CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 229 results for author: <span class="mathjax">Hubmayr, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Hubmayr%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hubmayr, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hubmayr%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hubmayr, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11904">arXiv:2501.11904</a> <span> [<a href="https://arxiv.org/pdf/2501.11904">pdf</a>, <a href="https://arxiv.org/format/2501.11904">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A Measurement of the Largest-Scale CMB E-mode Polarization with CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&query=Appel%2C+J">John Appel</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+M">Michael Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+C">Carol Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+N">Nathan Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Perez%2C+C+M">Carolina Morales Perez</a>, <a href="/search/astro-ph?searchtype=author&query=Parker%2C+L">Lucas Parker</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11904v1-abstract-short" style="display: inline;"> We present measurements of large-scale cosmic microwave background (CMB) E-mode polarization from the Cosmology Large Angular Scale Surveyor (CLASS) 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of $78\,\mathrm{渭K\,arcmin}$, comparable to Planck at similar frequencies (100 and 143 GHz). The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11904v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11904v1-abstract-full" style="display: none;"> We present measurements of large-scale cosmic microwave background (CMB) E-mode polarization from the Cosmology Large Angular Scale Surveyor (CLASS) 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of $78\,\mathrm{渭K\,arcmin}$, comparable to Planck at similar frequencies (100 and 143 GHz). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making non-linearity, being characterized as less than $3\%$. Through cross-correlation with Planck, we detected the cosmic reionization at $99.4\%$ significance and measured the reionization optical depth $蟿=0.053^{+0.018}_{-0.019}$, marking the first ground-based attempt at such a measurement. At intermediate angular scales ($\ell>30$), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck's measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11904v1-abstract-full').style.display = 'none'; document.getElementById('2501.11904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, 3 tables; submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09241">arXiv:2501.09241</a> <span> [<a href="https://arxiv.org/pdf/2501.09241">pdf</a>, <a href="https://arxiv.org/format/2501.09241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Characterization of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeff Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S+R">Simon R Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Koc%2C+M+A">Matthew A. Koc</a>, <a href="/search/astro-ph?searchtype=author&query=Koopman%2C+B+J">Brian J. Koopman</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09241v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT's focal plane, SO will install >62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09241v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09241v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT's focal plane, SO will install >62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the Large Aperture Telescope Receiver (LATR), the largest cryogenic camera ever built to observe the CMB. Here we report on the validation of the LATR in the laboratory and the subsequent dark testing and validation within the LAT. We show that the LATR meets cryogenic, optical, and detector specifications required for high-sensitivity measurements of the CMB. At the time of writing, the LATR is installed in the LAT with six OTs (corresponding to >31,000 detectors), and the LAT mirrors and remaining seven OTs are undergoing development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'none'; document.getElementById('2501.09241v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06890">arXiv:2501.06890</a> <span> [<a href="https://arxiv.org/pdf/2501.06890">pdf</a>, <a href="https://arxiv.org/format/2501.06890">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Measurements of the Temperature and E-mode Polarization of the Cosmic Microwave Background from the Full 500-square-degree SPTpol Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chou%2C+T+-">T. -L. Chou</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Citron%2C+R">R. Citron</a>, <a href="/search/astro-ph?searchtype=author&query=Moran%2C+C+C">C. Corbett Moran</a>, <a href="/search/astro-ph?searchtype=author&query=Crawford%2C+T+M">T. M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M+A">M. A. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">D. Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Everett%2C+W">W. Everett</a>, <a href="/search/astro-ph?searchtype=author&query=Gallicchio%2C+J">J. Gallicchio</a>, <a href="/search/astro-ph?searchtype=author&query=George%2C+E+M">E. M. George</a>, <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+N">N. Gupta</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06890v1-abstract-short" style="display: inline;"> Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50<\ell<8000$. We find the SPTpol datase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06890v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06890v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06890v1-abstract-full" style="display: none;"> Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50<\ell<8000$. We find the SPTpol dataset to be self-consistent, passing several internal consistency tests based on maps, frequency bands, bandpowers, and cosmological parameters. The full SPTpol dataset is well-fit by the $螞CDM$ model, for which we find $H_0=70.48\pm2.16$ km s$^{-1}$ Mpc$^{-1}$ and $惟_m=0.271\pm0.026$, when using only the SPTpol data and a Planck-based prior on the optical depth to reionization. The $螞CDM$ parameter constraints are consistent across the 95 GHz-only, 150 GHz-only, $TE$-only, and $EE$-only data splits. Between the $\ell<1000$ and $\ell>1000$ data splits, the $螞CDM$ parameter constraints are borderline consistent at the $\sim2蟽$ level. This consistency improves when including a parameter $A_L$, the degree of lensing of the CMB inferred from the smearing of acoustic peaks. When marginalized over $A_L$, the $螞CDM$ parameter constraints from SPTpol are consistent with those from Planck. The power spectra presented here are the most sensitive measurements of the lensed CMB damping tail to date for roughly $\ell > 1700$ in $TE$ and $\ell > 2000$ in $EE$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06890v1-abstract-full').style.display = 'none'; document.getElementById('2501.06890v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07765">arXiv:2412.07765</a> <span> [<a href="https://arxiv.org/pdf/2412.07765">pdf</a>, <a href="https://arxiv.org/format/2412.07765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Multiprobe Cosmology from the Abundance of SPT Clusters and DES Galaxy Clustering and Weak Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Grandis%2C+S">S. Grandis</a>, <a href="/search/astro-ph?searchtype=author&query=Krause%2C+E">E. Krause</a>, <a href="/search/astro-ph?searchtype=author&query=To%2C+C">C. To</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&query=Mohr%2C+J+J">J. J. Mohr</a>, <a href="/search/astro-ph?searchtype=author&query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a> , et al. (194 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07765v1-abstract-short" style="display: inline;"> Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy pos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07765v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07765v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07765v1-abstract-full" style="display: none;"> Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements (3$\times$2pt) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining $螞$CDM parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure $惟_\mathrm{m}=0.300\pm0.017$ and $蟽_8=0.797\pm0.026$. Compared to constraints from Planck primary CMB anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ($1.2蟽$) for the two-parameter difference. We further obtain $S_8\equiv蟽_8(惟_\mathrm{m}/0.3)^{0.5}=0.796\pm0.013$ which is lower than the Planck measurement at the $1.6蟽$ level. The combined SPT cluster, DES 3$\times$2pt, and Planck datasets mildly prefer a non-zero positive neutrino mass, with a 95% upper limit $\sum m_谓<0.25~\mathrm{eV}$ on the sum of neutrino masses. Assuming a $w$CDM model, we constrain the dark energy equation of state parameter $w=-1.15^{+0.23}_{-0.17}$ and when combining with Planck primary CMB anisotropies, we recover $w=-1.20^{+0.15}_{-0.09}$, a $1.7蟽$ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07765v1-abstract-full').style.display = 'none'; document.getElementById('2412.07765v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Rev. D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10428">arXiv:2411.10428</a> <span> [<a href="https://arxiv.org/pdf/2411.10428">pdf</a>, <a href="https://arxiv.org/format/2411.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Carter%2C+K">K. Carter</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Corrigan%2C+L">L. Corrigan</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Crystian%2C+S">S. Crystian</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Echter%2C+M">M. Echter</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10428v1-abstract-short" style="display: inline;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10428v1-abstract-full" style="display: none;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'none'; document.getElementById('2411.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21396">arXiv:2410.21396</a> <span> [<a href="https://arxiv.org/pdf/2410.21396">pdf</a>, <a href="https://arxiv.org/format/2410.21396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CCAT: LED Mapping and Characterization of the 280 GHz TiN KID Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Middleton%2C+A">Alicia Middleton</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Walker%2C+S">Samantha Walker</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Burgoyne%2C+J+R">James R. Burgoyne</a>, <a href="/search/astro-ph?searchtype=author&query=Butler%2C+V">Victoria Butler</a>, <a href="/search/astro-ph?searchtype=author&query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&query=Crites%2C+A+T">Abigail T. Crites</a>, <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Patel%2C+D">Darshan Patel</a>, <a href="/search/astro-ph?searchtype=author&query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+E">Ema Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Vaskuri%2C+A">Anna Vaskuri</a>, <a href="/search/astro-ph?searchtype=author&query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M">Michael Vissers</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wheeler%2C+J">Jordan Wheeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21396v1-abstract-short" style="display: inline;"> Prime-Cam, one of the primary instruments for the Fred Young Submillimeter Telescope (FYST) developed by the CCAT Collaboration, will house up to seven instrument modules, with the first operating at 280 GHz. Each module will include three arrays of superconducting microwave kinetic inductance detectors (KIDs). The first KID array fabricated for the 280 GHz module uses titanium-nitride (TiN) as th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21396v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21396v1-abstract-full" style="display: none;"> Prime-Cam, one of the primary instruments for the Fred Young Submillimeter Telescope (FYST) developed by the CCAT Collaboration, will house up to seven instrument modules, with the first operating at 280 GHz. Each module will include three arrays of superconducting microwave kinetic inductance detectors (KIDs). The first KID array fabricated for the 280 GHz module uses titanium-nitride (TiN) as the superconducting material and has 3,456 individual detectors, while the other two arrays use aluminum. This paper presents the design and laboratory characterization of the 280 GHz TiN array, which is cooled below its critical temperature to ~0.1 K and read out over six RF feedlines. LED mapping, a technique for matching the measured resonant frequency of a detector to its physical position, was performed on the array so that the results can be used to lithographically trim the KID capacitors and increase the yield of the array by reducing frequency collisions. We present the methods and results of LED mapping the 280 GHz TiN KID array before deployment on FYST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21396v1-abstract-full').style.display = 'none'; document.getElementById('2410.21396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, submitted to IEEE Transactions on Applied Superconductivity (IEEE TAS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18150">arXiv:2410.18150</a> <span> [<a href="https://arxiv.org/pdf/2410.18150">pdf</a>, <a