CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–44 of 44 results for author: <span class="mathjax">Pasztor, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Pasztor%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pasztor, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pasztor%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pasztor, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06216">arXiv:2410.06216</a> <span> [<a href="https://arxiv.org/pdf/2410.06216">pdf</a>, <a href="https://arxiv.org/format/2410.06216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD deconfinement transition line up to $渭_B=400$ MeV from finite volume lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06216v1-abstract-short" style="display: inline;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06216v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06216v1-abstract-full" style="display: none;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak position of the static quark entropy ($S_Q(T,渭_B)$) in $T$, which is based on the renormalized Polyakov loop. We extrapolate $S_Q(T,渭_B)$ based on high statistics finite temperature ensembles on a $16^3\times 8$ lattice to finite density by means of a Taylor expansion to eighth order in $渭_B$ (NNNLO) along the strangeness neutral line. For the simulations the 4HEX staggered action was used with 2+1 flavors at physical quark masses. In this setup the phase diagram can be drawn up to unprecedentedly high chemical potentials. Our results for the deconfinement temperature are in rough agreement with phenomenological estimates of the freeze-out curve in relativistic heavy ion collisions. In addition, we study the width of the deconfinement crossover. We show that up to $渭_B \approx 400$ MeV, the deconfinement transition gets broader at higher densities, disfavoring the existence of a deconfinement critical endpoint in this range. Finally, we examine the transition line without the strangeness neutrality condition and observe a hint for the narrowing of the crossover towards large $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'none'; document.getElementById('2410.06216v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12320">arXiv:2405.12320</a> <span> [<a href="https://arxiv.org/pdf/2405.12320">pdf</a>, <a href="https://arxiv.org/format/2405.12320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral and deconfinement properties of the QCD crossover have a different volume and baryochemical potential dependence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12320v1-abstract-short" style="display: inline;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12320v1-abstract-full" style="display: none;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperatures almost agree. However, chiral and deconfinement related observables have a qualitatively different chemical potential and volume dependence. In general, deconfinement related observables have a milder volume dependence. Furthermore, while the deconfinement transition appears to get broader with increasing $渭_B$, the width as well as the strength of the chiral transition is approximately constant. Our results are based on simulations at zero and imaginary chemical potentials using 4stout-improved staggered fermions with $N_蟿=12$ time-slices and physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'none'; document.getElementById('2405.12320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16709">arXiv:2403.16709</a> <span> [<a href="https://arxiv.org/pdf/2403.16709">pdf</a>, <a href="https://arxiv.org/format/2403.16709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The crossover line in the $(T, 渭)$-phase diagram of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">Kalman K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16709v1-abstract-short" style="display: inline;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16709v1-abstract-full" style="display: none;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extrapolation of the crossover temperature based on different observables at several lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'none'; document.getElementById('2403.16709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to Quark Matter Conference 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A 982 (2019) 303-306 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01169">arXiv:2401.01169</a> <span> [<a href="https://arxiv.org/pdf/2401.01169">pdf</a>, <a href="https://arxiv.org/format/2401.01169">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Finite volume effects near the chiral crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01169v1-abstract-short" style="display: inline;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at z… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01169v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01169v1-abstract-full" style="display: none;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at zero and small chemical potentials on the QCD transition through the chiral observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'none'; document.getElementById('2401.01169v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07528">arXiv:2312.07528</a> <span> [<a href="https://arxiv.org/pdf/2312.07528">pdf</a>, <a href="https://arxiv.org/format/2312.07528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Continuum extrapolated high order baryon fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07528v1-abstract-short" style="display: inline;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07528v1-abstract-full" style="display: none;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that for $T \leq 145$ MeV, relevant for criticality search, finite volume effects are under control. Our results are in sharp contrast with well known results in the literature obtained at finite lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'none'; document.getElementById('2312.07528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures (main text) + 5 pages, 7 figures (supplemental material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06105">arXiv:2308.06105</a> <span> [<a href="https://arxiv.org/pdf/2308.06105">pdf</a>, <a href="https://arxiv.org/format/2308.06105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Can rooted staggered fermions describe nonzero baryon density at low temperatures? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06105v1-abstract-short" style="display: inline;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06105v1-abstract-full" style="display: none;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass. We elucidate the nature of the non-analyticity behind this sharp rise in the density by a comparison of reweighting results with a Taylor expansion of high order. While at first sight this non-analytic behavior becomes apparent at the same position where the pion condensation transition takes place in the phase-quenched theory, the nature of the non-analyticity in the two theories appears to be quite different: While at nonzero isospin density the data are consistent with a genuine thermodynamic (branch-point) singularity, the results at nonzero baryon density point to an essential singularity at $渭_B=0$. The effect is absent for four flavors of degenerate quarks, where rooting is not used. For the two-flavor case, we show numerical evidence that the magnitude of the effect diminishes on finer lattices. We discuss the implications of this technical complication on future studies of the QCD phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'none'; document.getElementById('2308.06105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12947">arXiv:2301.12947</a> <span> [<a