CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 52 results for author: <span class="mathjax">Ge, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Ge%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ge, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ge%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ge, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17654">arXiv:2410.17654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17654">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Tuning of Single-Photon Emission in Monolayer WSe2 via Localized Strain Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yi Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Junyu Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+M">Manlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+I+C">In Cheol Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">Kunze Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+T">Tian-Ran Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nam%2C+D">Donguk Nam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17654v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although variou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17654v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although various approaches to dynamically tuning the emission energies of 2D SPEs have been developed to address the issue, the practical solution to matching multiple individual SPEs in a single 2D flake is still scarce. In this work, we demonstrate a precise emission energy tuning of individual SPEs in a WSe2 monolayer. Our approach utilizes localized strain fields near individual SPEs, which we control independently by adjusting the physical volume of an SU-8-based stressor layer via focused laser annealing. This technique allows continuous emission energy tuning of up to 15 meV while maintaining the qualities of SPEs. Additionally, we showcase the precise spectral alignment of three distinct SPEs in a single WSe2 monolayer to the same wavelength. The tunability of 2D SPEs represents a solid step towards the on-chip integrated photonics with 2D materials for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'none'; document.getElementById('2410.17654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15928">arXiv:2409.15928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15928">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Equivalence of pseudogap and pairing energy in a cuprate high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larrazabal%2C+M+O">Maialen Ortego Larrazabal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gozlinski%2C+T">Thomas Gozlinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+Y">Yudai Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swart%2C+I">Ingmar Swart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15928v1-abstract-short" style="display: inline;"> The pseudogap stands out in the phase diagram of the cuprate high-temperature superconductors because its origin and relationship to superconductivity remain elusive. The origin of the pseudogap has been debated, with competing hypotheses attributing it to preformed electron pairs or local order, such as charge density waves. Here, we present unambiguous evidence supporting the pairing scenario, u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15928v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15928v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15928v1-abstract-full" style="display: none;"> The pseudogap stands out in the phase diagram of the cuprate high-temperature superconductors because its origin and relationship to superconductivity remain elusive. The origin of the pseudogap has been debated, with competing hypotheses attributing it to preformed electron pairs or local order, such as charge density waves. Here, we present unambiguous evidence supporting the pairing scenario, using local shot-noise spectroscopy measurements in Bi2Sr2CaCu2O8+未. Our data demonstrates that the pseudogap energy coincides with the onset of electron pairing, and is spatially heterogeneous with values reaching up to 70 meV. Our results exclude a pure local order origin of the pseudogap, link the pseudogap to Cooper pair formation, and show that the limiting factor for higher Tc in cuprates is phase coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15928v1-abstract-full').style.display = 'none'; document.getElementById('2409.15928v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures and Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11379">arXiv:2408.11379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High quality epitaxial piezoelectric and ferroelectric wurtzite Al$_{1-x}$Sc$_x$N thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yang Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yihan Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanghe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Mingqiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Luocheng Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jinxin Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhenghao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ming%2C+W">Wenjie Ming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+S">Shuhong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changjian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11379v1-abstract-short" style="display: inline;"> Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al$_{1-x}$Sc$_x$N) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al$_{1-x}$Sc$_x$N films with high leak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11379v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11379v1-abstract-full" style="display: none;"> Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al$_{1-x}$Sc$_x$N) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al$_{1-x}$Sc$_x$N films with high leakage current. Here we report the pulsed laser deposition of single crystalline epitaxial Al$_{1-x}$Sc$_x$N thin films on sapphire and 4H-SiC substrates. Pure wurtzite phase is maintained up to $x = 0.3$ with minimal oxygen contamination. Polarization is estimated to be 140 $渭$C/cm$^2$ via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be 5 times of undoped one when $x = 0.3$, making it desirable for high frequency radiofrequency (RF) filters and three-dimensional nonvolatile memories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11379v1-abstract-full').style.display = 'none'; document.getElementById('2408.11379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06389">arXiv:2403.06389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06389">pdf</a>, <a href="https://arxiv.org/format/2403.06389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression of flux jumps in high-$J_c$ Nb$_3$Sn conductors by ferromagnetic layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Cun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kai-Wei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+T">Tian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06389v2-abstract-short" style="display: inline;"> Flux jumps observed in high-$J_c$ Nb$_3$Sn conductors are urgent problems to construct high field superconducting magnets. The low-field instabilities usually reduce the current-carrying capability and thus cause the premature quench of Nb$_3$Sn coils at low magnetic field. In this paper, we explore suppressing the flux jumps by ferromagnetic (FM) layer. Firstly, we experimentally and theoreticall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06389v2-abstract-full').style.display = 'inline'; document.getElementById('2403.06389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06389v2-abstract-full" style="display: none;"> Flux jumps observed in high-$J_c$ Nb$_3$Sn conductors are urgent problems to construct high field superconducting magnets. The low-field instabilities usually reduce the current-carrying capability and thus cause the premature quench of Nb$_3$Sn coils at low magnetic field. In this paper, we explore suppressing the flux jumps by ferromagnetic (FM) layer. Firstly, we experimentally and theoretically investigate the flux jumps of Nb$_3$Sn/FM hybrid wires exposed to a magnetic field loop with constant sweeping rate. Comparing with bare Nb$_3$Sn and Nb$_3$Sn/Cu wires, we reveal two underlying mechanisms that the suppression of flux jumps is mainly attributed to the thermal effect of FM layer for the case of lower sweeping rate, whereas both thermal and electromagnetic effects play a crucial role for the case of higher sweeping rate. Furthermore, we explore the flux jumps of Nb$_3$Sn/FM hybrid wires exposed to AC magnetic fields with amplitude $B_{a0}$ and frequency $\rm蠅$. We build up the phase diagrams of flux jumps in the plane $\rm蠅$-$B_{a0}$ for bare Nb$_{3}$Sn wire, Nb$_{3}$Sn/Cu wire and Nb$_{3}$Sn/FM wire, respectively. We stress that the region of flux jumps of Nb$_{3}$Sn/FM wire is much smaller than the other two wires, which indicates that the Nb$_{3}$Sn/FM wire has significant advantage over merely increasing the heat capacity. The findings shed light on suppression of the flux jumps by utilizing FM materials, which is useful for developing new type of high-$J_c$ Nb$_{3}$Sn conductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06389v2-abstract-full').style.display = 'none'; document.getElementById('2403.06389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18779">arXiv:2402.18779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18779">pdf</a>, <a href="https://arxiv.org/format/2402.18779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale variation of the Rashba energy in BiTeI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+R">Ruizhe Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larson%2C+D+T">Daniel T. Larson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saghir%2C+M">Mohammed Saghir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+D">Jason D. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+E">Jennifer E. Hoffman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18779v2-abstract-short" style="display: inline;"> BiTeI is a polar semiconductor with strong spin-orbit coupling (SOC) that produces large Rashba spin splitting. Due to its potential utility in spintronics and magnetoelectrics, it is essential to understand how defects impact the spin transport in this material. Using scanning tunneling microscopy and spectroscopy, we image ring-like charging states of single-atom defects on the iodine surface of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18779v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18779v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18779v2-abstract-full" style="display: none;"> BiTeI is a polar semiconductor with strong spin-orbit coupling (SOC) that produces large Rashba spin splitting. Due to its potential utility in spintronics and magnetoelectrics, it is essential to understand how defects impact the spin transport in this material. Using scanning tunneling microscopy and spectroscopy, we image ring-like charging states of single-atom defects on the iodine surface of BiTeI. We observe nanoscale variations in the Rashba energy around each defect, which we correlate with the local electric field extracted from the bias dependence of each ring radius. Our data demonstrate the local impact of atomic defects on the Rashba effect, which is both a challenge and an opportunity for the development of future nanoscale spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18779v2-abstract-full').style.display = 'none'; document.getElementById('2402.18779v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05716">arXiv:2310.05716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05716">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0240672">10.1063/5.0240672 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct visualization of quasiparticle concentration around superconducting vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larrazabal%2C+M+O">Maialen Ortego Larrazabal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05716v3-abstract-short" style="display: inline;"> Bogoliubov quasiparticles play a crucial role in understanding the behavior of a superconductor, and in achieving reliable operations of superconducting quantum circuits. Diagnosis of quasiparticle poisoning at the nanoscale provides invaluable benefits in designing superconducting qubits. Here, we use scanning tunneling noise microscopy to locally quantify quasiparticles by measuring the effectiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05716v3-abstract-full').style.display = 'inline'; document.getElementById('2310.05716v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05716v3-abstract-full" style="display: none;"> Bogoliubov quasiparticles play a crucial role in understanding the behavior of a superconductor, and in achieving reliable operations of superconducting quantum circuits. Diagnosis of quasiparticle poisoning at the nanoscale provides invaluable benefits in designing superconducting qubits. Here, we use scanning tunneling noise microscopy to locally quantify quasiparticles by measuring the effective charge. Using the vortex lattice as a model system, we directly visualize the spatial variation of the quasiparticle concentration around superconducting vortices, which can be described within the Ginzburg-Landau framework. This shows a direct, noninvasive approach for the atomic-scale detection of relative quasiparticle concentration as small as 10^-4 in various superconducting qubit systems. Our results alert of a quick increase in quasiparticle concentration with decreasing intervortex distance in vortex-based Majorana qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05716v3-abstract-full').style.display = 'none'; document.getElementById('2310.05716v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11768">arXiv:2308.11768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11768">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s44214-023-00035-z">10.1007/s44214-023-00035-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic and insulating behavior in both half magnetic levitation and non-levitation LK-99 like samples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pinyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+C">Chengcheng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Haoran Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+Y">Yiwen Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+G">Gaoxing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+S">Shichao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11768v2-abstract-short" style="display: inline;"> Finding materials exhibiting superconductivity at room temperature has long been one of the ultimate goals in physics and material science. Recently, room-temperature superconducting properties have been claimed in a copper substituted lead phosphate apatite (Pb$_{10-x}$Cu$_x$(PO$_4$)$_6$O, or called LK-99) [1-3]. Using a similar approach, we have prepared LK-99 like samples and confirmed the half&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11768v2-abstract-full').style.display = 'inline'; document.getElementById('2308.11768v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11768v2-abstract-full" style="display: none;"> Finding materials exhibiting superconductivity at room temperature has