href="https://arxiv.org/format/2410.18150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Thermal architecture for a cryogenic super-pressure balloon payload: design and development of the Taurus flight cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">Rick Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Durking%2C+M">Malcolm Durking</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Gascard%2C+T+J+L+J">Thomas J. L. J. Gascard</a>, <a href="/search/astro-ph?searchtype=author&query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18150v1-abstract-short" style="display: inline;"> We describe the cryogenic system being developed for Taurus: a super-pressure balloon-borne microwave polarimeter scheduled to fly in 2027. The Taurus cryogenic system consists of a 660L liquid helium cryostat which achieves a base temperature of <100mK with the help of a capillary-fed superfluid tank and a closed cycle dilution refrigerator. The main tank is supported with fiberglass flexures and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18150v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18150v1-abstract-full" style="display: none;"> We describe the cryogenic system being developed for Taurus: a super-pressure balloon-borne microwave polarimeter scheduled to fly in 2027. The Taurus cryogenic system consists of a 660L liquid helium cryostat which achieves a base temperature of <100mK with the help of a capillary-fed superfluid tank and a closed cycle dilution refrigerator. The main tank is supported with fiberglass flexures and is encased in two layers of vapor-cooled shields which allow Taurus to make full use of the extended flight time offered by the super-pressure balloon platform. The Taurus cryostat is projected to hold for over 50 days while weighing under 1000lbs. We present the design, testing, and thermal analysis of the Taurus cryogenic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18150v1-abstract-full').style.display = 'none'; document.getElementById('2410.18150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIE 2024 Conference 13094, Paper 13094-112 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12089">arXiv:2410.12089</a> <span> [<a href="https://arxiv.org/pdf/2410.12089">pdf</a>, <a href="https://arxiv.org/format/2410.12089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12089v3-abstract-short" style="display: inline;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v3-abstract-full').style.display = 'inline'; document.getElementById('2410.12089v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12089v3-abstract-full" style="display: none;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, with a repeatability for each detector pair of $0.02掳$. We show that the relative angles measured using this method are in excellent agreement with those extracted from CMB data. Because the absolute measurement is currently limited by a systematic uncertainty, we do not derive cosmic birefringence constraints from BICEP3 data in this work. Rather, we forecast the sensitivity of BICEP3 sky maps for such analysis. We investigate the relative contributions of instrument noise, lensing, and dust, as well as astrophysical and instrumental systematics. We also explore the constraining power of different angle estimators, depending on analysis choices. We establish that the BICEP3 2-year dataset (2017--2018) has an on-sky sensitivity to the cosmic birefringence angle of $蟽= 0.078掳$, which could be improved to $蟽= 0.055掳$ by adding all of the existing BICEP3 data (through 2023). Furthermore, we emphasize the possibility of using the BICEP3 sky patch as a polarization calibration source for CMB experiments, which with the present data could reach a precision of $0.035掳$. Finally, in the context of inflation searches, we investigate the impact of detector-to-detector variations in polarization angles as they may bias the tensor-to-scalar ratio r. We show that while the effect is expected to remain subdominant to other sources of systematic uncertainty, it can be reliably calibrated using polarization angle measurements such as the ones we present in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v3-abstract-full').style.display = 'none'; document.getElementById('2410.12089v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 Pages, 17 Figures, 6 Tables, as submitted to PRD. Visit bicepkeck.org for figure pdfs/pngs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01940">arXiv:2410.01940</a> <span> [<a href="https://arxiv.org/pdf/2410.01940">pdf</a>, <a href="https://arxiv.org/format/2410.01940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Direct Imaging of Transition-Edge Sensors with Scanning SQUID Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Walker%2C+S">Samantha Walker</a>, <a href="/search/astro-ph?searchtype=author&query=Kaczmarek%2C+A">Austin Kaczmarek</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+D">Douglas Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+K">Kelsey Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Swetz%2C+D">Daniel Swetz</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Nowack%2C+K+C">Katja C. Nowack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01940v1-abstract-short" style="display: inline;"> Significant advancements have been made in understanding the physics of transition-edge sensors (TESs) over the past decade. However, key questions remain, particularly a detailed understanding of the current-dependent resistance of these detectors when biased within their superconducting transition. We use scanning superconducting quantum interference device (SQUID) microscopy (SSM) to image the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01940v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01940v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01940v1-abstract-full" style="display: none;"> Significant advancements have been made in understanding the physics of transition-edge sensors (TESs) over the past decade. However, key questions remain, particularly a detailed understanding of the current-dependent resistance of these detectors when biased within their superconducting transition. We use scanning superconducting quantum interference device (SQUID) microscopy (SSM) to image the local diamagnetic response of aluminum-manganese alloy (Al-Mn) transition-edge sensors (TESs) near their critical temperature of approximately 175 mK. By doing so, we gain insights into how the device dimensions influence TES transition width, which in turn affects device operation and informs optimal device design. Our images reveal that the Al-Mn thin film near the niobium (Nb) leads exhibits an excess diamagnetic response at temperatures several milli-Kelvin (mK) higher than the bulk of the film farther from the contacts. A possible origin of this behavior is a longitudinal proximity effect between the Nb and Al-Mn where the TES acts as a weak link between superconducting leads. We discuss how this effect shapes the temperature dependence of the resistance as the spacing between the leads decreases. This work demonstrates that magnetic imaging with SSM is a powerful tool for local characterization of superconducting detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01940v1-abstract-full').style.display = 'none'; document.getElementById('2410.01940v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, Applied Superconductivity Conference (ASC 2024) proceedings, submitted to IEEE Transactions on Applied Superconductivity (IEEE TAS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16440">arXiv:2409.16440</a> <span> [<a href="https://arxiv.org/pdf/2409.16440">pdf</a>, <a href="https://arxiv.org/format/2409.16440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Calibration Measurements of the BICEP3 and BICEP Array CMB Polarimeters from 2017 to 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">Christos Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">Clara Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">Colin A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">Hans Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">Victor Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">James R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">Michael Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari Jozef Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">Edward Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">Lionel Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">Miranda Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">Brodi D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">Antonio Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16440v1-abstract-short" style="display: inline;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16440v1-abstract-full" style="display: none;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'none'; document.getElementById('2409.16440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 1 table, Proceedings paper SPIE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02296">arXiv:2409.02296</a> <span> [<a href="https://arxiv.org/pdf/2409.02296">pdf</a>, <a href="https://arxiv.org/format/2409.02296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Development of the 220/270 GHz Receiver of BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Nakato%2C+Y">Y. Nakato</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cantrall%2C+B">B. Cantrall</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02296v1-abstract-short" style="display: inline;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02296v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02296v1-abstract-full" style="display: none;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The 220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford University and is scheduled to deploy to the South Pole during the 2024--2025 austral summer. Here, we will provide an overview of this high-frequency receiver and discuss the integration status and test results as it is being commissioned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'none'; document.getElementById('2409.02296v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02271">arXiv:2409.02271</a> <span> [<a href="https://arxiv.org/pdf/2409.02271">pdf</a>, <a href="https://arxiv.org/format/2409.02271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3020507">10.1117/12.3020507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CCAT: Nonlinear effects in 280 GHz aluminum kinetic inductance detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Burgoyne%2C+J+R">James R. Burgoyne</a>, <a href="/search/astro-ph?searchtype=author&query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Crites%2C+A+T">Abigail T. Crites</a>, <a href="/search/astro-ph?searchtype=author&query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Middleton%2C+A+M">Alicia M. Middleton</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Nikola%2C+T">Thomas Nikola</a>, <a href="/search/astro-ph?searchtype=author&query=Patel%2C+D">Darshan Patel</a>, <a href="/search/astro-ph?searchtype=author&query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+E">Ema Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Stacey%2C+G+J">Gordon J. Stacey</a>, <a href="/search/astro-ph?searchtype=author&query=Vaskuri%2C+A">Anna Vaskuri</a>, <a href="/search/astro-ph?searchtype=author&query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M">Michael Vissers</a>, <a href="/search/astro-ph?searchtype=author&query=Walker%2C+S">Samantha Walker</a>, <a href="/search/astro-ph?searchtype=author&query=Wheeler%2C+J">Jordan Wheeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02271v1-abstract-short" style="display: inline;"> Prime-Cam, a first-generation science instrument for the Atacama-based Fred Young Submillimeter Telescope, is being built by the CCAT Collaboration to observe at millimeter and submillimeter wavelengths using kinetic inductance detectors (KIDs). Prime-Cam's 280 GHz instrument module will deploy with two aluminum-based KID arrays and one titanium nitride-based KID array, totaling approximately 10,0… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02271v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02271v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02271v1-abstract-full" style="display: none;"> Prime-Cam, a first-generation science instrument for the Atacama-based Fred Young Submillimeter Telescope, is being built by the CCAT Collaboration to observe at millimeter and submillimeter wavelengths using kinetic inductance detectors (KIDs). Prime-Cam's 280 GHz instrument module will deploy with two aluminum-based KID arrays and one titanium nitride-based KID array, totaling approximately 10,000 detectors at the focal plane, all of which have been fabricated and are currently undergoing testing. One complication of fielding large arrays of KIDs under dynamic loading conditions is tuning the detector tone powers to maximize signal-to-noise while avoiding bifurcation due to the nonlinear kinetic inductance. For aluminum-based KIDs, this is further complicated by additional nonlinear effects which couple tone power to resonator quality factors and resonant frequencies. While both nonequilibrium quasiparticle dynamics and two-level system fluctuations have been shown to give rise to qualitatively similar distortions, modeling these effects alongside nonlinear kinetic inductance is inefficient