href="https://arxiv.org/pdf/2301.12947">pdf</a>, <a href="https://arxiv.org/format/2301.12947">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Fighting the sign problem in a chiral random matrix model with contour deformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pesznyak%2C+D">David Pesznyak</a>, <a href="/search/hep-lat?searchtype=author&query=Tulipant%2C+Z">Zoltan Tulipant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12947v1-abstract-short" style="display: inline;"> We studied integration contour deformations in the chiral random matrix theory of Stephanov with the goal of alleviating the finite-density sign problem. We considered simple ans盲tze for the deformed integration contours, and optimized their parameters. We find that optimization of a single parameter manages to considerably improve on the severity of the sign problem. We show numerical evidence th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12947v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12947v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12947v1-abstract-full" style="display: none;"> We studied integration contour deformations in the chiral random matrix theory of Stephanov with the goal of alleviating the finite-density sign problem. We considered simple ans盲tze for the deformed integration contours, and optimized their parameters. We find that optimization of a single parameter manages to considerably improve on the severity of the sign problem. We show numerical evidence that the improvement achieved is exponential in the degrees of freedom of the system, i.e., the size of the random matrix. We also compare the optimization method with contour deformations coming from the holomorphic flow equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12947v1-abstract-full').style.display = 'none'; document.getElementById('2301.12947v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05398">arXiv:2208.05398</a> <span> [<a href="https://arxiv.org/pdf/2208.05398">pdf</a>, <a href="https://arxiv.org/format/2208.05398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L091503">10.1103/PhysRevD.107.L091503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real $渭_B$ vs. extrapolations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05398v2-abstract-short" style="display: inline;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05398v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05398v2-abstract-full" style="display: none;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniques free from an overlap problem. We use 2stout improved staggered fermions with 8 time-slices and cover the entire RHIC BES range in the baryochemical potential, up to $渭_B/T=3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'none'; document.getElementById('2208.05398v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07561">arXiv:2202.07561</a> <span> [<a href="https://arxiv.org/pdf/2202.07561">pdf</a>, <a href="https://arxiv.org/format/2202.07561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.054512">10.1103/PhysRevD.106.054512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exponential reduction of the sign problem at finite density in the 2+1D XY model via contour deformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Tulipant%2C+Z">Zoltan Tulipant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07561v1-abstract-short" style="display: inline;"> We study the 2+1 dimensional XY model at nonzero chemical potential $渭$ on deformed integration manifolds, with the aim of alleviating its sign problem. We investigate several proposals for the deformations, and considerably improve on the severity of the sign problem with respect to standard reweighting approaches. We present numerical evidence that the reduction of the sign problem is exponentia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07561v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07561v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07561v1-abstract-full" style="display: none;"> We study the 2+1 dimensional XY model at nonzero chemical potential $渭$ on deformed integration manifolds, with the aim of alleviating its sign problem. We investigate several proposals for the deformations, and considerably improve on the severity of the sign problem with respect to standard reweighting approaches. We present numerical evidence that the reduction of the sign problem is exponential both in $渭^2$ and in the spatial volume. We also present a new approach to the optimization procedure based on reweighting, that sensibly reduces its computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07561v1-abstract-full').style.display = 'none'; document.getElementById('2202.07561v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05574">arXiv:2202.05574</a> <span> [<a href="https://arxiv.org/pdf/2202.05574">pdf</a>, <a href="https://arxiv.org/format/2202.05574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114504">10.1103/PhysRevD.105.114504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05574v2-abstract-short" style="display: inline;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05574v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05574v2-abstract-full" style="display: none;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range $130 \rm{MeV} \leq T \leq 280 \rm{MeV}$. We also extrapolate the finite baryon density equation of state to small non-zero values of the strangeness-to-baryon ratio $R=\left\langle S \right\rangle / \left\langle B \right\rangle$. We perform a continuum extrapolation using lattice simulations of the 4stout-improved staggered action with 8, 10, 12 and 16 timeslices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'none'; document.getElementById('2202.05574v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures; v2: contains ancillary files with tabulated data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00887">arXiv:2201.00887</a> <span> [<a href="https://arxiv.org/pdf/2201.00887">pdf</a>, <a href="https://arxiv.org/format/2201.00887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real $渭_B$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00887v1-abstract-short" style="display: inline;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00887v1-abstract-full" style="display: none;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature ratio of $渭_B/T=2.7$, covering the RHIC Beam Energy Scan range, and penetrating the region where methods based on analytic continuation are unpredictive.This opens up a new window to study QCD matter at finite $渭_B$ from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'none'; document.getElementById('2201.00887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Contribution to the XXXIII International (ONLINE) Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests"; Based on 2108.09213 [hep-lat]. arXiv admin note: substantial text overlap with arXiv:2112.02134</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04192">arXiv:2112.04192</a> <span> [<a href="https://arxiv.org/pdf/2112.04192">pdf</a>, <a href="https://arxiv.org/format/2112.04192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The upper right corner of the Columbia plot with staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">Denes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04192v1-abstract-short" style="display: inline;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04192v1-abstract-full" style="display: none;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments in a finite volume scaling study. We calculate the heavy critical mass in the three flavor theory in the infinite volume limit for $N_t=8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'none'; document.getElementById('2112.04192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02402">arXiv:2112.02402</a> <span> [<a