CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 90 results for author: <span class="mathjax">Endrodi, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Endrodi, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Endrodi%2C+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Endrodi, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12918">arXiv:2411.12918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12918">pdf</a>, <a href="https://arxiv.org/format/2411.12918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of isospin asymmetric QCD with small baryon chemical potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12918v1-abstract-short" style="display: inline;"> We extend our measurement of the equation of state of isospin asymmetric QCD to small baryon and strangeness chemical potentials, using the leading order Taylor expansion coefficients computed directly at non-zero isospin chemical potentials. Extrapolating the fully connected contributions to vanishing pion sources is particularly challenging, which we overcome by using information from isospin ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12918v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12918v1-abstract-full" style="display: none;"> We extend our measurement of the equation of state of isospin asymmetric QCD to small baryon and strangeness chemical potentials, using the leading order Taylor expansion coefficients computed directly at non-zero isospin chemical potentials. Extrapolating the fully connected contributions to vanishing pion sources is particularly challenging, which we overcome by using information from isospin chemical potential derivatives evaluated numerically. Using the Taylor coefficients, we present, amongst others, first results for the equation of state along the electric charge chemical potential axis, which is potentially of relevance for the evolution of the early Universe at large lepton flavour asymmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12918v1-abstract-full').style.display = 'none'; document.getElementById('2411.12918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, contribution to the 41st International Symposium on Lattice Field Theory (LATTICE2024), Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17616">arXiv:2409.17616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17616">pdf</a>, <a href="https://arxiv.org/format/2409.17616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Localized Chiral Magnetic Effect in equilibrium QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">E. Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17616v1-abstract-short" style="display: inline;"> We study the impact of a non-uniform magnetic background field on the Chiral Magnetic Effect (CME) in equilibrium QCD using lattice simulations with 2+1 flavors of dynamical staggered quarks at the physical point. We show that in the presence of a non-uniform magnetic field the CME manifests itself via a localized electromagnetic current density along the direction of the field, which integrates t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17616v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17616v1-abstract-full" style="display: none;"> We study the impact of a non-uniform magnetic background field on the Chiral Magnetic Effect (CME) in equilibrium QCD using lattice simulations with 2+1 flavors of dynamical staggered quarks at the physical point. We show that in the presence of a non-uniform magnetic field the CME manifests itself via a localized electromagnetic current density along the direction of the field, which integrates to zero over the full volume. Our primary observable is the leading-order coefficient of the current in a chiral chemical potential expansion, which we compute for various lattice spacings and extrapolate to the continuum limit. Our findings demonstrate that, even though the global spatial average of the CME conductivity vanishes in equilibrium, steady currents still exist locally. Thus, spatially modulated magnetic fields provide a possible way of generating a non-trivial CME signal in equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17616v1-abstract-full').style.display = 'none'; document.getElementById('2409.17616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00796">arXiv:2409.00796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00796">pdf</a>, <a href="https://arxiv.org/format/2409.00796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Impact of extreme magnetic fields on the QCD topological susceptibility in the vicinity of the crossover region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J+J+H">J. J. Hern谩ndez Hern谩ndez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00796v1-abstract-short" style="display: inline;"> We present the first determination of the topological susceptibility from lattice QCD in the presence of strong background magnetic fields. Our simulations employ 2+1 flavours of stout improved staggered quarks with physical masses and cover a broad range of temperatures and magnetic field values. The results are extrapolated to the continuum limit using four different lattice spacings and an eige&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00796v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00796v1-abstract-full" style="display: none;"> We present the first determination of the topological susceptibility from lattice QCD in the presence of strong background magnetic fields. Our simulations employ 2+1 flavours of stout improved staggered quarks with physical masses and cover a broad range of temperatures and magnetic field values. The results are extrapolated to the continuum limit using four different lattice spacings and an eigenvalue reweighting technique to reduce discretisation errors. For low temperatures, our calculations show an enhancement of the topological susceptibility due to the magnetic field, compatible with predictions from chiral perturbation theory. At high temperatures, we observe the impact of inverse magnetic catalysis on the susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00796v1-abstract-full').style.display = 'none'; document.getElementById('2409.00796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19780">arXiv:2406.19780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19780">pdf</a>, <a href="https://arxiv.org/format/2406.19780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD with background electromagnetic fields on the lattice: a review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19780v1-abstract-short" style="display: inline;"> This review provides a comprehensive summary of results on the physics of strongly interacting matter in the presence of background electromagnetic fields, obtained via numerical lattice simulations of the underlying theory, Quantum Chromodynamics (QCD). Lattice QCD has guided our understanding of magnetized quarks and gluons via landmark results on the phase diagram, the equation of state, the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19780v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19780v1-abstract-full" style="display: none;"> This review provides a comprehensive summary of results on the physics of strongly interacting matter in the presence of background electromagnetic fields, obtained via numerical lattice simulations of the underlying theory, Quantum Chromodynamics (QCD). Lattice QCD has guided our understanding of magnetized quarks and gluons via landmark results on the phase diagram, the equation of state, the confinemenent mechanism, anomalous transport phenomena as well as many more fascinating effects. Some of the lattice results lead to completely new paradigms in the description of hot magnetized quark matter and provided useful insights to a broad high-energy particle physics community. Since the first lattice QCD simulations with background fields, this field has been established as an independent research direction. We present the current status and recent developments of this field, together with an outlook including open questions to be answered in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19780v1-abstract-full').style.display = 'none'; document.getElementById('2406.19780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for an invited review to appear in PPNP. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09484">arXiv:2405.09484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09484">pdf</a>, <a href="https://arxiv.org/format/2405.09484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2024)092">10.1007/JHEP09(2024)092 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the absence of the Chiral Magnetic Effect in equilibrium QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">Eduardo Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09484v2-abstract-short" style="display: inline;"> In this paper we investigate the chiral magnetic effect (CME): the generation of an electric current due to a homogeneous background magnetic field and a homogeneous chiral imbalance in QCD. We demonstrate that the leading coefficient describing the CME vanishes in equilibrium, both for free fermions as well as in full QCD. Our full QCD results are based on continuum extrapolated lattice simulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09484v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09484v2-abstract-full" style="display: none;"> In this paper we investigate the chiral magnetic effect (CME): the generation of an electric current due to a homogeneous background magnetic field and a homogeneous chiral imbalance in QCD. We demonstrate that the leading coefficient describing the CME vanishes in equilibrium, both for free fermions as well as in full QCD. Our full QCD results are based on continuum extrapolated lattice simulations using dynamical staggered quarks with physical masses as well as quenched Wilson quarks. We show that it is crucial that a gauge invariant ultraviolet regularization is used to compute the CME and elaborate on why some of the existing in-equilibrium calculations of this effect gave a nonzero result. We stress that our findings imply the absence of a time-independent CME current flowing in equilibrium QCD, but do not concern the CME as an out-of-equilibrium, time-dependent effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09484v2-abstract-full').style.display = 'none'; document.getElementById('2405.09484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 09 (2024) 092 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06557">arXiv:2405.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06557">pdf</a>, <a href="https://arxiv.org/format/2405.