CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 230 results for author: <span class="mathjax">Fodor, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fodor, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fodor%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fodor, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11719">arXiv:2411.11719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11719">pdf</a>, <a href="https://arxiv.org/format/2411.11719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon at the physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerardin%2C+A">Antoine Gerardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">Laurent Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zimmermann%2C+C">Christian Zimmermann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11719v1-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon using $N_f=2+1+1$ flavors of staggered quarks with masses tuned to their physical values. Our final result, in the continuum limit, reads $a_渭^{\mathrm{hlbl}} = 125.5(11.6)_{\mathrm{stat}}(0.4)_{\mathrm{syst}} \times 10^{-11}$ where the first error is statistical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11719v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11719v1-abstract-full" style="display: none;"> We present a lattice QCD calculation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon using $N_f=2+1+1$ flavors of staggered quarks with masses tuned to their physical values. Our final result, in the continuum limit, reads $a_渭^{\mathrm{hlbl}} = 125.5(11.6)_{\mathrm{stat}}(0.4)_{\mathrm{syst}} \times 10^{-11}$ where the first error is statistical and the second is systematic. Light, strange and charm-quark contributions are considered. In addition to the connected and leading disconnected contributions, we also include an estimate of the sub-leading disconnected diagrams. Our result is compatible with previous lattice QCD and data-driven dispersive determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11719v1-abstract-full').style.display = 'none'; document.getElementById('2411.11719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06216">arXiv:2410.06216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06216">pdf</a>, <a href="https://arxiv.org/format/2410.06216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD deconfinement transition line up to $渭_B=400$ MeV from finite volume lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06216v1-abstract-short" style="display: inline;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06216v1-abstract-full" style="display: none;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak position of the static quark entropy ($S_Q(T,渭_B)$) in $T$, which is based on the renormalized Polyakov loop. We extrapolate $S_Q(T,渭_B)$ based on high statistics finite temperature ensembles on a $16^3\times 8$ lattice to finite density by means of a Taylor expansion to eighth order in $渭_B$ (NNNLO) along the strangeness neutral line. For the simulations the 4HEX staggered action was used with 2+1 flavors at physical quark masses. In this setup the phase diagram can be drawn up to unprecedentedly high chemical potentials. Our results for the deconfinement temperature are in rough agreement with phenomenological estimates of the freeze-out curve in relativistic heavy ion collisions. In addition, we study the width of the deconfinement crossover. We show that up to $渭_B \approx 400$ MeV, the deconfinement transition gets broader at higher densities, disfavoring the existence of a deconfinement critical endpoint in this range. Finally, we examine the transition line without the strangeness neutrality condition and observe a hint for the narrowing of the crossover towards large $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'none'; document.getElementById('2410.06216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18846">arXiv:2409.18846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18846">pdf</a>, <a href="https://arxiv.org/format/2409.18846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the $畏$ and $畏^{\prime}$ meson masses at the physical point using rooted staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Verplanke%2C+W+E+A">Willem E. A. Verplanke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerardin%2C+A">Antoine Gerardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">Laurent Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">Lukas Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18846v1-abstract-short" style="display: inline;"> We present a lattice calculation of the $畏$ and $畏^{\prime}$ meson masses at the physical point and in the continuum limit, based on $N_f = 2+1+1$ flavors of rooted staggered quarks. Our analysis includes gauge ensembles at the physical pion and kaon masses spread over six lattice spacings in the range [0.064-0.1315]~fm. Our main results read $m_畏 = 543.5(5.6)~$MeV and $m_{畏^{\prime}} = 986(38)~$M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18846v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18846v1-abstract-full" style="display: none;"> We present a lattice calculation of the $畏$ and $畏^{\prime}$ meson masses at the physical point and in the continuum limit, based on $N_f = 2+1+1$ flavors of rooted staggered quarks. Our analysis includes gauge ensembles at the physical pion and kaon masses spread over six lattice spacings in the range [0.064-0.1315]~fm. Our main results read $m_畏 = 543.5(5.6)~$MeV and $m_{畏^{\prime}} = 986(38)~$MeV, consistent with the experimental values. This is an important numerical test that supports the validity of the fourth root procedure used in the staggered quark formalism. This calculation was the first step towards extracting the pseudoscalar transition form factors of the $畏$ and $畏^{\prime}$ mesons that play a crucial role in the hadronic light-by-light contribution to the muon $g-2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18846v1-abstract-full').style.display = 'none'; document.getElementById('2409.18846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10913">arXiv:2407.10913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10913">pdf</a>, <a href="https://arxiv.org/format/2407.10913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boccaletti%2C+A">A. Boccaletti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frech%2C+F">F. Frech</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerardin%2C+A">A. Gerardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">Th. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lupo%2C+A">A. Lupo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Malaescu%2C+B">B. Malaescu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mutzel%2C+S">S. Mutzel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Risch%2C+A">A. Risch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sjo%2C+M">M. Sjo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+G">G. Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Z">Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10913v1-abstract-short" style="display: inline;"> We present a new lattice QCD calculation of the leading order hadronic vacuum polarization contribution to the muon anomalous magnetic moment $a_渭$. We reduce uncertainties compared to our earlier computation by $40\%$, arXiv:2002.12347. We perform simulations on finer lattices allowing for an even more accurate continuum extrapolation. We also include a small, long-distance contribution obtained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10913v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10913v1-abstract-full" style="display: none;"> We present a new lattice QCD calculation of the leading order hadronic vacuum polarization contribution to the muon anomalous magnetic moment $a_渭$. We reduce uncertainties compared to our earlier computation by $40\%$, arXiv:2002.12347. We perform simulations on finer lattices allowing for an even more accurate continuum extrapolation. We also include a small, long-distance contribution obtained using input from experiments in a low-energy regime where they all agree. Combined with other standard model contributions our result leads to a prediction that differs from the measurement of $a_渭$ by only 0.9 standard deviations. This provides a remarkable validation of the standard model to 0.37ppm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10913v1-abstract-full').style.display = 'none'; document.getElementById('2407.10913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 31 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12320">arXiv:2405.12320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12320">pdf</a>, <a href="https://arxiv.org/format/2405.12320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral and deconfinement properties of the QCD crossover have a different volume and baryochemical potential dependence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12320v1-abstract-short" style="display: inline;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12320v1-abstract-full" style="display: none;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperatures almost agree. However, chiral and deconfinement related observables have a qualitatively different chemical potential and volume dependence. In general, deconfinement related observables have a milder volume dependence. Furthermore, while the deconfinement transition appears to get broader with increasing $渭_B$, the width as well as the strength of the chiral transition is approximately constant. Our results are based on simulations at zero and imaginary chemical potentials using 4stout-improved staggered fermions with $N_蟿=12$ time-slices and physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'none'; document.getElementById('2405.12320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16709">arXiv:2403.16709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16709">pdf</a>, <a href="https://arxiv.org/format/2403.16709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The crossover line in the $(T, 渭)$-phase diagram of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szab%C3%B3%2C+K+K">Kalman K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16709v1-abstract-short" style="display: inline;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16709v1-abstract-full" style="display: none;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extrapolation of the crossover temperature based on different observables at several lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'none'; document.getElementById('2403.16709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to Quark Matter Conference 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A 982 (2019) 303-306 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07799">arXiv:2401.07799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07799">pdf</a>, <a href="https://arxiv.org/format/2401.07799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Renormalization of Karsten-Wilczek Quarks on a Staggered Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Godzieba%2C+D+A">Daniel A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vig%2C+R+A">R茅ka A. Vig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07799v1-abstract-short" style="display: inline;"> The Karsten-Wilczek action is a formulation of minimally doubled fermions on the lattice. It explicitly breaks hypercubic symmetry and introduces three counterterms with respective bare parameters. We present a tuning of the bare parameters of the Karsten-Wilczek action on staggered configurations at the physical point. We study the magnitude of the taste-splitting as a function of the lattice spa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07799v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07799v1-abstract-full" style="display: none;"> The Karsten-Wilczek action is a formulation of minimally doubled fermions on the lattice. It explicitly breaks hypercubic symmetry and introduces three counterterms with respective bare parameters. We present a tuning of the bare parameters of the Karsten-Wilczek action on staggered configurations at the physical point. We study the magnitude of the taste-splitting as a function of the lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07799v1-abstract-full').style.display = 'none'; document.getElementById('2401.07799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07651">arXiv:2401.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07651">pdf</a>, <a href="https://arxiv.org/format/2401.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> First dynamical simulations with minimally doubled fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vig%2C+R+A">Reka A. Vig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Godzieba%2C+D">Daniel Godzieba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07651v1-abstract-short" style="display: inline;"> For thermodynamics studies it is desirable to simulate two degenerate flavors and retain at least a remnant of the chiral symmetry. Staggered fermions can achieve this at the cost of rooting the determinant. Rooting can be avoided using minimally doubled fermions. This discretization describes two degenerate quark flavors while explicitly breaking hyper-cubic symmetry, thus, requiring additional c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07651v1-abstract-full" style="display: none;"> For thermodynamics studies it is desirable to simulate two degenerate flavors and retain at least a remnant of the chiral symmetry. Staggered fermions can achieve this at the cost of rooting the determinant. Rooting can be avoided using minimally doubled fermions. This discretization describes two degenerate quark flavors while explicitly breaking hyper-cubic symmetry, thus, requiring additional counter-terms. We use one particular formulation of minimally doubled fermions called the Kirsten-Wilczek action and mitigate lattice artifacts by improving the spatial derivatives in the Dirac operator. In this pilot study we determine the counter-terms non-perturbatively to facilitate proper dynamical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07651v1-abstract-full').style.display = 'none'; document.getElementById('2401.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lattice2023 contribution, 8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02750">arXiv:2401.02750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02750">pdf</a>, <a href="https://arxiv.org/format/2401.02750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Thermal QCD phase transition with dynamical chiral fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K">K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02750v1-abstract-short" style="display: inline;"> We discuss properties of Quantum Chromodynamics at finite temperature obtained by means of lattice simulations with overlap fermions. This fermion discretization preserves chiral symmetry even at finite lattice spacing. We present details of the lattice formulation, first results for the chiral observables and discuss the behaviour of the system near the chiral thermal phase transition. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02750v1-abstract-full" style="display: none;"> We discuss properties of Quantum Chromodynamics at finite temperature obtained by means of lattice simulations with overlap fermions. This fermion discretization preserves chiral symmetry even at finite lattice spacing. We present details of the lattice formulation, first results for the chiral observables and discuss the behaviour of the system near the chiral thermal phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02750v1-abstract-full').style.display = 'none'; document.getElementById('2401.02750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures, proceedings of the Lattice 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01169">arXiv:2401.01169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01169">pdf</a>, <a href="https://arxiv.org/format/2401.01169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Finite volume effects near the chiral crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01169v1-abstract-short" style="display: inline;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at z&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01169v1-abstract-full" style="display: none;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at zero and small chemical potentials on the QCD transition through the chiral observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'none'; document.getElementById('2401.01169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07528">arXiv:2312.07528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07528">pdf</a>, <a href="https://arxiv.org/format/2312.07528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Continuum extrapolated high order baryon fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07528v1-abstract-short" style="display: inline;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07528v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07528v1-abstract-full" style="display: none;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that for $T \leq 145$ MeV, relevant for criticality search, finite volume effects are under control. Our results are in sharp contrast with well known results in the literature obtained at finite lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'none'; document.getElementById('2312.07528v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures (main text) + 5 pages, 7 figures (supplemental material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06105">arXiv:2308.06105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06105">pdf</a>, <a href="https://arxiv.org/format/2308.06105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Can rooted staggered fermions describe nonzero baryon density at low temperatures? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06105v1-abstract-short" style="display: inline;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06105v1-abstract-full" style="display: none;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass. We elucidate the nature of the non-analyticity behind this sharp rise in the density by a comparison of reweighting results with a Taylor expansion of high order. While at first sight this non-analytic behavior becomes apparent at the same position where the pion condensation transition takes place in the phase-quenched theory, the nature of the non-analyticity in the two theories appears to be quite different: While at nonzero isospin density the data are consistent with a genuine thermodynamic (branch-point) singularity, the results at nonzero baryon density point to an essential singularity at $渭_B=0$. The effect is absent for four flavors of degenerate quarks, where rooting is not used. For the two-flavor case, we show numerical evidence that the magnitude of the effect diminishes on finer lattices. We discuss the implications of this technical complication on future studies of the QCD phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'none'; document.getElementById('2308.06105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04221">arXiv:2308.04221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04221">pdf</a>, <a href="https://arxiv.org/format/2308.04221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davier%2C+M">Michel Davier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerardin%2C+A">Antoine Gerardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">Laurent Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Malaescu%2C+B">Bogdan Malaescu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stokes%2C+F+M">Finn M. Stokes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">Lukas Varnhorst</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Z">Zhiqing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04221v1-abstract-short" style="display: inline;"> The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately important observables, such as the muon anomalous magnetic moment, a_渭, or the low-energy running of the electromagnetic coupling, 伪, are predicted. The two most precise approaches for determining HVP are: dispersive relations combined with e+e- to hadrons cross-section data, and lattice QCD. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04221v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04221v1-abstract-full" style="display: none;"> The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately important observables, such as the muon anomalous magnetic moment, a_渭, or the low-energy running of the electromagnetic coupling, 伪, are predicted. The two most precise approaches for determining HVP are: dispersive relations combined with e+e- to hadrons cross-section data, and lattice QCD. However, the results obtained in these two approaches display significant tensions, whose origins are not understood. Here we present a framework that sheds light on this issue and, if the two approaches can be reconciled, allows them to be combined. Via this framework, we test the hypothesis that the tensions can be explained by modifying the R-ratio in different intervals of center-of-mass energy sqrt(s). As ingredients, we consider observables that have been precisely determined in both approaches. These are the leading hadronic contributions to a_渭, to the so-called intermediate window observable and to the running of 伪between spacelike virtualities 1GeV^2 and 10GeV^2 (for which only a preliminary lattice result exists). Our tests take into account all uncertainties and correlations, as well as uncertainties on uncertainties in the lattice results. Among our findings, the most striking is that results obtained in the two approaches can be made to agree for all three observables by modifying the 蟻peak in the experimental spectrum. In particular, we find that this requires a common ~5\% increase in the contributions of the peak to each of the three observables. This finding is robust against the presence or absence of one of the constraining observables. However, such an increase is much larger than the uncertainties on the measured R-ratio. We also discuss a variety of generalizations of the methods used here, as well as the limits in the information that can be extracted... <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04221v1-abstract-full').style.display = 'none'; document.getElementById('2308.04221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04570">arXiv:2305.04570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04570">pdf</a>, <a href="https://arxiv.org/format/2305.04570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the $蟺^0$, $畏$ and $畏^{\prime}$ transition form factors and the hadronic light-by-light contribution to the muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Verplanke%2C+W+E+A">Willem E. A. Verplanke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">Laurent Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">Lukas Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04570v2-abstract-short" style="display: inline;"> In this paper we present a first ab-initio calculation of the $蟺^0$, $畏$ and $畏^{\prime}$ transition form factors performed with physical light-quark masses. We provide a complete parametrization of the form factors that includes both single and double-virtual kinematics. Our results are compared with experimental measurements of the form factors in the space-like region and with the measured two-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04570v2-abstract-full').style.display = 'inline'; document.getElementById('2305.04570v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04570v2-abstract-full" style="display: none;"> In this paper we present a first ab-initio calculation of the $蟺^0$, $畏$ and $畏^{\prime}$ transition form factors performed with physical light-quark masses. We provide a complete parametrization of the form factors that includes both single and double-virtual kinematics. Our results are compared with experimental measurements of the form factors in the space-like region and with the measured two-photon decay widths. In a second step, our parametrizations of the transition form factors are used to compute the dominant pseudoscalar-pole contributions to the hadronic light-by-light scattering in the muon $g-2$. Our final result reads $a_渭^{\rm hlbl, ps-pole} = (85.1 \pm 5.2) \times 10^{-11}$. Although the pion-pole is dominant, we confirm that, together, the $畏$ and $畏^{\prime}$ provide roughly half of its contribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04570v2-abstract-full').style.display = 'none'; document.getElementById('2305.04570v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 16 figures. Typos corrected. Add figure 6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06611">arXiv:2301.06611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06611">pdf</a>, <a href="https://arxiv.org/ps/2301.06611">ps</a>, <a href="https://arxiv.org/format/2301.06611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Toward a novel determination of the strong QCD coupling at the Z-pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06611v1-abstract-short" style="display: inline;"> We test here our recently introduced new lattice method for the $尾$-function defined over infinite Euclidean space-time in the continuum from scale changes generated by infinitesimal or finite steps of the renormalized gauge coupling on the gradient flow. Harlander and Neumann calculated in this scheme the three-loop approximation to the continuum $尾$-function. Our goal is the nonperturbative latt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06611v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06611v1-abstract-full" style="display: none;"> We test here our recently introduced new lattice method for the $尾$-function defined over infinite Euclidean space-time in the continuum from scale changes generated by infinitesimal or finite steps of the renormalized gauge coupling on the gradient flow. Harlander and Neumann calculated in this scheme the three-loop approximation to the continuum $尾$-function. Our goal is the nonperturbative lattice implementation of the scheme which we tested originally in the chiral limit of the sextet model and in multi-flavor QCD with ten and twelve flavors of massless fermions. Results are reported here in the SU(3) Yang-Mills gauge sector without dynamical fermions and in ten-flavor QCD with massless femions. The three-loop gradient flow based $尾$-function of Harlander and Neumann is used to connect the $螞_{\overline{\rm MS}}$ scale of the SU(3) Yang-Mills gauge theory with the nonperturbative flow time scale $t_0$, or the equivalent Sommer scale $r_0$. Similarly, the $螞_{\overline{\rm MS}}$ scale is connected with a selected nonperturbative scale in the ten-flavor theory, a pilot study of our new lattice based nonperturbative $尾$-function for high precision determination of the strong coupling $伪_s$ at the Z-boson pole in QCD with three massless fermion flavors. This goal is an important alternative to results from the finite volume based step $尾$-function of the Alpha collaboration. Work is ongoing on direct application of the method to QCD with three massless fermion flavors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06611v1-abstract-full').style.display = 'none'; document.getElementById('2301.06611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the 39th Annual International Symposium on Lattice Field Theory - LATTICE2022 8-13 Aug, 2022; 9 pages, 8 figures. arXiv admin note: text overlap with arXiv:2203.15847</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10155">arXiv:2212.10155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10155">pdf</a>, <a href="https://arxiv.org/format/2212.10155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Parallel tempering algorithm applied to the deconfinement transition of quenched QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Godzieba%2C+D+A">Daniel A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">Denes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10155v1-abstract-short" style="display: inline;"> QCD with infinite heavy quark masses exhibits a first-order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. We analyze the corresponding order parameter, namely the Polyakov loop and its moments, and show, with a rigorous finite size scaling, that in the continuum limit the transition is of first order. We show that the use of a paralle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10155v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10155v1-abstract-full" style="display: none;"> QCD with infinite heavy quark masses exhibits a first-order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. We analyze the corresponding order parameter, namely the Polyakov loop and its moments, and show, with a rigorous finite size scaling, that in the continuum limit the transition is of first order. We show that the use of a parallel tempering algorithm can significantly reduce the large auto-correlation times which are mainly caused by the supercritical slowing down. As a result, we calculate the transition temperature $w_0 T_c$ with per-mill precision, and the latent heat, carrying out controlled continuum and infinite volume extrapolations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10155v1-abstract-full').style.display = 'none'; document.getElementById('2212.10155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08684">arXiv:2212.08684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08684">pdf</a>, <a href="https://arxiv.org/format/2212.08684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054514">10.1103/PhysRevD.107.