CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 158 results for author: <span class="mathjax">Detmold, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Detmold%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Detmold, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Detmold%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Detmold, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03602">arXiv:2410.03602</a> <span> [<a href="https://arxiv.org/pdf/2410.03602">pdf</a>, <a href="https://arxiv.org/format/2410.03602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Exploring gauge-fixing conditions with gradient-based optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03602v1-abstract-short" style="display: inline;"> Lattice gauge fixing is required to compute gauge-variant quantities, for example those used in RI-MOM renormalization schemes or as objects of comparison for model calculations. Recently, gauge-variant quantities have also been found to be more amenable to signal-to-noise optimization using contour deformations. These applications motivate systematic parameterization and exploration of gauge-fixi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03602v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03602v1-abstract-full" style="display: none;"> Lattice gauge fixing is required to compute gauge-variant quantities, for example those used in RI-MOM renormalization schemes or as objects of comparison for model calculations. Recently, gauge-variant quantities have also been found to be more amenable to signal-to-noise optimization using contour deformations. These applications motivate systematic parameterization and exploration of gauge-fixing schemes. This work introduces a differentiable parameterization of gauge fixing which is broad enough to cover Landau gauge, Coulomb gauge, and maximal tree gauges. The adjoint state method allows gradient-based optimization to select gauge-fixing schemes that minimize an arbitrary target loss function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03602v1-abstract-full').style.display = 'none'; document.getElementById('2410.03602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures; Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5786 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09273">arXiv:2406.09273</a> <span> [<a href="https://arxiv.org/pdf/2406.09273">pdf</a>, <a href="https://arxiv.org/format/2406.09273">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD constraints on isospin-dense matter and the nuclear equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09273v2-abstract-short" style="display: inline;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodyn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09273v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09273v2-abstract-full" style="display: none;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodynamic quantities and the equation of state of QCD over a wide range of isospin chemical potentials. Agreement is seen with chiral perturbation theory predictions when the chemical potential is small. Comparison to perturbative QCD calculations at large chemical potential allows for an estimate of the gap in the superconducting phase, and this quantity is seen to agree with perturbative determinations. Since the partition function for an isospin chemical potential, $渭_I$, bounds the partition function for a baryon chemical potential $渭_B=3渭_I/2$, these calculations also provide rigorous non-perturbative QCD bounds on the symmetric nuclear matter equation of state over a wide range of baryon densities for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'none'; document.getElementById('2406.09273v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures, updated with supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5730,FERMILAB-PUB-24-0333-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16191">arXiv:2404.16191</a> <span> [<a href="https://arxiv.org/pdf/2404.16191">pdf</a>, <a href="https://arxiv.org/format/2404.16191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Position-space renormalization schemes for four-quark operators in HQET </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+J">Joshua Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16191v1-abstract-short" style="display: inline;"> X-space schemes are gauge-invariant, regulator-independent renormalization schemes that are defined by requiring position-space correlation functions of gauge invariant operators to be equal to their noninteracting values at particular kinematic points. These schemes can be used to nonperturbatively renormalize composite operators in Lattice Quantum Chromodynamics (LQCD), and by computing matching… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16191v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16191v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16191v1-abstract-full" style="display: none;"> X-space schemes are gauge-invariant, regulator-independent renormalization schemes that are defined by requiring position-space correlation functions of gauge invariant operators to be equal to their noninteracting values at particular kinematic points. These schemes can be used to nonperturbatively renormalize composite operators in Lattice Quantum Chromodynamics (LQCD), and by computing matching coefficients between the X-space scheme and MSbar in the dimensionally-regulated continuum, matrix elements calculated with LQCD can be converted to MSbar-renormalized matrix elements. Using X-space schemes for Heavy Quark Effective Theory (HQET) operators has the additional benefit that appropriate ratios of position-space correlation functions cancel the power divergent static-quark self-energy of Lattice HQET nonperturbatively. This work presents the O($伪_S$) matching coefficients between X-space renormalized four-quark flavor-nonsinglet HQET operators relevant for the lifetimes of charm- and bottom-hadrons, and four-quark HQET operators relevant for mixing between neutral mesons containing a heavy quark, such as B-Bbar mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16191v1-abstract-full').style.display = 'none'; document.getElementById('2404.16191v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5707 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12039">arXiv:2404.12039</a> <span> [<a href="https://arxiv.org/pdf/2404.12039">pdf</a>, <a href="https://arxiv.org/format/2404.12039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the finite volume two-nucleon spectrum at $m_蟺\approx 806$ MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12039v2-abstract-short" style="display: inline;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operator… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12039v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12039v2-abstract-full" style="display: none;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'none'; document.getElementById('2404.12039v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results, discussion, and conclusions. 46 pages, 19 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0126-T, MIT-CTP/5700 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00672">arXiv:2403.00672</a> <span> [<a href="https://arxiv.org/pdf/2403.00672">pdf</a>, <a href="https://arxiv.org/ps/2403.00672">ps</a>, <a href="https://arxiv.org/format/2403.00672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Multi-particle interpolating operators in quantum field theories with cubic symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00672v1-abstract-short" style="display: inline;"> Numerical studies of lattice quantum field theories are conducted in finite spatial volumes, typically with cubic symmetry in the spatial coordinates. Motivated by these studies, this work presents a general algorithm to construct multi-particle interpolating operators for quantum field theories with cubic symmetry. The algorithm automates the block diagonalization required to combine multiple ope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00672v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00672v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00672v1-abstract-full" style="display: none;"> Numerical studies of lattice quantum field theories are conducted in finite spatial volumes, typically with cubic symmetry in the spatial coordinates. Motivated by these studies, this work presents a general algorithm to construct multi-particle interpolating operators for quantum field theories with cubic symmetry. The algorithm automates the block diagonalization required to combine multiple operators of definite linear momentum into irreducible representations of the appropriate little group. Examples are given for distinguishable and indistinguishable particles including cases with both zero and non-zero spin. An implementation of the algorithm is publicly available at https://github.com/latticeqcdtools/mhi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00672v1-abstract-full').style.display = 'none'; document.getElementById('2403.00672v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages. An implementation of the algorithm is publicly available at https://github.com/latticeqcdtools/mhi</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5685, FERMILAB-PUB-24-0101-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09362">arXiv:2402.09362</a> <span> [<a href="https://arxiv.org/pdf/2402.09362">pdf</a>, <a href="https://arxiv.org/format/2402.09362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Long-Distance Nuclear Matrix Elements for Neutrinoless Double-Beta Decay from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Fu%2C+Z">Zhenghao Fu</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W">William Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D">David Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09362v1-abstract-short" style="display: inline;"> Neutrinoless double-beta ($0谓尾尾$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0谓尾尾$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0谓尾尾$ decay in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09362v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09362v1-abstract-full" style="display: none;"> Neutrinoless double-beta ($0谓尾尾$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0谓尾尾$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0谓尾尾$ decay in a multi-nucleon system, specifically the $nn \rightarrow pp ee$ transition, mediated by a light left-handed Majorana neutrino propagating over nuclear-scale distances. This calculation is performed with quark masses corresponding to a pion mass of $m_蟺= 806$ MeV at a single lattice spacing and volume. The statistically cleaner $危^- \rightarrow 危^+ ee$ transition is also computed in order to investigate various systematic uncertainties. The prospects for matching the results of LQCD calculations onto a nuclear effective field theory to determine a leading-order low-energy constant relevant for $0谓尾尾$ decay with a light Majorana neutrino are investigated. This work, therefore, sets the stage for future calculations at physical values of the quark masses that, combined with effective field theory and nuclear many-body studies, will provide controlled theoretical inputs to experimental searches of $0谓尾尾$ decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09362v1-abstract-full').style.display = 'none'; document.getElementById('2402.09362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0067-T, MIT-CTP/5682, UMD-PP-024-03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13137">arXiv:2312.13137</a> <span> [<a href="https://arxiv.org/pdf/2312.13137">pdf</a>, <a href="https://arxiv.org/format/2312.13137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> LDIC Survey 2023: Feeling Welcome in the Community </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aubin%2C+C">Christopher Aubin</a>, <a href="/search/hep-lat?searchtype=author&query=Chakraborty%2C+B">Bipasha Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">Will Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Martins%2C+S">Sofie Martins</a>, <a href="/search/hep-lat?searchtype=author&query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&query=Mendes%2C+T">Tereza Mendes</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F+M">Finn M. Stokes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13137v1-abstract-short" style="display: inline;"> We review the level of welcomeness that members of the lattice field theory community feel based on the results of a survey performed in May and June 2023. While respondents reported generally high levels of feeling welcome at the lattice conference, women and people with diverse gender identities, sexual orientations, ethnic backgrounds and religious affiliations feel less included and have more… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13137v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13137v1-abstract-full" style="display: none;"> We review the level of welcomeness that members of the lattice field theory community feel based on the results of a survey performed in May and June 2023. While respondents reported generally high levels of feeling welcome at the lattice conference, women and people with diverse gender identities, sexual orientations, ethnic backgrounds and religious affiliations feel less included and have more negative experiences at the lattice conference than their peers. Respondents report that they are actively informing themselves about inequities in the community, however a large fraction of survey participants underestimate the severity of the problem, as was found in previous surveys. The survey data indicate that this situation can be most effectively improved by organizing talks and events about issues of diversity and inclusion within the lattice community. Respondents also reported that individual readings of scientific papers on equity and inclusion are effective in giving people agency in making a change and hence it may be helpful to collate a collection of important articles on these topics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13137v1-abstract-full').style.display = 'none'; document.getElementById('2312.13137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings contribution to "The 40th International Symposium on Lattice Field Theory (Lattice 2023)"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01322">arXiv:2311.01322</a> <span> [<a href="https://arxiv.org/pdf/2311.01322">pdf</a>, <a href="https://arxiv.org/format/2311.01322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Constraints on the Fourth Mellin Moment of the Pion Light Cone Distribution Amplitude using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01322v1-abstract-short" style="display: inline;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01322v1-abstract-full" style="display: none;"> The light-cone distribution amplitude (LCDA) of the pion contains information about the parton momentum carried by the quarks and is an important theoretical input for various predictions of exclusive processes at high energy, including the pion electromagnetic form factor. Progress towards constraining the fourth Mellin moment of the LCDA using the heavy-quark operator product expansion (HOPE) method is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01322v1-abstract-full').style.display = 'none'; document.getElementById('2311.01322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, proceedings to talk presented at the 40th International Symposium on Lattice Field Theory, July 31st - August 4th 2023, Fermi National Accelerator Laboratory, Batavia, Illinois, USA. arXiv admin note: text overlap with arXiv:2211.17009</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5645, FERMILAB-CONF-23-659-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00600">arXiv:2309.00600</a> <span> [<a href="https://arxiv.org/pdf/2309.00600">pdf</a>, <a href="https://arxiv.org/format/2309.00600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Signal-to-noise improvement through neural network contour deformations for 3D $SU(2)$ lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00600v1-abstract-short" style="display: inline;"> Complex contour deformations of the path integral have been demonstrated to significantly improve the signal-to-noise ratio of observables in previous studies of two-dimensional gauge theories with open boundary conditions. In this work, new developments based on gauge fixing and a neural network definition of the deformation are introduced, which enable an effective application to theories in hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00600v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00600v1-abstract-full" style="display: none;"> Complex contour deformations of the path integral have been demonstrated to significantly improve the signal-to-noise ratio of observables in previous studies of two-dimensional gauge theories with open boundary conditions. In this work, new developments based on gauge fixing and a neural network definition of the deformation are introduced, which enable an effective application to theories in higher dimensions and with generic boundary conditions. Improvements of the signal-to-noise ratio by up to three orders of magnitude for Wilson loop measurements are shown in $SU(2)$ lattice gauge theory in three spacetime dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00600v1-abstract-full').style.display = 'none'; document.getElementById('2309.00600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Proceedings for the 40th Lattice conference at Fermilab from July 31 to August 4, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15014">arXiv:2307.15014</a> <span> [<a href="https://arxiv.org/pdf/2307.15014">pdf</a>, <a href="https://arxiv.org/format/2307.15014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice quantum chromodynamics at large isospin density: 6144 pions in a box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15014v1-abstract-short" style="display: inline;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15014v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15014v1-abstract-full" style="display: none;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm to calculations of correlation functions with up to 6144 $蟺^+$s using two ensembles of gauge field configurations generated with quark masses corresponding to a pion mass $m_蟺= 170$ MeV and spacetime volumes of $(4.4^3\times 8.8)\ {\rm fm}^4$ and $(5.8^3\times 11.6)\ {\rm fm}^4$. We also discuss statistical techniques for the analysis of such systems, in which the correlation functions vary over many orders of magnitude. In particular, we observe that the many-pion correlation functions are well approximated by log-normal distributions, allowing the extraction of the energies of these systems. Using these energies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A peak is observed in the energy density at an isospin chemical potential $渭_I\sim 1.5 m_蟺$, signalling the transition into a Bose-Einstein condensed phase. The isentropic speed of sound in the medium is seen to exceed the ideal-gas (conformal) limit ($c_s^2\leq 1/3$) over a wide range of chemical potential before falling towards the asymptotic expectation at $渭_I\sim 15 m_蟺$. These, and other thermodynamic observables, indicate that the isospin chemical potential must be large for the system to be well described by an ideal gas or perturbative QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'none'; document.getElementById('2307.15014v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5560,UMD-PP-023-03,FERMILAB-PUB-23-382-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06313">arXiv:2305.06313</a> <span> [<a href="https://arxiv.org/pdf/2305.06313">pdf</a>, <a href="https://arxiv.org/format/2305.06313">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Constraint of pionless EFT using two-nucleon spectra from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06313v1-abstract-short" style="display: inline;"> Finite-volume pionless effective field theory (FVEFT$_{ 蟺\!/ }$) at next-to-leading order (NLO) is used to analyze the two-nucleon lattice QCD spectrum of Ref.~\cite{Amarasinghe:2021lqa}, performed at quark masses corresponding to a pion mass of approximately $800 $ MeV. Specifically, the effective theory is formulated in finite volume, and variational sets of wave functions are optimized using di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06313v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06313v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06313v1-abstract-full" style="display: none;"> Finite-volume pionless effective field theory (FVEFT$_{ 蟺\!/ }$) at next-to-leading order (NLO) is used to analyze the two-nucleon lattice QCD spectrum of Ref.~\cite{Amarasinghe:2021lqa}, performed at quark masses corresponding to a pion mass of approximately $800 $ MeV. Specifically, the effective theory is formulated in finite volume, and variational sets of wave functions are optimized using differential programming. Using these wave functions projected to the appropriate finite-volume symmetry group, variational bounds from FVEFT$_{蟺\!/ }$ are obtained for the ground state, as well as excited states. By comparison with the lattice QCD GEVP spectrum, different low energy constants (LECs) are constrained. Relativistic corrections are incorporated, allowing for the extractions of NLO LECs, as well as the leading $s$-$d$-wave mixing term in the deuteron channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06313v1-abstract-full').style.display = 'none'; document.getElementById('2305.06313v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figs, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5538 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03820">arXiv:2304.03820</a> <span> [<a href="https://arxiv.org/pdf/2304.03820">pdf</a>, <a href="https://arxiv.org/format/2304.03820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Correlation function distributions for O(N) lattice field theories in the disordered phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yunus%2C+C">Cagin Yunus</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03820v1-abstract-short" style="display: inline;"> Numerical computations in strongly-interacting quantum field theories are often performed using Monte-Carlo sampling methods. A key task in these calculations is to estimate the value of a given physical quantity from the distribution of stochastic samples that are generated using the Monte-Carlo method. Typically, the sample mean and sample variance are used to define the expectation values and u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03820v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03820v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03820v1-abstract-full" style="display: none;"> Numerical computations in strongly-interacting quantum field theories are often performed using Monte-Carlo sampling methods. A key task in these calculations is to estimate the value of a given physical quantity from the distribution of stochastic samples that are generated using the Monte-Carlo method. Typically, the sample mean and sample variance are used to define the expectation values and uncertainties of computed quantities. However, the Monte-Carlo sample distribution contains more information than these basic properties and it is useful to investigate it more generally. In this work, the exact form of the probability distributions of two-point correlation functions at zero momentum in O(N) lattice field theories in the disordered phase and in infinite volume are determined. These