when fitting thousands of resonators on-sky with existing models. For this reason, it is necessary to have a detailed understanding of the nonlinear effects across relevant detector loading conditions, including how they impact on on-sky noise and how to diagnose the detector's relative performance. We present a study of the competing nonlinearities seen in Prime-Cam's 280 GHz aluminum KIDs, with a particular emphasis on the resulting distortions to the resonator line shape and how these impact detector parameter estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02271v1-abstract-full').style.display = 'none'; document.getElementById('2409.02271v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Conference proceedings from SPIE Astronomical Telescopes + Instrumentation (AS24)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 131021O (16 August 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10444">arXiv:2408.10444</a> <span> [<a href="https://arxiv.org/pdf/2408.10444">pdf</a>, <a href="https://arxiv.org/format/2408.10444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> In-Flight Performance of Spider's 280 GHz Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">Elle C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10444v1-abstract-short" style="display: inline;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10444v1-abstract-full" style="display: none;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed in the 95 GHz and 150 GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-23 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. In this work, we describe the instrument's performance during SPIDER's second flight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'none'; document.getElementById('2408.10444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2024, JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09669">arXiv:2407.09669</a> <span> [<a href="https://arxiv.org/pdf/2407.09669">pdf</a>, <a href="https://arxiv.org/format/2407.09669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019247">10.1117/12.3019247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Dark Characterization of the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Randall%2C+M+J">Michael J. Randall</a>, <a href="/search/astro-ph?searchtype=author&query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&query=Sierra%2C+C">Carlos Sierra</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Thornton%2C+R+J">Robert J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09669v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09669v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09669v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'none'; document.getElementById('2407.09669v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01438">arXiv:2407.01438</a> <span> [<a href="https://arxiv.org/pdf/2407.01438">pdf</a>, <a href="https://arxiv.org/format/2407.01438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Instrument Overview of Taurus: A Balloon-borne CMB and Dust Polarization Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">Rick Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Durkin%2C+M">Malcolm Durkin</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Gascard%2C+T+J+L+J">Thomas J. L. J. Gascard</a>, <a href="/search/astro-ph?searchtype=author&query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+S">Steven Li</a>, <a href="/search/astro-ph?searchtype=author&query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01438v2-abstract-short" style="display: inline;"> Taurus is a balloon-borne cosmic microwave background (CMB) experiment optimized to map the E-mode polarization and Galactic foregrounds at the largest angular scales ($\ell$ $\lt$ 30) and improve measurements of the optical depth to reionization ($蟿$). This will pave the way for improved measurements of the sum of neutrino masses in combination with high-resolution CMB data while also testing the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01438v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01438v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01438v2-abstract-full" style="display: none;"> Taurus is a balloon-borne cosmic microwave background (CMB) experiment optimized to map the E-mode polarization and Galactic foregrounds at the largest angular scales ($\ell$ $\lt$ 30) and improve measurements of the optical depth to reionization ($蟿$). This will pave the way for improved measurements of the sum of neutrino masses in combination with high-resolution CMB data while also testing the $螞CDM$ model on large angular scales and providing high-frequency maps of polarized dust foregrounds to the CMB community. These measurements take advantage of the low-loading environment found in the stratosphere and are enabled by NASA's super-pressure balloon platform, which provides access to 70% of the sky with a launch from Wanaka, New Zealand. Here we describe a general overview of Taurus, with an emphasis on the instrument design. Taurus will employ more than 10,000 100 mK transition edge sensor bolometers distributed across two low-frequency (150, 220 GHz) and one high-frequency (280, 350 GHz) dichroic receivers. The liquid helium cryostat housing the detectors and optics is supported by a lightweight gondola. The payload is designed to meet the challenges in mass, power, and thermal control posed by the super-pressure platform. The instrument and scan strategy are optimized for rigorous control of instrumental systematics, enabling high-fidelity linear polarization measurements on the largest angular scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01438v2-abstract-full').style.display = 'none'; document.getElementById('2407.01438v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11992">arXiv:2406.11992</a> <span> [<a href="https://arxiv.org/pdf/2406.11992">pdf</a>, <a href="https://arxiv.org/format/2406.11992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/09/061">10.1088/1475-7516/2024/09/061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling optical systematics for the Taurus CMB experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Gascard%2C+T">Thomas Gascard</a>, <a href="/search/astro-ph?searchtype=author&query=Gibbs%2C+S+M">Sho M. Gibbs</a>, <a href="/search/astro-ph?searchtype=author&query=Gourapura%2C+S">Suren Gourapura</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=May%2C+J+L">Jared L. May</a>, <a href="/search/astro-ph?searchtype=author&query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&query=Okun%2C+K">Kate Okun</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+I">Ivan Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Rooney%2C+C">Christopher Rooney</a>, <a href="/search/astro-ph?searchtype=author&query=Tartakovsky%2C+S">Simon Tartakovsky</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11992v2-abstract-short" style="display: inline;"> We simulate a variety of optical systematics for Taurus, a balloon-borne cosmic microwave background (CMB) polarisation experiment, to assess their impact on large-scale E-mode polarisation measurements and constraints of the optical depth to reionisation 蟿. We model a one-month flight of Taurus from Wanaka, New Zealand aboard a super-pressure balloon (SPB). We simulate night-time scans of both th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11992v2-abstract-full').style.display = 'inline'; document.getElementById('2406.11992v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11992v2-abstract-full" style="display: none;"> We simulate a variety of optical systematics for Taurus, a balloon-borne cosmic microwave background (CMB) polarisation experiment, to assess their impact on large-scale E-mode polarisation measurements and constraints of the optical depth to reionisation 蟿. We model a one-month flight of Taurus from Wanaka, New Zealand aboard a super-pressure balloon (SPB). We simulate night-time scans of both the CMB and dust foregrounds in the 150GHz band, one of Taurus's four observing bands. We consider a variety of possible systematics that may affect Taurus's observations, including non-gaussian beams, pointing reconstruction error, and half-wave plate (HWP) non-idealities. For each of these, we evaluate the residual power in the difference between maps simulated with and without the systematic, and compare this to the expected signal level corresponding to Taurus's science goals. Our results indicate that most of the HWP-related systematics can be mitigated to be smaller than sample variance by calibrating with Planck's TT spectrum and using an achromatic HWP model, with a preference for five layers of sapphire to ensure good systematic control. However, additional beam characterization will be required to mitigate far-sidelobe pickup from dust on larger scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11992v2-abstract-full').style.display = 'none'; document.getElementById('2406.11992v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 tables, 7 figures, this version as published in JCAP after minor revisions to v1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP09(2024)061 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06828">arXiv:2406.06828</a> <span> [<a href="https://arxiv.org/pdf/2406.06828">pdf</a>, <a href="https://arxiv.org/format/2406.06828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CCAT: Comparisons of 280 GHz TiN and Al Kinetic Inductance Detector Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Burgoyne%2C+J+R">James R. Burgoyne</a>, <a href="/search/astro-ph?searchtype=author&query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Groppi%2C+C">Christopher Groppi</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Matthewson%2C+J">Justin Matthewson</a>, <a href="/search/astro-ph?searchtype=author&query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&query=Middleton%2C+A">Alicia Middleton</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Nikola%2C+T">Thomas Nikola</a>, <a href="/search/astro-ph?searchtype=author&query=Sinclair%2C+A+K">Adrian K. Sinclair</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+E">Ema Smith</a>, <a href="/search/astro-ph?searchtype=author&query=van+Lanen%2C+J">Jeff van Lanen</a>, <a href="/search/astro-ph?searchtype=author&query=Vaskuri%2C+A">Anna Vaskuri</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06828v1-abstract-short" style="display: inline;"> The CCAT Collaboration's six-meter Fred Young Submillimeter Telescope is scheduled to begin observing in the Chilean Atacama in 2025, targeting a variety of science goals throughout cosmic history. Prime-Cam is a 1.8-meter diameter cryostat that will host up to seven independent instrument modules designed for simultaneous spectroscopic and broadband, polarimetric surveys at millimeter to submilli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06828v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06828v1-abstract-full" style="display: none;"> The CCAT Collaboration's six-meter Fred Young Submillimeter Telescope is scheduled to begin observing in the Chilean Atacama in 2025, targeting a variety of science goals throughout cosmic history. Prime-Cam is a 1.8-meter diameter cryostat that will host up to seven independent instrument modules designed for simultaneous spectroscopic and broadband, polarimetric surveys at millimeter to submillimeter wavelengths. The first of these instrument modules, the 280 GHz module, will include ${\sim}$10,000 kinetic inductance detectors (KIDs) across three arrays. While the first array was fabricated out of tri-layer TiN/Ti/TiN, the other two arrays were fabricated out of a single layer of Al. This combination of materials within the same instrument provides a unique opportunity to directly compare the performance and noise properties of two different detector materials that are seeing increasing use within the field. We present preliminary comparisons here based on lab testing, along with a discussion of the potential impacts on operation when observing and translating raw data to science-grade maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06828v1-abstract-full').style.display = 'none'; document.getElementById('2406.06828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, conference proceedings submitted to the Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02724">arXiv:2406.02724</a> <span> [<a href="https://arxiv.org/pdf/2406.02724">pdf</a>, <a href="https://arxiv.org/format/2406.02724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The LiteBIRD mission to explore cosmic inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ghigna%2C+T">T. Ghigna</a>, <a href="/search/astro-ph?searchtype=author&query=Adler%2C+A">A. Adler</a>, <a href="/search/astro-ph?searchtype=author&query=Aizawa%2C+K">K. Aizawa</a>, <a href="/search/astro-ph?searchtype=author&query=Akamatsu%2C+H">H. Akamatsu</a>, <a href="/search/astro-ph?searchtype=author&query=Akizawa%2C+R">R. Akizawa</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">E. Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+A">A. Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Basyrov%2C+A">A. Basyrov</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">S. Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bortolami%2C+M">M. Bortolami</a>, <a href="/search/astro-ph?searchtype=author&query=Bouchet%2C+F">F. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&query=Brinckmann%2C+T">T. Brinckmann</a>, <a href="/search/astro-ph?searchtype=author&query=Campeti%2C+P">P. Campeti</a>, <a href="/search/astro-ph?searchtype=author&query=Carinos%2C+E">E. Carinos</a>, <a href="/search/astro-ph?searchtype=author&query=Carones%2C+A">A. Carones</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02724v1-abstract-short" style="display: inline;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan's fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02724v1-abstract-full" style="display: none;"> LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan's fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2\,$渭$K-arcmin and a resolution of 0.5$^\circ$ at 100\,GHz. Its primary goal is to measure the tensor-to-scalar ratio $r$ with an uncertainty $未r = 0.001$, including systematic errors and margin. If $r \geq 0.01$, LiteBIRD expects to achieve a $>5蟽$ detection in the $\ell=$2-10 and $\ell=$11-200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD's scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD's synergies with concurrent CMB projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02724v1-abstract-full').style.display = 'none'; document.getElementById('2406.02724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 1 table, SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01844">arXiv:2406.01844</a> <span> [<a href="https://arxiv.org/pdf/2406.01844">pdf</a>, <a href="https://arxiv.org/format/2406.01844">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019196">10.1117/12.3019196 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Studies of Detector Yield and Readout Noise From the First Large-Scale Deployment of Microwave Multiplexing at the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01844v1-abstract-short" style="display: inline;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile's Atacama Desert. During its survey, the observatory's small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01844v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01844v1-abstract-full" style="display: none;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile's Atacama Desert. During its survey, the observatory's small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes' receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory's large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'none'; document.getElementById('2406.01844v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 1 table. To be presented at SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII. 1310223 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19469">arXiv:2405.19469</a> <span> [<a href="https://arxiv.org/pdf/2405.19469">pdf</a>, <a href="https://arxiv.org/format/2405.19469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining Inflation with the BICEP/Keck CMB Polarization Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B">B. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19469v2-abstract-short" style="display: inline;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19469v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19469v2-abstract-full" style="display: none;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, $r$, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on $r$, $蟽(r)=0.009$ ($r_{0.05}<0.036, 95\%$ C.L.) using data through the 2018 observing season ("BK18"), the BICEP/$\textit{Keck}$ program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the "BK18" result before discussing the program's ongoing efforts, including the deployment and performance of the $\textit{Keck Array}$'s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach $蟽(r) \lesssim 0.003$ using data through the 2027 observing season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'none'; document.getElementById('2405.19469v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Contribution to the 2024 Cosmology session of the 58th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19455">arXiv:2405.19455</a> <span> [<a href="https://arxiv.org/pdf/2405.19455">pdf</a>, <a href="https://arxiv.org/format/2405.19455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Development of the Low Frequency Telescope focal plane detector arrays for LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ghigna%2C+T">Tommaso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/astro-ph?searchtype=author&query=Raum%2C+C">Christopher Raum</a>, <a href="/search/astro-ph?searchtype=author&query=Akamatsu%2C+H">Hiroki Akamatsu</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Farias%2C+N">Nicole Farias</a>, <a href="/search/astro-ph?searchtype=author&query=de+Haan%2C+T">Tijmen de Haan</a>, <a href="/search/astro-ph?searchtype=author&query=Halverson%2C+N">Nils Halverson</a>, <a href="/search/astro-ph?searchtype=author&query=Hazumi%2C+M">Masashi Hazumi</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Jaehnig%2C+G">Greg Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Stever%2C+S+L">Samantha L. Stever</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+Y">Yu Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19455v1-abstract-short" style="display: inline;"> LiteBIRD, a forthcoming JAXA mission, aims to accurately study the microwave sky within the 40-400 GHz frequency range divided into 15 distinct nominal bands. The primary objective is to constrain the CMB inflationary signal, specifically the primordial B-modes. LiteBIRD targets the CMB B-mode signal on large angular scales, where the primordial inflationary signal is expected to dominate, with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19455v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19455v1-abstract-full" style="display: none;"> LiteBIRD, a forthcoming JAXA mission, aims to accurately study the microwave sky within the 40-400 GHz frequency range divided into 15 distinct nominal bands. The primary objective is to constrain the CMB inflationary signal, specifically the primordial B-modes. LiteBIRD targets the CMB B-mode signal on large angular scales, where the primordial inflationary signal is expected to dominate, with the goal of reaching a tensor-to-scalar ratio sensitivity of $蟽_r\sim0.001$. LiteBIRD frequency bands will be split among three telescopes, with some overlap between telescopes for better control of systematic effects. Here we report on the development status of the detector arrays for the Low Frequency Telescope (LFT), which spans the 34-161 GHz range, with 12 bands subdivided between four types of trichroic pixels consisting of lenslet-coupled sinuous antennas. The signal from the antenna is bandpass filtered and sensed by AlMn Transition-Edge Sensors (TES). We provide an update on the status of the design and development of LiteBIRD's LFT LF1 (40-60-78 GHz), LF2 (50-68-89 GHz) pixels. We discuss design choices motivated by LiteBIRD scientific goals. In particular we focus on the details of the optimization of the design parameters of the sinuous antenna, on-chip bandpass filters, cross-under and impedance transformers and all the RF components that define the LF1 and LF2 pixel detection chain. We present this work in the context of the technical challenges and physical constraints imposed by the finite size of the instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19455v1-abstract-full').style.display = 'none'; document.getElementById('2405.19455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 1 table, SPIE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06868">arXiv:2405.06868</a> <span> [<a href="https://arxiv.org/pdf/2405.06868">pdf</a>, <a href="https://arxiv.org/format/2405.06868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Pre-deployment Performance of a Large Aperture Telescope Optics Tube in the 90 and 150 GHz Spectral Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sierra%2C+C+E">Carlos E. Sierra</a>, <a href="/search/astro-ph?searchtype=author&query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Lessler%2C+C+S">Claire S. Lessler</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06868v1-abstract-short" style="display: inline;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06868v1-abstract-full" style="display: none;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious new instrument suite, initially comprising three 0.5 m small-aperture telescopes and one 6 m large aperture telescope, is designed using a common combination of new technologies and new implementations to realize an observatory significantly more capable than the previous generation. In this paper, we present the pre-deployment performance of the first mid-frequency "optics tube" which will be fielded on the large aperture telescope with sensitivity to the 90 and 150 GHz spectral bands. This optics tube contains lenses, filters, detectors, and readout components, all of which operate at cryogenic temperatures. It is one of seven that form the core of the large aperture telescope receiver in its initial deployment. We describe this optics tube, including details of comprehensive testing methods, new techniques for beam and passband characterization, and its measured performance. The performance metrics include beams, optical efficiency, passbands, and forecasts for the on-sky performance of the system. We forecast a sensitivity that exceeds the requirements of the large aperture telescope with greater than 30% margin in each spectral band, and predict that the instrument will realize diffraction-limited performance and the expected detector passbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'none'; document.getElementById('2405.06868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05550">arXiv:2405.05550</a> <span> [<a href="https://arxiv.org/pdf/2405.05550">pdf</a>, <a href="https://arxiv.org/format/2405.05550">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Design, integration, and testing of the small aperture telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Tsan%2C+T">Tran Tsan</a>, <a href="/search/astro-ph?searchtype=author&query=Spisak%2C+J">Jake Spisak</a>, <a href="/search/astro-ph?searchtype=author&query=Randall%2C+M">Michael Randall</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Seibert%2C+J">Joseph Seibert</a>, <a href="/search/astro-ph?searchtype=author&query=Lashner%2C+J">Jacob Lashner</a>, <a href="/search/astro-ph?searchtype=author&query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+S+M">Sean M. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&query=Bixler%2C+B">Bryce Bixler</a>, <a href="/search/astro-ph?searchtype=author&query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&query=Corbett%2C+L">Lance Corbett</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Day-Weiss%2C+S">Samuel Day-Weiss</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Dow%2C+P+N">Peter N. Dow</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05550v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05550v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05550v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $蟽(r)=0.002$, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35$^\circ$ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and $<0.1$ K focal plane that holds $>12,000$ TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05550v2-abstract-full').style.display = 'none'; document.getElementById('2405.05550v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18225">arXiv:2403.18225</a> <span> [<a href="https://arxiv.org/pdf/2403.18225">pdf</a>, <a href="https://arxiv.org/format/2403.18225">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Production-level Fabrication of the Mid- and Ultra-High-Frequency Wafers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Daniel%2C+D+P">David P. Daniel</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Jaehnig%2C+G+C">Greg C. Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+D">Dante Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&query=Sonka%2C+R+F">Rita F. Sonka</a>, <a href="/search/astro-ph?searchtype=author&query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18225v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background instrumentation suite in the Atacama Desert of Chile. More than 65,000 polarization-sensitive transition-edge sensor (TES) bolometers will be fielded in the frequency range spanning 27 to 280 GHz, with three separate dichroic designs. The mid-frequency 90/150 GHz and ultra-high-frequency 220/280 GHz detector arrays, fabricated at NIST, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18225v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18225v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18225v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background instrumentation suite in the Atacama Desert of Chile. More than 65,000 polarization-sensitive transition-edge sensor (TES) bolometers will be fielded in the frequency range spanning 27 to 280 GHz, with three separate dichroic designs. The mid-frequency 90/150 GHz and ultra-high-frequency 220/280 GHz detector arrays, fabricated at NIST, account for 39 of 49 total detector modules and implement the feedhorn-fed orthomode transducer (OMT)-coupled TES bolometer architecture. A robust production-level fabrication framework for these detector arrays and the monolithic DC/RF routing wafers has been developed, which includes single device prototyping, process monitoring techniques, in-process metrology, and cryogenic measurements of critical film properties. Application of this framework has resulted in timely delivery of nearly 100 total superconducting focal plane components to SO with 88% of detector wafers meeting nominal criteria for integration into a detector module: a channel yield > 95% and Tc in the targeted range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18225v1-abstract-full').style.display = 'none'; document.getElementById('2403.18225v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures. Proceedings of the 20th International Conference on Low Temperature Detectors (LTD20). Submitted to JLTP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02337">arXiv:2403.02337</a> <span> [<a href="https://arxiv.org/pdf/2403.02337">pdf</a>, <a href="https://arxiv.org/format/2403.02337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.121004">10.1103/PhysRevLett.133.121004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Constraints on the Epoch of Reionization Using the non-Gaussianity of the Kinematic Sunyaev-Zel{'}dovich Effect from the South Pole Telescope and {\it Herschel}-SPIRE Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Raghunathan%2C+S">S. Raghunathan</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Balkenhol%2C+L">L. Balkenhol</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Benabed%2C+K">K. Benabed</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J">J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&query=Bryant%2C+L">L. Bryant</a>, <a href="/search/astro-ph?searchtype=author&query=Camphuis%2C+E">E. Camphuis</a>, <a href="/search/astro-ph?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Cecil%2C+T+W">T. W. Cecil</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Chichura%2C+P+M">P. M. Chichura</a>, <a href="/search/astro-ph?searchtype=author&query=Chou%2C+T+-">T. -L. Chou</a>, <a href="/search/astro-ph?searchtype=author&query=Citron%2C+R">R. Citron</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02337v2-abstract-short" style="display: inline;"> We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{'}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $渭{\rm K-arcmin}$ i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02337v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02337v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02337v2-abstract-full" style="display: none;"> We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{'}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $渭{\rm K-arcmin}$ in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at $10.3蟽$ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the \textsc{Agora} simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this non-detection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of $螖z_{\rm re, 50} < 4.5$ (95\% C.L). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, {\it Planck}'s optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02337v2-abstract-full').style.display = 'none'; document.getElementById('2403.02337v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures (3 in main text and 2 in Appendix); Accepted for publication in PRL; Some texts have been moved to Appendix; Minor change in Fig. 2 to include nomalization; Data products and plotting scripts can be downloaded from https://github.com/sriniraghunathan/kSZ_4pt_SPT_SPIRE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 121004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14370">arXiv:2401.14370</a> <span> [<a href="https://arxiv.org/pdf/2401.14370">pdf</a>, <a href="https://arxiv.org/format/2401.14370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/ad2e11">10.1088/1538-3873/ad2e11 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The BLAST Observatory: A Sensitivity Study for Far-IR Balloon-borne Polarimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+BLAST+Observatory+Collaboration"> The BLAST Observatory Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Aguirre%2C+J+E">James E. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">Laura M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Molinari%2C+S">Sergio Molinari</a>, <a href="/search/astro-ph?searchtype=author&query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/astro-ph?searchtype=author&query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/astro-ph?searchtype=author&query=Tucker%2C+C+E">Carole E. Tucker</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Vaskuri%2C+A">Anna Vaskuri</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&query=Wheeler%2C+J+D">Jordan D. Wheeler</a>, <a href="/search/astro-ph?searchtype=author&query=Zannoni%2C+M">Mario Zannoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14370v2-abstract-short" style="display: inline;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'inline'; document.getElementById('2401.14370v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14370v2-abstract-full" style="display: none;"> Sensitive wide-field observations of polarized thermal emission from interstellar dust grains will allow astronomers to address key outstanding questions about the life cycle of matter and energy driving the formation of stars and the evolution of galaxies. Stratospheric balloon-borne telescopes can map this polarized emission at far-infrared wavelengths near the peak of the dust thermal spectrum - wavelengths that are inaccessible from the ground. In this paper we address the sensitivity achievable by a Super Pressure Balloon (SPB) polarimetry mission, using as an example the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) Observatory. By launching from Wanaka, New Zealand, BLAST Observatory can obtain a 30-day flight with excellent sky coverage - overcoming limitations of past experiments that suffered from short flight duration and/or launch sites with poor coverage of nearby star-forming regions. This proposed polarimetry mission will map large regions of the sky at sub-arcminute resolution, with simultaneous observations at 175, 250, and 350 $渭m$, using a total of 8274 microwave kinetic inductance detectors. Here, we describe the scientific motivation for the BLAST Observatory, the proposed implementation, and the forecasting methods used to predict its sensitivity. We also compare our forecasted experiment sensitivity with other facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14370v2-abstract-full').style.display = 'none'; document.getElementById('2401.14370v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PASP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 PASP 136 035003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02075">arXiv:2401.02075</a> <span> [<a href="https://arxiv.org/pdf/2401.02075">pdf</a>, <a href="https://arxiv.org/format/2401.02075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Grandis%2C+S">S. Grandis</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&query=Mohr%2C+J+J">J. J. Mohr</a>, <a href="/search/astro-ph?searchtype=author&query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Bayliss%2C+M">M. Bayliss</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02075v2-abstract-short" style="display: inline;"> We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02075v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02075v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02075v2-abstract-full" style="display: none;"> We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range $0.25-1.78$ over a total sky area of 5,200 deg$^2$. We use DES Year 3 weak-lensing data for 688 clusters with redshifts $z<0.95$ and HST weak-lensing data for 39 clusters with $0.6<z<1.7$. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat $螞$CDM cosmology, and marginalizing over the sum of massive neutrinos, we measure $惟_\mathrm{m}=0.286\pm0.032$, $蟽_8=0.817\pm0.026$, and the parameter combination $蟽_8\,(惟_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016$. Our measurement of $S_8\equiv蟽_8\,\sqrt{惟_\mathrm{m}/0.3}=0.795\pm0.029$ and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by $1.1蟽$. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses $\sum m_谓<0.18$ eV. When additionally allowing the dark energy equation of state parameter $w$ to vary, we obtain $w=-1.45\pm0.31$ from our cluster-based analysis. In combination with Planck data, we measure $w=-1.34^{+0.22}_{-0.15}$, or a $2.2蟽$ difference with a cosmological constant. We use the cluster abundance to measure $蟽_8$ in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the $螞$CDM model fit to Planck primary CMB data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02075v2-abstract-full').style.display = 'none'; document.getElementById('2401.02075v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. D. arXiv v2 corresponds to published article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07512">arXiv:2311.07512</a> <span> [<a href="https://arxiv.org/pdf/2311.07512">pdf</a>, <a href="https://arxiv.org/format/2311.07512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2311.07512">10.21105/astro.2311.07512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy Clusters Discovered via the Thermal Sunyaev-Zel'dovich Effect in the 500-square-degree SPTpol Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Klein%2C+M">M. Klein</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Archipley%2C+M">M. Archipley</a>, <a href="/search/astro-ph?searchtype=author&query=Ashby%2C+M+L+N">M. L. N. Ashby</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Calzadilla%2C+M">M. Calzadilla</a>, <a href="/search/astro-ph?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07512v2-abstract-short" style="display: inline;"> We present a catalog of 689 galaxy cluster candidates detected at significance $尉>4$ via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07512v2-abstract-full').style.display = 'inline'; document.getElementById('2311.07512v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07512v2-abstract-full" style="display: none;"> We present a catalog of 689 galaxy cluster candidates detected at significance $尉>4$ via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with $\sim94\%$ purity. The sample has an approximately redshift-independent mass threshold at redshift $z>0.25$ and spans $1.5 \times 10^{14} < M_{500c} < 9.1 \times 10^{14}$ $M_\odot/h_{70}$ \ and $0.03<z\lesssim1.6$ in mass and redshift, respectively; 21\% of the confirmed clusters are at $z>1$. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered $尉$ by a median value of 0.032, or $\sim0.8\%$ of the $尉=4$ threshold value, and $\sim7\%$ of candidates have a predicted contamination greater than $螖尉= 1$. With the exception of a small number of systems $(<1\%)$, an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/data/sptpol_500d_clusters/index.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07512v2-abstract-full').style.display = 'none'; document.getElementById('2311.07512v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches version accepted by OJA. 19 pages + references, 14 figures, cluster candidate table provided in Appendix. Data products available at https://pole.uchicago.edu/public/data/sptpol_500d_clusters/index.html and an interactive sky server at https://skyviewer.ncsa.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Open Journal of Astrophysics, Volume 7, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05793">arXiv:2311.05793</a> <span> [<a href="https://arxiv.org/pdf/2311.05793">pdf</a>, <a href="https://arxiv.org/format/2311.05793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Crosstalk effects in microwave SQUID multiplexed TES bolometer readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Mates%2C+J+A+B">John A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+C">Cyndia Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05793v2-abstract-short" style="display: inline;"> Transition-edge sensor (TES) bolometers are broadly used for background-limited astrophysical measurements from the far-infrared to mm-waves. Many planned future instruments require increasingly large detector arrays, but their scalability is limited by their cryogenic readout electronics. Microwave SQUID multiplexing offers a highly capable scaling solution through the use of inherently broadband… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05793v2-abstract-full').style.display = 'inline'; document.getElementById('2311.05793v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05793v2-abstract-full" style="display: none;"> Transition-edge sensor (TES) bolometers are broadly used for background-limited astrophysical measurements from the far-infrared to mm-waves. Many planned future instruments require increasingly large detector arrays, but their scalability is limited by their cryogenic readout electronics. Microwave SQUID multiplexing offers a highly capable scaling solution through the use of inherently broadband circuitry, enabling readout of hundreds to thousands of channels per microwave line. As with any multiplexing technique, the channelization mechanism gives rise to electrical crosstalk which must be understood and controlled so as to not degrade the instrument sensitivity. Here, we explore implications relevant for TES bolometer array applications, focusing in particular on upcoming mm-wave observatories such as the Simons Observatory and AliCPT. We model the relative contributions of the various underlying crosstalk mechanisms, evaluate the difference between