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2024)027">10.1007/JHEP07(2024)027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Steady electric currents in magnetized QCD and their use for the equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06557v2-abstract-short" style="display: inline;"> In this paper we study the emergence of steady electric currents in QCD as a response to a non-uniform magnetic background using lattice simulations with 2 + 1 quark flavors at the physical point, as well as leading-order chiral perturbation theory. Using these currents, we develop a novel method to determine the leading-order coefficient of the equation of state in a magnetic field expansion: the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06557v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06557v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06557v2-abstract-full" style="display: none;"> In this paper we study the emergence of steady electric currents in QCD as a response to a non-uniform magnetic background using lattice simulations with 2 + 1 quark flavors at the physical point, as well as leading-order chiral perturbation theory. Using these currents, we develop a novel method to determine the leading-order coefficient of the equation of state in a magnetic field expansion: the magnetic susceptibility of the QCD medium. We decompose the current expectation value into valence- and sea-quark contributions and demonstrate that the dominant contribution to the electric current is captured by the valence term alone, allowing for a comparably cheap determination of the susceptibility. Our continuum extrapolated lattice results for the equation of state confirm the findings of some of the existing studies in the literature, namely that the QCD medium behaves diamagnetically at low and paramagnetically at high temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06557v2-abstract-full').style.display = 'none'; document.getElementById('2405.06557v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 07 (2024) 027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15118">arXiv:2312.15118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15118">pdf</a>, <a href="https://arxiv.org/format/2312.15118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD equation of state in the presence of magnetic fields at low density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bors%C3%A1nyi%2C+S">S. Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guenther%2C+J">J. Guenther</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15118v2-abstract-short" style="display: inline;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15118v2-abstract-full" style="display: none;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equation of state in that regime, we carry out lattice QCD simulations with 2+1+1 flavors of staggered quarks with physical masses at finite magnetic fields and employ a Taylor expansion scheme to circumvent the sign problem. We present the leading-order coefficient of the expansion calculated at non-zero magnetic fields and discuss the impact of the field on the strangeness neutrality condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'none'; document.getElementById('2312.15118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Lattice 2023 symposium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14660">arXiv:2312.14660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14660">pdf</a>, <a href="https://arxiv.org/format/2312.14660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic effects on topological observables in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J+J+H">Jos茅 Javier Hern谩ndez Hern谩ndez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pannullo%2C+L">Laurin Pannullo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14660v1-abstract-short" style="display: inline;"> In this proceedings article we present a selected set of our lattice results regarding the effect that background electromagnetic fields have on the topology of QCD. In particular, we report on the lattice spacing-dependence of the axion-photon coupling as well as on the response of the topological susceptibility to strong magnetic fields at nonzero temperatures. We demonstrate that the ratio of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14660v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14660v1-abstract-full" style="display: none;"> In this proceedings article we present a selected set of our lattice results regarding the effect that background electromagnetic fields have on the topology of QCD. In particular, we report on the lattice spacing-dependence of the axion-photon coupling as well as on the response of the topological susceptibility to strong magnetic fields at nonzero temperatures. We demonstrate that the ratio of topological susceptibilities at finite to zero magnetic field has a well behaved continuum limit at low temperatures using a reweighting technique. Moreover, we study the scaling of the axion-photon coupling towards the continuum limit and show that it is less severely affected by discretisation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14660v1-abstract-full').style.display = 'none'; document.getElementById('2312.14660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Proceedings of the 40th International Symposium on Lattice Field Theory, July 31st - August 4th 2023, Chicago, United States of America</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02945">arXiv:2312.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02945">pdf</a>, <a href="https://arxiv.org/format/2312.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2024)142">10.1007/JHEP02(2024)142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Chiral Separation Effect from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garnacho-Velasco%2C+E">Eduardo Garnacho-Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02945v2-abstract-short" style="display: inline;"> In this paper we study the Chiral Separation Effect by means of first-principles lattice QCD simulations. For the first time in the literature, we determine the continuum limit of the associated conductivity using 2+1 flavors of dynamical staggered quarks at physical masses. The results reveal a suppression of the conductivity in the confined phase and a gradual enhancement toward the perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02945v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02945v2-abstract-full" style="display: none;"> In this paper we study the Chiral Separation Effect by means of first-principles lattice QCD simulations. For the first time in the literature, we determine the continuum limit of the associated conductivity using 2+1 flavors of dynamical staggered quarks at physical masses. The results reveal a suppression of the conductivity in the confined phase and a gradual enhancement toward the perturbative value for high temperatures. In addition to our dynamical setup, we also investigate the impact of the quenched approximation on the conductivity, using both staggered and Wilson quarks. Finally, we highlight the relevance of employing conserved vector and anomalous axial currents in the lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02945v2-abstract-full').style.display = 'none'; document.getElementById('2312.02945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2024) 142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01960">arXiv:2312.01960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01960">pdf</a>, <a href="https://arxiv.org/format/2312.01960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Flattening of the quantum effective potential in fermionic theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kov%C3%A1cs%2C+T+G">Tam谩s G. Kov谩cs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pannullo%2C+L">Laurin Pannullo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01960v1-abstract-short" style="display: inline;"> We present methods to constrain fermionic condensates on the level of the path integral, which grant access to the quantum effective potential in the infinite volume limit. In the case of a spontaneously broken symmetry, this potential possesses a manifestly flat region, which is inaccessible to the standard approach on the lattice. However, by constraining the appropriate order parameters such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01960v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01960v1-abstract-full" style="display: none;"> We present methods to constrain fermionic condensates on the level of the path integral, which grant access to the quantum effective potential in the infinite volume limit. In the case of a spontaneously broken symmetry, this potential possesses a manifestly flat region, which is inaccessible to the standard approach on the lattice. However, by constraining the appropriate order parameters such as the chiral condensate, one is then able to probe the flat region. We demonstrate our method of constraining fermionic condensates in the 2-dimensional Gross-Neveu model, which exhibits a spontaneously broken chiral symmetry. We show how the potential flattens for increasing volume and that the flat region is dominated by inhomogeneous field configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01960v1-abstract-full').style.display = 'none'; document.getElementById('2312.01960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, contains ancillary files with plot data; talk given at the 40th International Symposium on Lattice Field theory (LATTICE 2023) at Fermilab; July 31 - August 4 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07058">arXiv:2309.07058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07058">pdf</a>, <a href="https://arxiv.org/format/2309.07058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD phase diagram and equation of state in background electric fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marko%2C+G">Gergely Marko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07058v1-abstract-short" style="display: inline;"> The phase diagram and the equation of state of QCD is investigated in the presence of weak background electric fields by means of continuum extrapolated lattice simulations. The complex action problem at nonzero electric field is circumvented by a novel Taylor expansion, enabling the determination of the linear response of the thermal QCD medium to constant electric fields -- in contrast to simula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07058v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07058v1-abstract-full" style="display: none;"> The phase diagram and the equation of state of QCD is investigated in the presence of weak background electric fields by means of continuum extrapolated lattice simulations. The complex action problem at nonzero electric field is circumvented by a novel Taylor expansion, enabling the determination of the linear response of the thermal QCD medium to constant electric fields -- in contrast to simulations at imaginary electric fields, which, as we demonstrate, involve an infrared singularity. Besides the electric susceptibility of QCD matter, we determine the dependence of the Polyakov loop on the field strength to leading order. Our results indicate a plasma-type behavior with a negative susceptibility at all temperatures, as well as an increase in the transition temperature as the electric field grows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07058v1-abstract-full').style.display = 'none'; document.getElementById('2309.07058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19029">arXiv:2305.19029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19029">pdf</a>, <a href="https://arxiv.org/format/2305.19029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2023)229">10.1007/JHEP11(2023)229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal QCD in a non-uniform magnetic background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sandbote%2C+L">L. Sandbote</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19029v3-abstract-short" style="display: inline;"> Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19029v3-abstract-full').style.display = 