distributions allow for a robust investigation of the efficacy of the Monte-Carlo sampling procedure and are shown also to allow for improved estimators of the target physical quantity to be constructed. The theoretical expectations are shown to agree with numerical calculations in the O(2) model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03820v1-abstract-full').style.display = 'none'; document.getElementById('2304.03820v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-5550 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03302">arXiv:2304.03302</a> <span> [<a href="https://arxiv.org/pdf/2304.03302">pdf</a>, <a href="https://arxiv.org/format/2304.03302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> TMD Handbook </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boussarie%2C+R">Renaud Boussarie</a>, <a href="/search/hep-lat?searchtype=author&query=Burkardt%2C+M">Matthias Burkardt</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Ebert%2C+M">Markus Ebert</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+S">Sean Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gamberg%2C+L">Leonard Gamberg</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Kang%2C+Z">Zhong-Bo Kang</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+C">Christopher Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/hep-lat?searchtype=author&query=Mehen%2C+T">Thomas Mehen</a>, <a href="/search/hep-lat?searchtype=author&query=Metz%2C+A">Andreas Metz</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J">John Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pitonyak%2C+D">Daniel Pitonyak</a>, <a href="/search/hep-lat?searchtype=author&query=Prokudin%2C+A">Alexei Prokudin</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&query=Rajan%2C+A">Abha Rajan</a>, <a href="/search/hep-lat?searchtype=author&query=Schlegel%2C+M">Marc Schlegel</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Schweitzer%2C+P">Peter Schweitzer</a>, <a href="/search/hep-lat?searchtype=author&query=Stewart%2C+I+W">Iain W. Stewart</a>, <a href="/search/hep-lat?searchtype=author&query=Tarasov%2C+A">Andrey Tarasov</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03302v1-abstract-short" style="display: inline;"> This handbook provides a comprehensive review of transverse-momentum-dependent parton distribution functions and fragmentation functions, commonly referred to as transverse momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton and other hadrons with respect to both their longitudinal and transverse momenta. They provide unique insight into the internal momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03302v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03302v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03302v1-abstract-full" style="display: none;"> This handbook provides a comprehensive review of transverse-momentum-dependent parton distribution functions and fragmentation functions, commonly referred to as transverse momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton and other hadrons with respect to both their longitudinal and transverse momenta. They provide unique insight into the internal momentum and spin structure of hadrons, and are a key ingredient in the description of many collider physics cross sections. Understanding TMDs requires a combination of theoretical techniques from quantum field theory, nonperturbative calculations using lattice QCD, and phenomenological analysis of experimental data. The handbook covers a wide range of topics, from theoretical foundations to experimental analyses, as well as recent developments and future directions. It is intended to provide an essential reference for researchers and graduate students interested in understanding the structure of hadrons and the dynamics of partons in high energy collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03302v1-abstract-full').style.display = 'none'; document.getElementById('2304.03302v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">471 pages, many figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09275">arXiv:2212.09275</a> <span> [<a href="https://arxiv.org/pdf/2212.09275">pdf</a>, <a href="https://arxiv.org/format/2212.09275">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice Study of Spectator Effects in $b$-hadron Decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+J">Joshua Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09275v1-abstract-short" style="display: inline;"> The Heavy Quark Expansion (HQE) gives an expansion of inclusive decay rates of $b$-hadrons as a simultaneous series in $伪_s$ and $1/m_b$, in terms of perturbatively defined coefficients and non-perturbative matrix elements. Spectator effects arise from the dimension-$6$ operators in the HQE in which along with the heavy quark, a light spectator quark from the hadron participates in the weak decay.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09275v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09275v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09275v1-abstract-full" style="display: none;"> The Heavy Quark Expansion (HQE) gives an expansion of inclusive decay rates of $b$-hadrons as a simultaneous series in $伪_s$ and $1/m_b$, in terms of perturbatively defined coefficients and non-perturbative matrix elements. Spectator effects arise from the dimension-$6$ operators in the HQE in which along with the heavy quark, a light spectator quark from the hadron participates in the weak decay. In this work, we provide a lattice determination of the bare matrix elements that contribute to the spectator effects for the $B^+$-meson, $B_d$-meson and the $螞_b$-baryon. The computations were performed on two separate lattice spacings of the RBC-UKQCD (2+1)-flavor Domain Wall Fermion ensembles. Renormalization and continuum extrapolation of the matrix elements have not yet been computed, and are left to future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09275v1-abstract-full').style.display = 'none'; document.getElementById('2212.09275v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, contribution to the proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5507 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17009">arXiv:2211.17009</a> <span> [<a href="https://arxiv.org/pdf/2211.17009">pdf</a>, <a href="https://arxiv.org/format/2211.17009">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in calculation of the fourth Mellin moment of the pion light-cone distribution amplitude using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17009v1-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. This article describes the progress in the lattice QCD calculation of the fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion (HOPE). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17009v1-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. This article describes the progress in the lattice QCD calculation of the fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion (HOPE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17009v1-abstract-full').style.display = 'none'; document.getElementById('2211.17009v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, contribution to the proceedings of the 39th International Symposium on Lattice Field Theory (LATTICE2022), 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.15789">arXiv:2210.15789</a> <span> [<a href="https://arxiv.org/pdf/2210.15789">pdf</a>, <a href="https://arxiv.org/format/2210.15789">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137890">10.1016/j.physletb.2023.137890 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-time correlation functions in bosonic lattice field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yunus%2C+C">Cagin Yunus</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.15789v2-abstract-short" style="display: inline;"> Large-time correlation functions have a pivotal role in extracting particle masses from Euclidean lattice field theory calculations, however little is known about the statistical properties of these quantities. In this work, the asymptotic form of the distributions of the correlation functions at vanishing momentum is determined for bosonic interacting lattice field theories with a unique gapped v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15789v2-abstract-full').style.display = 'inline'; document.getElementById('2210.15789v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.15789v2-abstract-full" style="display: none;"> Large-time correlation functions have a pivotal role in extracting particle masses from Euclidean lattice field theory calculations, however little is known about the statistical properties of these quantities. In this work, the asymptotic form of the distributions of the correlation functions at vanishing momentum is determined for bosonic interacting lattice field theories with a unique gapped vacuum. It is demonstrated that the deviations from the asymptotic form at large Euclidean times can be utilized to determine the spectrum of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15789v2-abstract-full').style.display = 'none'; document.getElementById('2210.15789v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; typos corrected, abstract modified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-5465 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 840, 137890 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span> [<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05322">arXiv:2208.05322</a> <span> [<a href="https://arxiv.org/pdf/2208.05322">pdf</a>, <a href="https://arxiv.org/format/2208.05322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094501">10.1103/PhysRevD.107.094501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay from Lattice QCD: The Short-Distance $蟺^-\rightarrow蟺^+ e^- e^-$ Amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Oare%2C+P+R">Patrick R. Oare</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05322v2-abstract-short" style="display: inline;"> This work presents a determination of potential short-distance contributions to the unphysical $蟺^-\rightarrow蟺^+ e^- e^-$ decay through lattice QCD calculations. The hadronic contributions to the transition amplitude are described by the pion matrix elements of five Standard Model Effective Field Theory operators, which are computed on five ensembles of domain-wall fermions with $N_f = 2 + 1$ qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05322v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05322v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05322v2-abstract-full" style="display: none;"> This work presents a determination of potential short-distance contributions to the unphysical $蟺^-\rightarrow蟺^+ e^- e^-$ decay through lattice QCD calculations. The hadronic contributions to the transition amplitude are described by the pion matrix elements of five Standard Model Effective Field Theory operators, which are computed on five ensembles of domain-wall fermions with $N_f = 2 + 1$ quark flavors with a range of heavier-than-physical values of the light quark masses. The matrix elements are extrapolated to the continuum, physical light-quark mass, and infinite volume limit using a functional form derived in chiral Effective Field Theory ($蠂\mathrm{EFT}$). This extrapolation also yields the relevant low-energy constants of $蠂\mathrm{EFT}$, which are necessary input for $蠂\mathrm{EFT}$ calculations of neutrinoless double beta decay of nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05322v2-abstract-full').style.display = 'none'; document.getElementById('2208.05322v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5414 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span> [<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01001">arXiv:2205.01001</a> <span> [<a href="https://arxiv.org/pdf/2205.01001">pdf</a>, <a