href="https://arxiv.org/pdf/2112.02402">pdf</a>, <a href="https://arxiv.org/format/2112.02402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantifying corrections to the hadron resonance gas with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02402v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02402v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane. Using the aforementioned coefficients, we also extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity expansion. Our results extrapolated along the crossover line $T_\mathrm{c}(渭_B)$ at strangeness neutrality are able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'none'; document.getElementById('2112.02402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02134">arXiv:2112.02134</a> <span> [<a href="https://arxiv.org/pdf/2112.02134">pdf</a>, <a href="https://arxiv.org/format/2112.02134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density: reweighting without an overlap problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02134v2-abstract-short" style="display: inline;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the gener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02134v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02134v2-abstract-full" style="display: none;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the generation of configurations with the positive fermionic weights given by the absolute value of the real part of the quark determinant, and a reweighting by a sign. There are only two sectors, +1 and -1 and as long as the average $\left\langle \pm \right\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting has no overlap problem - unlike reweighting from $渭=0$ - and the results are reliable. We also present results based on this algorithm on the phase diagram of lattice QCD with two different actions: as a first test, we apply the method to calculate the position of the critical endpoint with unimproved staggered fermions at $N_蟿=4$; as a second application, we study the phase diagram with 2stout improved staggered fermions at $N_蟿=6$. This second one is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method penetrates the region of the phase diagram where the Taylor and imaginary chemical potential methods lose predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'none'; document.getElementById('2112.02134v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; Contribution to the Proceedings of The 38th International Symposium on Lattice Field Theory, LATTICE2021; Based on 2004.10800 and 2108.09213</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00083">arXiv:2112.00083</a> <span> [<a href="https://arxiv.org/pdf/2112.00083">pdf</a>, <a href="https://arxiv.org/format/2112.00083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of QCD at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00083v1-abstract-short" style="display: inline;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00083v1-abstract-full" style="display: none;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We calculate the alternative expansion coefficients in the continuum, and show our results for the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'none'; document.getElementById('2112.00083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09213">arXiv:2108.09213</a> <span> [<a href="https://arxiv.org/pdf/2108.09213">pdf</a>, <a href="https://arxiv.org/format/2108.09213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051506">10.1103/PhysRevD.105.L051506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real baryon density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09213v1-abstract-short" style="display: inline;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09213v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09213v1-abstract-full" style="display: none;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $渭_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'none'; document.getElementById('2108.09213v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06660">arXiv:2102.06660</a> <span> [<a href="https://arxiv.org/pdf/2102.06660">pdf</a>, <a href="https://arxiv.org/format/2102.06660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.232001">10.1103/PhysRevLett.126.232001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06660v1-abstract-short" style="display: inline;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06660v1-abstract-full" style="display: none;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating the equation of state of QCD to finite, real chemical potential that can extend its reach further than previous methods. We present continuum extrapolated lattice results for the new expansion coefficients and show the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'none'; document.getElementById('2102.06660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 232001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06625">arXiv:2102.06625</a> <span> [<a href="https://arxiv.org/pdf/2102.06625">pdf</a>, <a href="https://arxiv.org/format/2102.06625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094508">10.1103/PhysRevD.104.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pesznyak%2C+D">David Pesznyak</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06625v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06625v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansion coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane, where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these coefficients by performing lattice simulations with temporal extents of $N_蟿=8,10,12$ using the 4stout-improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'none'; document.getElementById('2102.06625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00394">arXiv:2010.00394</a> <span> [<a href="https://arxiv.org/pdf/2010.00394">pdf</a>, <a href="https://arxiv.org/format/2010.00394">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034511">10.1103/PhysRevD.103.034511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Apparent convergence of Pad茅 approximants for the crossover line in finite density QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Sz%C3%A9p%2C+Z">Zsolt Sz茅p</a>, <a href="/search/hep-lat?searchtype=author&query=Mark%C3%B3%2C+G">Gergely Mark贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00394v2-abstract-short" style="display: inline;"> We propose a novel Bayesian method to analytically continue observables to real baryochemical potential $渭_B$ in finite density QCD. Taylor coefficients at $渭_B=0$ and data at imaginary chemical potential $渭_B^I$ are treated on equal footing. We consider two different constructions for the Pad茅 approximants, the classical multipoint Pad茅 approximation and a mixed approximation that is a slight gen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00394v2-abstract-full').style.display = 'inline'; document.getElementById('2010.00394v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00394v2-abstract-full" style="display: none;"> We propose a novel Bayesian method to analytically continue observables to real baryochemical potential $渭_B$ in finite density QCD. Taylor coefficients at $渭_B=0$ and data at imaginary chemical potential $渭_B^I$ are treated on equal footing. We consider two different constructions for the Pad茅 approximants, the classical multipoint Pad茅 approximation and a mixed approximation that is a slight generalization of a recent idea in Pad茅 approximation theory. Approximants with spurious poles are excluded from the analysis. As an application, we perform a joint analysis of the available continuum extrapolated lattice data for both pseudocritical temperature $T_c$ at $渭_B^I$ from the Wuppertal-Budapest Collaboration and Taylor coefficients $魏_2$ and $魏_4$ from the HotQCD Collaboration. An apparent convergence of $[p/p]$ and $[p/p+1]$ sequences of rational functions is observed with increasing $p.