fixed-tone and tone-tracking readout systems, and discuss ways in which crosstalk nonlinearity will complicate on-sky measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05793v2-abstract-full').style.display = 'none'; document.getElementById('2311.05793v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05583">arXiv:2311.05583</a> <span> [<a href="https://arxiv.org/pdf/2311.05583">pdf</a>, <a href="https://arxiv.org/format/2311.05583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21203/rs.3.rs-3547073/v1">10.21203/rs.3.rs-3547073/v1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Large-Scale Characterization of 90/150 GHz TES Detector Modules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+D">Dante Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&query=Morgan%2C+S">Samuel Morgan</a>, <a href="/search/astro-ph?searchtype=author&query=Seino%2C+Y">Yudai Seino</a>, <a href="/search/astro-ph?searchtype=author&query=Sonka%2C+R+F">Rita F. Sonka</a>, <a href="/search/astro-ph?searchtype=author&query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05583v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background instrumentation suite being deployed in the Atacama Desert in northern Chile. The telescopes within SO use three types of dichroic transition-edge sensor (TES) detector arrays, with the 90 and 150 GHz Mid-Frequency (MF) arrays containing 65% of the approximately 68,000 detectors in the first phase of SO. All of the 26 required MF detecto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05583v2-abstract-full').style.display = 'inline'; document.getElementById('2311.05583v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05583v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background instrumentation suite being deployed in the Atacama Desert in northern Chile. The telescopes within SO use three types of dichroic transition-edge sensor (TES) detector arrays, with the 90 and 150 GHz Mid-Frequency (MF) arrays containing 65% of the approximately 68,000 detectors in the first phase of SO. All of the 26 required MF detector arrays have now been fabricated, packaged into detector modules, and tested in laboratory cryostats. Across all modules, we find an average operable detector yield of 84% and median saturation powers of (2.8, 8.0) pW with interquartile ranges of (1, 2) pW at (90, 150) GHz, respectively, falling within their targeted ranges. We measure TES normal resistances and superconducting transition temperatures on each detector wafer to be uniform within 3%, with overall central values of 7.5 mohm and 165 mK, respectively. Results on time constants, optical efficiency, and noise performance are also presented and are consistent with achieving instrument sensitivity forecasts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05583v2-abstract-full').style.display = 'none'; document.getElementById('2311.05583v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Proceedings of the 20th International Conference on Low Temperature Detectors (LTD20). Accepted to JLTP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04424">arXiv:2311.04424</a> <span> [<a href="https://arxiv.org/pdf/2311.04424">pdf</a>, <a href="https://arxiv.org/format/2311.04424">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> End-to-End Modeling of the TDM Readout System for CMB-S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">David C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D+R">Darcy R. Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&query=Durkin%2C+M">Malcolm Durkin</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeffrey P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Haller%2C+G">Gunther Haller</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Herbst%2C+R">Ryan Herbst</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Irwin%2C+K">Kent Irwin</a>, <a href="/search/astro-ph?searchtype=author&query=Reese%2C+B">Ben Reese</a>, <a href="/search/astro-ph?searchtype=author&query=Sapozhnikov%2C+L">Leonid Sapozhnikov</a>, <a href="/search/astro-ph?searchtype=author&query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04424v2-abstract-short" style="display: inline;"> The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the Cosmic Microwave Background with unprecedented sensitivity. This will require an order of magnitude increase in the 100 mK detector count, which in turn increases the demands on the readout system. The CMB-S4 readout will use time division multiplexing (TDM), taking advantage of faster switches and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04424v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04424v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04424v2-abstract-full" style="display: none;"> The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the Cosmic Microwave Background with unprecedented sensitivity. This will require an order of magnitude increase in the 100 mK detector count, which in turn increases the demands on the readout system. The CMB-S4 readout will use time division multiplexing (TDM), taking advantage of faster switches and amplifiers in order to achieve an increased multiplexing factor. To facilitate the design of the new readout system, we have developed a model that predicts the bandwidth and noise performance of this circuity and its interconnections. This is then used to set requirements on individual components in order to meet the performance necessary for the full system. We present an overview of this model and compare the model results to the performance of both legacy and prototype readout hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04424v2-abstract-full').style.display = 'none'; document.getElementById('2311.04424v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript was submitted to the Journal of Low Temperature Physics as part of the special issue "LTD20", supporting the conference contribution RP-005</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10849">arXiv:2310.10849</a> <span> [<a href="https://arxiv.org/pdf/2310.10849">pdf</a>, <a href="https://arxiv.org/format/2310.10849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-024-03100-6">10.1007/s10909-024-03100-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10849v2-abstract-short" style="display: inline;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10849v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10849v2-abstract-full" style="display: none;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'none'; document.getElementById('2310.10849v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Submitted to Journal of Low Temperature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span> [<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span> [<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 < 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span> [<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05196">arXiv:2304.05196</a> <span> [<a href="https://arxiv.org/pdf/2304.05196">pdf</a>, <a href="https://arxiv.org/format/2304.05196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Namikawa%2C+T">Toshiya Namikawa</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05196v1-abstract-short" style="display: inline;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a prof… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05196v1-abstract-full" style="display: none;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator, together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, $A_{\mathrm{lens}}$, biased by less than $0.2蟽$. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, incurring either a large noise cost, or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests performed on the ACT DR6 data which test for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'none'; document.getElementById('2304.05196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Companion paper to Qu et al and Madhavacheril et al</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04767">arXiv:2303.04767</a> <span> [<a href="https://arxiv.org/pdf/2303.04767">pdf</a>, <a href="https://arxiv.org/format/2303.04767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace599">10.3847/1538-4357/ace599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Systematic Transient Search of 3-Day Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04767v1-abstract-short" style="display: inline;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04767v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04767v1-abstract-full" style="display: none;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others were previously published. Four of these events occur in areas of with poor noise models and thus we cannot be confident they are real transients. We are left with 14 new transient events occurring at 11 unique locations. All of these events are associated with either rotationally variable stars or cool stars. Ten events have flat or falling spectra indicating radiation from synchrotron emission. One event has a rising spectrum indicating a different engine for the flare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'none'; document.getElementById('2303.04767v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14749">arXiv:2302.14749</a> <span> [<a href="https://arxiv.org/pdf/2302.14749">pdf</a>, <a href="https://arxiv.org/format/2302.14749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acbf45">10.3847/2041-8213/acbf45 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Millimeter-wave, Gamma-ray, and Optical Monitoring of the Blazar PKS 2326-502 During a Flaring State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hood%2C+J+C">J. C. Hood II</a>, <a href="/search/astro-ph?searchtype=author&query=Simpson%2C+A">A. Simpson</a>, <a href="/search/astro-ph?searchtype=author&query=McDaniel%2C+A">A. McDaniel</a>, <a href="/search/astro-ph?searchtype=author&query=Foster%2C+A">A. Foster</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">M. Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chaubal%2C+P">P. Chaubal</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Chou%2C+T">T-L. Chou</a>, <a href="/search/astro-ph?searchtype=author&query=Citron%2C+R">R. Citron</a>, <a href="/search/astro-ph?searchtype=author&query=Moran%2C+C+C">C. Corbett Moran</a>, <a href="/search/astro-ph?searchtype=author&query=Crawford%2C+T+M">T. M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&query=de+Haan%2C+T">T. de Haan</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M+A">M. A. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Everett%2C+W">W. Everett</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14749v1-abstract-short" style="display: inline;"> Including millimeter-wave (mm-wave) data in multi-wavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence mm-wave AGN monitoring over large fractions of sky. We report on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14749v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14749v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14749v1-abstract-full" style="display: none;"> Including millimeter-wave (mm-wave) data in multi-wavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence mm-wave AGN monitoring over large fractions of sky. We report on a pilot study using data from the SPTpol instrument on the South Pole Telescope (SPT), which was designed to observe the CMB at arcminute and larger angular scales. Between 2013 and 2016, SPTpol was used primarily to observe a single 500 deg^2 field, covering the entire field several times per day with detectors sensitive to radiation in bands centered at 95 and 150 GHz. We use SPT 150 GHz observations to create AGN light curves, and we compare these mm-wave light curves to those at other wavelengths, in particular gamma-ray and optical. In this Letter, we focus on a single source, PKS 2326-502, which has extensive, day-timescale monitoring data in gamma-ray, optical, and now mm-wave between 2013 and 2016. We find PKS 2326-502 to be in a flaring state in the first two years of this monitoring, and we present a search for evidence of correlated variability between mm-wave, optical R band, and gamma-ray observations. This pilot study is paving the way for AGN monitoring with current and upcoming CMB experiments such as SPT-3G, Simons Observatory, and CMB-S4, including multi-wavelength studies with facilities such as VRO-LSST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14749v1-abstract-full').style.display = 'none'; document.getElementById('2302.14749v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, accepted to Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05228">arXiv:2302.05228</a> <span> [<a href="https://arxiv.org/pdf/2302.05228">pdf</a>, <a href="https://arxiv.org/format/2302.05228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346155">10.1051/0004-6361/202346155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fuskeland%2C+U">U. Fuskeland</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Errard%2C+J">J. Errard</a>, <a href="/search/astro-ph?searchtype=author&query=G%C3%A9nova-Santos%2C+R+T">R. T. G茅nova-Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Hasebe%2C+T">T. Hasebe</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">J. Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Imada%2C+H">H. Imada</a>, <a href="/search/astro-ph?searchtype=author&query=Krachmalnicoff%2C+N">N. Krachmalnicoff</a>, <a href="/search/astro-ph?searchtype=author&query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/astro-ph?searchtype=author&query=Pisano%2C+G">G. Pisano</a>, <a href="/search/astro-ph?searchtype=author&query=Poletti%2C+D">D. Poletti</a>, <a href="/search/astro-ph?searchtype=author&query=Remazeilles%2C+M">M. Remazeilles</a>, <a href="/search/astro-ph?searchtype=author&query=Thompson%2C+K+L">K. L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Vacher%2C+L">L. Vacher</a>, <a href="/search/astro-ph?searchtype=author&query=Wehus%2C+I+K">I. K. Wehus</a>, <a href="/search/astro-ph?searchtype=author&query=Azzoni%2C+S">S. Azzoni</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Basyrov%2C+A">A. Basyrov</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a> , et al. (92 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05228v2-abstract-short" style="display: inline;"> LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertaint… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05228v2-abstract-full').style.display = 'inline'; document.getElementById('2302.05228v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05228v2-abstract-full" style="display: none;"> LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, $未r$, down to $未r<0.001$. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust SED, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measure the tensor-to-scalar ratio $r$ uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on $r$ after foreground cleaning may be reduced by as much as 30--50 % by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to better ability to discriminate between models through higher $蠂^2$ sensitivity. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05228v2-abstract-full').style.display = 'none'; document.getElementById('2302.05228v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures. Published in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 676, A42 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08038">arXiv:2210.08038</a> <span> [<a href="https://arxiv.org/pdf/2210.08038">pdf</a>, <a href="https://arxiv.org/format/2210.08038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc85c">10.3847/1538-4357/acc85c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVII: Line of Sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08038v2-abstract-short" style="display: inline;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08038v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08038v2-abstract-full" style="display: none;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum $A_L^{蠁蠁}=0.95 \pm 0.20$. We constrain polarization rotation, expressed as the coupling constant of a Chern-Simons electromagnetic term $g_{a纬} \leq 2.6 \times 10^{-2}/H_I$, where $H_I$ is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 Mpc $B_{1\text{Mpc}} \leq 6.6 \;\text{nG}$ at 95 GHz. We constrain the root mean square of optical-depth fluctuations in a simple "crinkly surface" model of patchy reionization, finding $A^蟿<0.19$ ($2蟽$) for the coherence scale of $L_c=100$. We show that all of the distortion fields of the 95 GHz and 150 GHz polarization maps are consistent with simulations including lensed-$螞$CDM, dust, and noise, with no evidence for instrumental systematics. In some cases, the EB and TB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spurious B-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'none'; document.getElementById('2210.08038v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 19 figures, accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ (2023) 949 43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05684">arXiv:2210.05684</a> <span> [<a href="https://arxiv.org/pdf/2210.05684">pdf</a>, <a href="https://arxiv.org/ps/2210.05684">ps</a>, <a href="https://arxiv.org/format/2210.05684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb64c">10.3847/1538-4357/acb64c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVI: Characterizing Dust Polarization through Correlations with Neutral Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05684v2-abstract-short" style="display: inline;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05684v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05684v2-abstract-full" style="display: none;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the H I emission into distinct velocity components and detect dust polarization correlated with the local Galactic H I but not with the H I associated with Magellanic Stream I. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary H I morphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the H I morphology template correlates in B modes at a $\sim$10-65$\%$ level over the multipole range $20 < \ell < 200$ with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to be $尾= 1.54 \pm 0.13$. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity H I. Finally, we explore the morphological parameter space in the H I-based filamentary model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'none'; document.getElementById('2210.05684v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 945 72 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09864">arXiv:2209.09864</a> <span> [<a href="https://arxiv.org/pdf/2209.09864">pdf</a>, <a href="https://arxiv.org/format/2209.09864">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2630574">10.1117/12.2630574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of the Low Frequency Telescope Focal Plane Detector Modules for LiteBIRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Westbrook%2C+B">Benjamin Westbrook</a>, <a href="/search/astro-ph?searchtype=author&query=Raum%2C+C">Christopher Raum</a>, <a href="/search/astro-ph?searchtype=author&query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Farias%2C+N">Nicole Farias</a>, <a href="/search/astro-ph?searchtype=author&query=Bogdan%2C+A">Andrew Bogdan</a>, <a href="/search/astro-ph?searchtype=author&query=Hornsby%2C+A">Amber Hornsby</a>, <a href="/search/astro-ph?searchtype=author&query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&query=Rotermund%2C+K">Kaja Rotermund</a>, <a href="/search/astro-ph?searchtype=author&query=Elleflot%2C+T">Tucker Elleflot</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Vissers%2C+M+R">Michael R. Vissers</a>, <a href="/search/astro-ph?searchtype=author&query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&query=Jaehnig%2C+G">Greg Jaehnig</a>, <a href="/search/astro-ph?searchtype=author&query=Halverson%2C+N">Nils Halverson</a>, <a href="/search/astro-ph?searchtype=author&query=Ghigna%2C+T">Tomasso Ghigna</a>, <a href="/search/astro-ph?searchtype=author&query=Hazumi%2C+M">Masashi Hazumi</a>, <a href="/search/astro-ph?searchtype=author&query=Stever%2C+S">Samantha Stever</a>, <a href="/search/astro-ph?searchtype=author&query=Minami%2C+Y">Yuto Minami</a>, <a href="/search/astro-ph?searchtype=author&query=Thompson%2C+K+L">Keith L. Thompson</a>, <a href="/search/astro-ph?searchtype=author&query=Russell%2C+M">Megan Russell</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">Kam Arnold</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09864v1-abstract-short" style="display: inline;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09864v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09864v1-abstract-full" style="display: none;"> LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mission's frequency range. The low frequency telescope will map synchrotron radiation from the Galactic foreground and the cosmic microwave background. We discuss the design, fabrication, and characterization of the low-frequency focal plane modules for low-frequency telescope, which has a total bandwidth ranging from 34 to 161 GHz. There will be a total of 4 different pixel types with 8 overlapping bands to cover the full frequency range. These modules are housed in a single low-frequency focal plane unit which provides thermal isolation, mechanical support, and radiative baffling for the detectors. The module design implements multi-chroic lenslet-coupled sinuous antenna arrays coupled to transition edge sensor bolometers read out with frequency-domain mulitplexing. While this technology has strong heritage in ground-based cosmic microwave background experiments, the broad frequency coverage, low optical loading conditions, and the high cosmic ray background of the space environment require further development of this technology to be suitable for LiteBIRD. In these proceedings, we discuss the optical and bolometeric characterization of a triplexing prototype pixel with bands centered on 78, 100, and 140 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09864v1-abstract-full').style.display = 'none'; document.getElementById('2209.09864v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE Astronomical Telescope + Instrumentation (AS22)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 12190-30 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00603">arXiv:2209.00603</a> <span> [<a href="https://arxiv.org/pdf/2209.00603">pdf</a>, <a href="https://arxiv.org/format/2209.00603">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Tolerance Analysis of Octave Bandwidth Millimeter-Wave Planar Orthomode Transducer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J+J">Jeffrey J. McMahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00603v1-abstract-short" style="display: inline;"> Planar Orthomode Transducers (OMTs) are commonly used for polarization measurements at millimeter wavelengths. We present an optical coupling study of an octave bandwidth planar OMT in circular waveguide based on 3D electromagnetic simulations. We quantify results through metrics such as co- and cross- polar coupling, reflection, and waveguide leakage as a function of the OMT construction geometry… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00603v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00603v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00603v1-abstract-full" style="display: none;"> Planar Orthomode Transducers (OMTs) are commonly used for polarization measurements at millimeter wavelengths. We present an optical coupling study of an octave bandwidth planar OMT in circular waveguide based on 3D electromagnetic simulations. We quantify results through metrics such as co- and cross- polar coupling, reflection, and waveguide leakage as a function of the OMT construction geometry. We evaluate the tolerance of these metrics to the waveguide backshort distance, probe impedance, waveguide gap size, and waveguide-to-probe misalignment. Two probe geometries are studied: the `classic' shape used in several previous experiments, and a new `wineglass' geometry. The bandwidth ratio of both optimized OMTs is 2.0:1, defined where co-polar coupling exceeds 80%. The average co-polar coupling, cross-polar coupling, reflection, and waveguide leakage of the classic probe is approximately 93%, $<$-50 dB, 5% and 2%, respectively and depends slightly on the exact frequency range. The wineglass probe co-polar coupling is $\sim$ 2% larger. Radial waveguide misalignment at the level of 4% of the waveguide radius can result in up to a 10% reduction in co-polar coupling and -20 dB cross-polar coupling in one polarization. These results may be used to guide the detector module designs of future Cosmic Microwave Background experiments and beyond <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00603v1-abstract-full').style.display = 'none'; document.getElementById('2209.00603v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14159">arXiv:2208.14159</a> <span> [<a href="https://arxiv.org/pdf/2208.14159">pdf</a>, <a href="https://arxiv.org/format/2208.14159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02864-z">10.1007/s10909-022-02864-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of the characterization methods without electrothermal feedback for TES bolometers for CMB measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Nishinomiya%2C+Y">Yume Nishinomiya</a>, <a href="/search/astro-ph?searchtype=author&query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&query=Terasaki%2C+T">Tomoki Terasaki</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+A">Adrian Lee</a>, <a href="/search/astro-ph?searchtype=author&query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&query=Westbrook%2C+B">Benjamin Westbrook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14159v1-abstract-short" style="display: inline;"> Superconducting Transition-Edge Sensor (TES) bolometers are used for cosmic microwave background (CMB) observations. We used a testbed to evaluate the thermal performance of TES bolometers in regard to the saturation power Psat and intrinsic thermal time constant tau0. We developed an evaluation method that is complementary to methods with electrothermal feedback. In our method, the antenna termin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14159v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14159v1-abstract-full" style="display: none;"> Superconducting Transition-Edge Sensor (TES) bolometers are used for cosmic microwave background (CMB) observations. We used a testbed to evaluate the thermal performance of TES bolometers in regard to the saturation power Psat and intrinsic thermal time constant tau0. We developed an evaluation method that is complementary to methods with electrothermal