href="https://arxiv.org/format/2205.01001">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.094506">10.1103/PhysRevD.106.094506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Infinite Variance in Monte Carlo Sampling of Lattice Field Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yunus%2C+C">Cagin Yunus</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01001v1-abstract-short" style="display: inline;"> In Monte Carlo calculations of expectation values in lattice quantum field theories, the stochastic variance of the sampling procedure that is used defines the precision of the calculation for a fixed number of samples. If the variance of an estimator of a particular quantity is formally infinite, or in practice very large compared to the square of the mean, then that quantity can not be reliably… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01001v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01001v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01001v1-abstract-full" style="display: none;"> In Monte Carlo calculations of expectation values in lattice quantum field theories, the stochastic variance of the sampling procedure that is used defines the precision of the calculation for a fixed number of samples. If the variance of an estimator of a particular quantity is formally infinite, or in practice very large compared to the square of the mean, then that quantity can not be reliably estimated using the given sampling procedure. There are multiple scenarios in which this occurs, including in Lattice Quantum Chromodynamics, and a particularly simple example is given by the Gross-Neveu model where Monte Carlo calculations involve the introduction of auxiliary bosonic variables through a Hubbard-Stratonovich (HS) transformation. Here, it is shown that the variances of HS estimators for classes of operators involving fermion fields are divergent in this model and an even simpler zero-dimensional analogue. To correctly estimate these observables, two alternative sampling methods are proposed and numerically investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01001v1-abstract-full').style.display = 'none'; document.getElementById('2205.01001v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5429 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03230">arXiv:2203.03230</a> <span> [<a href="https://arxiv.org/pdf/2203.03230">pdf</a>, <a href="https://arxiv.org/ps/2203.03230">ps</a>, <a href="https://arxiv.org/format/2203.03230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadron Spectroscopy with Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&query=Brice%C3%B1o%2C+R">Ra煤l Brice帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=D%C3%B6ring%2C+M">Michael D枚ring</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&query=Lewis%2C+R">Randy Lewis</a>, <a href="/search/hep-lat?searchtype=author&query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-lat?searchtype=author&query=Ryan%2C+S+M">Sin茅ad M. Ryan</a>, <a href="/search/hep-lat?searchtype=author&query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&query=Sharpe%2C+S+R">Stephen R. Sharpe</a>, <a href="/search/hep-lat?searchtype=author&query=Szczepaniak%2C+A">Adam Szczepaniak</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+C+E">Christopher E. Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Wagner%2C+M">Marc Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03230v2-abstract-short" style="display: inline;"> The status and prospects for investigations of exotic and conventional hadrons with lattice QCD are discussed. The majority of hadrons decay strongly via one or multiple decay-channels, including most of the experimentally discovered exotic hadrons. Despite this difficult challenge, the properties of several hadronic resonances have been determined within lattice QCD. To further discern the spectr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03230v2-abstract-full').style.display = 'inline'; document.getElementById('2203.03230v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03230v2-abstract-full" style="display: none;"> The status and prospects for investigations of exotic and conventional hadrons with lattice QCD are discussed. The majority of hadrons decay strongly via one or multiple decay-channels, including most of the experimentally discovered exotic hadrons. Despite this difficult challenge, the properties of several hadronic resonances have been determined within lattice QCD. To further discern the spectroscopic properties of various hadrons and to help resolve their nature we present our suggestions for future analytic and lattice studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03230v2-abstract-full').style.display = 'none'; document.getElementById('2203.03230v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages + references, Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021); v2: few references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03530">arXiv:2202.03530</a> <span> [<a href="https://arxiv.org/pdf/2202.03530">pdf</a>, <a href="https://arxiv.org/format/2202.03530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Finite-Volume Pionless Effective Field Theory for Few-Nucleon Systems with Differentiable Programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+X">Xiangkai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Luo%2C+D">Di Luo</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03530v2-abstract-short" style="display: inline;"> Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable programm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03530v2-abstract-full').style.display = 'inline'; document.getElementById('2202.03530v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03530v2-abstract-full" style="display: none;"> Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable programming and via solution of a generalised eigenvalue problem. This approach is shown to be significantly more efficient than a stochastic implementation of the variational method based on the same form of correlated Gaussian wavefunctions, yielding comparably accurate representations of the ground-state wavefunctions with an order of magnitude fewer terms. The efficiency of representation allows such calculations to be extended to larger systems than in previous work. The method is demonstrated through calculations of the binding energies of nuclei with atomic number $A\in\{2,3,4\}$ in finite volume, matched to lattice QCD calculations at quark masses corresponding to $m_蟺=806$ MeV, and infinite-volume effective field theory calculations of $A\in\{2,3,4,5,6\}$ systems based on this matching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03530v2-abstract-full').style.display = 'none'; document.getElementById('2202.03530v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5404 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01105">arXiv:2202.01105</a> <span> [<a href="https://arxiv.org/pdf/2202.01105">pdf</a>, <a href="https://arxiv.org/format/2202.01105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00601-022-01749-x">10.1007/s00601-022-01749-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Forces for Precision Nuclear Physics -- a collection of perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Tews%2C+I">Ingo Tews</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Ekstr%C3%B6m%2C+A">Andreas Ekstr枚m</a>, <a href="/search/hep-lat?searchtype=author&query=Holt%2C+J+D">Jason D. Holt</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+K">Kevin Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Brice%C3%B1o%2C+R">Ra煤l Brice帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Dean%2C+D+J">David J. Dean</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Drischler%2C+C">Christian Drischler</a>, <a href="/search/hep-lat?searchtype=author&query=Duguet%2C+T">Thomas Duguet</a>, <a href="/search/hep-lat?searchtype=author&query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&query=Gasparyan%2C+A">Ashot Gasparyan</a>, <a href="/search/hep-lat?searchtype=author&query=Gegelia%2C+J">Jambul Gegelia</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Grie%C3%9Fhammer%2C+H+W">Harald W. Grie脽hammer</a>, <a href="/search/hep-lat?searchtype=author&query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&query=Heinz%2C+M">Matthias Heinz</a>, <a href="/search/hep-lat?searchtype=author&query=Hergert%2C+H">Heiko Hergert</a>, <a href="/search/hep-lat?searchtype=author&query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Kekejian%2C+D">David Kekejian</a>, <a href="/search/hep-lat?searchtype=author&query=Kievsky%2C+A">Alejandro Kievsky</a>, <a href="/search/hep-lat?searchtype=author&query=K%C3%B6nig%2C+S">Sebastian K枚nig</a>, <a href="/search/hep-lat?searchtype=author&query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&query=Launey%2C+K+D">Kristina D. Launey</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01105v1-abstract-short" style="display: inline;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01105v1-abstract-full" style="display: none;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'none'; document.getElementById('2202.01105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Perspective pieces of the virtual INT program 21-1b "Nuclear Forces for Precision Nuclear Physics", 107 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-002, LA-UR-22-20419, UMD-PP-022-02, FERMILAB-PUB-22-090-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Few-Body Systems 63, 67 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04269">arXiv:2201.04269</a> <span> [<a href="https://arxiv.org/pdf/2201.04269">pdf</a>, <a href="https://arxiv.org/format/2201.04269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Novel Algorithms for Computing Correlation Functions of Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Humphrey%2C+N">Nabil Humphrey</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">Ross D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">James M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04269v1-abstract-short" style="display: inline;"> The computational cost required to calculate nuclear correlation functions grows factorially in the number of quarks, making the study of large nuclei inaccessible to ab initio study using lattice QCD at the present time. However, the tensor expressions corresponding to many of these correlation functions exhibit a high degree of permutation symmetry that can be exploited to reduce computational w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04269v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04269v1-abstract-full" style="display: none;"> The computational cost required to calculate nuclear correlation functions grows factorially in the number of quarks, making the study of large nuclei inaccessible to ab initio study using lattice QCD at the present time. However, the tensor expressions corresponding to many of these correlation functions exhibit a high degree of permutation symmetry that can be exploited to reduce computational work. We present promising speed-ups for certain choices of interpolating operators using two new algorithms for computing nuclear correlation functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04269v1-abstract-full').style.display = 'none'; document.getElementById('2201.04269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures; Proceedings of the 38th International Symposium on Lattice Field Theory (Lattice 2021), July 26-30, 2021, Zoom/Gather@MIT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5381, ADP-21-24/T1171 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14958">arXiv:2111.14958</a> <span> [<a href="https://arxiv.org/pdf/2111.14958">pdf</a>, <a href="https://arxiv.org/format/2111.14958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Implementation of the conjugate gradient algorithm