById('2202.02773v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02773v3-abstract-full" style="display: none;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$渭$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02773v3-abstract-full').style.display = 'none'; document.getElementById('2202.02773v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">155 pages, accepted for publication in PTEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15319">arXiv:2109.15319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.15319">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.444848">10.1364/OE.444848 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Large Diameter Millimeter-Wave Low-Pass Filter Made of Alumina with Laser Ablated Anti-Reflection Coating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wen%2C+Q">Qi Wen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cray%2C+S">Scott Cray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasebe%2C+T">Takashi Hasebe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iida%2C+T">Teruhito Iida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">Nobuhiko Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konishi%2C+K">Kuniaki Konishi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuwata-Gonokami%2C+M">Makoto Kuwata-Gonokami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mio%2C+N">Norikatsu Mio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+H">Haruyuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Yuki Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yamada%2C+R">Ryohei Yamada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yumoto%2C+J">Junji Yumoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15319v2-abstract-short" style="display: inline;"> We fabricated a 302 mm diameter low-pass filter made of alumina that has an anti-reflection coating (ARC) made with laser-ablated sub-wavelength structures (SWS). The filter has been integrated into and is operating with the MUSTANG2 instrument, which is coupled to the Green Bank Telescope. The average transmittance of the filter in the MUSTANG2 operating band between 75 and 105 GHz is 98%. Reflec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15319v2-abstract-full').style.display = 'inline'; document.getElementById('2109.15319v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15319v2-abstract-full" style="display: none;"> We fabricated a 302 mm diameter low-pass filter made of alumina that has an anti-reflection coating (ARC) made with laser-ablated sub-wavelength structures (SWS). The filter has been integrated into and is operating with the MUSTANG2 instrument, which is coupled to the Green Bank Telescope. The average transmittance of the filter in the MUSTANG2 operating band between 75 and 105 GHz is 98%. Reflective loss due to the ARC is 1%. The difference in transmission between the s- and p-polarization states is less than 1%. To within 1% accuracy we observe no variance in these results when transmission is measured in six independent filter spatial locations. The alumina filter replaced a prior MUSTANG2 Teflon filter. Data taken with the filter heat sunk to its nominal 40 K stage show performance consistent with expectations: a reduction of about 50% in filters-induced optical power load on the 300 mK stage, and in in-band optical loading on the detectors. It has taken less than 4 days to laser-ablate the SWS on both sides of the alumina disk. This is the first report of an alumina filter with SWS ARC deployed with an operating instrument, and the first demonstration of a large area fabrication of SWS with laser ablation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15319v2-abstract-full').style.display = 'none'; document.getElementById('2109.15319v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version reflects the published version; 21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express (2021), Volume 29, #25/6, Pg 41745 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06974">arXiv:2103.06974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06974">pdf</a>, <a href="https://arxiv.org/format/2103.06974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optlastec.2021.107207">10.1016/j.optlastec.2021.107207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Picosecond Laser Ablation of Millimeter-Wave Subwavelength Structures on Alumina and Sapphire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wen%2C+Q">Qi Wen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fadeeva%2C+E">Elena Fadeeva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+J">J眉rgen Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">Ryota Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+K">Karl Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06974v1-abstract-short" style="display: inline;"> We use a 1030 nm laser with 7 ps pulse duration and average power up to 100 W to ablate pyramid-shape subwavelength structures (SWS) on alumina and sapphire. The SWS give an effective and cryogenically robust anti-reflection coating in the millimeter-wave band. We demonstrate average ablation rate of up to 34 mm$^3$/min and 20 mm$^3$/min for structure heights of 900 $渭$m and 750 $渭$m on alumina an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06974v1-abstract-full').style.display = 'inline'; document.getElementById('2103.06974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06974v1-abstract-full" style="display: none;"> We use a 1030 nm laser with 7 ps pulse duration and average power up to 100 W to ablate pyramid-shape subwavelength structures (SWS) on alumina and sapphire. The SWS give an effective and cryogenically robust anti-reflection coating in the millimeter-wave band. We demonstrate average ablation rate of up to 34 mm$^3$/min and 20 mm$^3$/min for structure heights of 900 $渭$m and 750 $渭$m on alumina and sapphire, respectively. These rates are a factor of 34 and 9 higher than reported previously on similar structures. We propose a model that relates structure height to cumulative laser fluence. The model depends on the absorption length $未$, which is assumed to depend on peak fluence, and on the threshold fluence $蠁_{th}$. Using a best-fit procedure we find an average $未= 630$ nm and 650 nm, and $蠁_{th} = 2.0^{+0.5}_{-0.5}$ J/cm$^2$ and $2.3^{+0.1}_{-0.1}$ J/cm$^2$ for alumina and sapphire, respectively, for peak fluence values between 30 and 70 J/cm$^{2}$. With the best fit values, the model and data values for cumulative fluence agree to within 10%. Given inputs for $未$ and $蠁_{th}$ the model is used to predict average ablation rates as a function of SWS height and average laser