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological features of the deconfinement transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Godzieba%2C+D+A">D. A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vig%2C+R">R. Vig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08684v1-abstract-short" style="display: inline;"> The first order transition between the confining and the center symmetry breaking phases of the SU(3) Yang-Mills theory is marked by discontinuities in various thermodynamics functions, such as the energy density or the value of the Polyakov loop. We investigate the non-analytical behaviour of the topological susceptibility and its higher cumulant around the transition temperature and make the con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08684v1-abstract-full').style.display = 'inline'; document.getElementById('2212.08684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08684v1-abstract-full" style="display: none;"> The first order transition between the confining and the center symmetry breaking phases of the SU(3) Yang-Mills theory is marked by discontinuities in various thermodynamics functions, such as the energy density or the value of the Polyakov loop. We investigate the non-analytical behaviour of the topological susceptibility and its higher cumulant around the transition temperature and make the connection to the curvature of the phase diagram in the $T-胃$ plane and to the latent heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08684v1-abstract-full').style.display = 'none'; document.getElementById('2212.08684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05398">arXiv:2208.05398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05398">pdf</a>, <a href="https://arxiv.org/format/2208.05398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L091503">10.1103/PhysRevD.107.L091503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real $渭_B$ vs. extrapolations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05398v2-abstract-short" style="display: inline;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B&gt;0$, using reweighting techniq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05398v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05398v2-abstract-full" style="display: none;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B&gt;0$, using reweighting techniques free from an overlap problem. We use 2stout improved staggered fermions with 8 time-slices and cover the entire RHIC BES range in the baryochemical potential, up to $渭_B/T=3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'none'; document.getElementById('2208.05398v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15847">arXiv:2203.15847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15847">pdf</a>, <a href="https://arxiv.org/format/2203.15847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> From ten-flavor tests of the $尾$-function to $伪_s$ at the Z-pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15847v1-abstract-short" style="display: inline;"> New tests are applied to two $尾$-functions of the much-discussed BSM model with ten massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The renormalization scheme of the two $尾$-functions is defined on the gauge field gradient flow in respective finite or infinite physical volumes at zero lattice spacing. Recently published results in the ten-flavor theory le&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15847v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15847v1-abstract-full" style="display: none;"> New tests are applied to two $尾$-functions of the much-discussed BSM model with ten massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The renormalization scheme of the two $尾$-functions is defined on the gauge field gradient flow in respective finite or infinite physical volumes at zero lattice spacing. Recently published results in the ten-flavor theory led to indicators of an infrared fixed point (IRFP) in the finite-volume step $尾$-function in the strong coupling regime of the theory arXiv:2004.00754. We analyze our substantially extended set of ten-flavor lattice ensembles at strong renormalized gauge couplings and find no evidence or hint for IRFP in the finite-volume step $尾$-function within controlled lattice reach. We also discuss new ten-flavor tests of the recently introduced lattice definition and algorithmic implementation of the $尾$-function defined on the gradient flow of the gauge field over infinite Euclidean space-time in the continuum. Originally we introduced this new algorithm to match finite-volume step $尾$-functions in massless near-conformal gauge theories with the infinite-volume $尾$-function reached in the chiral limit from small fermion mass deformations of spontaneous chiral symmetry breaking. Results from the lattice analysis of the ten-flavor infinite-volume $尾$-function are consistent with the absence of IRFP from our step $尾$-function based analysis. We make important contact at weak coupling in infinite volume with gradient flow based three-loop perturbation theory, serving as a first pilot study toward the long-term goal of developing alternate approach to the determination of the strong coupling $伪_s$ at the Z-boson pole in QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15847v1-abstract-full').style.display = 'none'; document.getElementById('2203.15847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the 38th Annual International Symposium on Lattice Field Theory - LATTICE2021 26-30 July, 2021; 18 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05807">arXiv:2202.05807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05807">pdf</a>, <a href="https://arxiv.org/format/2202.05807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> QED and strong isospin corrections in the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05807v2-abstract-short" style="display: inline;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05807v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05807v2-abstract-full" style="display: none;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospin breaking is implemented by expanding the relevant correlation functions to second order in the electric charge $e$ and to first order in $m_u-m_d$. The correction terms are then computed using isospin-symmetric configurations. The choice of this approach allows us to better distribute the available computing resources among the various contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'none'; document.getElementById('2202.05807v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">talk presented at the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05574">arXiv:2202.05574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05574">pdf</a>, <a href="https://arxiv.org/format/2202.05574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114504">10.1103/PhysRevD.105.114504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05574v2-abstract-short" style="display: inline;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05574v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05574v2-abstract-full" style="display: none;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range $130 \rm{MeV} \leq T \leq 280 \rm{MeV}$. We also extrapolate the finite baryon density equation of state to small non-zero values of the strangeness-to-baryon ratio $R=\left\langle S \right\rangle / \left\langle B \right\rangle$. We perform a continuum extrapolation using lattice simulations of the 4stout-improved staggered action with 8, 10, 12 and 16 timeslices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'none'; document.getElementById('2202.05574v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures; v2: contains ancillary files with tabulated data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05234">arXiv:2202.05234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05234">pdf</a>, <a href="https://arxiv.org/format/2202.05234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Precision study of the continuum SU(3) Yang-Mills theory: how to use parallel tempering to improve on supercritical slowing down for first order phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Godzieba%2C+D+A">D. A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">D. Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05234v3-abstract-short" style="display: inline;"> We perform large scale simulations to characterize the transition in quenched QCD. It is shown by a rigorous finite size scaling that the transition is of first order. After this qualitative feature quantitative results are obtained with unprecedented precision: we calculate the transition temperature $w_0T_c$=0.25384(23), -- which is the first per-mill accurate result in QCD thermodynamics -- and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05234v3-abstract-full').style.display = 'inline'; document.getElementById('2202.05234v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05234v3-abstract-full" style="display: none;"> We perform large scale simulations to characterize the transition in quenched QCD. It is shown by a rigorous finite size scaling that the transition is of first order. After this qualitative feature quantitative results are obtained with unprecedented precision: we calculate the transition temperature $w_0T_c$=0.25384(23), -- which is the first per-mill accurate result in QCD thermodynamics -- and the latent heat $螖E/T_c^4$=1.025(21)(27) in both cases carrying out controlled continuum and infinite volume extrapolations. As it is well known the cost of lattice simulations explodes in the vicinity of phase transitions, a phenomenon called critical slowing down for second order phase transitions and supercritical slowing down for first order phase transitions. We show that a generalization of the parallel tempering algorithm of Marinari and Parisi [Europhys. Lett. 19, 451 (1992)] originally for spin systems can efficiently overcome these difficulties even if the transition is of first order, like in the case of QCD without quarks, or with very heavy quarks. We also report on our investigations on the autocorrelation times and other details. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05234v3-abstract-full').style.display = 'none'; document.getElementById('2202.05234v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, PRD version, minor changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00887">arXiv:2201.00887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00887">pdf</a>, <a href="https://arxiv.org/format/2201.00887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real $渭_B$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00887v1-abstract-short" style="display: inline;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00887v1-abstract-full" style="display: none;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature ratio of $渭_B/T=2.7$, covering the RHIC Beam Energy Scan range, and penetrating the region where methods based on analytic continuation are unpredictive.This opens up a new window to study QCD matter at finite $渭_B$ from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'none'; document.getElementById('2201.00887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Contribution to the XXXIII International (ONLINE) Workshop on High Energy Physics &#34;Hard Problems of Hadron Physics: Non-Perturbative QCD &amp; Related Quests&#34;; Based on 2108.09213 [hep-lat]. arXiv admin note: substantial text overlap with arXiv:2112.02134</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04192">arXiv:2112.04192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04192">pdf</a>, <a href="https://arxiv.org/format/2112.04192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The upper right corner of the Columbia plot with staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">Denes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04192v1-abstract-short" style="display: inline;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04192v1-abstract-full" style="display: none;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments in a finite volume scaling study. We calculate the heavy critical mass in the three flavor theory in the infinite volume limit for $N_t=8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'none'; document.getElementById('2112.04192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02402">arXiv:2112.02402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02402">pdf</a>, <a href="https://arxiv.org/format/2112.02402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantifying corrections to the hadron resonance gas with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02402v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the im&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02402v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane. Using the aforementioned coefficients, we also extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity expansion. Our results extrapolated along the crossover line $T_\mathrm{c}(渭_B)$ at strangeness neutrality are able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'none'; document.getElementById('2112.02402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02134">arXiv:2112.02134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02134">pdf</a>, <a href="https://arxiv.org/format/2112.02134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density: reweighting without an overlap problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02134v2-abstract-short" style="display: inline;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the gener&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02134v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02134v2-abstract-full" style="display: none;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the generation of configurations with the positive fermionic weights given by the absolute value of the real part of the quark determinant, and a reweighting by a sign. There are only two sectors, +1 and -1 and as long as the average $\left\langle \pm \right\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting has no overlap problem - unlike reweighting from $渭=0$ - and the results are reliable. We also present results based on this algorithm on the phase diagram of lattice QCD with two different actions: as a first test, we apply the method to calculate the position of the critical endpoint with unimproved staggered fermions at $N_蟿=4$; as a second application, we study the phase diagram with 2stout improved staggered fermions at $N_蟿=6$. This second one is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method penetrates the region of the phase diagram where the Taylor and imaginary chemical potential methods lose predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'none'; document.getElementById('2112.02134v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; Contribution to the Proceedings of The 38th International Symposium on Lattice Field Theory, LATTICE2021; Based on 2004.10800 and 2108.09213</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00083">arXiv:2112.00083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00083">pdf</a>, <a href="https://arxiv.org/format/2112.00083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of QCD at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00083v1-abstract-short" style="display: inline;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00083v1-abstract-full" style="display: none;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We calculate the alternative expansion coefficients in the continuum, and show our results for the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'none'; document.getElementById('2112.00083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09213">arXiv:2108.09213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09213">pdf</a>, <a href="https://arxiv.org/format/2108.09213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051506">10.1103/PhysRevD.105.L051506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real baryon density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09213v1-abstract-short" style="display: inline;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09213v1-abstract-full" style="display: none;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $渭_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'none'; document.getElementById('2108.09213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06660">arXiv:2102.06660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06660">pdf</a>, <a href="https://arxiv.org/format/2102.06660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.232001">10.1103/PhysRevLett.126.232001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06660v1-abstract-short" style="display: inline;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06660v1-abstract-full" style="display: none;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating the equation of state of QCD to finite, real chemical potential that can extend its reach further than previous methods. We present continuum extrapolated lattice results for the new expansion coefficients and show the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'none'; document.getElementById('2102.06660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 232001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06625">arXiv:2102.06625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06625">pdf</a>, <a href="https://arxiv.org/format/2102.06625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094508">10.1103/PhysRevD.104.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pesznyak%2C+D">David Pesznyak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06625v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06625v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansion coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane, where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these coefficients by performing lattice simulations with temporal extents of $N_蟿=8,10,12$ using the 4stout-improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'none'; document.getElementById('2102.06625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03319">arXiv:2007.03319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03319">pdf</a>, <a href="https://arxiv.org/format/2007.03319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab-initio calculation of the proton and the neutron&#39;s scalar couplings for new physics searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03319v1-abstract-short" style="display: inline;"> Many low-energy, particle-physics experiments seek to reveal new fundamental physics by searching for very rare scattering events on atomic nuclei. The interpretation of their results requires quantifying the non-linear effects of the strong interaction on the spin-independent couplings of this new physics to protons and neutrons. Here we present a fully-controlled, ab-initio calculation of these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03319v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03319v1-abstract-full" style="display: none;"> Many low-energy, particle-physics experiments seek to reveal new fundamental physics by searching for very rare scattering events on atomic nuclei. The interpretation of their results requires quantifying the non-linear effects of the strong interaction on the spin-independent couplings of this new physics to protons and neutrons. Here we present a fully-controlled, ab-initio calculation of these couplings to the quarks within those constituents of nuclei. We use lattice quantum chromodynamics computations for the four lightest species of quarks and heavy-quark expansions for the remaining two. We determine each of the six quark contributions with an accuracy better than 15%. Our results are especially important for guiding and interpreting experimental searches for our universe&#39;s dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03319v1-abstract-full').style.display = 'none'; document.getElementById('2007.03319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12347">arXiv:2002.12347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.12347">pdf</a>, <a href="https://arxiv.org/format/2002.12347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03418-1">10.1038/s41586-021-03418-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leading hadronic contribution to the muon magnetic moment from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12347v3-abstract-short" style="display: inline;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'inline'; document.getElementById('2002.12347v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12347v3-abstract-full" style="display: none;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to leading order. The infinite-volume limit is taken thanks to simulations performed in volumes of sizes up to 11~fm. Our result for the LO-HVP contribution to $(g_渭-2)$ has a total uncertainty of 0.8\%. Compared to the result of the dispersive approach for this contribution, ours significantly reduces the tension between the standard model prediction for $(g_渭-2)$ and its measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'none'; document.getElementById('2002.12347v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication. 