long been one of the ultimate goals in physics and material science. Recently, room-temperature superconducting properties have been claimed in a copper substituted lead phosphate apatite (Pb$_{10-x}$Cu$_x$(PO$_4$)$_6$O, or called LK-99) [1-3]. Using a similar approach, we have prepared LK-99 like samples and confirmed the half-levitation behaviors in some small specimens under the influence of a magnet at room temperature. To examine the magnetic properties of our samples, we have performed systematic magnetization measurements on the as-grown LK-99-like samples, including the half-levitated and non-levitated samples. The magnetization measurements show the coexistence of soft-ferromagnetic and diamagnetic signals in both half-levitated and non-levitated samples. The electrical transport measurements on the as-grown LK-99-like samples including both half-levitated and non-levitated samples show an insulating behavior characterized by the increasing resistivity with the decreasing temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11768v2-abstract-full').style.display = 'none'; document.getElementById('2308.11768v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Front 2, 10 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02397">arXiv:2306.02397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02397">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.076001">10.1103/PhysRevLett.132.076001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Why shot noise does not generally detect pairing in mesoscopic superconducting tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jianfeng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomar%2C+R">Ruchi Tomar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesudasan%2C+J">John Jesudasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raychaudhuri%2C+P">Pratap Raychaudhuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karrer%2C+M">Max Karrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleiner%2C+R">Reinhold Kleiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koelle%2C+D">Dieter Koelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbier%2C+A">Arnaud Barbier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driessen%2C+E+F+C">Eduard F. C. Driessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02397v2-abstract-short" style="display: inline;"> The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot noise spectroscopy thus enables, in principle, to determine the effective charge q of the charge carriers that tunnel. This can be used to detect electron pairing in superconductors:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02397v2-abstract-full').style.display = 'inline'; document.getElementById('2306.02397v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02397v2-abstract-full" style="display: none;"> The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot noise spectroscopy thus enables, in principle, to determine the effective charge q of the charge carriers that tunnel. This can be used to detect electron pairing in superconductors: in the normal state, the noise corresponds to single electron tunneling (q = 1e), while in the paired state, the noise corresponds to q = 2e. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q = 1e. We show that transparency can control the shot noise and this q = 1e is due to the large number of tunneling channels with each having very low transparency. Our results indicate that in typical mesoscopic superconducting junctions one should expect q = 1e noise, and lead to design guidelines for junctions that allow the detection of electron pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02397v2-abstract-full').style.display = 'none'; document.getElementById('2306.02397v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 076001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00274">arXiv:2305.00274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00274">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jiacheng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Z">Zhongzhen Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Sinan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+H">Huiqiang Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C">Chenyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhenduo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+J">Jun-ichi Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhenhua Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+Y">Yubin Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">He Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Song Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xun-Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+S">Si Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00274v1-abstract-short" style="display: inline;"> Fe-based metallic glasses are promising functional materials for advanced magnetism and sensor fields. Tailoring magnetic performance in amorphous materials requires a thorough knowledge of the correlation between structural disorder and magnetic order, which remains ambiguous. Two practical difficulties remain: the first is directly observing subtle magnetic structural changes on multiple scales,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00274v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00274v1-abstract-full" style="display: none;"> Fe-based metallic glasses are promising functional materials for advanced magnetism and sensor fields. Tailoring magnetic performance in amorphous materials requires a thorough knowledge of the correlation between structural disorder and magnetic order, which remains ambiguous. Two practical difficulties remain: the first is directly observing subtle magnetic structural changes on multiple scales, and the second is precisely regulating the various amorphous states. Here we propose a novel approach to tailor the amorphous structure through the liquid liquid phase transition. In-situ synchrotron diffraction has unraveled a medium-range ordering process dominated by edge-sharing cluster connectivity during the liquid-liquid phase transition. Moreover, nanodomains with topological order have been found to exist in composition with liquid-liquid phase transition, manifesting as hexagonal patterns in small-angle neutron scattering profiles. The liquid-liquid phase transition can induce the nanodomains to be more locally ordered, generating stronger exchange interactions due to the reduced Fe-Fe bond and the enhanced structural order, leading to the increment of saturation magnetization. Furthermore, the increased local heterogeneity in the medium range scale enhances the magnetic anisotropy, promoting the permeability response under applied stress and leading to a better stress-impedance effect. These experimental results pave the way to tailor the magnetic structure and performance through the liquid-liquid phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00274v1-abstract-full').style.display = 'none'; document.getElementById('2305.00274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">number of pages is 31 and number of figures is 14, including the Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17027">arXiv:2211.17027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17027">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.085140">10.1103/PhysRevB.107.085140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous magneto-thermoelectric behavior in massive Dirac materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huichao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingyue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chunming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pinyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+R">Ran Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J+Y">Ji Yan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samarth%2C+N">Nitin Samarth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haizhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaosong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17027v1-abstract-short" style="display: inline;"> Extensive studies of electron transport in Dirac materials have shown positive magneto-resistance (MR) and positive magneto-thermopower (MTP) in a magnetic field perpendicular to the excitation current or thermal gradient. In contrast, measurements of electron transport often show a negative longitudinal MR and negative MTP for a magnetic field oriented along the excitation current or thermal grad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17027v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17027v1-abstract-full" style="display: none;"> Extensive studies of electron transport in Dirac materials have shown positive magneto-resistance (MR) and positive magneto-thermopower (MTP) in a magnetic field perpendicular to the excitation current or thermal gradient. In contrast, measurements of electron transport often show a negative longitudinal MR and negative MTP for a magnetic field oriented along the excitation current or thermal gradient; this is attributed to the chiral anomaly in Dirac materials. Here, we report a very different magneto-thermoelectric transport behavior in the massive Dirac material ZrTe5. Although thin flakes show a commonly observed positive MR in a perpendicular magnetic field, distinct from other Dirac materials, we observe a sharp negative MTP. In a parallel magnetic field, we still observe a negative longitudinal MR, however, a remarkable positive MTP is observed for the fields parallel to the thermal gradients. Our theoretical calculations suggest that this anomalous magneto-thermoelectric behavior can be attributed to the screened Coulomb scattering. This work demonstrates the significance of impurity scattering in the electron transport of topological materials and provides deep insight into the novel magneto-transport phenomena in Dirac materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17027v1-abstract-full').style.display = 'none'; document.getElementById('2211.17027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10346">arXiv:2205.10346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10346">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39109-w">10.1038/s41467-023-39109-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-electron charge transfer into putative Majorana and trivial modes in individual vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10346v2-abstract-short" style="display: inline;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10346v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10346v2-abstract-full" style="display: none;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling process into vortex bound states in the conventional superconductor NbSe2, and in the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibits charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 exclude the possibility of Yu-Shiba-Rusinov states and are consistent with both Majorana bound states and trivial vortex bound states. Our results open an avenue for investigating the exotic states in vortex cores and for future Majorana devices, although further theoretical investigations involving charge dynamics and superconducting tips are necessary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'none'; document.getElementById('2205.10346v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, and 16 pages for supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3341 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09740">arXiv:2205.09740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01497-1">10.1038/s41563-023-01497-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Puddle formation, persistent gaps, and non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+未 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vervloet%2C+A">Amber Vervloet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smit%2C+S">Steef Smit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Heumen%2C+E">Erik van Heumen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">Mark S. Golden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yingkai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yi Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+E">Jennifer E. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sulangi%2C+M+A">Miguel Antonio Sulangi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09740v1-abstract-short" style="display: inline;"> The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to ze&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09740v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09740v1-abstract-full" style="display: none;"> The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero[2], in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+未 high-temperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix[3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09740v1-abstract-full').style.display = 'none'; document.getElementById('2205.09740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 703-709 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10352">arXiv:2201.10352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10352">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.021025">10.1103/PhysRevX.14.021025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-4e and charge-6e flux quantization and higher charge superconductivity in kagome superconductor ring devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pinyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Ying Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Q">Qiangwei Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Anqi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10352v3-abstract-short" style="display: inline;"> The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known h/2e flux quantization is considered strong evidence for the existence of the charge-2e, two-electron Cooper pairs. Here we report evidence for multi-charge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor CsV3Sb5. We perform systemat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10352v3-abstract-full').style.display = 'inline'; document.getElementById('2201.10352v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10352v3-abstract-full" style="display: none;"> The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known h/2e flux quantization is considered strong evidence for the existence of the charge-2e, two-electron Cooper pairs. Here we report evidence for multi-charge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor CsV3Sb5. We perform systematic magneto-transport measurements and observe unprecedented quantization of magnetic flux in units of h/4e and h/6e in magnetoresistance oscillations. Specifically, at low temperatures, magnetoresistance oscillations with period h/2e are detected, as expected from the flux quantization for charge-2e superconductivity. We find that the h/2e oscillations are suppressed and replaced by resistance oscillations with h/4e periodicity when temperature is increased. Increasing the temperature further suppresses the h/4e oscillations and robust resistance oscillations with h/6e periodicity emerge as evidence for charge-6e flux quantization. Our observations provide the first experimental evidence for the existence of multi-charge flux quanta and emergent