CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 190 results for author: <span class="mathjax">Feng, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Feng%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Feng, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Feng%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Feng, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16442">arXiv:2502.16442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16442">pdf</a>, <a href="https://arxiv.org/format/2502.16442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Long-Range Spin-Orbit-Coupled Magnetoelectricity in Type-II Multiferroic NiI$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+W">Weiyi Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zefeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dezhao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weiqin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lianchuang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+B">Bing-Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Changsong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16442v2-abstract-short" style="display: inline;"> Type-II multiferroics, where spin order induces ferroelectricity, exhibit strong magnetoelectric coupling. However, for the typical 2D type-II multiferroic NiI$_2$, the underlying magnetoelectric mechanism remains unclear. Here, applying generalized spin-current model, together with first-principles calculations and a tight-binding approach, we build a comprehensive magnetoelectric model for spin-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16442v2-abstract-full').style.display = 'inline'; document.getElementById('2502.16442v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16442v2-abstract-full" style="display: none;"> Type-II multiferroics, where spin order induces ferroelectricity, exhibit strong magnetoelectric coupling. However, for the typical 2D type-II multiferroic NiI$_2$, the underlying magnetoelectric mechanism remains unclear. Here, applying generalized spin-current model, together with first-principles calculations and a tight-binding approach, we build a comprehensive magnetoelectric model for spin-induced polarization. Such model reveals that the spin-orbit coupling extends its influence to the third-nearest neighbors, whose contribution to polarization rivals that of the first-nearest neighbors. By analyzing the orbital-resolved contributions to polarization, our tight-binding model reveals that the long-range magnetoelectric coupling is enabled by the strong $e_g$-$p$ hopping of NiI$_2$. Monte Carlo simulations further predict a Bloch-type magnetic skyrmion lattice at moderate magnetic fields, accompanied by polar vortex arrays. These findings can guide the discovery and design of strongly magnetoelectric multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16442v2-abstract-full').style.display = 'none'; document.getElementById('2502.16442v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09069">arXiv:2502.09069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09069">pdf</a>, <a href="https://arxiv.org/format/2502.09069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Critical Motility-Induced Phase Separation in Three Dimensions is Consistent with Ising Universality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiechao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omar%2C+A+K">Ahmad K. Omar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09069v1-abstract-short" style="display: inline;"> Numerical investigations aiming to determine the universality class of critical motility-induced phase separation (MIPS) in two dimensions (2D) have resulted in inconclusive findings. Here, using finite-size scaling results obtained from large-scale computer simulations, we find that the static and dynamic critical exponents associated with 3D MIPS all closely match those of the 3D Ising universal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09069v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09069v1-abstract-full" style="display: none;"> Numerical investigations aiming to determine the universality class of critical motility-induced phase separation (MIPS) in two dimensions (2D) have resulted in inconclusive findings. Here, using finite-size scaling results obtained from large-scale computer simulations, we find that the static and dynamic critical exponents associated with 3D MIPS all closely match those of the 3D Ising universality class with a conserved scalar order parameter. This finding is corroborated by fluctuating hydrodynamic description of the critical dynamics of the order parameter field which precisely matching model B in three dimensions. Our work suggests that 3D MIPS and indeed the entire phase diagram of active Brownian spheres is remarkably similar to that of molecular passive fluids despite the absence of Boltzmann statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09069v1-abstract-full').style.display = 'none'; document.getElementById('2502.09069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11248">arXiv:2501.11248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.11248">pdf</a>, <a href="https://arxiv.org/format/2501.11248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Microscopic evidence of charge- and spin-density waves in La$_3$Ni$_2$O$_{7-未}$ revealed by $^{139}$La-NQR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">J. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N+N">N. N. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+J">J. Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+G">J. G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+G">Guo-qing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11248v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in La$_3$Ni$_2$O$_{7-未}$ with a transition temperature $T_c$ close to 80 K at high pressures has attracted significant attention, due particularly to a possible density wave (DW) transition occurring near the superconducting dome. Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system. However, owing to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11248v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11248v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in La$_3$Ni$_2$O$_{7-未}$ with a transition temperature $T_c$ close to 80 K at high pressures has attracted significant attention, due particularly to a possible density wave (DW) transition occurring near the superconducting dome. Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system. However, owing to the presence of La$_4$Ni$_3$O$_{10}$ and other intergrowth phases in La$_3$Ni$_2$O$_{7-未}$ samples, extracting the intrinsic information from the La$_3$Ni$_2$O$_7$ phase is challenging. In this study, we employed $^{139}$La nuclear quadrupole resonance (NQR) measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La$_3$Ni$_2$O$_{7-未}$. Below the DW transition temperature $T_{\rm DW} \sim$ 153K, we observe a distinct splitting in the $\pm$ 5/2 $\leftrightarrow$ $\pm$ 7/2 transition of the NQR resonance peak at the La(2) site, while only a line broadening is seen in the $\pm$ 3/2 $\leftrightarrow$ $\pm$ 5/2 transition peak. Through further analysis of the spectra, we show that the line splitting is due to the unidirectional charge modulation. A magnetic line broadening is also observed below $T_{\rm DW}$, accompanied by a large enhancement of the spin-lattice relaxation rate, indicating the formation of magnetic ordered moments in the DW state. Our results suggest the formation of charge- and spin-density wave order in La$_3$Ni$_2$O$_{7-未}$ simultaneously, thereby offering critical insights into the electronic correlations in Ni-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11248v1-abstract-full').style.display = 'none'; document.getElementById('2501.11248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08344">arXiv:2501.08344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08344">pdf</a>, <a href="https://arxiv.org/format/2501.08344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> A study of pendular liquid bridge between two equal solid spheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J+Q">James Q Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08344v2-abstract-short" style="display: inline;"> Pendular liquid bridges with concave meridians between two equal rigid spheres are mathematically studied emphasizing some less analyzed facts in the literature. Discrepancies from the numerical solution of the Young-Laplace equation are examined among typical simplifying approximations and a few curve-fitting formulas. The separation distance between spheres is shown to play an important role in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08344v2-abstract-full').style.display = 'inline'; document.getElementById('2501.08344v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08344v2-abstract-full" style="display: none;"> Pendular liquid bridges with concave meridians between two equal rigid spheres are mathematically studied emphasizing some less analyzed facts in the literature. Discrepancies from the numerical solution of the Young-Laplace equation are examined among typical simplifying approximations and a few curve-fitting formulas. The separation distance between spheres is shown to play an important role in pendular ring formation via capillary condensation for a given relative humidity and the strength of subsequent capillary forces. For most practical situations, the toroidal approximation could be reasonably accurate (especially with diminishing separation distance) and provide valuable mathematical insights at least in a qualitative sense with its relatively simple analytical formulas. Using the elliptic meridional profile generally offers more accurate approximations, but with such complicated analytical formulas that it would limit its convenience for practical applications. With a few examples, the present study shows that curve-fitting formulas cannot be perfect and, by their approximative nature, would always leave room for improvements; therefore, care should be taken when applying curve-fitting formulas, to avoid undesirable errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08344v2-abstract-full').style.display = 'none'; document.getElementById('2501.08344v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16569">arXiv:2412.16569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16569">pdf</a>, <a href="https://arxiv.org/format/2412.16569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large tunable Josephson diode effect in a side-contacted topological-insulator-nanowire junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nikodem%2C+E">Ella Nikodem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schluck%2C+J">Jakob Schluck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geier%2C+M">Max Geier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papaj%2C+M">Michal Papaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legg%2C+H+F">Henry F. Legg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junya Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bagchi%2C+M">Mahasweta Bagchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+Y">Yoichi Ando</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16569v2-abstract-short" style="display: inline;"> A Josephson diode passes current with zero resistance in one direction but is resistive in the other direction. While such an effect has been observed in several platforms, a large and tunable Josephson diode effect has been rare. Here we report that a simple device consisting of a topological-insulator (TI) nanowire side-contacted by superconductors to form a lateral Josephson junction presents a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16569v2-abstract-full').style.display = 'inline'; document.getElementById('2412.16569v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16569v2-abstract-full" style="display: none;"> A Josephson diode passes current with zero resistance in one direction but is resistive in the other direction. While such an effect has been observed in several platforms, a large and tunable Josephson diode effect has been rare. Here we report that a simple device consisting of a topological-insulator (TI) nanowire side-contacted by superconductors to form a lateral Josephson junction presents a large diode effect with the efficiency $畏$ reaching 0.3 when a parallel magnetic field $B_{||}$ is applied. Interestingly, the sign and the magnitude of $畏$ is found to be tunable not only by $B_{||}$ but also by the back-gate voltage. This novel diode effect can be understood by modeling the system as a nano-SQUID, in which the top and bottom surfaces of the TI nanowire each form a line junction and $B_{||}$ creates a magnetic flux to thread the SQUID loop. This model further shows that the observed diode effect is accompanied by the emergence of topological superconductivity in TI-nanowire-based Josephson junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16569v2-abstract-full').style.display = 'none'; document.getElementById('2412.16569v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Slightly revised version, 29 pages total; 23 pages of main text with 5 figures, 6 pages of supplement with 8 figures. The raw data and codes are available at the online depository Zenodo with the identifier https://doi.org/10.5281/zenodo.14576330</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05634">arXiv:2412.05634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient Electric Field Control of Magnetic Phase in Bilayer Magnets via interlayer hopping modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">B. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J+S">J. S. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H+J">H. J. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Z">Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhi-Xin Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05634v1-abstract-short" style="display: inline;"> Two-dimensional (2D) van der Waals (vdW) magnets present a promising platform for spintronic applications due to their unique structural and electronic properties. The ability to electrostatically control their interlayer magnetic coupling between ferromagnetic and antiferromagnetic phases is particularly advantageous for the development of energy-efficient spintronic components. While effective i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05634v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05634v1-abstract-full" style="display: none;"> Two-dimensional (2D) van der Waals (vdW) magnets present a promising platform for spintronic applications due to their unique structural and electronic properties. The ability to electrostatically control their interlayer magnetic coupling between ferromagnetic and antiferromagnetic phases is particularly advantageous for the development of energy-efficient spintronic components. While effective in bilayer CrI3, achieving this control in other 2D magnets remains a challenge. In this work, we demonstrate that bilayer Cr2Ge2Te6 can achieve efficient electrostatic control through interlayer hopping modulation. We show that an external electric field can effectively manipulate the FM-AFM phase transition when interlayer hopping is enhanced by pressure or sliding. We further develop a four-site interlayer hopping model, revealing that the phase transition is driven by a combined effect of on-site energy splitting and interlayer electronic hopping. These findings pave the way for designing novel, electrically tunable spintronic devices, offering substantial potential for energy-efficient information processing and storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05634v1-abstract-full').style.display = 'none'; document.getElementById('2412.05634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00619">arXiv:2412.00619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00619">pdf</a>, <a href="https://arxiv.org/format/2412.00619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Floquet Chern Vector Topological Insulators in Three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fangyuan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junrong Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Di Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00619v2-abstract-short" style="display: inline;"> We theoretically and numerically investigate Chern vector insulators and topological surface states in a three-dimensional lattice, based on phase-delayed temporal-periodic interactions within the tight-binding model. These Floquet interactions break time-reversal symmetry, effectively inducing a gauge field analogous to magnetic flux. This gauge field results in Chern numbers in all spatial dimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00619v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00619v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00619v2-abstract-full" style="display: none;"> We theoretically and numerically investigate Chern vector insulators and topological surface states in a three-dimensional lattice, based on phase-delayed temporal-periodic interactions within the tight-binding model. These Floquet interactions break time-reversal symmetry, effectively inducing a gauge field analogous to magnetic flux. This gauge field results in Chern numbers in all spatial dimensions, collectively forming the Chern vector. This vector characterizes the topological phases and signifies the emergence of robust surface states. Numerically, we observe these states propagating unidirectionally without backscattering on all open surfaces of the three-dimensional system. Our work paves the way for breaking time-reversal symmetry and realizing three-dimensional Chern vector topological insulators using temporal-periodic Floquet techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00619v2-abstract-full').style.display = 'none'; document.getElementById('2412.00619v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17162">arXiv:2411.17162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17162">pdf</a>, <a href="https://arxiv.org/format/2411.17162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Recursive Hybrid Tetrahedron Method for Brillouin-zone Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+K">Kun Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiechao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17162v1-abstract-short" style="display: inline;"> A recursive extension of the hybrid tetrahedron method for Brillouin-zone integration is proposed, allowing iterative tetrahedron refinement and significantly reducing the error from the linear tetrahedron method. The Brillouin-zone integral is expressed as a weighted sum on the initial grid, with integral weights collected recursively from the finest grid. Our method is capable of simultaneously&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17162v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17162v1-abstract-full" style="display: none;"> A recursive extension of the hybrid tetrahedron