$ We present our extrapolation up to $渭_B\approx 600$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00394v2-abstract-full').style.display = 'none'; document.getElementById('2010.00394v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, clarifications and references added, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10800">arXiv:2004.10800</a> <span> [<a href="https://arxiv.org/pdf/2004.10800">pdf</a>, <a href="https://arxiv.org/ps/2004.10800">ps</a>, <a href="https://arxiv.org/format/2004.10800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2020)088">10.1007/JHEP05(2020)088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density; results for the critical end point on coarse lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10800v2-abstract-short" style="display: inline;"> All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $渭= 渭_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10800v2-abstract-full').style.display = 'inline'; document.getElementById('2004.10800v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10800v2-abstract-full" style="display: none;"> All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $渭= 渭_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approach involves the generation of configurations with the positive fermionic weight $|{\rm Re\; det} D(渭)|$ where $D(渭)$ is the Dirac matrix and the signs ${\rm sign} \; ( {\rm Re\; det} D(渭) ) = \pm 1$ are handled by a discrete reweighting. Hence there are only two sectors, $+1$ and $-1$ and as long as the average $\langle\pm 1\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting by the signs carries no overlap problem and the results are reliable. The approach is tested on $N_t = 4$ lattices with $2+1$ flavors and physical quark masses using the unimproved staggered discretization. By measuring the Fisher (sometimes also called Lee-Yang) zeros in the bare coupling on spatial lattices $L/a = 8, 10, 12$ we conclude that the cross-over present at $渭= 0$ becomes stronger at $渭> 0$ and is consistent with a true phase transition at around $渭_B/T \sim 2.4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10800v2-abstract-full').style.display = 'none'; document.getElementById('2004.10800v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07066">arXiv:2004.07066</a> <span> [<a href="https://arxiv.org/pdf/2004.07066">pdf</a>, <a href="https://arxiv.org/format/2004.07066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2020.121986">10.1016/j.nuclphysa.2020.121986 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a reliable lower bound on the location of the critical endpoint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Konel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07066v1-abstract-short" style="display: inline;"> We perform the first direct determination of the position of the leading singularity of the pressure in the complex chemical potential $渭_B$ plane in lattice QCD using numerical simulations with 2-stout improved rooted staggered fermions. This provides a direct determination of the radius of convergence of the Taylor expansion of the pressure that does not rely on a finite-order truncation of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07066v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07066v1-abstract-full" style="display: none;"> We perform the first direct determination of the position of the leading singularity of the pressure in the complex chemical potential $渭_B$ plane in lattice QCD using numerical simulations with 2-stout improved rooted staggered fermions. This provides a direct determination of the radius of convergence of the Taylor expansion of the pressure that does not rely on a finite-order truncation of the expansion. The analyticity issues in the complex $渭_B$ plane of the grand canonical partition function of QCD with rooted staggered fermions are solved with a careful redefinition of the fermion determinant that makes it a polynomial in the fugacity on any finite lattice, without changing the continuum limit of the observables. By performing a finite volume scaling study at a single coarse lattice spacing, we show that the limiting singularity is not on the real line in the thermodynamic limit, thus showing that the radius of convergence of the Taylor expansion gives a lower bound on the location of a possible phase transition. In the vicinity of the crossover temperature at zero chemical potential, the radius of convergence turns out to be $渭_B/T \approx 2$ and roughly temperature independent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07066v1-abstract-full').style.display = 'none'; document.getElementById('2004.07066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure; Quark Matter 2019 - the XXVIIIth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04355">arXiv:2003.04355</a> <span> [<a href="https://arxiv.org/pdf/2003.04355">pdf</a>, <a href="https://arxiv.org/format/2003.04355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034503">10.1103/PhysRevD.102.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of stout smearing on the phase diagram from multiparameter reweigthing in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04355v2-abstract-short" style="display: inline;"> The phase diagram and the location of the critical endpoint (CEP) of lattice QCD with unimproved staggered fermions on a $N_t=4$ lattice was determined fifteen years ago with the multiparameter reweighting method by studying Fisher zeros. We first reproduce the old result with an exact algorithm (not known at the time) and with statistics larger by an order of magnitude. As an extension of the old… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04355v2-abstract-full').style.display = 'inline'; document.getElementById('2003.04355v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04355v2-abstract-full" style="display: none;"> The phase diagram and the location of the critical endpoint (CEP) of lattice QCD with unimproved staggered fermions on a $N_t=4$ lattice was determined fifteen years ago with the multiparameter reweighting method by studying Fisher zeros. We first reproduce the old result with an exact algorithm (not known at the time) and with statistics larger by an order of magnitude. As an extension of the old analysis we introduce stout smearing in the fermion action in order to reduce the finite lattice spacing effects. First we show that increasing the smearing parameter $蟻$ the crossover at $渭= 0$ gets weaker, i.e., the leading Fisher zero gets farther away from the real axis. Furthermore as the chemical potential is increased the overlap problem gets severe sooner than in the unimproved case, therefore shrinking the range of applicability of the method. Nevertheless certain qualitative features remain, even after introducing the smearing. Namely, at small chemical potentials the Fisher zeros first get farther away from the real axis and later at around $a渭_q = 0.1 - 0.15$ they start to get closer, i.e., the crossover first gets weaker and later stronger as a function of $渭$. However, because of the more severe overlap problem the CEP is out of reach with the smeared action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04355v2-abstract-full').style.display = 'none'; document.getElementById('2003.04355v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034503 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02821">arXiv:2002.02821</a> <span> [<a href="https://arxiv.org/pdf/2002.02821">pdf</a>, <a href="https://arxiv.org/format/2002.02821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.052001">10.1103/PhysRevLett.125.