quantum matter exhibiting higher-charge superconductivity in the strongly fluctuating region above the charge-2e Cooper pair condensate, revealing new insights into the intertwined and vestigial electronic order in kagome superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10352v3-abstract-full').style.display = 'none'; document.getElementById('2201.10352v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 14, 021025 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03994">arXiv:2201.03994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03994">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0083365">10.1063/5.0083365 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fishtail effect and the vortex phase diagram of high-entropy alloy superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lingling Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+L">Lin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosono%2C+H">Hideo Hosono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03994v1-abstract-short" style="display: inline;"> High-entropy alloy (HEA) is an attracting topic raising in materials science and condensed matter physics. Although several types of superconductors have been discovered in HEAs, the critical currents (Jc) of HEA superconductors remain uncharacterized up to now. Here, we systematically study the current-carrying ability of (TaNb)0.7(HfZrTi)0.5 HEA at various heat treatment conditions. We obtained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03994v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03994v1-abstract-full" style="display: none;"> High-entropy alloy (HEA) is an attracting topic raising in materials science and condensed matter physics. Although several types of superconductors have been discovered in HEAs, the critical currents (Jc) of HEA superconductors remain uncharacterized up to now. Here, we systematically study the current-carrying ability of (TaNb)0.7(HfZrTi)0.5 HEA at various heat treatment conditions. We obtained the high upper critical field and large current carrying ability, which point to optimistic applications. Interestingly, the fishtail or second peak effect was found for the first time in HEA superconductors, and the position of the vortex pinning force shows a maximum at 0.72 of the reduced field, which is quite different from the cuprates and iron-based high-Tc superconductors. Together with the resistive measurements, the vortex phase diagram is obtained for HEA superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03994v1-abstract-full').style.display = 'none'; document.getElementById('2201.03994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01866">arXiv:2109.01866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0061260">10.1063/5.0061260 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lingling Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+S">Shiwei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wujun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shichao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01866v1-abstract-short" style="display: inline;"> Kagome lattice, made of corner-sharing triangles, provides an excellent platform for hosting exotic topological quantum states. Here we systematically studied the magnetic and transport properties of RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice. All the compounds have a collinear ferrimagnetic structure with different easy axis at low temperature. The low-temperature magnetoresistance (MR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01866v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01866v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01866v1-abstract-full" style="display: none;"> Kagome lattice, made of corner-sharing triangles, provides an excellent platform for hosting exotic topological quantum states. Here we systematically studied the magnetic and transport properties of RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice. All the compounds have a collinear ferrimagnetic structure with different easy axis at low temperature. The low-temperature magnetoresistance (MR) is positive and has no tendency to saturate below 7 T, while the MR gradually declines and becomes negative with the increasing temperature. A large intrinsic anomalous Hall conductivity about 250 惟-1cm-1, 40 惟-1cm-1, 95 惟-1cm-1 is observed for TbMn6Sn6, DyMn6Sn6, HoMn6Sn6, respectively. Our results imply that RMn6Sn6 system is an excellent platform to discover other intimately related topological or quantum phenomena and also tune the electronic and magnetic properties in future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01866v1-abstract-full').style.display = 'none'; document.getElementById('2109.01866v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 119, 092405 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11973">arXiv:2107.11973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11973">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25304-0">10.1038/s41467-021-25304-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudo-magnetic field-induced ultra-slow carrier dynamics in periodically strained graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+D">Dong-Ho Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+M">Manlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+K">Kunze Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Melvina Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+Y">Yongduck Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xuejiao Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parluhutan%2C+S+J">Samuel Jior Parluhutan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Junyu Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koh%2C+S+W">See Wee Koh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giovanni%2C+D">David Giovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sum%2C+T+C">Tze Chien Sum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q+J">Qi Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nam%2C+D">Donguk Nam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11973v1-abstract-short" style="display: inline;"> The creation of pseudo-magnetic fields in strained graphene has emerged as a promising route to allow observing intriguing physical phenomena that would be unattainable with laboratory superconducting magnets. Scanning tunneling spectroscopy experiments have successfully measured the pseudo-Landau levels and proved the existence of pseudo-magnetic fields in various strained graphene systems. These&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11973v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11973v1-abstract-full" style="display: none;"> The creation of pseudo-magnetic fields in strained graphene has emerged as a promising route to allow observing intriguing physical phenomena that would be unattainable with laboratory superconducting magnets. Scanning tunneling spectroscopy experiments have successfully measured the pseudo-Landau levels and proved the existence of pseudo-magnetic fields in various strained graphene systems. These giant pseudo-magnetic fields observed in highly deformed graphene can substantially alter the optical properties of graphene beyond a level that can be feasible with an external magnetic field, but the experimental signatures of the influence of such pseudo-magnetic fields have yet to be unveiled. Here, using time-resolved infrared pump-probe spectroscopy, we provide unambiguous evidence for ultra-slow carrier dynamics enabled by pseudo-magnetic fields in periodically strained graphene. Strong pseudo-magnetic fields of ~100 T created by non-uniform strain in graphene nanopillars are found to significantly decelerate the relaxation processes of hot carriers by more than an order of magnitude. Our finding presents unforeseen opportunities for harnessing the new physics of graphene enabled by pseudo-magnetic fields for optoelectronics and condensed matter physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11973v1-abstract-full').style.display = 'none'; document.getElementById('2107.11973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 21 pages, 4 figures / SI: 13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03224">arXiv:2107.03224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03224">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L201404">10.1103/PhysRevB.105.L201404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization-tuned topological quantum phase transition in MnBi2Te4 devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pinyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zihan Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03224v1-abstract-short" style="display: inline;"> Recently, the intrinsic magnetic topological insulator MnBi2Te4 has attracted enormous research interest due to the great success in realizing exotic topological quantum states, such as the quantum anomalous Hall effect (QAHE), axion insulator state, high-Chern-number and high-temperature Chern insulator states. One key issue in this field is to effectively manipulate these states and control topo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03224v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03224v1-abstract-full" style="display: none;"> Recently, the intrinsic magnetic topological insulator MnBi2Te4 has attracted enormous research interest due to the great success in realizing exotic topological quantum states, such as the quantum anomalous Hall effect (QAHE), axion insulator state, high-Chern-number and high-temperature Chern insulator states. One key issue in this field is to effectively manipulate these states and control topological phase transitions. Here, by systematic angle-dependent transport measurements, we reveal a magnetization-tuned topological quantum phase transition from Chern insulator to magnetic insulator with gapped Dirac surface states in MnBi2Te4 devices. Specifically, as the magnetic field is tilted away from the out-of-plane direction by around 40-60 degrees, the Hall resistance deviates from the quantization value and a colossal, anisotropic magnetoresistance is detected. The theoretical analyses based on modified Landauer-Buttiker formalism show that the field-tilt-driven switching from ferromagnetic state to canted antiferromagnetic state induces a topological quantum phase transition from Chern insulator to magnetic insulator with gapped Dirac surface states in MnBi2Te4 devices. Our work provides an efficient means for modulating topological quantum states and topological quantum phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03224v1-abstract-full').style.display = 'none'; document.getElementById('2107.03224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, L201404 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08535">arXiv:2101.08535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08535">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abe3987">10.1126/science.abe3987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above $T_{C}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Ruitenbeek%2C+J+M">Jan M. van Ruitenbeek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Visser%2C+P+J">Pieter J. de Visser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thoen%2C+D+J">David J. Thoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driessen%2C+E+F+C">Eduard F. C. Driessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klapwijk%2C+T+M">Teunis M. Klapwijk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08535v1-abstract-short" style="display: inline;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08535v1-abstract-full" style="display: none;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical temperature $T_{C}$ in the disordered superconductor titanium nitride, by observing a clear enhancement in the shot noise that is equivalent to a change of the effective charge from 1 to 2 electron charges. We further show that spectroscopic gap fills up rather than closes when increasing temperature. Our results thus demonstrate the existence of a novel state above $T_{C}$ that, much like an ordinary metal, has no (pseudo)gap, but carries charge via paired electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'none'; document.getElementById('2101.08535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 608 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06976">arXiv:2101.06976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.06976">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/abef4e">10.1088/1361-6668/abef4e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic transport properties and hydrostatic pressure effect of FeSe$_{0.67}$Te$_{0.33}$ single crystals free of phase separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+X">Xiangzhuo Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+X">Xiaolei Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajia Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yan Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenchong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+N">Nan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xiude He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamegai%2C+T">Tsuyoshi Tamegai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhixiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06976v2-abstract-short" style="display: inline;"> FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with the Majorana bound state was found in the crystal of $x \sim 0.55$. Therefore, the electronic properties of single crystals with $0 &lt; x \leq 0.5$ are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06976v2-abstract-full').style.display = 'inline'; document.getElementById('2101.06976v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06976v2-abstract-full" style="display: none;"> FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with the Majorana bound state was found in the crystal of $x \sim 0.55$. Therefore, the electronic properties of single crystals with $0 &lt; x \leq 0.5$ are crucial for probing the evolution of those intriguing properties as well as their relations. However, this study is still left blank due to the lack of single crystals because of phase separation. Here, we report the synthesis, magnetization, electronic transport properties, and hydrostatic pressure effect of FeSe$_{0.67}$Te$_{0.33}$ single crystals free of phase separation. A structural (nematic) transition is visible at $T_{s} = 39$ K, below which the resistivity exhibits a Fermi-liquid behavior. Analysis of upper critical fields suggests that spin-paramagnetic effect should be taken into account for both $H \parallel c$ axis and $H \parallel ab$ plane. A crossover from the low-$H$ quadratic to the high-$H$ quasi-linear behavior is observed in the magnetoresistance, signifying the possible existence of Dirac-cone state. Besides, the strong temperature dependence of Hall coefficient, violation of (modified) Kohler&#39;s rule, and two-band model analysis indicate the multiband effects in FeSe$_{0.67}$Te$_{0.33}$ single crystals. Hydrostatic pressure measurements reveal that $T_{s}$ is quickly suppressed with pressure while $T_{c}$ is monotonically increased up to 2.31 GPa, indicating the competition between nematicity and superconductivity. No signature of magnetic order that has been detected in FeSe$_{1-x}$S$_{x}$ is