for heterogeneous systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Cali%2C+S">Salvatore Cali</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Korcyl%2C+G">Grzegorz Korcyl</a>, <a href="/search/hep-lat?searchtype=author&query=Korcyl%2C+P">Piotr Korcyl</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14958v1-abstract-short" style="display: inline;"> Lattice QCD calculations require significant computational effort, with the dominant fraction of resources typically spent in the numerical inversion of the Dirac operator. One of the simplest methods to solve such large and sparse linear systems is the conjugate gradient (CG) approach. In this work we present an implementation of CG that can be executed on different devices, including CPUs, GPUs,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14958v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14958v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14958v1-abstract-full" style="display: none;"> Lattice QCD calculations require significant computational effort, with the dominant fraction of resources typically spent in the numerical inversion of the Dirac operator. One of the simplest methods to solve such large and sparse linear systems is the conjugate gradient (CG) approach. In this work we present an implementation of CG that can be executed on different devices, including CPUs, GPUs, and FPGAs. This is achieved by using the SYCL/DPC++ framework, which allows the execution of the same source code on heterogeneous systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14958v1-abstract-full').style.display = 'none'; document.getElementById('2111.14958v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5348 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14563">arXiv:2111.14563</a> <span> [<a href="https://arxiv.org/pdf/2111.14563">pdf</a>, <a href="https://arxiv.org/format/2111.14563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Progress in the determination of Mellin moments of the pion LCDA using the HOPE method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14563v1-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. In this article, we discuss the calculation of the second and fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion. The resulting value for the second Mellin moment is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14563v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14563v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14563v1-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for the calculation of high-energy exclusive processes in quantum chromodynamics. In this article, we discuss the calculation of the second and fourth Mellin moment of the pion LCDA using a heavy-quark operator product expansion. The resulting value for the second Mellin moment is $ \langle{ 尉^2 }\rangle(渭= 2~\text{GeV})= 0.210 \pm 0.013\text{ (stat.)} \pm 0.034\text{ (sys.)}$. This result is compatible with those from previous determinations of this quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14563v1-abstract-full').style.display = 'none'; document.getElementById('2111.14563v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 Figures, 3 Tables; Talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5369 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15241">arXiv:2109.15241</a> <span> [<a href="https://arxiv.org/pdf/2109.15241">pdf</a>, <a href="https://arxiv.org/format/2109.15241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034506">10.1103/PhysRevD.105.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton physics from a heavy-quark operator product expansion: Lattice QCD calculation of the second moment of the pion distribution amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A">Anthony Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R">Robert Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15241v3-abstract-short" style="display: inline;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of the heavy-quark operator product expansion (HOPE) method. The resulting value for the sec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15241v3-abstract-full').style.display = 'inline'; document.getElementById('2109.15241v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15241v3-abstract-full" style="display: none;"> The pion light-cone distribution amplitude (LCDA) is a central non-perturbative object of interest for high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of the heavy-quark operator product expansion (HOPE) method. The resulting value for the second Mellin moment, determined in quenched QCD at a pion mass of $m_蟺=550$ MeV at a factorization scale of 2 GeV is $ \langle 尉^2 \rangle = 0.210 \pm 0.013\text{ (stat.)} \pm 0.034\text{ (sys.)}$. This result is compatible with those from previous determinations of this quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15241v3-abstract-full').style.display = 'none'; document.getElementById('2109.15241v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5330 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 034506 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10835">arXiv:2108.10835</a> <span> [<a href="https://arxiv.org/pdf/2108.10835">pdf</a>, <a href="https://arxiv.org/format/2108.10835">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094508">10.1103/PhysRevD.107.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A variational study of two-nucleon systems with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Amarasinghe%2C+S">Saman Amarasinghe</a>, <a href="/search/hep-lat?searchtype=author&query=Baghdadi%2C+R">Riyadh Baghdadi</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10835v4-abstract-short" style="display: inline;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'inline'; document.getElementById('2108.10835v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10835v4-abstract-full" style="display: none;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effective theories. Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-function matrices using products of these operators. Projection of these matrices onto irreducible representations of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain the low-energy spectra of two-nucleon systems in a single finite volume with quark masses corresponding to a pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths and weaknesses of variational methods. These studies and comparisons to previous studies using the same gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the two-nucleon energy spectra obtained using both variational and non-variational methods, including missing energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be improved in future calculations using additional interpolating operators and is therefore a step toward reliable nuclear spectroscopy from the underlying Standard Model of particle physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'none'; document.getElementById('2108.10835v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results and discussion. 111 pages, 44 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-354-T, MIT-CTP/5320, UMD-PP-021-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094508 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09529">arXiv:2103.09529</a> <span> [<a href="https://arxiv.org/pdf/2103.09529">pdf</a>, <a href="https://arxiv.org/format/2103.09529">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.074511">10.1103/PhysRevD.104.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton physics from a heavy-quark operator product expansion: Formalism and Wilson coefficients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09529v3-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) and light-cone distribution amplitudes (LCDAs) are central non-perturbative objects of interest in high-energy inelastic and elastic scattering, respectively. As a result, an ab-initio determination of these objects is highly desirable. In this paper we present theoretical details for the calculation of the PDFs and LCDAs using a heavy-quark operator product ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09529v3-abstract-full').style.display = 'inline'; document.getElementById('2103.09529v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09529v3-abstract-full" style="display: none;"> Parton distribution functions (PDFs) and light-cone distribution amplitudes (LCDAs) are central non-perturbative objects of interest in high-energy inelastic and elastic scattering, respectively. As a result, an ab-initio determination of these objects is highly desirable. In this paper we present theoretical details for the calculation of the PDFs and LCDAs using a heavy-quark operator product expansion method. This strategy was proposed in a previous paper [Phys. Rev. D 73, 014501 (2006)] for computing higher moments of the PDFs using lattice QCD. Its central feature is the introduction of a fictitious, valence heavy quark. In the current article, we show that the operator product expansion (OPE) of the hadronic matrix element we study can also be expressed as the convolution of a perturbative matching kernel and the corresponding light-cone distribution, which in principle can be inverted to determine the parton momentum fraction dependence. Regarding the extraction of higher moments, this work also provides the one-loop Wilson coefficients in the OPE formulas for the unpolarized PDF, helicity PDF and pseudo-scalar meson LCDAs. Although these Wilson coefficients for the PDFs can be inferred from existing results in the literature, those for the LCDAs are new. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09529v3-abstract-full').style.display = 'none'; document.getElementById('2103.09529v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures; Text updated to be consistent with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5294 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04329">arXiv:2102.04329</a> <span> [<a href="https://arxiv.org/pdf/2102.04329">pdf</a>, <a href="https://arxiv.org/format/2102.04329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074503">10.1103/PhysRevD.103.074503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-nucleon matrix elements in pionless effective field theory in a finite volume </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04329v1-abstract-short" style="display: inline;"> Pionless effective field theory in a finite volume (FVEFT$_{蟺\!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{蟺\!/}$ with the stochastic variational method, the spectra of nuclei with atomic number $A\in\{2,3\}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04329v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04329v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04329v1-abstract-full" style="display: none;"> Pionless effective field theory in a finite volume (FVEFT$_{蟺\!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{蟺\!/}$ with the stochastic variational method, the spectra of nuclei with atomic number $A\in\{2,3\}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding to a pion mass $m_蟺=806$ MeV, thereby enabling infinite-volume binding energies to be determined using infinite-volume variational calculations. Based on the variational wavefunctions that are constructed in this approach, the finite-volume matrix elements of various local operators are computed in FVEFT$_{蟺\!/}$ and matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby determining the relevant one and two-body EFT counterterms and enabling an extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and axial matrix elements are considered, as well as the magnetic moments and the isovector longitudinal momentum fraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04329v1-abstract-full').style.display = 'none'; document.getElementById('2102.04329v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5275 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03805">arXiv:2102.03805</a> <span> [<a href="https://arxiv.org/pdf/2102.03805">pdf</a>, <a href="https://arxiv.org/format/2102.03805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074511">10.1103/PhysRevD.103.