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD crossover at finite chemical potential from lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02821v1-abstract-short" style="display: inline;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02821v1-abstract-full" style="display: none;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero and imaganiary $渭_B$. We obtain the parameters $魏_2=0.0153(18)$ and $魏_4=0.00032(67)$ as a continuum extrapolation based on $N_t=10,12$ and $16$ lattices with physical quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both of these are consistent with a constant function of $渭_B$. We see no sign of criticality in the explored range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'none'; document.getElementById('2002.02821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text + 7 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06762">arXiv:1911.06762</a> <span> [<a href="https://arxiv.org/pdf/1911.06762">pdf</a>, <a href="https://arxiv.org/format/1911.06762">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Cross-correlators of conserved charges in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06762v1-abstract-short" style="display: inline;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to prelimina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06762v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06762v1-abstract-full" style="display: none;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to preliminary STAR results and comment on a possible direct comparison of lattice and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'none'; document.getElementById('1911.06762v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, contribution to the proceedings from the 18th International Conference on Strangeness in Quark Matter (SQM 2019)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00043">arXiv:1911.00043</a> <span> [<a href="https://arxiv.org/pdf/1911.00043">pdf</a>, <a href="https://arxiv.org/format/1911.00043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.074511">10.1103/PhysRevD.101.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radius of convergence in lattice QCD at finite $渭_B$ with rooted staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00043v2-abstract-short" style="display: inline;"> In typical statistical mechanical systems the grand canonical partition function at finite volume is proportional to a polynomial of the fugacity $e^{渭/T}$. The zero of this Lee-Yang polynomial closest to the origin determines the radius of convergence of the Taylor expansion of the pressure around $渭=0$. The computationally cheapest formulation of lattice QCD, rooted staggered fermions, with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00043v2-abstract-full').style.display = 'inline'; document.getElementById('1911.00043v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00043v2-abstract-full" style="display: none;"> In typical statistical mechanical systems the grand canonical partition function at finite volume is proportional to a polynomial of the fugacity $e^{渭/T}$. The zero of this Lee-Yang polynomial closest to the origin determines the radius of convergence of the Taylor expansion of the pressure around $渭=0$. The computationally cheapest formulation of lattice QCD, rooted staggered fermions, with the usual definition of the rooted determinant, does not admit such a Lee-Yang polynomial. We argue that the radius of convergence is then bounded by the spectral gap of the reduced matrix of the unrooted staggered operator. This is a cutoff effect that potentially affects all estimates of the radius of convergence with the standard staggered rooting. We suggest a new definition of the rooted staggered determinant at finite chemical potential that allows for a definition of a Lee-Yang polynomial, and, therefore of the numerical study of Lee-Yang zeros. We also describe an algorithm to determine the Lee-Yang zeros and apply it to configurations generated with the 2-stout improved staggered action at $N_t = 4$. We perform a finite-volume scaling study of the leading Lee-Yang zeros and estimate the radius of convergence of the Taylor expansion extrapolated to an infinite volume. We show that the limiting singularity is not on the real line, thus giving a lower bound on the location of any possible phase transitions at this lattice spacing. In the vicinity of the crossover temperature at zero chemical potential, the radius of convergence turns out to be $渭_B/T \approx 2$ and roughly temperature independent. Our simulations are performed at strange quark chemical potential $渭_s=0$, but the method can be straightforwardly extended to strangeness chemical potential $渭_S=0$ or strangeness neutrality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00043v2-abstract-full').style.display = 'none'; document.getElementById('1911.00043v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures; v2: contains corrections to the formulas from the erratum PRD 104, 119901(E) (2021); results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 074511 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14592">arXiv:1910.14592</a> <span> [<a href="https://arxiv.org/pdf/1910.14592">pdf</a>, <a href="https://arxiv.org/format/1910.14592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034506">10.1103/PhysRevD.101.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-diagonal correlators of conserved charges from lattice QCD and how to relate them to experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14592v2-abstract-short" style="display: inline;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14592v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14592v2-abstract-full" style="display: none;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite-$渭_B$ extrapolation, comparing two different methods. In order to relate the grand canonical observables to the experimentally available net-particle fluctuations and correlations, we perform a Hadron Resonance Gas (HRG) model analysis, which allows us to completely break down the contributions from different hadrons. We then construct suitable hadronic proxies for fluctuations ratios, and study their behavior at finite chemical potentials. We also study the effect of introducing acceptance cuts, and argue that the small dependence of certain ratios on the latter allows for a direct comparison with lattice QCD results, provided that the same cuts are applied to all hadronic species. Finally, we perform a comparison for the constructed quantities for experimentally available measurements from the STAR Collaboration. Thus, we estimate the chemical freeze-out temperature to 165 MeV using a strangeness-related proxy. This is a rather high temperature for the use of the Hadron Resonance Gas, thus, further lattice studies are necessary to provide first principle results at intermediate $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'none'; document.getElementById('1910.14592v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, 1 table, version published in Phys.Rev.D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034506 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01974">arXiv:1904.01974</a> <span> [<a href="https://arxiv.org/pdf/1904.01974">pdf</a>, <a href="https://arxiv.org/format/1904.01974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.114510">10.1103/PhysRevD.99.