observed. Our findings fill up the blank of the knowledge on the basic properties of FeSe$_{1-x}$Te$_{x}$ system with low-Te concentrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06976v2-abstract-full').style.display = 'none'; document.getElementById('2101.06976v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 34, 055006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08188">arXiv:2012.08188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08188">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L201110">10.1103/PhysRevB.103.L201110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Induced anomalous Hall effect of massive Dirac fermions in ZrTe5 and HfTe5 thin flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huichao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+H">Huixia Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08188v1-abstract-short" style="display: inline;"> Researches on anomalous Hall effect (AHE) have been lasting for a century to make clear the underlying physical mechanism. Generally, the AHE appears in magnetic materials, in which extrinsic process related to scattering effects and intrinsic contribution connected with Berry curvature are crucial. Recently, AHE has been counterintuitively observed in non-magnetic topological materials and attrib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08188v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08188v1-abstract-full" style="display: none;"> Researches on anomalous Hall effect (AHE) have been lasting for a century to make clear the underlying physical mechanism. Generally, the AHE appears in magnetic materials, in which extrinsic process related to scattering effects and intrinsic contribution connected with Berry curvature are crucial. Recently, AHE has been counterintuitively observed in non-magnetic topological materials and attributed to the existence of Weyl points. However, the Weyl point scenario would lead to unsaturated AHE even in large magnetic fields and contradicts the saturation of AHE in several tesla (T) in experiments. In this work, we investigate the Hall effect of ZrTe5 and HfTe5 thin flakes in static ultrahigh magnetic fields up to 33 T. We find the AHE saturates to 55 (70) Ohm^-1*cm^-1 for ZrTe5 (HfTe5) thin flakes above ~ 10 T. Combining detailed magnetotransport experiments and Berry curvature calculations, we clarify that the splitting of massive Dirac bands without Weyl points can be responsible for AHE in non-magnetic topological materials ZrTe5 and HfTe5 thin flakes. This model can identify our thin flake samples to be weak topological insulators and serve as a new tool to probe the band structure topology in topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08188v1-abstract-full').style.display = 'none'; document.getElementById('2012.08188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 201110 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.04258">arXiv:2012.04258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.04258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xinn.2021.100098">10.1016/j.xinn.2021.100098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic magnetic topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pinyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.04258v3-abstract-short" style="display: inline;"> Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be generated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being usefu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04258v3-abstract-full').style.display = 'inline'; document.getElementById('2012.04258v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.04258v3-abstract-full" style="display: none;"> Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be generated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being useful means of exploring the interaction between topology and magnetism. However, the inhomogeneity of magnetic doping leads to complicated magnetic ordering and small exchange gaps, and consequently the observed QAHE appears only at ultralow temperatures. Therefore, intrinsic magnetic topological insulators are highly desired for increasing the QAHE working temperature and for investigating topological quantum phenomena further. The realization and characterization of such systems are essential for both fundamental physics and potential technical revolutions. This review summarizes recent research progress in intrinsic magnetic topological insulators, focusing mainly on the antiferromagnetic topological insulator MnBi2Te4 and its family of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04258v3-abstract-full').style.display = 'none'; document.getElementById('2012.04258v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in principle at The Innovation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Innovation 2(2), 100098 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12594">arXiv:2011.12594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12594">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-020-00290-6">10.1038/s41535-020-00290-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable discrete scale invariance in transition-metal pentatelluride flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huichao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Haipeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Ji-Yan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joynt%2C+R">Robert Joynt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12594v1-abstract-short" style="display: inline;"> Log-periodic quantum oscillations discovered in transition-metal pentatelluride give a clear demonstration of discrete scale invariance (DSI) in solid-state materials. The peculiar phenomenon is convincingly interpreted as the presence of two-body quasi-bound states in a Coulomb potential. However, the modifications of the Coulomb interactions in many-body systems having a Dirac-like spectrum are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12594v1-abstract-full').style.display = 'inline'; document.getElementById('2011.12594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12594v1-abstract-full" style="display: none;"> Log-periodic quantum oscillations discovered in transition-metal pentatelluride give a clear demonstration of discrete scale invariance (DSI) in solid-state materials. The peculiar phenomenon is convincingly interpreted as the presence of two-body quasi-bound states in a Coulomb potential. However, the modifications of the Coulomb interactions in many-body systems having a Dirac-like spectrum are not fully understood. Here, we report the observation of tunable log-periodic oscillations and DSI in ZrTe5 and HfTe5 flakes. By reducing the flakes thickness, the characteristic scale factor is tuned to a much smaller value due to the reduction of the vacuum polarization effect. The decreasing of the scale factor demonstrates the many-body effect on the DSI, which has rarely been discussed hitherto. Furthermore, the cut-offs of oscillations are quantitatively explained by considering the Thomas-Fermi screening effect. Our work clarifies the many-body effect on DSI and paves a way to tune the DSI in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12594v1-abstract-full').style.display = 'none'; document.getElementById('2011.12594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by npj Quantum Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 5, 88 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10830">arXiv:2008.10830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.10830">pdf</a>, <a href="https://arxiv.org/format/2008.10830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03409-2">10.1038/s41586-021-03409-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin Pomeranchuk effect and the entropy of collective excitations in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+Y">Yu Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fangyuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jingyuan Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J+I+A">J. I. A. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berg%2C+E">Erez Berg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+F">Andrea F. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10830v4-abstract-short" style="display: inline;"> In condensed matter systems, higher temperatures typically disfavors ordered phases leading to an upper critical temperature for magnetism, superconductivity, and other phenomena. A notable exception is the Pomeranchuk effect in 3He, in which the liquid ground state freezes upon increasing the temperature due to the large entropy of the paramagnetic solid phase. Here we show that a similar mechani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10830v4-abstract-full').style.display = 'inline'; document.getElementById('2008.10830v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10830v4-abstract-full" style="display: none;"> In condensed matter systems, higher temperatures typically disfavors ordered phases leading to an upper critical temperature for magnetism, superconductivity, and other phenomena. A notable exception is the Pomeranchuk effect in 3He, in which the liquid ground state freezes upon increasing the temperature due to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite temperature dynamics of spin and valley-isospins in magic-angle twisted bilayer graphene. Most strikingly a resistivity peak appears at high temperatures near superlattice filling factor nu = -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted field magnetotransport and thermodynamic measurements of the inplane magnetic moment show that the resistivity peak is adiabatically connected to a finite-field magnetic phase transition at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes it relative to an isospin unpolarized Fermi liquid phase at elevated temperatures. Measurements of the entropy, S/kB indeed find it to be of order unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered physical spins. In contrast to 3He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness, with implications for the nature of finite temperature transport as well as the mechanisms underlying isospin ordering and superconductivity in twisted bilayer graphene and related systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10830v4-abstract-full').style.display = 'none'; document.getElementById('2008.10830v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 592, 220-224 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10843">arXiv:2007.10843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.10843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c01426">10.1021/acs.nanolett.1c01426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extrinsic and Intrinsic Anomalous Metallic States in Transition Metal Dichalcogenide Ising Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Ying Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaojie Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jiawei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Haoran Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zeyan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongjie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zijia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+P">Ping Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10843v3-abstract-short" style="display: inline;"> The metallic ground state in two-dimensional (2D) superconductors has attracted much attention but is still under intense scrutiny. Especially, the measurements in ultralow temperature region are challenging for 2D superconductors due to the sensitivity to external perturbations. In this work, the resistance saturation induced by external noise, named as &#34;extrinsic anomalous metallic state&#34;, is ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10843v3-abstract-full').style.display = 'inline'; document.getElementById('2007.10843v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10843v3-abstract-full" style="display: none;"> The metallic ground state in two-dimensional (2D) superconductors has attracted much attention but is still under intense scrutiny. Especially, the measurements in ultralow temperature region are challenging for 2D superconductors due to the sensitivity to external perturbations. In this work, the resistance saturation induced by external noise, named as &#34;extrinsic anomalous metallic state&#34;, is observed in 2D transition metal dichalcogenide (TMD) superconductor 4Ha-TaSe2 nanodevices. However, with further decreasing temperature, credible evidence of intrinsic anomalous metallic state is obtained by adequately filtering external radiation. Our work indicates that at ultralow temperatures the anomalous metallic state can be experimentally revealed as the quantum ground state in 2D crystalline TMD superconductors. Besides, Ising superconductivity revealed by ultrahigh in-plane critical field (Bc2//) going beyond the Pauli paramagnetic limit (Bp) is detected in 4Ha-TaSe2, from one-unit-cell device to bulk situation, which might be due to the weak coupling between the TaSe2 sub-monolayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10843v3-abstract-full').style.display = 'none'; document.getElementById('2007.10843v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06115">arXiv:2007.06115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.06115">pdf</a>, <a href="https://arxiv.org/format/2007.06115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-01129-4">10.1038/s41567-020-01129-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hofstadter subband ferromagnetism and symmetry broken Chern insulators in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+Y">Yu Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jingyuan Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rademaker%2C+L">Louk Rademaker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D+A">Dmitry A. Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+F">Andrea F. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06115v3-abstract-short" style="display: inline;"> In bilayer graphene rotationally faulted to theta=1.1 degrees, interlayer tunneling and rotational misalignment conspire to create a pair of low energy flat band that have been found to host various correlated phenomena at partial filling. Most work to date has focused on the zero magnetic field phase diagram, with magnetic field (B) used as a probe of the B=0 band structure. Here, we show that tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06115v3-abstract-full').style.display = 'inline'; document.getElementById('2007.06115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06115v3-abstract-full" style="display: none;"> In bilayer graphene rotationally faulted to theta=1.1 degrees, interlayer tunneling and rotational misalignment conspire to create a pair of low energy flat band that have been found to host various correlated phenomena at partial filling. Most work to date has focused on the zero magnetic field phase diagram, with magnetic field (B) used as a probe of the B=0 band structure. Here, we show that twisted bilayer graphene (tBLG) in a B as low as 2T hosts a cascade of ferromagnetic Chern insulators with Chern number |C|=1,2 and 3. We argue that the emergence of the Chern insulators is driven by the interplay of the moire superlattice with the B, which endow the flat bands with a substructure of topologically nontrivial subbands characteristic of the Hofstadter butterfly. The new phases can be accounted for in a Stoner picture in which exchange interactions favor polarization into one or more spin- and valley-isospin flavors; in contrast to conventional quantum Hall ferromagnets, however, electrons polarize into between one and four copies of a single Hofstadter subband with Chern number C=-1. In the case of the C=\pm3 insulators in particular, B catalyzes a first order phase transition from the spin- and valley-unpolarized B=0 state into the ferromagnetic state. Distinct from other moire heterostructures, tBLG realizes the strong-lattice limit of the Hofstadter problem and hosts Coulomb interactions that are comparable to the full bandwidth W and are consequently much stronger than the width of the individual Hofstadter subbands. In our experimental data, the dominance of Coulomb interactions manifests through the appearance of Chern insulating states with spontaneously broken superlattice symmetry at half filling of a C=-2 subband. Our experiments show that that tBLG may be an ideal venue to explore the strong interaction limit within partially filled Hofstadter bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06115v3-abstract-full').style.display = 'none'; document.getElementById('2007.06115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 17, 478-481 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16786">arXiv:2006.16786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16786">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.035125">10.1103/PhysRevB.102.035125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Eightfold Fermionic Excitation in a Charge Density Wave Compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Haigen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+T">Tianchuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yueyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z">Zhibin Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zongyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shaojian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuanwei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuehui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+S">Shangjie Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Ying Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Minghu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16786v1-abstract-short" style="display: inline;"> Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies have been predicted however remain challenging to realize in solid state materials. Here, charge density wave compound TaTe4 is proposed to hold eightfol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16786v1-abstract-full').style.display = 'inline'; document.getElementById('2006.16786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16786v1-abstract-full" style="display: none;"> Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies have been predicted however remain challenging to realize in solid state materials. Here, charge density wave compound TaTe4 is proposed to hold eightfold fermionic excitation and Dirac point in energy bands. High quality TaTe4 single crystals are prepared, where the charge density wave is revealed by directly imaging the atomic structure and a pseudogap of about 45 meV on the surface. Shubnikov de-Haas oscillations of TaTe4 are consistent with band structure calculation. Scanning tunneling microscopy reveals atomic step edge states on the surface of TaTe4. This work uncovers that charge density wave is able to induce new topological phases and sheds new light on the novel excitations in condensed matter materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16786v1-abstract-full').style.display = 'none'; document.getElementById('2006.16786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by PRB: https://journals.aps.org/prb/accepted/7907cK4eW0b1ee0b93fd67c1b42942bbb08eafc3c</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 035125 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.13302">arXiv:1911.13302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.13302">pdf</a>, <a href="https://arxiv.org/format/1911.13302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0928-3">10.1038/s41567-020-0928-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoupling superconductivity and correlated insulators in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+Y">Yu Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jingyuan Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+F">Andrea F. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.13302v2-abstract-short" style="display: inline;"> When bilayer graphene is rotationally faulted to an angle $胃\approx 1.1^\circ$, theory predicts the formation of a flat electronic band and correlated insulating, superconducting, and ferromagnetic states have all been observed at partial band filling. The proximity of superconductivity to correlated insulators has suggested a close relationship between these states, reminiscent of the cuprates wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13302v2-abstract-full').style.display = 'inline'; document.getElementById('1911.13302v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.13302v2-abstract-full" style="display: none;"> When bilayer graphene is rotationally faulted to an angle $胃\approx 1.1^\circ$, theory predicts the formation of a flat electronic band and correlated insulating, superconducting, and ferromagnetic states have all been observed at partial band filling. The proximity of superconductivity to correlated insulators has suggested a close relationship between these states, reminiscent of the cuprates where superconductivity arises by doping a Mott insulator. Here, we show that superconductivity can appear without correlated insulating states. While both superconductivity and correlated insulating behavior are strongest near the flat band condition, superconductivity survives to larger detuning of the angle. Our observations are consistent with a &#34;competing phases&#34; picture, in which insulators and superconductivity arise from disparate mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13302v2-abstract-full').style.display = 'none'; document.getElementById('1911.13302v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures in main text, 12 figures in supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 16, 926-930 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07173">arXiv:1911.07173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07173">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced superconductivity in topological type II Dirac semimetal NiTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chunqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Q">Qiang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jincang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeh%2C+N">Nai-Chang Yeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhenjie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07173v3-abstract-short" style="display: inline;"> Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties behavior of NiTe2 under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTe2 by application of p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07173v3-abstract-full').style.display = 'inline'; document.getElementById('1911.07173v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07173v3-abstract-full" style="display: none;"> Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties behavior of NiTe2 under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTe2 by application of pressure ranging from 3.4GPa to 54.45Gpa. Superconductivity emerges at critical pressure 12GPa with a transition temperature of 3.7K, and Tc reaches its maximum, 6.4 K, at the pressure of 52.8GPa. Comparing with the superconductivity in MoP, we purposed the possibility of topological superconductivity in NiTe2. Two superconductivity transitions are observed with pressure increasing in single crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07173v3-abstract-full').style.display = 'none'; document.getElementById('1911.07173v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages; 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09947">arXiv:1907.09947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09947">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwaa089">10.1093/nsr/nwaa089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+T">Tianchuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09947v4-abstract-short" style="display: inline;"> The quantum Hall effect (QHE) with quantized Hall resistance of h/谓e2 starts the research on topological quantum states and lays the foundation of topology in physics. Afterwards, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C|=1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09947v4-abstract-full').style.display = 'inline'; document.getElementById('1907.09947v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09947v4-abstract-full" style="display: none;"> The quantum Hall effect (QHE) with quantized Hall resistance of h/谓e2 starts the research on topological quantum states and lays the foundation of topology in physics. Afterwards, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C|=1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the key issues are how to increase the working temperature and realize high Chern numbers (C&gt;1). Here, we report the experimental discovery of high-Chern-number QHE (C=2) without Landau levels and C=1 Chern insulator state displaying nearly quantized Hall resistance plateau above the N茅el temperature in MnBi2Te4 devices. Our observations provide a new perspective on topological matter and open new avenues for exploration of exotic topological quantum states and topological phase transitions at higher temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09947v4-abstract-full').style.display = 'none'; document.getElementById('1907.09947v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 7, 1280-1287 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08602">arXiv:1907.08602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08602">pdf</a>, <a href="https://arxiv.org/format/1907.08602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.035152">10.1103/PhysRevB.101.035152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Image Potential States on Topological Semimetal Antimony Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haimei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yam%2C+Y">YauChuen Yam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Pengcheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+E">Jennifer E. Hoffman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08602v2-abstract-short" style="display: inline;"> A point charge near the surface of a topological insulator (TI) with broken time-reversal symmetry is predicted to generate an image magnetic charge in addition to an image electric charge. We use scanning tunneling spectroscopy to study the image potential states (IPS) of the topological semimetal Sb(111) surface. We observe five IPS with discrete energy levels that are well described by a one-di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08602v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08602v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08602v2-abstract-full" style="display: none;"> A point charge near the surface of a topological insulator (TI) with broken time-reversal symmetry is predicted to generate an image magnetic charge in addition to an image electric charge. We use scanning tunneling spectroscopy to study the image potential states (IPS) of the topological semimetal Sb(111) surface. We observe five IPS with discrete energy levels that are well described by a one-dimensional model. The spatial variation of the IPS energies and lifetimes near surface step edges shows the first local signature of resonant interband scattering between IPS, which suggests that image charges too may interact. Our work motivates the exploration of the TI surface geometry necessary to realize and manipulate a magnetic charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08602v2-abstract-full').style.display = 'none'; document.getElementById('1907.08602v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 035152 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06040">arXiv:1905.06040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.06040">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwaa163">10.1093/nsr/nwaa163 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Hall Effect induced by Berry Curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanzhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huichao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jiawei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+T">Tianchuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Ying Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06040v2-abstract-short" style="display: inline;"> Berry phase and Berry curvature play a key role in the development of topology in physics and do contribute to the transport properties in solid state systems. In this paper, we report the finding of novel nonzero Hall effect in topological material ZrTe5 flakes when in-plane magnetic field is parallel and perpendicular to the current. Surprisingly, both symmetric and antisymmetric components with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06040v2-abstract-full').style.display = 'inline'; document.getElementById('1905.06040v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06040v2-abstract-full" style="display: none;"> Berry phase and Berry curvature play a key role in the development of topology in physics and do contribute to the transport properties in solid state systems. In this paper, we report the finding of novel nonzero Hall effect in topological material ZrTe5 flakes when in-plane magnetic field is parallel and perpendicular to the current. Surprisingly, both symmetric and antisymmetric components with respect to magnetic field are detected in the in-plane Hall resistivity. Further theoretical analysis suggests that the magnetotransport properties originate from the anomalous velocity induced by Berry curvature in a tilted Weyl semimetal. Our work not only enriches the Hall family but also provides new insights into the Berry phase effect in topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06040v2-abstract-full').style.display = 'none'; document.getElementById('1905.06040v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">National Science Review, 2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 7, 1879-1885 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11279">arXiv:1811.11279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11279">pdf</a>, <a href="https://arxiv.org/format/1811.11279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acssensors.7b00700">10.1021/acssensors.7b00700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Encoding Microreactors with Droplet Chains in Microfluidics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenya Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+G">Gungun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jin Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">Jurgen