'inline'; document.getElementById('2305.19029v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19029v3-abstract-full" style="display: none;"> Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamical staggered quarks with physical masses at a range of magnetic fields and temperatures, and extrapolate the results to the continuum limit. Analyzing the impact of the field on the quark condensate and the Polyakov loop, we find non-trivial spatial features that render the QCD medium qualitatively different as in the homogeneous setup, especially at temperatures around the transition. In addition, we construct leading-order chiral perturbation theory for the inhomogeneous background and compare its prediction to our lattice results at low temperature. Our findings will be useful to benchmark effective theories and low-energy models of QCD for a better description of peripheral heavy-ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19029v3-abstract-full').style.display = 'none'; document.getElementById('2305.19029v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP11(2023)229 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08607">arXiv:2301.08607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08607">pdf</a>, <a href="https://arxiv.org/format/2301.08607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion condensation at lower than physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08607v1-abstract-short" style="display: inline;"> In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08607v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08607v1-abstract-full" style="display: none;"> In QCD at large enough isospin chemical potential Bose-Einstein Condensation (BEC) takes place, separated from the normal phase by a phase transition. From previous studies the location of the BEC line at the physical point is known. In the chiral limit the condensation happens already at infinitesimally small isospin chemical potential for zero temperature according to chiral perturbation theory. The thermal chiral transition at zero density might then be affected, depending on the shape of the BEC boundary, by its proximity. As a first step towards the chiral limit, we perform simulations of 2+1 flavors QCD at half the physical quark masses. The position of the BEC transition is then extracted and compared with the results at physical masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08607v1-abstract-full').style.display = 'none'; document.getElementById('2301.08607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, proceedings of the 39th International Symposium on Lattice Field Theory, LATTICE2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14016">arXiv:2212.14016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14016">pdf</a>, <a href="https://arxiv.org/format/2212.14016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2023)055">10.1007/JHEP07(2023)055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state and speed of sound of isospin-asymmetric QCD on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14016v2-abstract-short" style="display: inline;"> We determine the QCD equation of state at nonzero temperature in the presence of an isospin asymmetry between the light quark chemical potentials on the lattice. Our simulations employ $N_f=2+1$ flavors of dynamical staggered quarks at physical masses, using three different lattice spacings. The main results are based on a two-dimensional spline interpolation of the isospin density, from which all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14016v2-abstract-full').style.display = 'inline'; document.getElementById('2212.14016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14016v2-abstract-full" style="display: none;"> We determine the QCD equation of state at nonzero temperature in the presence of an isospin asymmetry between the light quark chemical potentials on the lattice. Our simulations employ $N_f=2+1$ flavors of dynamical staggered quarks at physical masses, using three different lattice spacings. The main results are based on a two-dimensional spline interpolation of the isospin density, from which all relevant quantities can be obtained analytically. In particular, we present results for the pressure, the interaction measure, the energy and entropy densities, as well as the speed of sound. Remarkably, the latter is found to exceed its ideal gas limit deep in the pion condensed phase, the first account of the violation of this limit in first principles QCD. Finally, we also compute the phase diagram in the temperature -- isospin density plane for the first time. The data for all observables will be useful for the benchmarking of effective theories and low-energy models of QCD and are provided in ancillary files for simple reuse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14016v2-abstract-full').style.display = 'none'; document.getElementById('2212.14016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 46 figures; v2: extended discussion of splines and data, conclusions unchanged, matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09916">arXiv:2212.09916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09916">pdf</a>, <a href="https://arxiv.org/format/2212.09916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics with stabilized Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basta%2C+R+F">Rocco Francesco Basta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09916v1-abstract-short" style="display: inline;"> Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the $N_f=3$ symmetric line on the Columbia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09916v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09916v1-abstract-full" style="display: none;"> Stabilized Wilson fermions are a reformulation of Wilson clover fermions that incorporates several numerical stabilizing techniques, but also a local change of the fermion action - the original clover term being replaced with an exponentiated version of it. We intend to apply the stabilized Wilson fermions toolbox to the thermodynamics of QCD, starting on the $N_f=3$ symmetric line on the Columbia plot, and to compare the results with those obtained with other fermion discretizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09916v1-abstract-full').style.display = 'none'; document.getElementById('2212.09916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03385">arXiv:2212.03385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03385">pdf</a>, <a href="https://arxiv.org/format/2212.03385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> QCD topology with electromagnetic fields and the axion-photon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B">Bastian Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J+J+H">Jos茅 Javier Hern谩ndez Hern谩ndez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03385v2-abstract-short" style="display: inline;"> The introduction of non-orthogonal electric and magnetic fields in the QCD vacuum enhances the weight of topological sectors with a nonzero topological charge. For weak fields, there is a linear response for the expectation value of the topological charge. We study this linear response and relate it to the QCD correction to the axion-photon coupling. We also analyse the magnetic field dependence o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03385v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03385v2-abstract-full" style="display: none;"> The introduction of non-orthogonal electric and magnetic fields in the QCD vacuum enhances the weight of topological sectors with a nonzero topological charge. For weak fields, there is a linear response for the expectation value of the topological charge. We study this linear response and relate it to the QCD correction to the axion-photon coupling. We also analyse the magnetic field dependence of the topological susceptibility for a range of temperatures around $T_c$. In this work we use lattice simulations with improved staggered quarks at physical masses, including background magnetic and (imaginary) electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03385v2-abstract-full').style.display = 'none'; document.getElementById('2212.03385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02148">arXiv:2212.02148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02148">pdf</a>, <a href="https://arxiv.org/format/2212.02148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous transport phenomena on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Velasco%2C+E+G">Eduardo Garnacho Velasco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02148v1-abstract-short" style="display: inline;"> The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02148v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02148v1-abstract-full" style="display: none;"> The interrelation between quantum anomalies and electromagnetic fields leads to a series of non-dissipative transport effects in QCD. In this work we study anomalous transport phenomena with lattice QCD simulations using improved staggered quarks in the presence of a background magnetic field. In particular, we calculate the conductivities both in the free case and in the interacting case, analysing the dependence of these coefficients with several parameters, such as the temperature and the quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02148v1-abstract-full').style.display = 'none'; document.getElementById('2212.02148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution to the 39th International Symposium on Lattice Field Theory (Lattice 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01431">arXiv:2212.01431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01431">pdf</a>, <a href="https://arxiv.org/format/2212.01431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state and Taylor expansions at nonzero isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C3%B6di%2C+G">Gergely Endr枚di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01431v1-abstract-short" style="display: inline;"> We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01431v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01431v1-abstract-full" style="display: none;"> We compute the equation of state of isospin asymmetric QCD at zero and non-zero temperatures using direct simulations of lattice QCD with three dynamical flavors at physical quark masses. In addition to the pressure and the trace anomaly and their behavior towards the continuum limit, we will particularly discuss the extraction of the speed of sound. Furthermore, we discuss first steps towards the extension of the EoS to small non-zero baryon chemical potentials via Taylor expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01431v1-abstract-full').style.display = 'none'; document.getElementById('2212.01431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14306">arXiv:2208.14306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14306">pdf</a>, <a href="https://arxiv.org/format/2208.14306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)015">10.1007/JHEP12(2022)015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On electric fields in hot QCD: perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14306v2-abstract-short" style="display: inline;"> We investigate the response of a hot gas of quarks to external electric fields via leading-order perturbation theory. In particular, we discuss how equilibrium is maintained in the presence