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reliable estimation of the radius of convergence in finite density QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01974v1-abstract-short" style="display: inline;"> We study different estimators of the radius of convergence of the Taylor series of the pressure in finite density QCD. We adopt the approach in which the radius of convergence is estimated first in a finite volume, and the infinite-volume limit is taken later. This requires an estimator for the radius of convergence that is reliable in a finite volume. Based on general arguments about the analytic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01974v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01974v1-abstract-full" style="display: none;"> We study different estimators of the radius of convergence of the Taylor series of the pressure in finite density QCD. We adopt the approach in which the radius of convergence is estimated first in a finite volume, and the infinite-volume limit is taken later. This requires an estimator for the radius of convergence that is reliable in a finite volume. Based on general arguments about the analytic structure of the partition function in a finite volume, we demonstrate that the ratio estimator cannot work in this approach, and propose three new estimators, capable of extracting reliably the radius of convergence, which coincides with the distance from the origin of the closest Lee-Yang zero. We also provide an estimator for the phase of the closest Lee-Yang zero, necessary to assess whether the leading singularity is a true critical point. We demonstrate the usage of these estimators on a toy model, namely 4 flavors of unimproved staggered fermions on a small $6^3 \times 4$ lattice, where both the radius of convergence and the Taylor coefficients to any order can be obtained by a direct determination of the Lee-Yang zeros. Interestingly, while the relative statistical error of the Taylor expansion coefficients steadily grows with order, that of our estimators stabilizes, allowing for an accurate estimate of the radius of convergence. In particular, we show that despite the more than 100\% error bars on high-order Taylor coefficients, the given ensemble contains enough information about the radius of convergence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01974v1-abstract-full').style.display = 'none'; document.getElementById('1904.01974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 114510 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09862">arXiv:1807.09862</a> <span> [<a href="https://arxiv.org/pdf/1807.09862">pdf</a>, <a href="https://arxiv.org/format/1807.09862">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Searching for a CEP signal with lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">Denes Sexty</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09862v1-abstract-short" style="display: inline;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09862v1-abstract-full" style="display: none;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09862v1-abstract-full').style.display = 'none'; document.getElementById('1807.09862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06472">arXiv:1807.06472</a> <span> [<a href="https://arxiv.org/pdf/1807.06472">pdf</a>, <a href="https://arxiv.org/format/1807.06472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2018.10.068">10.1016/j.nuclphysa.2018.10.068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice-based QCD equation of state at finite baryon density: Cluster Expansion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Vovchenko%2C+V">V. Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&query=Steinheimer%2C+J">J. Steinheimer</a>, <a href="/search/hep-lat?searchtype=author&query=Philipsen%2C+O">O. Philipsen</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Stoecker%2C+H">H. Stoecker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06472v1-abstract-short" style="display: inline;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06472v1-abstract-full" style="display: none;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data at both $渭_B = 0$ and at imaginary $渭_B$ is obtained. We also demonstrate how the Fourier coefficients can be reconstructed from baryon number susceptibilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'none'; document.getElementById('1807.06472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures. Contribution to the Quark Matter 2018 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04445">arXiv:1805.04445</a> <span> [<a href="https://arxiv.org/pdf/1805.04445">pdf</a>, <a href="https://arxiv.org/format/1805.04445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2018)205">10.1007/JHEP10(2018)205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher order fluctuations and correlations of conserved charges from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+K">Sandor K Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04445v1-abstract-short" style="display: inline;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04445v1-abstract-full" style="display: none;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulants as functions of temperature and chemical potential, which satisfy the experimental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively explain the behavior of the measured cumulant ratios by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'none'; document.getElementById('1805.04445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10074">arXiv:1802.10074</a> <span> [<a href="https://arxiv.org/pdf/1802.10074">pdf</a>, <a href="https://arxiv.org/ps/1802.10074">ps</a>, <a href="https://arxiv.org/format/1802.10074">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Comment on "The QCD axion beyond the classical level: A lattice study" </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">Ch. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10074v1-abstract-short" style="display: inline;"> We rebut the claim by Nakamura and Schierholz [1] that the mass of a potential axion needs to be no less than ~230MeV pointing out errors in both their analytic argument and numerical simulations. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10074v1-abstract-full" style="display: none;"> We rebut the claim by Nakamura and Schierholz [1] that the mass of a potential axion needs to be no less than ~230MeV pointing out errors in both their analytic argument and numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10074v1-abstract-full').style.display = 'none'; document.getElementById('1802.10074v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 page, no figure. Comment on arXiv:1802.09339</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07718">arXiv:1802.07718</a> <span> [<a href="https://arxiv.org/pdf/1802.07718">pdf</a>, <a href="https://arxiv.org/format/1802.07718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014512">10.1103/PhysRevD.98.014512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High statistics lattice study of stress tensor correlators in pure $SU(3)$ gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07718v2-abstract-short" style="display: inline;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'inline'; document.getElementById('1802.07718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07718v2-abstract-full" style="display: none;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obtain $畏/s=0.17(2)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'none'; document.getElementById('1802.07718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.02852">arXiv:1708.02852</a> <span> [<a href="https://arxiv.org/pdf/1708.02852">pdf</a>, <a href="https://arxiv.org/format/1708.02852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.10.042">10.1016/j.physletb.2017.10.042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Vovchenko%2C+V">Volodymyr Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Stoecker%2C+H">Horst