feedback. In our method, the antenna termination resistor of the bolometer is directly biased with DC or AC electric power to simulate optical power, and the TES is biased with small power, which allows Psat and tau0 to be determined without contribution from the negative electrothermal feedback. We describe the method and results of the measurement using it. We evaluated Psat of five samples by applying DC power and confirmed the overall trend between Psat and the inverse leg length. We evaluated tau0 of the samples by applying DC plus AC power, and the measured value was reasonable in consideration of the expected values of other TES parameters. This evaluation method enables us to verify whether a TES has been fabricated with the designed values and to provide feedback for fabrication for future CMB observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14159v1-abstract-full').style.display = 'none'; document.getElementById('2208.14159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, LTD19 Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10523">arXiv:2208.10523</a> <span> [<a href="https://arxiv.org/pdf/2208.10523">pdf</a>, <a href="https://arxiv.org/format/2208.10523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0125084">10.1063/5.0125084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SLAC Microresonator RF (SMuRF) Electronics: A tone-tracking readout system for superconducting microwave resonator arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yu%2C+C">Cyndia Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D">David Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ewart%2C+J+M">J. Mitch D'Ewart</a>, <a href="/search/astro-ph?searchtype=author&query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&query=Dusatko%2C+J+E">John E. Dusatko</a>, <a href="/search/astro-ph?searchtype=author&query=Haller%2C+G">Gunther Haller</a>, <a href="/search/astro-ph?searchtype=author&query=Herbst%2C+R">Ryan Herbst</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Irwin%2C+K+D">Kent D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&query=Kuo%2C+C">Chao-Lin Kuo</a>, <a href="/search/astro-ph?searchtype=author&query=Mates%2C+J+A+B">John A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&query=Ruckman%2C+L">Larry Ruckman</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J">Joel Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Vale%2C+L">Leila Vale</a>, <a href="/search/astro-ph?searchtype=author&query=Van+Winkle%2C+D+D">Daniel D. Van Winkle</a>, <a href="/search/astro-ph?searchtype=author&query=Vasquez%2C+J">Jesus Vasquez</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+E">Edward Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10523v1-abstract-short" style="display: inline;"> We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems such as microwave SQUID multiplexers ($渭$mux) or microwave kinetic inductance detectors (MKIDs). Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10523v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10523v1-abstract-full" style="display: none;"> We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems such as microwave SQUID multiplexers ($渭$mux) or microwave kinetic inductance detectors (MKIDs). Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4-8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. We focus in particular on the case of large channel count, low bandwidth applications, but the system has been easily reconfigured for high bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10523v1-abstract-full').style.display = 'none'; document.getElementById('2208.10523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 25 figures, + references. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05468">arXiv:2208.05468</a> <span> [<a href="https://arxiv.org/pdf/2208.05468">pdf</a>, <a href="https://arxiv.org/format/2208.05468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: Design of the Mod-Cam receiver and 280 GHz MKID instrument module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Groppi%2C+C">Christopher Groppi</a>, <a href="/search/astro-ph?searchtype=author&query=Herter%2C+T+L">Terry L. Herter</a>, <a href="/search/astro-ph?searchtype=author&query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Moore%2C+J">Jenna Moore</a>, <a href="/search/astro-ph?searchtype=author&query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05468v1-abstract-short" style="display: inline;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project's six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile's Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05468v1-abstract-full" style="display: none;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project's six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile's Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-850 GHz broadband and spectroscopic measurements with microwave kinetic inductance detectors (MKIDs). CCAT-prime will address a suite of science goals, from Big Bang cosmology to star formation and galaxy evolution over cosmic time. Mod-Cam deployment on FYST with a 280 GHz instrument module containing MKID arrays is planned for early science observations in 2024. Mod-Cam will be used to test instrument modules for Prime-Cam, which can house up to seven instrument modules. We discuss the design and status of the 0.9 m diameter, 1.8 m long Mod-Cam receiver and 40 cm diameter 280 GHz instrument module, with cold stages at 40 K, 4 K, 1 K, and 100 mK. We also describe the instrument module's cryogenic readout designs to enable the readout of more than 10,000 MKIDs across 18 networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'none'; document.getElementById('2208.05468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02284">arXiv:2208.02284</a> <span> [<a href="https://arxiv.org/pdf/2208.02284">pdf</a>, <a href="https://arxiv.org/format/2208.02284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Modular Detector and Readout System for the CMB-S4 survey experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D+R">D. R. Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Baker%2C+C+F">C. F. Baker</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">P. S. Barry</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Besuner%2C+R+W">R. W. Besuner</a>, <a href="/search/astro-ph?searchtype=author&query=Cecil%2C+T+W">T. W. Cecil</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chapman%2C+S+C">S. C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&query=Chesmore%2C+G+E">G. E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&query=Derylo%2C+G">G. Derylo</a>, <a href="/search/astro-ph?searchtype=author&query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Elleflot%2C+T">T. Elleflot</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Flaugher%2C+B">B. Flaugher</a>, <a href="/search/astro-ph?searchtype=author&query=Gomez%2C+J+G">J. G. Gomez</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P+K">P. K. Grimes</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gullett%2C+I">I. Gullett</a>, <a href="/search/astro-ph?searchtype=author&query=Haller%2C+G">G. Haller</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02284v1-abstract-short" style="display: inline;"> We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60 percent of the sky. The fundamental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02284v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02284v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02284v1-abstract-full" style="display: none;"> We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60 percent of the sky. The fundamental building block of the detector and readout system is a detector module package operated at 100 mK, which is connected to a readout and amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES) bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconducting Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sensitivity and systematics requirements are being developed for the detector and readout system over a wide range of observing bands (20 to 300 GHz) and optical powers to accomplish CMB-S4's science goals. While the design incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over 10 square meters of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02284v1-abstract-full').style.display = 'none'; document.getElementById('2208.02284v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures, presented at and published in the proceedings of SPIE Astronomical Telescopes and Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01080">arXiv:2208.01080</a> <span> [<a href="https://arxiv.org/pdf/2208.01080">pdf</a>, <a href="https://arxiv.org/format/2208.01080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> 2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soliman%2C+A">A. Soliman</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01080v1-abstract-short" style="display: inline;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01080v1-abstract-full" style="display: none;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'none'; document.getElementById('2208.01080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14796">arXiv:2207.14796</a> <span> [<a href="https://arxiv.org/pdf/2207.14796">pdf</a>, <a href="https://arxiv.org/format/2207.14796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Improved Polarization Calibration of the BICEP3 CMB Polarimeter at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">C. Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14796v2-abstract-short" style="display: inline;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14796v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14796v2-abstract-full" style="display: none;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than $\sim 800$ functioning detector pairs of the BICEP3 experiment, out of a total of $\sim 1000$. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of $\sim0.5^\circ$. After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'none'; document.getElementById('2207.14796v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to: SPIE Astronomical Telescopes + Instrumentation (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09066">arXiv:2206.09066</a> <span> [<a href="https://arxiv.org/pdf/2206.09066">pdf</a>, <a href="https://arxiv.org/format/2206.09066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02783-z">10.1007/s10909-022-02783-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bandwidth and Aliasing in the Microwave SQUID Multiplexer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yu%2C+C">Cyndia Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ewart%2C+J+M">J. Mitch D'Ewart</a>, <a href="/search/astro-ph?searchtype=author&query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Kuenstner%2C+S+E">Stephen E. Kuenstner</a>, <a href="/search/astro-ph?searchtype=author&query=Mates%2C+J+A+B">J. A. Ben Mates</a>, <a href="/search/astro-ph?searchtype=author&query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/astro-ph?searchtype=author&query=Vale%2C+L+R">Leila R. Vale</a>, <a href="/search/astro-ph?searchtype=author&query=Van+Winkle%2C+D">Dan Van Winkle</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+E">Edward Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09066v1-abstract-short" style="display: inline;"> The microwave SQUID multiplexer (umux) has enabled higher bandwidth or higher channel counts across a wide range of experiments in particle physics, astronomy, and spectroscopy. The large multiplexing factor coupled with recent commercial availability of microwave components and warm electronics readout systems make it an attractive candidate for systems requiring large cryogenic detector counts.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09066v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09066v1-abstract-full" style="display: none;"> The microwave SQUID multiplexer (umux) has enabled higher bandwidth or higher channel counts across a wide range of experiments in particle physics, astronomy, and spectroscopy. The large multiplexing factor coupled with recent commercial availability of microwave components and warm electronics readout systems make it an attractive candidate for systems requiring large cryogenic detector counts. Since the multiplexer is considered for both bolometric and calorimetric applications across several orders of magnitude of signal frequencies, understanding the bandwidth of the device and its interaction with readout electronics is key to appropriately designing and engineering systems. Here we discuss several important factors contributing to the bandwidth properties of umux systems, including the intrinsic device bandwidth, interactions with warm electronics readout systems, and aliasing. We present simulations and measurements of umux devices coupled with SLAC Microresonator RF (SMuRF) tone-tracking electronics and discuss several implications for future experimental design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09066v1-abstract-full').style.display = 'none'; document.getElementById('2206.09066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for Low Temperature Physics 2021, accepted for publication in Journal of Low Temperature Physics. 8 pages (including references), 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Hubmayr%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>