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The axial charge of the triton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03805v1-abstract-short" style="display: inline;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03805v1-abstract-full" style="display: none;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of $g_A^{^{3}{\rm H}}/g_A^p=0.91\substack{+0.07 \\ -0.09}$. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'none'; document.getElementById('2102.03805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5274, ICCUB-21-001, FERMILAB-PUB-21-026-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12668">arXiv:2101.12668</a> <span> [<a href="https://arxiv.org/pdf/2101.12668">pdf</a>, <a href="https://arxiv.org/format/2101.12668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094517">10.1103/PhysRevD.103.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Path integral contour deformations for observables in $SU(N)$ gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Lamm%2C+H">Henry Lamm</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Warrington%2C+N+C">Neill C. Warrington</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12668v1-abstract-short" style="display: inline;"> Path integral contour deformations have been shown to mitigate sign and signal-to-noise problems associated with phase fluctuations in lattice field theories. We define a family of contour deformations applicable to $SU(N)$ lattice gauge theory that can reduce sign and signal-to-noise problems associated with complex actions and complex observables. For observables, these contours can be used to d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12668v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12668v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12668v1-abstract-full" style="display: none;"> Path integral contour deformations have been shown to mitigate sign and signal-to-noise problems associated with phase fluctuations in lattice field theories. We define a family of contour deformations applicable to $SU(N)$ lattice gauge theory that can reduce sign and signal-to-noise problems associated with complex actions and complex observables. For observables, these contours can be used to define deformed observables with identical expectation value but different variance. As a proof-of-principle, we apply machine learning techniques to optimize the deformed observables associated with Wilson loops in two dimensional $SU(2)$ and $SU(3)$ gauge theory. We study loops consisting of up to 64 plaquettes and achieve variance reduction of up to 4 orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12668v1-abstract-full').style.display = 'none'; document.getElementById('2101.12668v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-014-T, INT-PUB-21-002, MIT-CTP/5270 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094517 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12357">arXiv:2009.12357</a> <span> [<a href="https://arxiv.org/pdf/2009.12357">pdf</a>, <a href="https://arxiv.org/format/2009.12357">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054508">10.1103/PhysRevD.103.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering and Effective Interactions of Two Baryons at $m_蟺\sim 450$ MeV from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12357v3-abstract-short" style="display: inline;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-single… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'inline'; document.getElementById('2009.12357v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12357v3-abstract-full" style="display: none;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-singlet $危危$ ($I=2$) and $螢危$ ($I=3/2$) states, and the spin-triplet $螢N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using L眉scher's formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $危N$ and $螢螢$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'none'; document.getElementById('2009.12357v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">69 pages, 31 figures and 25 tables; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038, FERMILAB-PUB-20-498-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09473">arXiv:2009.09473</a> <span> [<a href="https://arxiv.org/pdf/2009.09473">pdf</a>, <a href="https://arxiv.org/format/2009.09473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A Preliminary Determination of the Second Mellin Moment of the Pion's Distribution Amplitude Using the Heavy Quark Operator Product Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09473v2-abstract-short" style="display: inline;"> We explore the feasibility of determining Mellin moments of the pion's light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the num… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09473v2-abstract-full').style.display = 'inline'; document.getElementById('2009.09473v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09473v2-abstract-full" style="display: none;"> We explore the feasibility of determining Mellin moments of the pion's light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the numerical simulation, and describe the data analysis, which leads us to a preliminary determination of the second Mellin moment in the continuum limit in the quenched approximation as $\langle尉^2\rangle=0.19(7)$ in the $\bar{\text{MS}}$ scheme at 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09473v2-abstract-full').style.display = 'none'; document.getElementById('2009.09473v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures. Contribution to the proceedings of the 2020 Asia-Pacific Symposium on Lattice Field Theory (APLAT 2020). Several citations and additional affiliation added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5236 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05522">arXiv:2009.05522</a> <span> [<a href="https://arxiv.org/pdf/2009.05522">pdf</a>, <a href="https://arxiv.org/format/2009.05522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.202001">10.1103/PhysRevLett.126.202001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD constraints on the parton distribution functions of ${}^3\text{He}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05522v1-abstract-short" style="display: inline;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05522v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05522v1-abstract-full" style="display: none;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3\text{He}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'none'; document.getElementById('2009.05522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5234, ICCUB-20-019, FERMILAB-PUB-20-466-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 202001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11160">arXiv:2008.11160</a> <span> [<a href="https://arxiv.org/pdf/2008.11160">pdf</a>, <a href="https://arxiv.org/format/2008.11160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.10.004">10.1016/j.physrep.2020.10.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11160v1-abstract-short" style="display: inline;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11160v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11160v1-abstract-full" style="display: none;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined. Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'none'; document.getElementById('2008.11160v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5229, UMD-PP-020-4, ICCUB-20-018, FERMILAB-PUB-20-445-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07404">arXiv:2004.07404</a> <span> [<a href="https://arxiv.org/pdf/2004.07404">pdf</a>, <a href="https://arxiv.org/format/2004.07404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay from Lattice QCD: The Long-Distance $蟺^{-} \rightarrow 蟺^{+} e^{-} e^{-}$ Amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07404v1-abstract-short" style="display: inline;"> Neutrinoless double beta decay (\( 0 谓尾尾\)) is a hypothetical nuclear decay mode with important implications. In particular, observation of this decay would demonstrate that the neutrino is a Majorana particle and that lepton number conservation is violated in nature. Relating experimental constraints on \(0 谓尾尾\) decay rates to the neutrino masses requires theoretical input in the form of non-per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07404v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07404v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07404v1-abstract-full" style="display: none;"> Neutrinoless double beta decay (\( 0 谓尾尾\)) is a hypothetical nuclear decay mode with important implications. In particular, observation of this decay would demonstrate that the neutrino is a Majorana particle and that lepton number conservation is violated in nature. Relating experimental constraints on \(0 谓尾尾\) decay rates to the neutrino masses requires theoretical input in the form of non-perturbative nuclear matrix elements which remain difficult to calculate reliably. This work marks a first step toward providing a general lattice QCD framework for computing long-distance \(0 谓尾尾\) matrix elements in the case where the decay is mediated by a light Majorana neutrino. The relevant formalism is developed and then tested by computing the simplest such matrix element describing an unphysical \( 蟺^{-} \rightarrow 蟺^{+} e^{-} e^{-} \) transition on a series of domain wall fermion ensembles. The resulting lattice data is then fit to next-to-leading-order chiral perturbation theory, allowing a fully-controlled extraction of the low energy constant governing the transition rate, \(g_谓^{蟺蟺}(渭= 770 \,\, \mathrm{MeV}) = -10.78(12)_{\rm stat}(51)_{\rm sys}\). Finally, future prospects for calculations of more complicated processes, such as the phenomenologically important \(n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-}\) decay, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07404v1-abstract-full').style.display = 'none'; document.getElementById('2004.07404v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5196 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12130">arXiv:2003.12130</a> <span> [<a href="https://arxiv.org/pdf/2003.12130">pdf</a>, <a href="https://arxiv.org/format/2003.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054504">10.1103/PhysRevD.103.