Stoecker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.02852v2-abstract-short" style="display: inline;"> The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02852v2-abstract-full').style.display = 'inline'; document.getElementById('1708.02852v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.02852v2-abstract-full" style="display: none;"> The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential -- corresponding to the fugacity or virial expansion at real chemical potential -- are calculated within this model, and compared with the $N_t = 12$ lattice data. The lattice QCD behavior of the first four Fourier coefficients up to $T \simeq 185$ MeV is described fairly well by an interacting HRG with a single baryon-baryon eigenvolume interaction parameter $b \simeq 1$ fm$^3$, while the available lattice data on the difference $蠂_2^B - 蠂_4^B$ of baryon number susceptibilities is reproduced up to $T \simeq 175$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02852v2-abstract-full').style.display = 'none'; document.getElementById('1708.02852v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, new Fig. 2 depicting $蠂_2^B - 蠂_4^B$, version accepted for publication in Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 775, 71 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01113">arXiv:1702.01113</a> <span> [<a href="https://arxiv.org/pdf/1702.01113">pdf</a>, <a href="https://arxiv.org/format/1702.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034517">10.1103/PhysRevD.96.034517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the hadronic spectrum through QCD thermodynamics on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alba%2C+P">Paolo Alba</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J">Jana Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Sarti%2C+V+M">Valentina Mantovani Sarti</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Vazquez%2C+I+P">Israel Portillo Vazquez</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01113v1-abstract-short" style="display: inline;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01113v1-abstract-full" style="display: none;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the Quark Model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'none'; document.getElementById('1702.01113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034517 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00221">arXiv:1610.00221</a> <span> [<a href="https://arxiv.org/pdf/1610.00221">pdf</a>, <a href="https://arxiv.org/format/1610.00221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/779/1/012050">10.1088/1742-6596/779/1/012050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeness at finite temperature from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">Jana Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Vazquez%2C+I+P">Israel Portillo Vazquez</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00221v1-abstract-short" style="display: inline;"> The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00221v1-abstract-full').style.display = 'inline'; document.getElementById('1610.00221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00221v1-abstract-full" style="display: none;"> The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inclusion of decays [3]). We propose a set of specific observables, defined as linear combinations of conserved charge fluctuations, which allow to investigate this issue for baryons containing one or more strange quarks separately. Applications of these observables to isolate the multiplicity fluctuations of kaons from lattice QCD, and their comparison with the experimental results, are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00221v1-abstract-full').style.display = 'none'; document.getElementById('1610.00221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, contribution to the proceedings of the Strangeness in Quark Matter conference (June 27 to July 1, 2016, Berkeley, CA, USA)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02527">arXiv:1607.02527</a> <span> [<a href="https://arxiv.org/pdf/1607.02527">pdf</a>, <a href="https://arxiv.org/format/1607.02527">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Kaon fluctuations from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">Jana Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Vazquez%2C+I+P">Israel Portillo Vazquez</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02527v1-abstract-short" style="display: inline;"> We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02527v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02527v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02527v1-abstract-full" style="display: none;"> We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the strangeness and electric charge chemical potentials, which are functions of $T$ and $渭_B$ due to the experimental constraint on strangeness and electric charge, and can therefore be calculated on the lattice. This provides an unambiguous method to extract the kaon freeze-out temperature, by comparing the lattice results to the experimental values for the corresponding fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02527v1-abstract-full').style.display = 'none'; document.getElementById('1607.02527v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02493">arXiv:1607.02493</a> <span> [<a href="https://arxiv.org/pdf/1607.02493">pdf</a>, <a href="https://arxiv.org/format/1607.02493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2017.05.044">10.1016/j.nuclphysa.2017.05.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD equation of state at finite density from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02493v1-abstract-short" style="display: inline;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02493v1-abstract-full" style="display: none;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~渭_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $渭_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'none'; document.getElementById('1607.02493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07494">arXiv:1606.07494</a> <span> [<a href="https://arxiv.org/pdf/1606.07494">pdf</a>, <a href="https://arxiv.org/format/1606.07494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD for Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kampert%2C+K+H">K. H. Kampert</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">T. G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S+W">S. W. Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Redondo%2C+J">J. Redondo</a>, <a href="/search/hep-lat?searchtype=author&query=Ringwald%2C+A">A. Ringwald</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07494v2-abstract-short" style="display: inline;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'inline'; document.getElementById('1606.07494v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07494v2-abstract-full" style="display: none;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'none'; document.getElementById('1606.07494v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pdflatex, 40 figures; Section on experimental setups added, small corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.00466">arXiv:1601.00466</a> <span> [<a href="https://arxiv.org/pdf/1601.00466">pdf</a>, <a href="https://arxiv.org/format/1601.00466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2016.02.010">10.1016/j.nuclphysa.2016.02.