Fassbender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makarov%2C+D">Denys Makarov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11279v1-abstract-short" style="display: inline;"> Droplet-based high throughput biomolecular screening and combinatorial synthesis entail a viable indexing strategy to be developed for the identification of each micro-reactor. Here, we propose a novel indexing scheme based on the generation of droplet sequences on demand to form unique encoding droplet chains in fluidic networks. These codes are represented by multiunit and multilevel droplets pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11279v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11279v1-abstract-full" style="display: none;"> Droplet-based high throughput biomolecular screening and combinatorial synthesis entail a viable indexing strategy to be developed for the identification of each micro-reactor. Here, we propose a novel indexing scheme based on the generation of droplet sequences on demand to form unique encoding droplet chains in fluidic networks. These codes are represented by multiunit and multilevel droplets packages, with each code unit possessing several distinct signal levels, potentially allowing large encoding capacity. For proof of concept, we use magnetic nanoparticles as the encoding material and a giant magnetoresistance (GMR) sensor-based active sorting system supplemented with an optical detector to generate and decode the sequence of one exemplar sample droplet reactor and a 4-unit quaternary magnetic code. The indexing capacity offered by 4-unit multilevel codes with this indexing strategy is estimated to exceed 104, which holds great promise for large-scale droplet-based screening and synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11279v1-abstract-full').style.display = 'none'; document.getElementById('1811.11279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Sens. 2017, 2, 1839-1846 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06069">arXiv:1808.06069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06069">pdf</a>, <a href="https://arxiv.org/format/1808.06069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Infrared spectroscopy of silicon for applications in astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Uzakbaiuly%2C+B">B. Uzakbaiuly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanner%2C+D+B">D. B. Tanner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">J. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Degallaix%2C+J">J. Degallaix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markosyan%2C+A+S">A. S. Markosyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06069v1-abstract-short" style="display: inline;"> This work focuses on the characterization of various bulk silicon (Si) samples using Fourier Transform InfraRed (FTIR) and grating spectrometers in order to get them suitable for applications in astronomy. Different samples at different impurity concentrations were characterized by measuring their transmittance in the infrared region. Various lines due to residual impurity absorption were identife&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06069v1-abstract-full').style.display = 'inline'; document.getElementById('1808.06069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06069v1-abstract-full" style="display: none;"> This work focuses on the characterization of various bulk silicon (Si) samples using Fourier Transform InfraRed (FTIR) and grating spectrometers in order to get them suitable for applications in astronomy. Different samples at different impurity concentrations were characterized by measuring their transmittance in the infrared region. Various lines due to residual impurity absorption were identifed and temperature dependence of impurity absorption is presented. Concentrations of doped samples (rho ~ 0.2 - 25000 Ohm cm) were determined from impurity absorption at low temperatures and from Drude free carrier absorption at 300K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06069v1-abstract-full').style.display = 'none'; document.getElementById('1808.06069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 38 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10883">arXiv:1805.10883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.10883">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwz204">10.1093/nsr/nwz204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface Superconductivity in the type II Weyl Semimetal TaIrTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Ying Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z">Zhibin Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jiawei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhiying Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Minghu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10883v4-abstract-short" style="display: inline;"> The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with minimum number of Weyl points. Here, we report the discovery of surface supe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10883v4-abstract-full').style.display = 'inline'; document.getElementById('1805.10883v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10883v4-abstract-full" style="display: none;"> The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/S) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy (ARPES) results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, thickness and angular dependent transport measurements reveal that the detected superconductivity is quasi-one-dimensional (quasi-1D) and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10883v4-abstract-full').style.display = 'none'; document.getElementById('1805.10883v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 7, 579-587 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03633">arXiv:1802.03633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.174430">10.1103/PhysRevB.95.174430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tipping the magnetic instability in paramagnetic Sr$_3$Ru$_2$O$_7$ by Fe impurities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">M. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P+G">P. G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J+J">J. J. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keavney%2C+D">D. Keavney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+Q">Z. Q. Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">X. Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03633v1-abstract-short" style="display: inline;"> We report the magnetic and electronic properties of the bilayer ruthenate Sr$_3$Ru$_2$O$_7$ upon Fe substitution for Ru. We find that Sr$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ shows a spin-glass-like phase below 4 K for $x$ = 0.01 and commensurate E-type antiferromagnetically ordered insulating ground state characterized by the propagation vector $q_c$ = (0.25 0.25 0) for $x$ $\geq$ 0.03, respectively, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03633v1-abstract-full').style.display = 'inline'; document.getElementById('1802.03633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03633v1-abstract-full" style="display: none;"> We report the magnetic and electronic properties of the bilayer ruthenate Sr$_3$Ru$_2$O$_7$ upon Fe substitution for Ru. We find that Sr$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ shows a spin-glass-like phase below 4 K for $x$ = 0.01 and commensurate E-type antiferromagnetically ordered insulating ground state characterized by the propagation vector $q_c$ = (0.25 0.25 0) for $x$ $\geq$ 0.03, respectively, in contrast to the paramagnetic metallic state in the parent compound with strong spin fluctuations occurring at wave vectors $q$ = (0.09 0 0) and (0.25 0 0). The observed antiferromagnetic ordering is quasi-two-dimensional with very short correlation length along the $c$ axis, a feature similar to the Mn-doped Sr$_3$Ru$_2$O$_7$. Our results suggest that this ordered ground state is associated with the intrinsic magnetic instability in the pristine compound, which can be readily tipped by the local magnetic coupling between the 3$d$ orbitals of the magnetic dopants and Ru 4$d$ orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03633v1-abstract-full').style.display = 'none'; document.getElementById('1802.03633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 174430 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03940">arXiv:1712.03940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03940">pdf</a>, <a href="https://arxiv.org/format/1712.03940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.134506">10.1103/PhysRevB.97.134506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable artificial vortex ice in nanostructured superconductors with frustrated kagome lattice of paired antidots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">C. Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J+-">J. -Y. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+A">A. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zharinov%2C+V+S">V. S. Zharinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">V. V. Moshchalkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y+H">Y. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silhanek%2C+A+V">A. V. Silhanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">J. Van de Vondel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03940v1-abstract-short" style="display: inline;"> Theoretical proposals for spin ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this work, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03940v1-abstract-full').style.display = 'inline'; document.getElementById('1712.03940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03940v1-abstract-full" style="display: none;"> Theoretical proposals for spin ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this work, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long range order, is observed at half matching field (H_{1}/2). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2H_{1}/3. This unexpected result is attributed to the introduction of interstitial vortices at these magnetic field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2H_{1}/3 is less prone to defects than at $H_{1}/2$. In addition, the non-monotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03940v1-abstract-full').style.display = 'none'; document.getElementById('1712.03940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 134506 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05771">arXiv:1710.05771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05771">pdf</a>, <a href="https://arxiv.org/format/1710.05771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.134515">10.1103/PhysRevB.96.134515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct visualization of vortex ice in a nanostructured superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gladilin%2C+V+N">Vladimir N. Gladilin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tempere%2C+J">Jacques Tempere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zharinov%2C+V+S">Vyacheslav S. Zharinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">Joris Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devreese%2C+J+T">Jozef T. Devreese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">Victor V. Moshchalkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05771v1-abstract-short" style="display: inline;"> Artificial ice systems have unique physical properties promising for potential applications. One of the most challenging issues in this field is to find novel ice systems that allows a precise control over the geometries and many-body interactions. Superconducting vortex matter has been proposed as a very suitable candidate to study artificial ice, mainly due to availability of tunable vortex-vort&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05771v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05771v1-abstract-full" style="display: none;"> Artificial ice systems have unique physical properties promising for potential applications. One of the most challenging issues in this field is to find novel ice systems that allows a precise control over the geometries and many-body interactions. Superconducting vortex matter has been proposed as a very suitable candidate to study artificial ice, mainly due to availability of tunable vortex-vortex interactions and the possibility to fabricate a variety of nanoscale pinning potential geometries. So far, a detailed imaging of the local configurations in a vortex-based artificial ice system is still lacking. Here we present a direct visualization of the vortex ice state in a nanostructured superconductor. By using the scanning Hall probe microscopy, a large area with the vortex ice ground state configuration has been detected, which confirms the recent theoretical predictions for this new ice system. Besides the defects analogous to artificial spin ice systems, other types of defects have been visualized and identified. We also demonstrate the possibility to realize different types of defects by varying the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05771v1-abstract-full').style.display = 'none'; document.getElementById('1710.05771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 96, 134515 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.00628">arXiv:1708.00628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.00628">pdf</a>, <a href="https://arxiv.org/format/1708.00628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa8246">10.1088/1367-2630/aa8246 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex-vortex interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gladilin%2C+V+N">Vladimir N. Gladilin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sluchanko%2C+N+E">Nikolay E. Sluchanko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyashenko%2C+A">A. Lyashenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filipov%2C+V+B">Volodimir B. Filipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Indekeu%2C+J+O">Joseph O. Indekeu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">Victor V. Moshchalkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.00628v1-abstract-short" style="display: inline;"> The magnetic response related to paramagnetic Meissner effect (PME) is studied in a high quality single crystal ZrB12 with non-monotonic vortex-vortex interactions. We observe the expulsion and penetration of magnetic flux in the form of vortex clusters with increasing temperature. A vortex phase diagram is constructed which shows that the PME can be explained by considering the interplay among th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00628v1-abstract-full').style.display = 'inline'; document.getElementById('1708.00628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.00628v1-abstract-full" style="display: none;"> The magnetic response related to paramagnetic Meissner effect (PME) is studied in a high quality single crystal ZrB12 with non-monotonic vortex-vortex interactions. We observe the expulsion and penetration of magnetic flux in the form of vortex clusters with increasing temperature. A vortex phase diagram is constructed which shows that the PME can be explained by considering the interplay among the flux compression, the different