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged multi-hadron systems in lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&query=Illa%2C+M">M. Illa</a>, <a href="/search/hep-lat?searchtype=author&query=Jafry%2C+M">M. Jafry</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">M. L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12130v3-abstract-short" style="display: inline;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'inline'; document.getElementById('2003.12130v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12130v3-abstract-full" style="display: none;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'none'; document.getElementById('2003.12130v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 29 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 20-28, FERMILAB-PUB-20-123-T, ICCUB-20-007, MIT-CTP/5183, NT@UW-20-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08493">arXiv:2003.08493</a> <span> [<a href="https://arxiv.org/pdf/2003.08493">pdf</a>, <a href="https://arxiv.org/format/2003.08493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2020.103771">10.1016/j.ppnp.2020.103771 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Inputs for Nuclear Double Beta Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08493v1-abstract-short" style="display: inline;"> Second order beta-decay processes with and without neutrinos in the final state are key probes of nuclear physics and of the nature of neutrinos. Neutrinoful double-beta decay is the rarest Standard Model process that has been observed and provides a unique test of the understanding of weak nuclear interactions. Observation of neutrinoless double-beta decay would reveal that neutrinos are Majorana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08493v1-abstract-full').style.display = 'inline'; document.getElementById('2003.08493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08493v1-abstract-full" style="display: none;"> Second order beta-decay processes with and without neutrinos in the final state are key probes of nuclear physics and of the nature of neutrinos. Neutrinoful double-beta decay is the rarest Standard Model process that has been observed and provides a unique test of the understanding of weak nuclear interactions. Observation of neutrinoless double-beta decay would reveal that neutrinos are Majorana fermions and that lepton number conservation is violated in nature. While significant progress has been made in phenomenological approaches to understanding these processes, establishing a connection between these processes and the physics of the Standard Model and beyond is a critical task as it will provide input into the design and interpretation of future experiments. The strong-interaction contributions to double-beta decay processes are non-perturbative and can only be addressed systematically through a combination of lattice Quantum Chromoodynamics (LQCD) and nuclear many-body calculations. In this review, current efforts to establish the LQCD connection are discussed for both neutrinoful and neutrinoless double-beta decay. LQCD calculations of the hadronic contributions to the neutrinoful process $nn\to pp e^- e^- \bar谓_e\bar谓_e$ and to various neutrinoless pionic transitions are reviewed, and the connections of these calculations to the phenomenology of double-beta decay through the use of effective field theory (EFTs) is highlighted. At present, LQCD calculations are limited to small nuclear systems, and to pionic subsystems, and require matching to appropriate EFTs to have direct phenomenological impact. However, these calculations have already revealed qualitatively that there are terms in the EFTs that can only be constrained from double-beta decay processes themselves or using inputs from LQCD. Future prospects for direct calculations in larger nuclei are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08493v1-abstract-full').style.display = 'none'; document.getElementById('2003.08493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-20-20387, MIT-CTP/5176 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.05914">arXiv:2003.05914</a> <span> [<a href="https://arxiv.org/pdf/2003.05914">pdf</a>, <a href="https://arxiv.org/format/2003.05914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.014514">10.1103/PhysRevD.102.014514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Path integral contour deformations for noisy observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&query=Warrington%2C+N+C">Neill C. Warrington</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.05914v1-abstract-short" style="display: inline;"> Monte Carlo studies of many quantum systems face exponentially severe signal-to-noise problems. We show that noise arising from complex phase fluctuations of observables can be reduced without introducing bias using path integral contour deformation techniques. A numerical study of contour deformations for correlation functions in Abelian gauge theory and complex scalar field theory demonstrates t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05914v1-abstract-full').style.display = 'inline'; document.getElementById('2003.05914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.05914v1-abstract-full" style="display: none;"> Monte Carlo studies of many quantum systems face exponentially severe signal-to-noise problems. We show that noise arising from complex phase fluctuations of observables can be reduced without introducing bias using path integral contour deformation techniques. A numerical study of contour deformations for correlation functions in Abelian gauge theory and complex scalar field theory demonstrates that variance can be reduced by orders of magnitude without modifying Monte Carlo sampling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05914v1-abstract-full').style.display = 'none'; document.getElementById('2003.05914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-095-T, INT-PUB-20-007, MIT-CTP/5182 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 014514 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06800">arXiv:1910.06800</a> <span> [<a href="https://arxiv.org/pdf/1910.06800">pdf</a>, <a href="https://arxiv.org/format/1910.06800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Report on the 2019 Lattice Diversity and Inclusivity Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aubin%2C+C">Christopher Aubin</a>, <a href="/search/hep-lat?searchtype=author&query=Bali%2C+G">Gunnar Bali</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hollitt%2C+S">Sophie Hollitt</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ryan%2C+S+M">Sin茅ad M. Ryan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06800v1-abstract-short" style="display: inline;"> We report on the results of a survey to assess diversity and inclusivity in the Lattice community as one of the duties of a newly formed Committee on Diversity and Inclusivity in the Lattice community. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06800v1-abstract-full" style="display: none;"> We report on the results of a survey to assess diversity and inclusivity in the Lattice community as one of the duties of a newly formed Committee on Diversity and Inclusivity in the Lattice community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06800v1-abstract-full').style.display = 'none'; document.getElementById('1910.06800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, 1 table. To appear in the Proceedings of 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2019)295 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07050">arXiv:1908.07050</a> <span> [<a href="https://arxiv.org/pdf/1908.07050">pdf</a>, <a href="https://arxiv.org/format/1908.07050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.034502">10.1103/PhysRevD.104.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sparsening Algorithm for Multi-Hadron Lattice QCD Correlation Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">M. L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07050v1-abstract-short" style="display: inline;"> Modern advances in algorithms for lattice QCD calculations have steadily driven down the resources required to generate gauge field ensembles and calculate quark propagators, such that, in cases relevant to nuclear physics, performing quark contractions to assemble correlation functions from propagators has become the dominant cost. This work explores a propagator sparsening algorithm for forming… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07050v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07050v1-abstract-full" style="display: none;"> Modern advances in algorithms for lattice QCD calculations have steadily driven down the resources required to generate gauge field ensembles and calculate quark propagators, such that, in cases relevant to nuclear physics, performing quark contractions to assemble correlation functions from propagators has become the dominant cost. This work explores a propagator sparsening algorithm for forming correlation functions describing multi-hadron systems, such as light nuclei, with reduced computational cost. The algorithm constructs correlation functions from sparsened propagators defined on a coarsened lattice geometry, where the sparsened propagators are obtained from propagators computed on the full lattice. This algorithm is used to study the low-energy QCD ground-state spectrum using a single Wilson-clover lattice ensemble with $m_蟺 \approx 800$ MeV. It is found that the extracted ground state masses and binding energies, as well as their statistical uncertainties, are consistent when determined from correlation functions constructed from sparsened and full propagators. In addition, while evidence of modified couplings to excited states is observed in sparsened correlation functions, it is demonstrated that these effects can be removed, if desired, with an inexpensive modification to the sparsened estimator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07050v1-abstract-full').style.display = 'none'; document.getElementById('1908.07050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5127, INT-PUB-19-026 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 034502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09931">arXiv:1904.09931</a> <span> [<a href="https://arxiv.org/pdf/1904.09931">pdf</a>, <a href="https://arxiv.org/format/1904.09931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12916-x">10.1140/epja/i2019-12916-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Neutrino-Nucleus Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Sufian%2C+R">Raza Sufian</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsin%2C+S">Sergey Syritsin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09931v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calcul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09931v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09931v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calculations is relevant to current and upcoming neutrino experiments, becoming increasingly important on the timescale of LBNF/DUNE and HyperK. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09931v1-abstract-full').style.display = 'none'; document.getElementById('1904.09931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pp. One of seven whitepapers from the USQCD Collaboration</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-172-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09725">arXiv:1904.09725</a> <span> [<a href="https://arxiv.org/pdf/1904.09725">pdf</a>, <a href="https://arxiv.org/format/1904.09725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12919-7">10.1140/epja/i2019-12919-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M">Martin Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09725v2-abstract-short" style="display: inline;"> In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09725v2-abstract-full" style="display: none;"> In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09725v2-abstract-full').style.display = 'none'; document.getElementById('1904.09725v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages. 1 of USQCD whitepapers,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09512">arXiv:1904.09512</a> <span> [<a href="https://arxiv.org/pdf/1904.09512">pdf</a>, <a href="https://arxiv.org/format/1904.09512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12902-4">10.1140/epja/i2019-12902-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadrons and Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09512v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD calculations related to the structure and spectroscopy of hadrons and nuclei. An overview of recent lattice calculations of the structure of the proton and other hadrons is presented along with prospects for future extensions. Progress and prospects of hadronic spectroscopy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09512v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09512v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09512v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD calculations related to the structure and spectroscopy of hadrons and nuclei. An overview of recent lattice calculations of the structure of the proton and other hadrons is presented along with prospects for future extensions. Progress and prospects of hadronic spectroscopy and the study of resonances in the light, strange and heavy quark sectors is summarized. Finally, recent advances in the study of light nuclei from lattice QCD are addressed, and the scope of future investigations that are currently envisioned is outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09512v1-abstract-full').style.display = 'none'; document.getElementById('1904.09512v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00313">arXiv:1812.00313</a> <span> [<a href="https://arxiv.org/pdf/1812.00313">pdf</a>, <a href="https://arxiv.org/format/1812.00313">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of the Proton Charge Radius </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Grebe%2C+A">Anthony Grebe</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00313v1-abstract-short" style="display: inline;"> The charge radius of the proton has been measured in scattering and spectroscopy experiments using both electronic and muonic probes. The electronic and muonic measurements are discrepant at $5蟽$, giving rise to what is known as the proton radius puzzle. With the goal of resolving this, we introduce a novel method of using lattice QCD to determine the isovector charge radius -- defined as the sl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00313v1-abstract-full').style.display = 'inline'; document.getElementById('1812.00313v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00313v1-abstract-full" style="display: none;"> The charge radius of the proton has been measured in scattering and spectroscopy experiments using both electronic and muonic probes. The electronic and muonic measurements are discrepant at $5蟽$, giving rise to what is known as the proton radius puzzle. With the goal of resolving this, we introduce a novel method of using lattice QCD to determine the isovector charge radius -- defined as the slope of the electric form factor at zero four-momentum transfer -- by introducing a mass splitting between the up and down quarks. This allows us to access timelike four-momentum transfers as well as spacelike ones, leading to potentially higher accuracy in determining the form factor slope at $Q^2 = 0$ by interpolation. In this preliminary study, we find a Dirac isovector radius squared of $0.320 \pm 0.074$ fm$^2$ at quark masses corresponding to $m_蟺= 450$ MeV. We compare the feasibility of this method with other approaches of determining the proton charge radius from lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00313v1-abstract-full').style.display = 'none'; document.getElementById('1812.00313v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">presented at the 36th Annual International Symposium on Lattice Field Theory (LATTICE2018)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5079 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05554">arXiv:1811.05554</a> <span> [<a href="https://arxiv.org/pdf/1811.05554">pdf</a>, <a href="https://arxiv.org/format/1811.05554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Nuclear Matrix Elements for Neutrinoless Double Beta Decay from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05554v1-abstract-short" style="display: inline;"> While neutrino oscillation experiments have demonstrated that neutrinos have small, nonzero masses, much remains unknown about their properties and decay modes. One potential decay mode --- neutrinoless double beta decay ($0 谓尾尾$) --- is a particularly interesting target of experimental searches, since its observation would imply that the neutrino is a Majorana particle, demonstrate that lepton nu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05554v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05554v1-abstract-full" style="display: none;"> While neutrino oscillation experiments have demonstrated that neutrinos have small, nonzero masses, much remains unknown about their properties and decay modes. One potential decay mode --- neutrinoless double beta decay ($0 谓尾尾$) --- is a particularly interesting target of experimental searches, since its observation would imply that the neutrino is a Majorana particle, demonstrate that lepton number conservation is violated in nature, and give further constraints on the neutrino masses and mixing angles. Relating experimental constraints on $0 谓尾尾$ decay rates to the neutrino masses, however, requires theoretical input in the form of non-perturbative nuclear matrix elements which remain difficult to calculate reliably. In this talk we will discuss progress towards first-principles calculations of relevant nuclear matrix elements using lattice QCD and effective field theory techniques, assuming neutrinoless double beta decay mediated by a light Majorana neutrino. We will show preliminary results for the $蟺^{-} \rightarrow 蟺^{+} e^{-} e^{-}$ transition amplitude computed on a $16^{3} \times 32$ domain wall fermion lattice with a pion mass of 420 MeV, and discuss improved methods applicable to general lattice calculations of $0 谓尾尾$ decay amplitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05554v1-abstract-full').style.display = 'none'; document.getElementById('1811.05554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, talk presented at the 36th Annual International Symposium on Lattice Field Theory (Lattice 2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03944">arXiv:1811.03944</a> <span> [<a href="https://arxiv.org/pdf/1811.03944">pdf</a>, <a href="https://arxiv.org/format/1811.03944">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unwrapping phase fluctuations in one dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03944v1-abstract-short" style="display: inline;"> Correlation functions in one-dimensional complex scalar field theory provide a toy model for phase fluctuations, sign problems, and signal-to-noise problems in lattice field theory. Phase unwrapping techniques from signal processing are applied to lattice field theory in order to map compact random phases to noncompact random variables that can be numerically sampled without sign or signal-to-nois… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03944v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03944v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03944v1-abstract-full" style="display: none;"> Correlation functions in one-dimensional complex scalar field theory provide a toy model for phase fluctuations, sign problems, and signal-to-noise problems in lattice field theory. Phase unwrapping techniques from signal processing are applied to lattice field theory in order to map compact random phases to noncompact random variables that can be numerically sampled without sign or signal-to-noise problems. A cumulant expansion can be used to reconstruct average correlation functions from moments of unwrapped phases, but points where the field magnitude fluctuates close to zero lead to ambiguities in the definition of the unwrapped phase and significant noise at higher orders in the cumulant expansion. Phase unwrapping algorithms that average fluctuations over physical length scales improve, but do not completely resolve, these issues in one dimension. Similar issues are seen in other applications of phase unwrapping, where they are found to be more tractable in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03944v1-abstract-full').style.display = 'none'; document.getElementById('1811.03944v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures. arXiv admin note: text overlap with arXiv:1806.01832</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2018)176 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12194">arXiv:1810.12194</a> <span> [<a href="https://arxiv.org/pdf/1810.12194">pdf</a>, <a href="https://arxiv.org/format/1810.12194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Moments of pion distribution amplitude using operator product expansion on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Kanamori%2C+I">Issaku Kanamori</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12194v1-abstract-short" style="display: inline;"> We report an exploratory study of the current-current matrix elements that are relevant to the extraction of moments of the pion light-cone distribution amplitude, employing the method of introducing a valence relativistic heavy quark. The numerical investigation is carried out in the quenched approximation with the physical volume $L\approx 2.4$ fm at two values of lattice spacing (0.05 and 0.075… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12194v1-abstract-full').style.display = 'inline'; document.getElementById('1810.12194v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12194v1-abstract-full" style="display: none;"> We report an exploratory study of the current-current matrix elements that are relevant to the extraction of moments of the pion light-cone distribution amplitude, employing the method of introducing a valence relativistic heavy quark. The numerical investigation is carried out in the quenched approximation with the physical volume $L\approx 2.4$ fm at two values of lattice spacing (0.05 and 0.075 fm). We obtain clean signals for the relevant Euclidean hadronic tensor with reasonable statistics, but observe that the lattice artefacts are non-negligible in our results. The key conclusion from the analysis hitherto is that although our approach has the potential for making significant contributions to parton physics, data at finer lattice spacings that are currently being produced are needed in order to control the continuum extrapolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12194v1-abstract-full').style.display = 'none'; document.getElementById('1810.12194v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures; contribution to the proceedings of Lattice 2018 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07589">arXiv:1810.07589</a> <span> [<a href="https://arxiv.org/pdf/1810.07589">pdf</a>, <a href="https://arxiv.org/format/1810.07589">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.072003">10.1103/PhysRevLett.122.072003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The pressure distribution and shear forces inside the proton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">W. Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07589v3-abstract-short" style="display: inline;"> The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07589v3-abstract-full').style.display = 'inline'; document.getElementById('1810.07589v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07589v3-abstract-full" style="display: none;"> The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculations of the quark contributions. The utility of LQCD calculations in exploring, and supplementing, the assumptions in a recent extraction of the pressure distribution in the proton from deeply virtual Compton scattering experiments is also discussed. Based on this study, the target kinematics for experiments aiming to determine the pressure and shear distributions with greater precision at Thomas Jefferson National Accelerator Facility and a future Electron Ion Collider are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07589v3-abstract-full').style.display = 'none'; document.getElementById('1810.07589v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Units corrected on figure axes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5071 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 072003 (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Detmold%2C+W&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>