of the electric field and calculate the electric susceptibility, providing its high-temperature expansion for arbitrary quark mass. Furthermore, we point out that there is a mismatch between this, direct determ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14306v2-abstract-full').style.display = 'inline'; document.getElementById('2208.14306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14306v2-abstract-full" style="display: none;"> We investigate the response of a hot gas of quarks to external electric fields via leading-order perturbation theory. In particular, we discuss how equilibrium is maintained in the presence of the electric field and calculate the electric susceptibility, providing its high-temperature expansion for arbitrary quark mass. Furthermore, we point out that there is a mismatch between this, direct determination of the susceptibility at zero field and the weak-field expansion of the effective action at nonzero electric fields, as obtained using Schwinger&#39;s exact propagator. We discuss the origin of this mismatch and elaborate on the generalization of our results to full QCD in electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14306v2-abstract-full').style.display = 'none'; document.getElementById('2208.14306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10586">arXiv:2207.10586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10586">pdf</a>, <a href="https://arxiv.org/format/2207.10586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The light Roberge-Weiss tricritical endpoint at imaginary isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winterowd%2C+C">Christopher Winterowd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10586v1-abstract-short" style="display: inline;"> We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10586v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10586v1-abstract-full" style="display: none;"> We discuss results for the Roberge Weiss (RW) phase transition at nonzero imaginary baryon and isospin chemical potentials, in the plane of temperature and quark masses. Our study focuses on the light tricritical endpoint which has already been used as a starting point for extrapolations aiming at the chiral limit at vanishing chemical potentials. In particular, we are interested in determining how imaginary isospin chemical potential shifts the tricritical mass with respect to earlier studies at zero imaginary isospin chemical potential. A positive shift might allow one to perform the chiral extrapolations from larger quark mass values, therefore making them less computationally expensive. We also present results for the dynamics of Polyakov loop clusters across the RW phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10586v1-abstract-full').style.display = 'none'; document.getElementById('2207.10586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10117">arXiv:2207.10117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10117">pdf</a>, <a href="https://arxiv.org/format/2207.10117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The light Roberge-Weiss tricritical endpoint at imaginary isospin and baryon chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chabane%2C+A">Amine Chabane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chelnokov%2C+V">Volodymyr Chelnokov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winterowd%2C+C">Christopher Winterowd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10117v1-abstract-short" style="display: inline;"> Imaginary chemical potentials serve as a useful tool to constrain the QCD phase diagram and to gain insight into the thermodynamics of strongly interacting matter. In this study, we report on the first determination of the phase diagram for arbitrary imaginary baryon and isospin chemical potentials at high temperature using one-loop perturbation theory, revealing a nontrivial structure of Roberge-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10117v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10117v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10117v1-abstract-full" style="display: none;"> Imaginary chemical potentials serve as a useful tool to constrain the QCD phase diagram and to gain insight into the thermodynamics of strongly interacting matter. In this study, we report on the first determination of the phase diagram for arbitrary imaginary baryon and isospin chemical potentials at high temperature using one-loop perturbation theory, revealing a nontrivial structure of Roberge-Weiss (RW) phase transitions in this plane. Subsequently, this system is simulated numerically with $N_{\rm f}=2$ unimproved staggered quarks on $N_蟿=4$ lattices at a range of temperatures at one of the RW phase transitions. We establish a lower bound for the light quark mass, where the first-order transition line terminates in a tricritical point. It is found that this tricritical mass is increased as compared to the case of purely baryonic imaginary chemical potentials, indicating that our setup is more advantageous for identifying critical behavior towards the chiral limit. Finally, the dynamics of local Polyakov loop clusters is also studied in conjuction with the RW phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10117v1-abstract-full').style.display = 'none'; document.getElementById('2207.10117v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11113">arXiv:2112.11113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.11113">pdf</a>, <a href="https://arxiv.org/format/2112.11113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Searching for the BCS phase at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11113v1-abstract-short" style="display: inline;"> According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of $u$ and $\bar{d}$ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11113v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11113v1-abstract-full" style="display: none;"> According to perturbation theory predictions, QCD matter in the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-Cooper-Schrieffer (BCS) phase of $u$ and $\bar{d}$ Cooper pairs. It is also expected, on symmetry grounds, that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation (BEC) of charged pions at $渭_\text{I}\geq m_蟺/2$. With lattice results, showing some indications that the deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify signatures of the superfluid BCS phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11113v1-abstract-full').style.display = 'none'; document.getElementById('2112.11113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13100">arXiv:2111.13100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13100">pdf</a>, <a href="https://arxiv.org/format/2111.13100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD with an inhomogeneous magnetic field background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">G. Mark贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13100v1-abstract-short" style="display: inline;"> The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13100v1-abstract-full').style.display = 'inline'; document.getElementById('2111.13100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13100v1-abstract-full" style="display: none;"> The magnetic fields generated in non-central heavy-ion collisions are among the strongest fields produced in the Universe, reaching magnitudes comparable to the scale of the strong interactions. Backed by model simulations, the resulting field is expected to be spatially modulated, deviating significantly from the commonly considered uniform profile. To improve our understanding of the physics of quarks and gluons under such extreme conditions, we use lattice QCD simulations with $2+1$ staggered fermion flavors with physical quark masses and an inhomogeneous magnetic background for a range of temperatures covering the QCD phase transition. We assume a $1/\cosh^2$ function to model the field profile and vary its strength to analyze the impact on the computed observables and on the transition. We calculate local chiral condensates, local Polyakov loops and estimate the size of lattice artifacts. We find that both observables show non-trivial spatial features due to the interplay between the sea and the valence effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13100v1-abstract-full').style.display = 'none'; document.getElementById('2111.13100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, included in the Lattice21 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01493">arXiv:2111.01493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01493">pdf</a>, <a href="https://arxiv.org/format/2111.01493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Role of inhomogeneities in the flattening of the quantum effective potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kov%C3%A1cs%2C+T+G">Tam谩s G. Kov谩cs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01493v1-abstract-short" style="display: inline;"> We investigate the role of inhomogeneous field configurations in systems with a spontaneously broken continuous global symmetry. Spontaneous breaking is usually defined as a specific double limit, first infinite volume at finite explicit breaking sources, which are then extrapolated to zero. We consider a different approach in which the order parameter is constrained under the path integral, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01493v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01493v1-abstract-full" style="display: none;"> We investigate the role of inhomogeneous field configurations in systems with a spontaneously broken continuous global symmetry. Spontaneous breaking is usually defined as a specific double limit, first infinite volume at finite explicit breaking sources, which are then extrapolated to zero. We consider a different approach in which the order parameter is constrained under the path integral, which we simulate using lattice Monte Carlo techniques. In this way we access the flat region of the effective potential and we show that inhomogeneous configurations are dominant there. We topologically classify the important configurations and measure the excess energy stored in the inhomogeneities allowing for the definition of a generalized differential surface tension. We show that this contribution becomes negligible at large volumes restoring the flatness of the effective potential in the thermodynamic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01493v1-abstract-full').style.display = 'none'; document.getElementById('2111.01493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14750">arXiv:2110.14750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14750">pdf</a>, <a href="https://arxiv.org/format/2110.14750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics at non-zero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14750v2-abstract-short" style="display: inline;"> We study the thermodynamic properties of QCD at nonzero isospin chemical potential using improved staggered quarks at physical quark masses. In particular, we discuss the determination of the equation of state at zero and nonzero temperatures and show results. Using the results for the isospin density $n_I$, we also determine the phase diagram in the $(n_I,T)$-plane. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14750v2-abstract-full" style="display: none;"> We study the thermodynamic properties of QCD at nonzero isospin chemical potential using improved staggered quarks at physical quark masses. In particular, we discuss the determination of the equation of state at zero and nonzero temperatures and show results. Using the results for the isospin density $n_I$, we also determine the phase diagram in the $(n_I,T)$-plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14750v2-abstract-full').style.display = 'none'; document.getElementById('2110.14750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21); v2: corrected references, added ancillary data files and plotting scripts</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13536">arXiv:2110.13536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.13536">pdf</a>, <a href="https://arxiv.org/format/2110.13536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Roberge-Weiss transitions at imaginary isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chabane%2C+A">Amine Chabane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C3%B6di%2C+G">Gergely Endr枚di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13536v1-abstract-short" style="display: inline;"> At finite imaginary values of the chemical potential, QCD is free of the sign problem. Moreover, at high temperatures the partition function exhibits a new symmetry (the Roberge-Weiss symmetry) connecting phases with different orientations of the Polyakov loop, and the corresponding phase transitions between these. In this contribution we investigate the perturbative one-loop effective potential f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13536v1-abstract-full').style.display = 'inline'; document.getElementById('2110.13536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13536v1-abstract-full" style="display: none;"> At finite imaginary values of the chemical potential, QCD is free of the sign problem. Moreover, at high temperatures the partition function exhibits a new symmetry (the Roberge-Weiss symmetry) connecting phases with different orientations of the Polyakov loop, and the corresponding phase transitions between these. In this contribution we investigate the perturbative one-loop effective potential for the Polyakov loop in the presence of imaginary isospin as well as baryon chemical potentials. This leads to a novel phase diagram, which reveals an interesting insight about the rich phase structure of the system and the center symmetry breaking. We check the perturbative results using direct lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13536v1-abstract-full').style.display = 'none'; document.getElementById('2110.13536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12189">arXiv:2110.12189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12189">pdf</a>, <a href="https://arxiv.org/format/2110.12189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Thermal QCD with external imaginary electric fields on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Marko%2C+G">Gergely Marko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12189v1-abstract-short" style="display: inline;"> We study QCD at finite temperature in the presence of imaginary electric fields. In particular, we determine the electric susceptibility, the leading coefficient in the expansion of the QCD pressure in the imaginary field. Unlike for magnetic fields, at nonzero temperature this coefficient requires a non-trivial separation of genuine electric field-related effects and spurious effects related to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12189v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12189v1-abstract-full" style="display: none;"> We study QCD at finite temperature in the presence of imaginary electric fields. In particular, we determine the electric susceptibility, the leading coefficient in the expansion of the QCD pressure in the imaginary field. Unlike for magnetic fields, at nonzero temperature this coefficient requires a non-trivial separation of genuine electric field-related effects and spurious effects related to the chemical potential, which becomes an unphysical gauge parameter in this setting. Our results are based on lattice simulations with stout improved dynamical staggered quarks at physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12189v1-abstract-full').style.display = 'none'; document.getElementById('2110.12189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, contribution to the 38th International Symposium on Lattice Field Theory (LATTICE21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03668">arXiv:2109.03668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03668">pdf</a>, <a href="https://arxiv.org/format/2109.03668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.232002">10.1103/PhysRevLett.127.232002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous symmetry breaking via inhomogeneities and the differential surface tension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kov%C3%A1cs%2C+T+G">Tam谩s Gy枚rgy Kov谩cs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03668v1-abstract-short" style="display: inline;"> We discuss spontaneously broken quantum field theories with a continuous symmetry group via the constraint effective potential. Employing lattice simulations with constrained values of the order parameter, we demonstrate explicitly that the path integral is dominated by inhomogeneous field configurations and that these are unambiguously related to the flatness of the effective potential in the bro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03668v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03668v1-abstract-full" style="display: none;"> We discuss spontaneously broken quantum field theories with a continuous symmetry group via the constraint effective potential. Employing lattice simulations with constrained values of the order parameter, we demonstrate explicitly that the path integral is dominated by inhomogeneous field configurations and that these are unambiguously related to the flatness of the effective potential in the broken phase. We determine characteristic features of these inhomogeneities, including their topology and the scaling of the associated excess energy with their size. Concerning the latter we introduce the differential surface tension -- the generalization of the concept of a surface tension pertaining to discrete symmetries. Within our approach, spontaneous symmetry breaking is captured merely via the existence of inhomogeneities, i.e. without the inclusion of an explicit breaking parameter and a careful double limiting procedure to define the order parameter. While here we consider the three-dimensional $O(2)$ model, we also elaborate on possible implications of our findings for the chiral limit of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03668v1-abstract-full').style.display = 'none'; document.getElementById('2109.03668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.02309">arXiv:2009.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.02309">pdf</a>, <a href="https://arxiv.org/format/2009.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.012701">10.1103/PhysRevLett.126.012701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion condensation in the early Universe at nonvanishing lepton flavor asymmetry and its gravitational wave signatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vovchenko%2C+V">Volodymyr Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hajkarim%2C+F">Fazlollah Hajkarim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaffner-Bielich%2C+J">J眉rgen Schaffner-Bielich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.02309v2-abstract-short" style="display: inline;"> We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD simulations at nonzero isospin density, is used to evaluate cosmic trajectories at various values of electron, muon, and tau lepton asymmetries that sati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02309v2-abstract-full').style.display = 'inline'; document.getElementById('2009.02309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.02309v2-abstract-full" style="display: none;"> We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD simulations at nonzero isospin density, is used to evaluate cosmic trajectories at various values of electron, muon, and tau lepton asymmetries that satisfy the available constraints on the total lepton asymmetry. The cosmic trajectory can pass through the pion condensed phase if the combined electron and muon asymmetry is sufficiently large: $|l_e + l_渭| \gtrsim 0.1$, with little sensitivity to the difference $l_e - l_渭$ between the individual flavor asymmetries. Future constraints on the values of the individual lepton flavor asymmetries will thus be able to either confirm or rule out the condensation of pions during the cosmic QCD epoch. We demonstrate that the pion condensed phase leaves an imprint both on the spectrum of primordial gravitational waves and on the mass distribution of primordial black holes at the QCD scale e.g. the black hole binary of recent LIGO event GW190521 can be formed in that phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02309v2-abstract-full').style.display = 'none'; document.getElementById('2009.02309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text + 5 pages supplementary material, contains ancillary files with figure data, to appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 012701 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08778">arXiv:2004.08778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.08778">pdf</a>, <a href="https://arxiv.org/format/2004.08778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2020)183">10.1007/JHEP07(2020)183 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic susceptibility of QCD matter and its decomposition from the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Piemonte%2C+S">Stefano Piemonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08778v3-abstract-short" style="display: inline;"> We determine the magnetic susceptibility of thermal QCD matter by means of first principles lattice simulations using staggered quarks with physical masses. A novel method is employed that only requires simulations at zero background field, thereby circumventing problems related to magnetic flux quantization. After a careful continuum limit extrapolation, diamagnetic behavior (negative susceptibil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08778v3-abstract-full').style.display = 'inline'; document.getElementById('2004.08778v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08778v3-abstract-full" style="display: none;"> We determine the magnetic susceptibility of thermal QCD matter by means of first principles lattice simulations using staggered quarks with physical masses. A novel method is employed that only requires simulations at zero background field, thereby circumventing problems related to magnetic flux quantization. After a careful continuum limit extrapolation, diamagnetic behavior (negative susceptibility) is found at low temperatures and strong paramagnetism (positive susceptibility) at high temperatures. We revisit the decomposition of the magnetic susceptibility into spin- and orbital angular momentum-related contributions. The spin term -- related to the normalization of the photon lightcone distribution amplitude at zero temperature -- is calculated non-perturbatively and extrapolated to the continuum limit. Having access to both the full magnetic susceptibility and the spin term, we calculate the orbital angular momentum contribution for the first time. The results reveal the opposite of what might be expected based on a free fermion picture. We provide a simple parametrization of the temperature- and magnetic field-dependence of the QCD equation of state that can be used in phenomenological studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08778v3-abstract-full').style.display = 'none'; document.getElementById('2004.08778v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 12 figures, 1 ancillary python script, v2: one new figure, new reference, minor changes, v3: more figure panels, new references, volume dependence study extended, 1 formula in App C.5 corrected, minor changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 07 (2020) 183 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07451">arXiv:1912.07451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07451">pdf</a>, <a href="https://arxiv.org/format/1912.07451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">F. Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">S. Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07451v1-abstract-short" style="display: inline;"> For large isospin asymmetries, perturbation theory predicts the QCD ground state to be a superfluid phase of $u$ and $\bar{d}$ Cooper pairs. This phase, which is denoted as the BCS phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at $渭_I\ge m_蟺/2$ by an analytic crossover. A first hint for the existence of the BCS phase, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07451v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07451v1-abstract-full" style="display: none;"> For large isospin asymmetries, perturbation theory predicts the QCD ground state to be a superfluid phase of $u$ and $\bar{d}$ Cooper pairs. This phase, which is denoted as the BCS phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at $渭_I\ge m_蟺/2$ by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both, deconfinement and charged pion condensation, is coming from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this proceedings article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07451v1-abstract-full').style.display = 'none'; document.getElementById('1912.07451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, Proceedings of &#34;The II International Workshop on Theory of Hadronic Matter under Extreme Conditions&#34; - Dubna, JINR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12197">arXiv:1911.12197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12197">pdf</a>, <a href="https://arxiv.org/format/1911.12197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Exploring the QCD phase diagram via reweighting from isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cuteri%2C+F">Francesca Cuteri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12197v1-abstract-short" style="display: inline;"> We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12197v1-abstract-full').style.display = 'inline'; document.getElementById('1911.12197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12197v1-abstract-full" style="display: none;"> We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and strange chemical potentials via reweighting in quark chemical potentials and discuss our results. Furthermore, we propose and implement an alternative method to approach nonzero baryon (and strange quark) chemical potentials. This method involves simulations where physical quarks are paired with auxiliary quarks in unphysical &#34;isospin&#34; doublets and a decoupling of the auxiliary quarks by mass reweighting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12197v1-abstract-full').style.display = 'none'; document.getElementById('1911.12197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, Proceedings of the 37th International Symposium on Lattice Field Theory, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02103">arXiv:1905.02103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02103">pdf</a>, <a href="https://arxiv.org/format/1905.02103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2019)036">10.1007/JHEP08(2019)036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetized baryons and the QCD phase diagram: NJL model meets the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02103v2-abstract-short" style="display: inline;"> We determine the baryon spectrum of 1 + 1 + 1-flavor QCD in the presence of strong background magnetic fields using lattice simulations at physical quark masses for the first time. Our results show a splitting within multiplets according to the electric charge of the baryons and reveal, in particular, a reduction of the nucleon masses for strong magnetic fields. This first-principles input is used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02103v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02103v2-abstract-full" style="display: none;"> We determine the baryon spectrum of 1 + 1 + 1-flavor QCD in the presence of strong background magnetic fields using lattice simulations at physical quark masses for the first time. Our results show a splitting within multiplets according to the electric charge of the baryons and reveal, in particular, a reduction of the nucleon masses for strong magnetic fields. This first-principles input is used to define constituent quark masses and is employed to set the free parameters of the Polyakov loop-extended Nambu-Jona-Lasinio (PNJL) model in a magnetic field-dependent manner. The so constructed model is shown to exhibit inverse magnetic catalysis at high temperatures and a reduction of the transition temperature as the magnetic field grows - in line with non-perturbative lattice results. This is contrary to the naive variant of this model, which gives incorrect results for this fundamental phase diagram. Our findings demonstrate that the magnetic field dependence of the PNJL model can be reconciled with the lattice findings in a systematic way, employing solely zero-temperature first-principles input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02103v2-abstract-full').style.display = 'none'; document.getElementById('1905.02103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, updatet some figures, included new references and a table of key results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10296">arXiv:1904.10296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10296">pdf</a>, <a href="https://arxiv.org/format/1904.10296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2019)007">10.1007/JHEP07(2019)007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic catalysis and inverse catalysis for heavy pions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10296v2-abstract-short" style="display: inline;"> We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10296v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10296v2-abstract-full" style="display: none;"> We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition region. While the former is known to be robust and independent of the details of the interactions, inverse catalysis arises as a result of a delicate competition, effective only for light quarks. By performing simulations at different quark masses, we determine the pion mass above which inverse catalysis does not take place in the transition region anymore. Even for pions heavier than this limiting value - where the quark condensate undergoes magnetic catalysis - our results are consistent with the notion that the transition temperature is reduced by the magnetic field. These findings will be useful to guide low-energy models and effective theories of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10296v2-abstract-full').style.display = 'none'; document.getElementById('1904.10296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version; matches published version; 14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.06004">arXiv:1811.06004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.06004">pdf</a>, <a href="https://arxiv.org/format/1811.06004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD at nonzero isospin asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.06004v1-abstract-short" style="display: inline;"> We study the phase diagram and the thermodynamic properties of QCD at nonzero isospin asymmetry at physical quark masses with staggered quarks. In particular, continuum results for the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition are presented. Our findings indicate that the pion condensation phase is restricted to $T\lesssim170$~MeV fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06004v1-abstract-full').style.display = 'inline'; document.getElementById('1811.06004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.06004v1-abstract-full" style="display: none;"> We study the phase diagram and the thermodynamic properties of QCD at nonzero isospin asymmetry at physical quark masses with staggered quarks. In particular, continuum results for the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition are presented. Our findings indicate that the pion condensation phase is restricted to $T\lesssim170$~MeV for isospin chemical potentials up to 325~MeV. We also use the data to test the range of validity of the Taylor expansion method and show first results for the equation of state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06004v1-abstract-full').style.display = 'none'; document.getElementById('1811.06004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, poster contribution to the XIII Quark Confinement and the Hadron Spectrum (Confinement 2018) conference, 31 July - 6 August 2018, Maynooth University, Ireland</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12879">arXiv:1810.12879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12879">pdf</a>, <a href="https://arxiv.org/format/1810.12879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.011501">10.1103/PhysRevD.100.011501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Regressive and generative neural networks for scalar field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+K">Kai Zhou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pang%2C+L">Long-Gang Pang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%B6cker%2C+H">Horst St枚cker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12879v3-abstract-short" style="display: inline;"> We explore the perspectives of machine learning techniques in the context of quantum field theories. In particular, we discuss two-dimensional complex scalar field theory at nonzero temperature and chemical potential -- a theory with a nontrivial phase diagram. A neural network is successfully trained to recognize the different phases of this system and to predict the value of various observables,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12879v3-abstract-full').style.display = 'inline'; document.getElementById('1810.12879v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12879v3-abstract-full" style="display: none;"> We explore the perspectives of machine learning techniques in the context of quantum field theories. In particular, we discuss two-dimensional complex scalar field theory at nonzero temperature and chemical potential -- a theory with a nontrivial phase diagram. A neural network is successfully trained to recognize the different phases of this system and to predict the value of various observables, based on the field configurations. We analyze a broad