temperature dependencies of the vortex-vortex and the vortex-pin interactions, and thermal fluctuations. Such a scenario is in good agreement with the results of the magnetic relaxation measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00628v1-abstract-full').style.display = 'none'; document.getElementById('1708.00628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.06316">arXiv:1701.06316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.06316">pdf</a>, <a href="https://arxiv.org/format/1701.06316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13880">10.1038/ncomms13880 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gladilin%2C+V+N">Vladimir N. Gladilin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tempere%2C+J">Jacques Tempere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Cun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devreese%2C+J+T">Jozef T. Devreese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">Joris Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Youhe Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">Victor V. Moshchalkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.06316v1-abstract-short" style="display: inline;"> Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single vortex level, is of great importance. Among many techniques to study single vortices, scanning tunneling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06316v1-abstract-full').style.display = 'inline'; document.getElementById('1701.06316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.06316v1-abstract-full" style="display: none;"> Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single vortex level, is of great importance. Among many techniques to study single vortices, scanning tunneling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex-clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single quantum vortices into desired nanoscale configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06316v1-abstract-full').style.display = 'none'; document.getElementById('1701.06316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, supplementary information is available online</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7, 13880 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02341">arXiv:1604.02341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.02341">pdf</a>, <a href="https://arxiv.org/format/1604.02341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.224502">10.1103/PhysRevB.93.224502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Dipoles at Topological Defects in the Meissner State of a Nanostructured Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gladioli%2C+V+N">Vladimir N. Gladioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Cun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tempere%2C+J">Jacques Tempere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devreese%2C+J+T">Jozef T. Devreese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">Joris Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Youhe Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">Victor V. Moshchalkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02341v1-abstract-short" style="display: inline;"> In a magnetic field, superconductivity is manifested by total magnetic field expulsion (Meissner effect) or by the penetration of integer multiples of the flux quantum 桅_0. Here we present experimental results revealing magnetic dipoles formed by Meissner current flowing around artificially introduced topological defects (lattice of antidots). By using scanning Hall probe microscopy, we have detec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02341v1-abstract-full').style.display = 'inline'; document.getElementById('1604.02341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02341v1-abstract-full" style="display: none;"> In a magnetic field, superconductivity is manifested by total magnetic field expulsion (Meissner effect) or by the penetration of integer multiples of the flux quantum 桅_0. Here we present experimental results revealing magnetic dipoles formed by Meissner current flowing around artificially introduced topological defects (lattice of antidots). By using scanning Hall probe microscopy, we have detected ordered magnetic dipole lattice generated at spatially periodic antidots in a Pb superconducting film. While the conventional homogeneous Meissner state breaks down, the total magnetic flux of the magnetic dipoles remains quantized and is equal to zero. The observed magnetic dipoles strongly depend on the intensity and direction of the locally flowing Meissner current, making the magnetic dipoles an effective way to monitor the local supercurrent. We have also investigated the first step of the vortex depinning process, where, due to the generation of magnetic dipoles, the pinned Abrikosov vortices are deformed and shifted from their original pinning sites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02341v1-abstract-full').style.display = 'none'; document.getElementById('1604.02341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 224502 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08282">arXiv:1503.08282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08282">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Z">Zhanbin Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianru Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jianlei Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+Y">Yuyuan Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+F">Fucong Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+L">Lu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinran Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">You Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08282v4-abstract-short" style="display: inline;"> On the efforts of enhancing the spin orbit interaction (SOI) of graphene for seeking the dissipationless quantum spin Hall devices, unique Kane-Mele type SOI and high mobility samples are desired. However, common external decoration often introduces extrinsic Rashba-type SOI and simultaneous impurity scattering. Here we show, by the EDTA-Dy molecule decorating, the Kane-Mele type SOI is mimicked w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08282v4-abstract-full').style.display = 'inline'; document.getElementById('1503.08282v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08282v4-abstract-full" style="display: none;"> On the efforts of enhancing the spin orbit interaction (SOI) of graphene for seeking the dissipationless quantum spin Hall devices, unique Kane-Mele type SOI and high mobility samples are desired. However, common external decoration often introduces extrinsic Rashba-type SOI and simultaneous impurity scattering. Here we show, by the EDTA-Dy molecule decorating, the Kane-Mele type SOI is mimicked with even improved carrier mobility. It is evidenced by the suppressed weak localization at equal carrier densities and simultaneous Elliot-Yafet spin relaxation. The extracted spin scattering time is monotonically dependent on the carrier elastic scattering time, where the Elliot-Yafet plot gives the interaction strength of 3.3 meV. Improved quantum Hall plateaus can be even seen after the external operation. This is attributed to the spin-flexural phonon coupling induced by the enhanced graphene ripples, as revealed by the in-plane magnetotransport measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08282v4-abstract-full').style.display = 'none'; document.getElementById('1503.08282v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.0614">arXiv:1409.0614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.0614">pdf</a>, <a href="https://arxiv.org/format/1409.0614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.174512">10.1103/PhysRevB.88.174512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abdel-Hafiez%2C+M">M. Abdel-Hafiez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">J. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasiliev%2C+A+N">A. N. Vasiliev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chareev%2C+D+A">D. A. Chareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">J. Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moshchalkov%2C+V+V">V. V. Moshchalkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silhanek%2C+A+V">A. V. Silhanek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.0614v1-abstract-short" style="display: inline;"> We investigate the temperature dependence of the lower critical field Hc1(T) of a high-quality FeSe single crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods and the corresponding Hc1(T) was deduced by taking into account demagnetization factors. A pronounced cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.0614v1-abstract-full').style.display = 'inline'; document.getElementById('1409.0614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.0614v1-abstract-full" style="display: none;"> We investigate the temperature dependence of the lower critical field Hc1(T) of a high-quality FeSe single crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods and the corresponding Hc1(T) was deduced by taking into account demagnetization factors. A pronounced change in the Hc1(T) curvature is observed, which is attributed to anisotopic s-wave or multiband superconductivity. The London penetration depth 位ab(T) calculated from the lower critical field does not follow an exponential behavior at low temperatures, as it would be expected for a fully gapped clean s-wave superconductor. Using either a two-band model with s-wave-like gaps of magnitudes ?delta 1 = 0.41 meV and delta ?2 = 3.33 meV or a single anisotropic s-wave order parameter, the temperature dependence of the lower critical field Hc1(T) can be well described. These observations clearly show that the superconducting energy gap in FeSe is nodeless. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.0614v1-abstract-full').style.display = 'none'; document.getElementById('1409.0614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 174512 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.5184">arXiv:1408.5184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.5184">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12274-014-0522-z">10.1007/s12274-014-0522-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contactless Probing of the Intrinsic Carrier Transport in Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+S">Yize Stephanie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jinhua Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Liwei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.5184v1-abstract-short" style="display: inline;"> Intrinsic carrier transport properties of single-walled carbon nanotubes are probed by two parallel methods on the same individual tubes: the contactless dielectric force microscopy (DFM) technique and the conventional field-effect transistor (FET) method. The dielectric responses of SWNTs are strongly correlated with electronic transport of the corresponding FETs. The DC bias voltage in DFM plays&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5184v1-abstract-full').style.display = 'inline'; document.getElementById('1408.5184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.5184v1-abstract-full" style="display: none;"> Intrinsic carrier transport properties of single-walled carbon nanotubes are probed by two parallel methods on the same individual tubes: the contactless dielectric force microscopy (DFM) technique and the conventional field-effect transistor (FET) method. The dielectric responses of SWNTs are strongly correlated with electronic transport of the corresponding FETs. The DC bias voltage in DFM plays a role analogous to the gate voltage in FET. A microscopic model based on the general continuity equation and numerical simulation is built to reveal the link between intrinsic properties such as carrier concentration and mobility and the macroscopic observable, i.e. dielectric responses, in DFM experiments. Local transport barriers in nanotubes, which influence the device transport behaviors, are also detected with nanometer scale resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5184v1-abstract-full').style.display = 'none'; document.getElementById('1408.5184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published online in Nano Research (2014)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Research 7, 1623-1630 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.3435">arXiv:1406.3435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.3435">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4153">10.1038/nmat4153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in single-layer films of FeSe with a transition temperature above 100 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhi-Long Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C">Chun-Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-Feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.3435v1-abstract-short" style="display: inline;"> Recently, interface has been employed to enhance superconductivity in the single-layer FeSe films grown on SrTiO3(001)(STO) with a possible Tc of ~ 80 K, which is nearly ten times of the Tc of bulk FeSe and is above the Tc record of 56 K for the bulk Fe-based superconductors. This work together with those on superconducting oxides interfaces revives the long-standing idea that electron pairing at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.3435v1-abstract-full').style.display = 'inline'; document.getElementById('1406.3435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.3435v1-abstract-full" style="display: none;"> Recently, interface has been employed to enhance superconductivity in the single-layer FeSe films grown on SrTiO3(001)(STO) with a possible Tc of ~ 80 K, which is nearly ten times of the Tc of bulk FeSe and is above the Tc record of 56 K for the bulk Fe-based superconductors. This work together with those on superconducting oxides interfaces revives the long-standing idea that electron pairing at a two-dimensional (2D) interface between two different materials is a potential path to high transition temperature (Tc) superconductivity. Subsequent angle-resolved photoemission spectroscopy (ARPES) measurements revealed different electronic structure from those of bulk FeSe with a superconducting-like energy gap closing at around 65K. However, previous ex situ electrical transport measurements could only detect the zero-resistance below ~30 K. Here we report the observation of high Tc superconductivity in the FeSe/STO system. By in situ 4-point probe (4PP) electrical transport measurement that can be conducted at an arbitrary position of the FeSe film on STO, we detected superconductivity above 100 K. Our finding makes FeSe/STO the exciting and ideal research platform for higher Tc superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.3435v1-abstract-full').style.display = 'none'; document.getElementById('1406.3435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, 7 pages supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials |V14 , 285 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.4858">arXiv:1402.4858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.4858">pdf</a>, <a href="https://arxiv.org/ps/1402.4858">ps</a>, <a href="https://arxiv.org/format/1402.4858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.100501">10.1103/PhysRevB.89.100501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully Gapped s-wave-like Superconducting State and Electronic Structures in the Ir0.95Pd0.05Te2 Single Crystals with Strong Spin-orbital Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D+J">D. J. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+L">Lin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+C+Q">C. Q. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Meng-Yu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F">Fengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+R">Y. R. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K+F">K. F. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J+F">J. F. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">X. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Z+Q">Z. Q. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+J">Z. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">B. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D+D">D. D. Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C+L">C. L. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.4858v1-abstract-short" style="display: inline;"> Due to the large spin-orbital coupling in the layered 5d-transition metal chalcogenides compound, the occurrence of superconductivity in Ir2-xPdxTe2 offers a good chance to search for possible topological superconducting states in this system. We did comprehensive studies on the superconducting properties and electronic structures of single crystalline Ir0.95Pd0.05Te2 samples. The superconducting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.4858v1-abstract-full').style.display = 'inline'; document.getElementById('1402.4858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.4858v1-abstract-full" style="display: none;"> Due to the large spin-orbital coupling in the layered 5d-transition metal chalcogenides compound, the occurrence of superconductivity in Ir2-xPdxTe2 offers a good chance to search for possible topological superconducting states in this system. We did comprehensive studies on the superconducting properties and electronic structures of single crystalline Ir0.95Pd0.05Te2 samples. The superconducting gap size, critical fields and coherence length along different directions were experimentally determined. Macroscopic bulk measurements and microscopic low temperature scanning tunneling spectroscopy results suggest that Ir0.95Pd0.05Te2 possesses a BCS-like s-wave state. No sign of zero bias conductance peak were found in the vortex core at 0.4K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.4858v1-abstract-full').style.display = 'none'; document.getElementById('1402.4858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 89, 100501(R) (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.7110">arXiv:1312.7110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.7110">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.017001">10.1103/PhysRevLett.114.017001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana mode in vortex core of Bi2Te3/NbSe2 topological insulator-superconductor heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jin-Peng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mei-Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+L">Zhi Long Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaojun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z+A">Zhu An Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C+L">Chun Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiang-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fu-Chun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-Feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.7110v1-abstract-short" style="display: inline;"> Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing1,2. Majorana fermions are predicted to exist in a vortex core of superconducting topological insulators3. However, they are extremely difficult to be distinguished experimentally from other quasiparticle states for the tiny ene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7110v1-abstract-full').style.display = 'inline'; document.getElementById('1312.7110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.7110v1-abstract-full" style="display: none;"> Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing1,2. Majorana fermions are predicted to exist in a vortex core of superconducting topological insulators3. However, they are extremely difficult to be distinguished experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we overcome the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi2Te3/NbSe2. While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ~20nm away from the vortex center in Bi2Te3/NbSe2, primarily due to the Majorana fermion zero mode. While the Majorana mode is destroyed by reducing the distance between vortices, the zero bias peak splits as a conventional superconductor again. This work provides strong evidences of Majorana fermions and also suggests a possible route to manipulating them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7110v1-abstract-full').style.display = 'none'; document.getElementById('1312.7110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRL 114, 017001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3713">arXiv:1312.3713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.217001">10.1103/PhysRevLett.112.217001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Superconductor Bi2Te3/NbSe2 heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jin-Peng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mei-Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jianfeng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhi-Long Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaojun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu-An Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C">Chun-Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fu-Chun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-Feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3713v1-abstract-short" style="display: inline;"> Topological superconductors (TSCs) have a full gap in the bulk and gapless surface states consisting of Majorana fermions, which have potential applications in fault-tolerant topological quantum computation. Because TSCs are very rare in nature, an alternative way to study the TSC is to artificially introduce superconductivity into the surface states of a topological insulator (TI) through proximi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3713v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3713v1-abstract-full" style="display: none;"> Topological superconductors (TSCs) have a full gap in the bulk and gapless surface states consisting of Majorana fermions, which have potential applications in fault-tolerant topological quantum computation. Because TSCs are very rare in nature, an alternative way to study the TSC is to artificially introduce superconductivity into the surface states of a topological insulator (TI) through proximity effect (PE)1-4. Here we report the first experimental realization of the PE induced TSC in Bi2Te3/NbSe2 thin films as demonstrated by the density of states probed using scanning tunneling microscope. We observe Abrikosov vortices and lower energy bound states on the surface of topological insulator and the dependence of superconducting coherence length on the film thickness and magnetic field, which are attributed to the superconductivity in the topological surface states. This work demonstrates the practical feasibility of fabricating a TSC with individual Majorana fermions inside superconducting vortex as predicted in theory and accomplishes the pre-requisite step towards searching for Majorana fermions in the PE induced TSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3713v1-abstract-full').style.display = 'none'; document.getElementById('1312.3713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRL 112, 217001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.5242">arXiv:1008.5242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.5242">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2005-00154-1">10.1140/epjd/e2005-00154-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low energy cluster beam deposited BN films as the cascade for Field Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lianzhong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guanghou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.5242v1-abstract-short" style="display: inline;"> The atomic deposited BN films with the thickness of nanometers (ABN) were prepared by radio frequency magnetron sputtering method and the nanostructured BN films (CBN) were prepared by Low Energy Cluster Beam Deposition. UV-Vis Absorption measurement proves the band gap of 4.27eV and field emission of the BN films were carried out. F-N plots of all the samples give a good fitting and demonstrate t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.5242v1-abstract-full').style.display = 'inline'; document.getElementById('1008.5242v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.5242v1-abstract-full" style="display: none;"> The atomic deposited BN films with the thickness of nanometers (ABN) were prepared by radio frequency magnetron sputtering method and the nanostructured BN films (CBN) were prepared by Low Energy Cluster Beam Deposition. UV-Vis Absorption measurement proves the band gap of 4.27eV and field emission of the BN films were carried out. F-N plots of all the samples give a good fitting and demonstrate the F-N tunneling of the emission process. The emission of ABN begins at the electric field of 14.6 V/渭m while that of CBN starts at 5.10V/渭m. Emission current density of 1mA/cm2 for ABN needs the field of 20V/渭m while that of CBN needs only 12.1V/渭m. The cluster-deposited BN on n-type Silicon substrate proves a good performance in terms of the lower gauge voltage, more emission sites and higher electron intensity and seems a promising substitute for the cascade of Field Emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.5242v1-abstract-full').style.display = 'none'; document.getElementById('1008.5242v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D. 34: 255-257 2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.5415">arXiv:1003.5415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.5415">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3481096">10.1063/1.3481096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three Dimensional Superconductivity in FeSe with Tczero Up to 10.9 K Induced by Internal Strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Junyi Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Shujuan Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baojuan Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jincang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.5415v1-abstract-short" style="display: inline;"> Polycrystalline sample FeSe was synthesized by a self-flux solution method which shows a zero resistance temperature up to 10.9 K and a Tconset (90% \rhon, \rhon: normal state resistivity) up to 13.3 K. The decrease of superconducting transition temperature by heat treatment indicates that internal crystallographic strain which plays the same effect as external pressure is the origin of its high T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5415v1-abstract-full').style.display = 'inline'; document.getElementById('1003.5415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.5415v1-abstract-full" style="display: none;"> Polycrystalline sample FeSe was synthesized by a self-flux solution method which shows a zero resistance temperature up to 10.9 K and a Tconset (90% \rhon, \rhon: normal state resistivity) up to 13.3 K. The decrease of superconducting transition temperature by heat treatment indicates that internal crystallographic strain which plays the same effect as external pressure is the origin of its high Tc. The fluctuation conductivity was studied which could be well described by 3D Aslamazov-Larkin (AL) power law. The estimated value of coherence length \xic=9.2 脜is larger than the distance between conducting layers (~6.0 脜), indicating the three-dimensional nature of superconductivity in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.5415v1-abstract-full').style.display = 'none'; document.getElementById('1003.5415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.5273">arXiv:0910.5273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.5273">pdf</a>, <a href="https://arxiv.org/ps/0910.5273">ps</a>, <a href="https://arxiv.org/format/0910.5273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.115423">10.1103/PhysRevB.81.115423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of Gd3N@C2n (40 &lt; n &lt; 44) family by Raman and inelastic electron tunneling spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+B+G">Brian G. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+J">Jack Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+K+A">Keith A. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jiechao Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+C">Chunying Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+W">Wujun Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dorn%2C+H+C">Harry C. Dorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushmerick%2C+J+G">James G. Kushmerick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puretzky%2C+A+A">Alexander A. Puretzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geohegan%2C+D+B">David B. Geohegan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.5273v1-abstract-short" style="display: inline;"> The structure and vibrational spectrum of Gd3N@C80 is studied through Raman and inelastic electron tunneling spectroscopy (IETS) as well as density functional theory (DFT) and universal force field (UFF) calculations. Hindered rotations, shown by both theory and experiment, indicate the formation of a Gd3N-C80 bond which reduces the ideal icosahedral symmetry of the C80 cage. The vibrational mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.5273v1-abstract-full').style.display = 'inline'; document.getElementById('0910.5273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.5273v1-abstract-full" style="display: none;"> The structure and vibrational spectrum of Gd3N@C80 is studied through Raman and inelastic electron tunneling spectroscopy (IETS) as well as density functional theory (DFT) and universal force field (UFF) calculations. Hindered rotations, shown by both theory and experiment, indicate the formation of a Gd3N-C80 bond which reduces the ideal icosahedral symmetry of the C80 cage. The vibrational modes involving the movement of the encapsulated species are a fingerprint of the interaction between the fullerene cage and the core complex. We present Raman data for the Gd3N@C2n (40 &lt; n &lt; 44) family as well as Y3N@C80, Lu3N@C80, and Y3N@C88 for comparison. Conductance measurements have been performed on Gd3N@C80 and reveal a Kondo effect similar to that observed in C60. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.5273v1-abstract-full').style.display = 'none'; document.getElementById('0910.5273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, paper</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ge%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10