116 pages, 34 figures with main, methods and supplementary information. v2: added finite time extent corrections, analyzed new configurations and included suggestions from the community (regarding the continuum limit, scale setting and running of the fine structure constant). v3: revised analysis to take into account referees&#39; comments. Original conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05163">arXiv:2002.05163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05163">pdf</a>, <a href="https://arxiv.org/format/2002.05163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Dilaton EFT from p-regime to RMT in the $蔚$-regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05163v1-abstract-short" style="display: inline;"> New results are reported from tests of a low-energy effective field theory (EFT) that includes a dilaton field to describe the emergent light scalar with ${ 0^{++} }$ quantum numbers in the strongly coupled near-conformal gauge theory with a massless fermion flavor doublet in the two-index symmetric (sextet) representation of the SU(3) color gauge group. In the parlor of walking --- based on the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05163v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05163v1-abstract-full" style="display: none;"> New results are reported from tests of a low-energy effective field theory (EFT) that includes a dilaton field to describe the emergent light scalar with ${ 0^{++} }$ quantum numbers in the strongly coupled near-conformal gauge theory with a massless fermion flavor doublet in the two-index symmetric (sextet) representation of the SU(3) color gauge group. In the parlor of walking --- based on the observed light scalar, the small $尾$-function at strong coupling, and the large anomalous scale dimension of the chiral condensate --- the dilaton EFT hypothesis is introduced to test if it explains the slowly changing nearly scale invariant physics that connects the asymptotically free UV fixed point and the far-infrared scale of chiral symmetry breaking. The characteristic dilaton EFT signatures of scale symmetry breaking are probed in this report in the small Compton wavelength limit of Goldstone bosons relative to the size of the lattice volume (p-regime) and in the limit when the Goldstone wavelength exceeds the size of the volume ($蔚$-regime). Random matrix theory (RMT) analysis of the dilaton EFT is applied to the lowest part of the Dirac spectrum in the $蔚$-regime to directly test predictions for the fundamental EFT parameters. The predictions, sensitive to the choice of the dilaton potential, were limited before to the p-regime, using extrapolations from far above the chiral limit with untested uncertainties. The dilaton EFT analysis of the $蔚$-regime was first suggested in \cite{Fodor:2019vmw}, with some results presented at this conference and with our continued post-conference analysis added to stimulate discussions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05163v1-abstract-full').style.display = 'none'; document.getElementById('2002.05163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the 37th Annual International Symposium on Lattice Field Theory - LATTICE2019 16-22 June, 2019; 13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02821">arXiv:2002.02821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.02821">pdf</a>, <a href="https://arxiv.org/format/2002.02821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.052001">10.1103/PhysRevLett.125.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD crossover at finite chemical potential from lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02821v1-abstract-short" style="display: inline;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02821v1-abstract-full" style="display: none;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero and imaganiary $渭_B$. We obtain the parameters $魏_2=0.0153(18)$ and $魏_4=0.00032(67)$ as a continuum extrapolation based on $N_t=10,12$ and $16$ lattices with physical quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both of these are consistent with a constant function of $渭_B$. We see no sign of criticality in the explored range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'none'; document.getElementById('2002.02821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text + 7 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07653">arXiv:1912.07653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07653">pdf</a>, <a href="https://arxiv.org/format/1912.07653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Case studies of near-conformal $尾$-functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07653v1-abstract-short" style="display: inline;"> We present updated results for the non-perturbative $尾$-function of SU(3) gauge theories with $N_f = 12$ or 10 massless flavors in the fundamental rep or $N_f = 2$ in the sextet rep, measured with staggered fermions. New data at finer lattice spacing and our previously introduced method, the infinitesimal $尾$-function, strengthen the case that the $N_f = 12$ model has no infrared fixed point up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07653v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07653v1-abstract-full" style="display: none;"> We present updated results for the non-perturbative $尾$-function of SU(3) gauge theories with $N_f = 12$ or 10 massless flavors in the fundamental rep or $N_f = 2$ in the sextet rep, measured with staggered fermions. New data at finer lattice spacing and our previously introduced method, the infinitesimal $尾$-function, strengthen the case that the $N_f = 12$ model has no infrared fixed point up to $g^2 = 7.2$. We show how underestimated cutoff dependence in one domain wall study for $N_f = 10$ has been corrected, which is now consistent with staggered results showing a monotonically increasing $尾$-function. A consistent theme is that too small volumes can lead to apparent fixed points which vanish towards the continuum limit. We also apply the infinitesimal $尾$-function method to the $N_f = 10$ model, finding consistent behavior with the finite-step $尾$-function. Ongoing simulations and analysis for the sextet model confirm our previous results from weak to strong coupling with a non-zero $尾$-function throughout, in quantitative difference to Wilson fermion simulations~\cite{Hasenfratz:2015ssa}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07653v1-abstract-full').style.display = 'none'; document.getElementById('1912.07653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures; Proceedings of the 37th International Symposium on Lattice Field Theory - Lattice 2019, Wuhan (China)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06762">arXiv:1911.06762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06762">pdf</a>, <a href="https://arxiv.org/format/1911.06762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Cross-correlators of conserved charges in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06762v1-abstract-short" style="display: inline;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to prelimina&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06762v1-abstract-full" style="display: none;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to preliminary STAR results and comment on a possible direct comparison of lattice and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'none'; document.getElementById('1911.06762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, contribution to the proceedings from the 18th International Conference on Strangeness in Quark Matter (SQM 2019)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14592">arXiv:1910.14592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14592">pdf</a>, <a href="https://arxiv.org/format/1910.14592">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034506">10.1103/PhysRevD.101.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-diagonal correlators of conserved charges from lattice QCD and how to relate them to experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14592v2-abstract-short" style="display: inline;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14592v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14592v2-abstract-full" style="display: none;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite-$渭_B$ extrapolation, comparing two different methods. In order to relate the grand canonical observables to the experimentally available net-particle fluctuations and correlations, we perform a Hadron Resonance Gas (HRG) model analysis, which allows us to completely break down the contributions from different hadrons. We then construct suitable hadronic proxies for fluctuations ratios, and study their behavior at finite chemical potentials. We also study the effect of introducing acceptance cuts, and argue that the small dependence of certain ratios on the latter allows for a direct comparison with lattice QCD results, provided that the same cuts are applied to all hadronic species. Finally, we perform a comparison for the constructed quantities for experimentally available measurements from the STAR Collaboration. Thus, we estimate the chemical freeze-out temperature to 165 MeV using a strangeness-related proxy. This is a rather high temperature for the use of the Hadron Resonance Gas, thus, further lattice studies are necessary to provide first principle results at intermediate $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'none'; document.getElementById('1910.14592v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, 1 table, version published in Phys.Rev.D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034506 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06324">arXiv:1901.06324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06324">pdf</a>, <a href="https://arxiv.org/format/1901.06324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Tantalizing dilaton tests from a near-conformal EFT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06324v2-abstract-short" style="display: inline;"> The dilaton