range of chemical potentials and find that the network is robust and able to recognize patterns far away from the point where it was trained. Aside from the regressive analysis, which belongs to supervised learning, an unsupervised generative network is proposed to produce new quantum field configurations that follow a specific distribution. An implicit local constraint fulfilled by the physical configurations was found to be automatically captured by our generative model. We elaborate on potential uses of such a generative approach for sampling outside the training region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12879v3-abstract-full').style.display = 'none'; document.getElementById('1810.12879v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 011501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11045">arXiv:1810.11045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11045">pdf</a>, <a href="https://arxiv.org/format/1810.11045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014518">10.1103/PhysRevD.99.014518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reliability of Taylor expansions in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11045v2-abstract-short" style="display: inline;"> We investigate the reliability of the Taylor expansion method in QCD with isospin chemical potentials using lattice simulations. By comparing the expansion of the number density to direct results, the range of validity of the leading- and next-to-leading order expansions is determined. We also elaborate on the convergence properties of the Taylor series by comparing the leading estimate for the ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11045v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11045v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11045v2-abstract-full" style="display: none;"> We investigate the reliability of the Taylor expansion method in QCD with isospin chemical potentials using lattice simulations. By comparing the expansion of the number density to direct results, the range of validity of the leading- and next-to-leading order expansions is determined. We also elaborate on the convergence properties of the Taylor series by comparing the leading estimate for the radius of convergence to the position of the nearest singularity, i.e. the onset of pion condensation. Our results provide a handle for quantifying the uncertainties of Taylor expansions in baryon chemical potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11045v2-abstract-full').style.display = 'none'; document.getElementById('1810.11045v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures; v2: typos corrected, reference list updated, discussion on finite size effects clarified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014518 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09173">arXiv:1810.09173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09173">pdf</a>, <a href="https://arxiv.org/format/1810.09173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Chiral transition via the Banks-Casher relation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gonglach%2C+L">Lukas Gonglach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09173v1-abstract-short" style="display: inline;"> We investigate the properties of the finite-temperature QCD transition towards the chiral limit using staggered quarks. Starting from the 2+1-flavor physical point, the limit of massless quarks is approached along two different trajectories in the Columbia-plot. Unlike in previous approaches, the chiral condensate is determined via the Banks-Casher relation. The first results of our finite size sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09173v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09173v1-abstract-full" style="display: none;"> We investigate the properties of the finite-temperature QCD transition towards the chiral limit using staggered quarks. Starting from the 2+1-flavor physical point, the limit of massless quarks is approached along two different trajectories in the Columbia-plot. Unlike in previous approaches, the chiral condensate is determined via the Banks-Casher relation. The first results of our finite size scaling analysis are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09173v1-abstract-full').style.display = 'none'; document.getElementById('1810.09173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures. Parallel talk at the 36th Annual International Symposium on Lattice Field Theory (LATTICE18), East Lansing, Michigan USA, 22-28 July 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08326">arXiv:1807.08326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08326">pdf</a>, <a href="https://arxiv.org/format/1807.08326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074508">10.1103/PhysRevD.98.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applying constrained simulations for low temperature lattice QCD at finite baryon chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+C">Cs. Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08326v2-abstract-short" style="display: inline;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08326v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08326v2-abstract-full" style="display: none;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pion and nucleon masses. In the density of states approach we applied pion condensate or gauge action density fixing. We found that the density of states method performs similarly to reweighting. At $T \approx 100$ MeV, we found an indication of the onset of the quark number density at around $渭/m_N \sim 0.16 - 0.18$ on $6^4$ lattices at $尾=2.9$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'none'; document.getElementById('1807.08326v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.09632">arXiv:1806.09632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.09632">pdf</a>, <a href="https://arxiv.org/format/1806.09632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2018)070">10.1007/JHEP09(2018)070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal magnetoresponse in QCD and $\mathcal{N}=4$ SYM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaminski%2C+M">Matthias Kaminski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wu%2C+J">Jackson Wu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yaffe%2C+L">Laurence Yaffe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.09632v2-abstract-short" style="display: inline;"> Using recent lattice data on the thermodynamics of QCD in the presence of a background magnetic field, we show that the ratio of transverse to longitudinal pressure exhibits, to good accuracy, a simple scaling behavior over a wide range of temperature and magnetic field, essentially depending only on the ratio $T/\sqrt B$. We compare this QCD response to the corresponding magnetoresponse in maxima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09632v2-abstract-full').style.display = 'inline'; document.getElementById('1806.09632v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.09632v2-abstract-full" style="display: none;"> Using recent lattice data on the thermodynamics of QCD in the presence of a background magnetic field, we show that the ratio of transverse to longitudinal pressure exhibits, to good accuracy, a simple scaling behavior over a wide range of temperature and magnetic field, essentially depending only on the ratio $T/\sqrt B$. We compare this QCD response to the corresponding magnetoresponse in maximally supersymmetric Yang Mills theory. Given suitable calibrations defining the comparison, we find excellent agreement. This may be viewed as a further test of the applicability of holographic models for hot QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09632v2-abstract-full').style.display = 'none'; document.getElementById('1806.09632v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: fixed minor typos, published version; v1: 23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10971">arXiv:1805.10971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.10971">pdf</a>, <a href="https://arxiv.org/format/1805.10971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.072001">10.1103/PhysRevLett.121.072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak decay of magnetized pions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10971v3-abstract-short" style="display: inline;"> The leptonic decay of charged pions is investigated in the presence of background magnetic fields. In this situation Lorentz symmetry is broken and new fundamental decay constants need to be introduced, associated with the decay via the vector part of the electroweak current. We calculate the magnetic field-dependence of both the usual and a new decay constant non-perturbatively on the lattice. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10971v3-abstract-full').style.display = 'inline'; document.getElementById('1805.10971v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10971v3-abstract-full" style="display: none;"> The leptonic decay of charged pions is investigated in the presence of background magnetic fields. In this situation Lorentz symmetry is broken and new fundamental decay constants need to be introduced, associated with the decay via the vector part of the electroweak current. We calculate the magnetic field-dependence of both the usual and a new decay constant non-perturbatively on the lattice. We employ both Wilson and staggered quarks and extrapolate the results to the continuum limit. With this non-perturbative input we calculate the tree-level electroweak amplitude for the full decay rate in strong magnetic fields. We find that the muonic decay of the charged pion is enhanced drastically by the magnetic field. We comment on possible astrophysical implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10971v3-abstract-full').style.display = 'none'; document.getElementById('1805.10971v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+3 pages, 4 figures. v3: discussion on systematic errors extended, version accepted for publication in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 072001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06685">arXiv:1802.06685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06685">pdf</a>, <a href="https://arxiv.org/format/1802.06685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.094510">10.1103/PhysRevD.98.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New class of compact stars: Pion stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fraga%2C+E+S">Eduardo S. Fraga</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hippert%2C+M">Mauricio Hippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaffner-Bielich%2C+J">Jurgen Schaffner-Bielich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06685v3-abstract-short" style="display: inline;"> We investigate the viability of a new type of compact star whose main constituent is a Bose-Einstein condensate of charged pions. Several different setups are considered, where a gas of charged leptons and neutrinos is also present. The pionic equation of state is obtained from lattice QCD simulations in the presence of an isospin chemical potential, and requires no modeling of the nuclear force.