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the QCD phase diagram from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.00466v1-abstract-short" style="display: inline;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'inline'; document.getElementById('1601.00466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.00466v1-abstract-full" style="display: none;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the strangeness neutrality is maintained, as it is in heavy ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'none'; document.getElementById('1601.00466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, Proceedings of the Quark Matter 2015 conference, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.00032">arXiv:1511.00032</a> <span> [<a href="https://arxiv.org/pdf/1511.00032">pdf</a>, <a href="https://arxiv.org/format/1511.00032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Static quark-antiquark pair free energy and screening masses: continuum results at the QCD physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Csaba Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.00032v1-abstract-short" style="display: inline;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop corre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'inline'; document.getElementById('1511.00032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.00032v1-abstract-full" style="display: none;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator. This conference contribution is based on the paper: JHEP 1504 (2015) 138 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'none'; document.getElementById('1511.00032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Talk presented at the 33rd International Symposium on Lattice Field Theory (Lattice 2015), 14-18 July 2015, Kobe International Conference Center, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04627">arXiv:1507.04627</a> <span> [<a href="https://arxiv.org/pdf/1507.04627">pdf</a>, <a href="https://arxiv.org/format/1507.04627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114505">10.1103/PhysRevD.92.114505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuations and correlations in high temperature QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04627v1-abstract-short" style="display: inline;"> We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\dots24$ in the crossover-region and $N_t=8\dots16$ at higher temperatures. We find that the Hadron Resonance Ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04627v1-abstract-full').style.display = 'inline'; document.getElementById('1507.04627v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04627v1-abstract-full" style="display: none;"> We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\dots24$ in the crossover-region and $N_t=8\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04627v1-abstract-full').style.display = 'none'; document.getElementById('1507.04627v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages revtex, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114505 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02173">arXiv:1501.02173</a> <span> [<a href="https://arxiv.org/pdf/1501.02173">pdf</a>, <a href="https://arxiv.org/format/1501.02173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2015)138">10.1007/JHEP04(2015)138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static $\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02173v1-abstract-short" style="display: inline;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02173v1-abstract-full').style.display = 'inline'; document.getElementById('1501.02173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02173v1-abstract-full" style="display: none;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02173v1-abstract-full').style.display = 'none'; document.getElementById('1501.02173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7443">arXiv:1410.7443</a> <span> [<a href="https://arxiv.org/pdf/1410.7443">pdf</a>, <a href="https://arxiv.org/format/1410.7443">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Spectral functions of charmonium with 2+1 flavours of dynamical quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=D%C3%BCrr%2C+S">Stephan D眉rr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">Christian Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S">Simon Mages</a>, <a href="/search/hep-lat?searchtype=author&query=N%C3%B3gr%C3%A1di%2C+D">D谩niel N贸gr谩di</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B3th%2C+B+C">B谩lint C. T贸th</a>, <a href="/search/hep-lat?searchtype=author&query=Trombit%C3%A1s%2C+N">Norbert Trombit谩s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7443v1-abstract-short" style="display: inline;"> Finite temperature charmonium spectral functions in the pseudoscalar(PS) and vector(V) channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of 545MeV. The highest temperature studied is approximately 1.4Tc. Up to this temperature no significant variation of the spectral functi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7443v1-abstract-full').style.display = 'inline'; document.getElementById('1410.7443v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7443v1-abstract-full" style="display: none;"> Finite temperature charmonium spectral functions in the pseudoscalar(PS) and vector(V) channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of 545MeV. The highest temperature studied is approximately 1.4Tc. Up to this temperature no significant variation of the spectral function is seen in the PS channel. The V channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega > 0. These results are in accord with previous calculations using the quenched approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7443v1-abstract-full').style.display = 'none'; document.getElementById('1410.7443v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014 June 23-28, 2014 Columbia University, New York, New York This conference contribution draws heavily from the paper: arXiv:1401.5940 [hep-lat]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.5940">arXiv:1401.5940</a> <span> [<a href="https://arxiv.org/pdf/1401.5940">pdf</a>, <a href="https://arxiv.org/ps/1401.5940">ps</a>, <a href="https://arxiv.org/format/1401.5940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2014)132">10.1007/JHEP04(2014)132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmonium spectral functions from 2+1 flavour lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Durr%2C+S">Stephan Durr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">Christian Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S">Simon Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Trombitas%2C+N">Norbert Trombitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.5940v2-abstract-short" style="display: inline;"> Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm), with a non-physical pion mass of $m_蟺 \approx$ 545 MeV. The highest temperature studied is approximately $1.4 T_c$. Up to this temperature no significant variation of the sp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5940v2-abstract-full').style.display = 'inline'; document.getElementById('1401.5940v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.5940v2-abstract-full" style="display: none;"> Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm), with a non-physical pion mass of $m_蟺 \approx$ 545 MeV. The highest temperature studied is approximately $1.4 T_c$. Up to this temperature no significant variation of the spectral function is seen in the pseudoscalar channel. The vector channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at 蠅>0. These results are in accord with previous calculations using the quenched approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5940v2-abstract-full').style.display = 'none'; document.getElementById('1401.5940v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1404 (2014) 132 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>