low-energy effective field theory (EFT) of an emergent light scalar is probed in the paradigm of strongly coupled near-conformal gauge theories. These studies are motivated by models which exhibit small $尾$-functions near the conformal window (CW), perhaps with slow scale-dependent walking and a light scalar with ${ 0^{++} }$ quantum numbers. We report our results from the hypothesis o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06324v2-abstract-full').style.display = 'inline'; document.getElementById('1901.06324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06324v2-abstract-full" style="display: none;"> The dilaton low-energy effective field theory (EFT) of an emergent light scalar is probed in the paradigm of strongly coupled near-conformal gauge theories. These studies are motivated by models which exhibit small $尾$-functions near the conformal window (CW), perhaps with slow scale-dependent walking and a light scalar with ${ 0^{++} }$ quantum numbers. We report our results from the hypothesis of a dilaton inspired EFT analysis with two massless fermions in the two-index symmetric (sextet) representation of the SU(3) color gauge group. With important caveats in our conclusions, conformal symmetry breaking entangled with chiral symmetry breaking would drive the near-conformal infrared behavior of the theory predicting characteristic dilaton signatures of the light scalar from broken scale invariance when probed on relevant scales of fermion mass deformations. From a recently reasoned choice of the dilaton potential in the EFT description~\cite{Golterman:2016lsd} we find an unexpectedly light dilaton mass in the chiral limit at $m_d/f_蟺= 1.56(28)$, set in units of the pion decay constant $f_蟺$. Subject to further statistical and systematic tests of continued post-conference analysis, this result is significantly lower than our earlier estimates from less controlled extrapolations of the light scalar (the $蟽$-particle) to the massless fermion limit of chiral perturbation theory. We also discuss important distinctions between the dilaton EFT analysis and the linear $蟽$-model without dilaton signatures. For comparative reasons, we comment on dilaton tests from recent work with fermions in the fundamental representation with $n_f=8$ flavors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06324v2-abstract-full').style.display = 'none'; document.getElementById('1901.06324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 34 figures, Proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), July 22-28, 2018, East Lancing, USA; elimination of some fit redundancies with minor changes in related figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03972">arXiv:1812.03972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.03972">pdf</a>, <a href="https://arxiv.org/format/1812.03972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Fate of a recent conformal fixed point and $尾$-function in the SU(3) BSM gauge theory with ten massless flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03972v1-abstract-short" style="display: inline;"> SU(3) gauge theory with $N_f$ fermions in the fundamental representation serves as a theoretical testing ground for possible infrared conformal behavior, which could play a role in BSM composite Higgs models. We use lattice simulations to study the 10-flavor model, for which it has been claimed there is an infrared fixed point in the gauge coupling $尾$-function. Our results suggest the opposite co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03972v1-abstract-full').style.display = 'inline'; document.getElementById('1812.03972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03972v1-abstract-full" style="display: none;"> SU(3) gauge theory with $N_f$ fermions in the fundamental representation serves as a theoretical testing ground for possible infrared conformal behavior, which could play a role in BSM composite Higgs models. We use lattice simulations to study the 10-flavor model, for which it has been claimed there is an infrared fixed point in the gauge coupling $尾$-function. Our results suggest the opposite conclusion, namely we find no $尾$-function fixed point in the explored range, with qualitative agreement with the 5-loop $\overline{MS}$ prediction. We comment on the inconsistency between our findings and other studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03972v1-abstract-full').style.display = 'none'; document.getElementById('1812.03972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures; Proceedings for the 36th Annual International Symposium on Lattice Field Theory, 22-28 July 2018, Michigan State University, East Lansing, Michigan, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05024">arXiv:1811.05024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05024">pdf</a>, <a href="https://arxiv.org/format/1811.05024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Is SU(3) gauge theory with 13 massless flavors conformal? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05024v1-abstract-short" style="display: inline;"> We use lattice simulations to study SU(3) gauge theory with 13 massless fermions in the fundamental representation. We present evidence that the theory is conformal with a non-zero infrared fixed point in the gauge coupling. We use a newly-developed technique to calculate the mass anomalous dimension at the fixed point via step-scaling of the mode number, allowing us to take the continuum limit an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05024v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05024v1-abstract-full" style="display: none;"> We use lattice simulations to study SU(3) gauge theory with 13 massless fermions in the fundamental representation. We present evidence that the theory is conformal with a non-zero infrared fixed point in the gauge coupling. We use a newly-developed technique to calculate the mass anomalous dimension at the fixed point via step-scaling of the mode number, allowing us to take the continuum limit and compare to perturbative predictions. We comment on the relevance of these findings to the extended search for the conformal window in the fundamental representation and in particular 12 massless flavors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05024v1-abstract-full').style.display = 'none'; document.getElementById('1811.05024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures; Proceedings for the 36th Annual International Symposium on Lattice Field Theory, 22-28 July 2018, Michigan State University, East Lansing, Michigan, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09862">arXiv:1807.09862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.09862">pdf</a>, <a href="https://arxiv.org/format/1807.09862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Searching for a CEP signal with lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">Denes Sexty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09862v1-abstract-short" style="display: inline;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09862v1-abstract-full" style="display: none;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09862v1-abstract-full').style.display = 'none'; document.getElementById('1807.09862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08326">arXiv:1807.08326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08326">pdf</a>, <a href="https://arxiv.org/format/1807.08326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074508">10.1103/PhysRevD.98.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applying constrained simulations for low temperature lattice QCD at finite baryon chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+C">Cs. Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08326v2-abstract-short" style="display: inline;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08326v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08326v2-abstract-full" style="display: none;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pion and nucleon masses. In the density of states approach we applied pion condensate or gauge action density fixing. We found that the density of states method performs similarly to reweighting. At $T \approx 100$ MeV, we found an indication of the onset of the quark number density at around $渭/m_N \sim 0.16 - 0.18$ on $6^4$ lattices at $尾=2.9$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'none'; document.getElementById('1807.08326v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06472">arXiv:1807.06472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06472">pdf</a>, <a href="https://arxiv.org/format/1807.06472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2018.10.068">10.1016/j.nuclphysa.2018.10.068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice-based QCD equation of state at finite baryon density: Cluster Expansion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vovchenko%2C+V">V. Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinheimer%2C+J">J. Steinheimer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Philipsen%2C+O">O. Philipsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stoecker%2C+H">H. Stoecker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06472v1-abstract-short" style="display: inline;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06472v1-abstract-full" style="display: none;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data at both $渭_B = 0$ and at imaginary $渭_B$ is obtained. We also demonstrate how the Fourier coefficients can be reconstructed from baryon number susceptibilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'none'; document.getElementById('1807.06472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures. Contribution to the Quark Matter 2018 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04445">arXiv:1805.04445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04445">pdf</a>, <a href="https://arxiv.org/format/1805.04445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2018)205">10.1007/JHEP10(2018)205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher order fluctuations and correlations of conserved charges from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+K">Sandor K Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04445v1-abstract-short" style="display: inline;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04445v1-abstract-full" style="display: none;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulants as functions of temperature and chemical potential, which satisfy the experimental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively explain the behavior of the measured cumulant ratios by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'none'; document.getElementById('1805.04445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07718">arXiv:1802.07718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.07718">pdf</a>, <a href="https://arxiv.org/format/1802.07718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014512">10.1103/PhysRevD.98.014512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High statistics lattice study of stress tensor correlators in pure $SU(3)$ gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">Balint C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07718v2-abstract-short" style="display: inline;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'inline'; document.getElementById('1802.07718v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07718v2-abstract-full" style="display: none;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obtain $畏/s=0.17(2)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'none'; document.getElementById('1802.07718v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08594">arXiv:1712.08594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08594">pdf</a>, <a href="https://arxiv.org/format/1712.08594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508015">10.1051/epjconf/201817508015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The twelve-flavor $\boldsymbol尾$-function and dilaton tests of the sextet scalar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08594v1-abstract-short" style="display: inline;"> We discuss near-conformal gauge theories beyond the standard model (BSM) where interesting results on the twelve-flavor $尾$-function of massless fermions in the fundamental representation of the SU(3) color gauge group and dilaton tests of the light scalar with two massless fermions in the two-index symmetric tensor (sextet) representation can be viewed as parts of the same BSM paradigm under inve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08594v1-abstract-full').style.display = 'inline'; document.getElementById('1712.08594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08594v1-abstract-full" style="display: none;"> We discuss near-conformal gauge theories beyond the standard model (BSM) where interesting results on the twelve-flavor $尾$-function of massless fermions in the fundamental representation of the SU(3) color gauge group and dilaton tests of the light scalar with two massless fermions in the two-index symmetric tensor (sextet) representation can be viewed as parts of the same BSM paradigm under investigation. We report results from high precision analysis of the twelve-flavor $尾$-function \cite{Fodor:2016zil} refuting its published IRFP \cite{Cheng:2014jba,Hasenfratz:2016dou}. We present our objections to recent claims \cite{Hasenfratz:2017mdh,Hasenfratz:2017qyr} for non-universal behavior of staggered fermions used in our analysis. We also report our first analysis of dilaton tests of the light $0^{++}$ scalar in the sextet model and comment on related post-conference developments. The dilaton test is the main thrust of this conference contribution including presentation #405 on the $n_f=12$ $尾$-function and presentation #260 on dilaton tests of the sextet model. They are both selected from the near-conformal BSM paradigm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08594v1-abstract-full').style.display = 'none'; document.getElementById('1712.08594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05299">arXiv:1711.05299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.05299">pdf</a>, <a href="https://arxiv.org/format/1711.05299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508014">10.1051/epjconf/201817508014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of the BSM sextet model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05299v1-abstract-short" style="display: inline;"> As part of our ongoing lattice study of SU(3) gauge theory with two flavors of fermions in the two-index symmetric representation (the sextet model), we present the current status of the pseudoscalar particle spectrum. We use a mixed action approach based on the gradient flow to control lattice artifacts, allowing a simultaneous extrapolation to the chiral and continuum limits. We find strong evid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05299v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05299v1-abstract-full" style="display: none;"> As part of our ongoing lattice study of SU(3) gauge theory with two flavors of fermions in the two-index symmetric representation (the sextet model), we present the current status of the pseudoscalar particle spectrum. We use a mixed action approach based on the gradient flow to control lattice artifacts, allowing a simultaneous extrapolation to the chiral and continuum limits. We find strong evidence that the pseudoscalar is a Goldstone boson state, with spontaneously broken chiral symmetry and a non-zero Goldstone decay constant in the chiral limit. In agreement with our study of the gauge coupling $尾$ function, we find the sextet model appears to be a near-conformal gauge theory and serves as a prototype of the composite Higgs BSM template. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05299v1-abstract-full').style.display = 'none'; document.getElementById('1711.05299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Proceeding of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFT-UAM/CSIC-17-097, FTUAM-17-21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.04980">arXiv:1711.04980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.04980">pdf</a>, <a href="https://arxiv.org/format/1711.04980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.022002">10.1103/PhysRevLett.121.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=collaboration%2C+B">Budapest-Marseille-Wuppertal collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Malak%2C+R">R. Malak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toth%2C+B+C">B. C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.04980v2-abstract-short" style="display: inline;"> We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of $u$, $d$, $s$ and $c$ quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than $6\,\mathrm{fm}$. All connected and disconnect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04980v2-abstract-full').style.display = 'inline'; document.getElementById('1711.04980v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.04980v2-abstract-full" style="display: none;"> We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of $u$, $d$, $s$ and $c$ quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than $6\,\mathrm{fm}$. All connected and disconnected Wick contractions are calculated. Continuum limits are carried out using six lattice spacings. We obtain $a_e^\mathrm{LO-HVP}=189.3(2.6)(5.6)\times 10^{-14}$, $a_渭^\mathrm{LO-HVP}=711.1(7.5)(17.4)\times 10^{-10}$ and $a_蟿^\mathrm{LO-HVP}=341.0(0.8)(3.2)\times 10^{-8}$, where the first error is statistical and the second is systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04980v2-abstract-full').style.display = 'none'; document.getElementById('1711.04980v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures (in 13 PDF files), RevTeX 4.1. Minor changes to results and to text. References updated. Matches version published in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 022002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.04833">arXiv:1711.04833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.04833">pdf</a>, <a href="https://arxiv.org/format/1711.04833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508027">10.1051/epjconf/201817508027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new method for the beta function in the chiral symmetry broken phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.04833v1-abstract-short" style="display: inline;"> We describe a new method to determine non-perturbatively the beta function of a gauge theory using lattice simulations in the p-regime of the theory. This complements alternative measurements of the beta function working directly at zero fermion mass and bridges the gap between the weak coupling perturbative regime and the strong coupling regime relevant to the mass spectrum of the theory. We appl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04833v1-abstract-full').style.display = 'inline'; document.getElementById('1711.04833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.04833v1-abstract-full" style="display: none;"> We describe a new method to determine non-perturbatively the beta function of a gauge theory using lattice simulations in the p-regime of the theory. This complements alternative measurements of the beta function working directly at zero fermion mass and bridges the gap between the weak coupling perturbative regime and the strong coupling regime relevant to the mass spectrum of the theory. We apply this method to ${\mathrm {SU(3)} }$ gauge theory with two fermion flavors in the 2-index symmetric (sextet) representation. We find that the beta function is small but non-zero at the renormalized coupling value $g^2 = 6.7$, consistent with our previous independent investigation using simulations directly at zero fermion mass. The model continues to be a very interesting explicit realization of the near-conformal composite Higgs paradigm which could be relevant for Beyond Standard Model phenomenology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04833v1-abstract-full').style.display = 'none'; document.getElementById('1711.04833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFT-UAM/CSIC-17-100; FTUAM-17-20 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fodor%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10