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06685v3-abstract-full').style.display = 'inline'; document.getElementById('1802.06685v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06685v3-abstract-full" style="display: none;"> We investigate the viability of a new type of compact star whose main constituent is a Bose-Einstein condensate of charged pions. Several different setups are considered, where a gas of charged leptons and neutrinos is also present. The pionic equation of state is obtained from lattice QCD simulations in the presence of an isospin chemical potential, and requires no modeling of the nuclear force. The gravitationally bound configurations of these systems are found by solving the Tolman-Oppenheimer-Volkov equations. We discuss weak decays within the pion condensed phase and elaborate on the generation mechanism of such objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06685v3-abstract-full').style.display = 'none'; document.getElementById('1802.06685v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2 includes discussion of weak processes in the condensed phase and effects of neutrinos. v3 fixed typos, minor changes, matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 094510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08190">arXiv:1712.08190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08190">pdf</a>, <a href="https://arxiv.org/format/1712.08190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.054514">10.1103/PhysRevD.97.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD phase diagram for nonzero isospin-asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">S. Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08190v2-abstract-short" style="display: inline;"> The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08190v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08190v2-abstract-full" style="display: none;"> The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero modes and thereby stabilize the algorithm. The limit of vanishing explicit breaking is obtained by means of an extrapolation, which is facilitated by a novel improvement program employing the singular value representation of the Dirac operator. Our findings indicate that no pion condensation takes place above $T\approx 160$ MeV and also suggest that the deconfinement crossover continuously connects to the BEC-BCS crossover at high isospin asymmetries. The results may be directly compared to effective theories and model approaches to QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08190v2-abstract-full').style.display = 'none'; document.getElementById('1712.08190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures; v2: to match published version, corrected typos and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 054514 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08720">arXiv:1711.08720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.08720">pdf</a>, <a href="https://arxiv.org/format/1711.08720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507014">10.1051/epjconf/201817507014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau levels in QCD in an external magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bruckmann%2C+F">Falk Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wellnhofer%2C+J">Jacob Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08720v1-abstract-short" style="display: inline;"> We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a &#34;lowest Landau level&#34; in the four-dimensional case, and discuss how much of the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08720v1-abstract-full').style.display = 'inline'; document.getElementById('1711.08720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08720v1-abstract-full" style="display: none;"> We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a &#34;lowest Landau level&#34; in the four-dimensional case, and discuss how much of the observed effects of a magnetic field can be explained in terms of it. Our results can be used to test the validity of low-energy models of QCD that make use of the lowest-Landau-level approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08720v1-abstract-full').style.display = 'none'; document.getElementById('1711.08720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures; to appear in the proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), June 19-24, 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01502">arXiv:1710.01502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01502">pdf</a>, <a href="https://arxiv.org/format/1710.01502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513005">10.1051/epjconf/201817513005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion decay in magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01502v1-abstract-short" style="display: inline;"> The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01502v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01502v1-abstract-full" style="display: none;"> The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbatively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01502v1-abstract-full').style.display = 'none'; document.getElementById('1710.01502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10487">arXiv:1709.10487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10487">pdf</a>, <a href="https://arxiv.org/format/1709.10487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507020">10.1051/epjconf/201817507020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD at finite isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmalzbauer%2C+S">Sebastian Schmalzbauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10487v1-abstract-short" style="display: inline;"> We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10487v1-abstract-full').style.display = 'inline'; document.getElementById('1709.10487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10487v1-abstract-full" style="display: none;"> We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10487v1-abstract-full').style.display = 'none'; document.getElementById('1709.10487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, Proceedings of the 35th International Symposium on Lattice Field Theory, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05600">arXiv:1707.05600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05600">pdf</a>, <a href="https://arxiv.org/format/1707.05600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.034505">10.1103/PhysRevD.97.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson masses in electromagnetic fields with Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glaessle%2C+B">Benjamin Glaessle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05600v3-abstract-short" style="display: inline;"> We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured $蟻$-meson condensation at strong magnetic fields. The con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05600v3-abstract-full').style.display = 'inline'; document.getElementById('1707.05600v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05600v3-abstract-full" style="display: none;"> We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured $蟻$-meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between $蟻$-mesons and pions. We also derive Ward-Takashi identities for QCD+QED both in the continuum formulation and for (order $a$-improved) Wilson fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05600v3-abstract-full').style.display = 'none'; document.getElementById('1707.05600v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures; v2: revtex4 format, updated references, extended discussions, included study of finite size effects, conclusions unchanged; v3: improved discussions on crucial points, conclusions unchanged, new version to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 034505 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10210">arXiv:1705.10210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10210">pdf</a>, <a href="https://arxiv.org/format/1705.10210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.074506">10.1103/PhysRevD.96.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau levels in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bruckmann%2C+F">F. Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">M. Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kovacs%2C+T+G">T. G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wellnhofer%2C+J">J. Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10210v1-abstract-short" style="display: inline;"> We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10210v1-abstract-full').style.display = 'inline'; document.getElementById('1705.10210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10210v1-abstract-full" style="display: none;"> We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and an expansion of the full four-dimensional modes in the basis of these two-dimensional states. We evaluate various fermionic observables including the quark condensate and the spin polarization in this basis to find how much the lowest Landau level contributes to them. The results allow for a deeper insight into the dynamics of quarks and gluons in background magnetic fields and may be directly compared to low-energy models of QCD employing the lowest Landau level approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10210v1-abstract-full').style.display = 'none'; document.getElementById('1705.10210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 074506 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06758">arXiv:1611.06758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.06758">pdf</a>, <a href="https://arxiv.org/format/1611.06758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD phase diagram with isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06758v1-abstract-short" style="display: inline;"> In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06758v1-abstract-full').style.display = 'inline'; document.getElementById('1611.06758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06758v1-abstract-full" style="display: none;"> In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06758v1-abstract-full').style.display = 'none'; document.getElementById('1611.06758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, Combined proceedings of the authors contributions to the 34th International Symposium on Lattice Field Theory (Lattice 2016)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.05747">arXiv:1611.05747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.05747">pdf</a>, <a href="https://arxiv.org/format/1611.05747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Landau Levels in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bruckmann%2C+F">Falk Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wellnhofer%2C+J">Jacob Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.05747v1-abstract-short" style="display: inline;"> The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05747v1-abstract-full').style.display = 'inline'; document.getElementById('1611.05747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.05747v1-abstract-full" style="display: none;"> The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05747v1-abstract-full').style.display = 'none'; document.getElementById('1611.05747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+6 pages, 2 figures. Contribution to the 34th International Symposium on Lattice Field Theory (Lattice 2016), 24-30 July 2016, University of Southampton, UK</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Endrodi%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10