power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06974v1-abstract-full').style.display = 'none'; document.getElementById('2103.06974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, submitted to Optics &amp; Laser Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics &amp; Laser Technology, Volume 142, October 2021, 107207 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00809">arXiv:2102.00809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.00809">pdf</a>, <a href="https://arxiv.org/format/2102.00809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562243">10.1117/12.2562243 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Montier%2C+L">L. Montier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mot%2C+B">B. Mot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maffei%2C+B">B. Maffei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pisano%2C+G">G. Pisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Columbro%2C+F">F. Columbro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henrot-Versill%C3%A9%2C+S">S. Henrot-Versill茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montgomery%2C+J">J. Montgomery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prouv%C3%A9%2C+T">T. Prouv茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Russell%2C+M">M. Russell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savini%2C+G">G. Savini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stever%2C+S">S. Stever</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+K+L">K. L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsujimoto%2C+M">M. Tsujimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">C. Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westbrook%2C+B">B. Westbrook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00809v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00809v1-abstract-full').style.display = 'inline'; document.getElementById('2102.00809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00809v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34GHz to 448GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium- and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89-224GHz) and the High-Frequency Telescope (166-448GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00809v1-abstract-full').style.display = 'none'; document.getElementById('2102.00809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. of SPIE Vol. 11443 14432G (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12449">arXiv:2101.12449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.12449">pdf</a>, <a href="https://arxiv.org/format/2101.12449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2563050">10.1117/12.2563050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LiteBIRD: JAXA&#39;s new strategic L-class mission for all-sky surveys of cosmic microwave background polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hazumi%2C+M">M. Hazumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banjeri%2C+R">R. Banjeri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bermejo%2C+J">J. Bermejo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonis%2C+J">J. Bonis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bounissou%2C+S">S. Bounissou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brilenkov%2C+M">M. Brilenkov</a> , et al. (213 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12449v1-abstract-short" style="display: inline;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD plans to map the cosmic microwave backgrou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12449v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12449v1-abstract-full" style="display: none;"> LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA&#39;s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12449v1-abstract-full').style.display = 'none'; document.getElementById('2101.12449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. of SPIE Vol. 11443 114432F (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06342">arXiv:2101.06342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.06342">pdf</a>, <a href="https://arxiv.org/format/2101.06342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561841">10.1117/12.2561841 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sekimoto%2C+Y">Y. Sekimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auguste%2C+D">D. Auguste</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bermejo%2C+J">J. Bermejo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonis%2C+J">J. Bonis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bounissou%2C+S">S. Bounissou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brilenkov%2C+M">M. Brilenkov</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06342v1-abstract-short" style="display: inline;"> LiteBIRD has been selected as JAXA&#39;s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06342v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06342v1-abstract-full" style="display: none;"> LiteBIRD has been selected as JAXA&#39;s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD&#39;s onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06342v1-abstract-full').style.display = 'none'; document.getElementById('2101.06342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIE proceedings 1145310 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.15262">arXiv:2007.15262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.15262">pdf</a>, <a href="https://arxiv.org/format/2007.15262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0022765">10.1063/5.0022765 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband, millimeter-wave anti-reflective structures on sapphire ablated with femto-second laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Takaku%2C+R">R. Takaku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">S. Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Imada%2C+H">H. Imada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ishino%2C+H">H. Ishino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katayama%2C+N">N. Katayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+K">K. Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konishi%2C+K">K. Konishi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuwata-Gonokami%2C+M">M. Kuwata-Gonokami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">T. Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitsuda%2C+K">K. Mitsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+H">H. Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakurai%2C+Y">Y. Sakurai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wen%2C+Q">Q. Wen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yamasaki%2C+N+Y">N. Y. Yamasaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+K">K. Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yumoto%2C+J">J. Yumoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.15262v3-abstract-short" style="display: inline;"> We designed, fabricated, and measured anti-reflection coating (ARC) on sapphire that has 116% fractional bandwidth and transmission of at least 97% in the millimeter wave band. The ARC was based on patterning pyramid-like sub-wavelength structures (SWS) using ablation with a 15 W femto-second laser operating at 1030 nm. One side of each of two discs was fabricated with SWS that had a pitch of 0.54&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15262v3-abstract-full').style.display = 'inline'; document.getElementById('2007.15262v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.15262v3-abstract-full" style="display: none;"> We designed, fabricated, and measured anti-reflection coating (ARC) on sapphire that has 116% fractional bandwidth and transmission of at least 97% in the millimeter wave band. The ARC was based on patterning pyramid-like sub-wavelength structures (SWS) using ablation with a 15 W femto-second laser operating at 1030 nm. One side of each of two discs was fabricated with SWS that had a pitch of 0.54 mm and height of 2 mm. The average ablation volume removal rate was 1.6 mm$^{3}$/min. Measurements of the two-disc sandwich show transmission higher than 97% between 43 and 161 GHz. We characterize instrumental polarization (IP) arising from differential transmission due to asymmetric SWS. We find that with proper alignment of the two disc sandwich RMS IP across the band is predicted to be 0.07% at normal incidence, and less than 0.6% at incidence angles up to 20 degrees. These results indicate that laser ablation of SWS on sapphire and on other hard materials such as alumina is an effective way to fabricate broad-band ARC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15262v3-abstract-full').style.display = 'none'; document.getElementById('2007.15262v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics, 128(22), 225302 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01724">arXiv:2001.01724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01724">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-019-02329-w">10.1007/s10909-019-02329-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated design of the CMB polarization experiment satellite LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sugai%2C+H">H. Sugai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">D. Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+M+L">M. L. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buzzelli%2C+A">A. Buzzelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casas%2C+F+J">F. J. Casas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Challinor%2C+A">A. Challinor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+V">V. Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Y. Chinone</a> , et al. (196 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01724v1-abstract-short" style="display: inline;"> Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA&#39;s H3 rocket. It will ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01724v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01724v1-abstract-full" style="display: none;"> Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA&#39;s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the cosmic microwave background (CMB) by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34GHz and 448GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy&#39;s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5Kelvin for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for three years. An international collaboration between Japan, USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science (ISAS), JAXA selected LiteBIRD as the strategic large mission No. 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01724v1-abstract-full').style.display = 'none'; document.getElementById('2001.01724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal of Low Temperature Physics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics 199, 1107 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06987">arXiv:1801.06987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.06987">pdf</a>, <a href="https://arxiv.org/format/1801.06987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-018-1947-7">10.1007/s10909-018-1947-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LiteBIRD Satellite Mission - Sub-Kelvin Instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">A. Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">D. Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">K. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barron%2C+D">D. Barron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Y. Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+H">H-M. Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curtis%2C+D+W">D. W. Curtis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobbs%2C+M">M. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dominjon%2C+A">A. Dominjon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dotani%2C+T">T. Dotani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ducout%2C+A">A. Ducout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06987v3-abstract-short" style="display: inline;"> Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through B-mode (d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06987v3-abstract-full').style.display = 'inline'; document.getElementById('1801.06987v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06987v3-abstract-full" style="display: none;"> Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through B-mode (divergent-free) polarization pattern embedded in the Cosmic Microwave Background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2,622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The U.S. LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40 GHz to 235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280 GHz to 402 GHz) with three types of single frequency detectors. The detectors will be made with Transition Edge Sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator.The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplidier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06987v3-abstract-full').style.display = 'none'; document.getElementById('1801.06987v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 2 figures Journal of Low Temperature Physics - Special edition - LTD17 Proceeding</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10