method for Brillouin-zone integration is proposed, allowing iterative tetrahedron refinement and significantly reducing the error from the linear tetrahedron method. The Brillouin-zone integral is expressed as a weighted sum on the initial grid, with integral weights collected recursively from the finest grid. Our method is capable of simultaneously handling multiple singularities in the integrand and thus may provide practical solutions to various Brillouin-zone integral tasks encountered in realistic calculations, including the computation of response and spectral function with superior sampling convergence. We demonstrate its effectiveness through numerical calculations of the density response functions of two model Hamiltonians and one real material system, the face-centered cubic cobalt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17162v1-abstract-full').style.display = 'none'; document.getElementById('2411.17162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07405">arXiv:2409.07405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07405">pdf</a>, <a href="https://arxiv.org/format/2409.07405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Uncovering Quantum Many-body Scars with Quantum Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bingzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhi-Cheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Q">Quntao Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07405v1-abstract-short" style="display: inline;"> Quantum many-body scars are rare eigenstates hidden within the chaotic spectra of many-body systems, representing a weak violation of the eigenstate thermalization hypothesis (ETH). Identifying these scars, as well as other non-thermal states in complex quantum systems, remains a significant challenge. Besides exact scar states, the nature of other non-thermal states lacking simple analytical char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07405v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07405v1-abstract-full" style="display: none;"> Quantum many-body scars are rare eigenstates hidden within the chaotic spectra of many-body systems, representing a weak violation of the eigenstate thermalization hypothesis (ETH). Identifying these scars, as well as other non-thermal states in complex quantum systems, remains a significant challenge. Besides exact scar states, the nature of other non-thermal states lacking simple analytical characterization remains an open question. In this study, we employ tools from quantum machine learning -- specifically, quantum convolutional neural networks (QCNNs), to explore hidden non-thermal states in chaotic many-body systems. Our simulations demonstrate that QCNNs achieve over 99% single-shot measurement accuracy in identifying all known scars. Furthermore, we successfully identify new non-thermal states in models such as the xorX model, the PXP model, and the far-coupling Su-Schrieffer-Heeger model. In the xorX model, some of these non-thermal states can be approximately described as spin-wave modes of specific quasiparticles. We further develop effective tight-binding Hamiltonians within the quasiparticle subspace to capture key features of these many-body eigenstates. Finally, we validate the performance of QCNNs on IBM quantum devices, achieving single-shot measurement accuracy exceeding 63% under real-world noise and errors, with the aid of error mitigation techniques. Our results underscore the potential of QCNNs to uncover hidden non-thermal states in quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07405v1-abstract-full').style.display = 'none'; document.getElementById('2409.07405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07270">arXiv:2408.07270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07270">pdf</a>, <a href="https://arxiv.org/format/2408.07270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orientation-dependent surface radiation damage in $尾$-Ga2O3 explored by multiscale atomic simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Taiqiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zeyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Junlei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+X">Xiaoyu Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiaren Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+Y">Yijing Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+M">Mengyuan Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yuzheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Sheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhaofu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07270v1-abstract-short" style="display: inline;"> Ultrawide bandgap semiconductor $尾$-Ga2O3 holds extensive potential for applications in high-radiation environments. One of the primary challenges in its practical application is unveiling the mechanisms of surface irradiation damage under extreme conditions. In this study, we investigate the orientation-dependent mechanisms of radiation damage on four experimentally relevant $尾$-Ga2O3 surface fac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07270v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07270v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07270v1-abstract-full" style="display: none;"> Ultrawide bandgap semiconductor $尾$-Ga2O3 holds extensive potential for applications in high-radiation environments. One of the primary challenges in its practical application is unveiling the mechanisms of surface irradiation damage under extreme conditions. In this study, we investigate the orientation-dependent mechanisms of radiation damage on four experimentally relevant $尾$-Ga2O3 surface facets, namely, (100), (010), (001), and (-201), at various temperatures. We employ a multiscale atomic simulation approach, combining machine-learning-driven molecular dynamics (ML-MD) simulations and density functional theory (DFT) calculations. The results reveal that Ga vacancies and O interstitials are the predominant defects across all four surfaces, with the formation of many antisite defects Ga_O and few O_Ga observed. Among the two Ga sites and three O sites, the vacancy found in the O2 site is dominant, while the interstitials at the Ga1 and O1 sites are more significant. Interestingly, the (010) surface exhibits the lowest defect density, owing to its more profound channeling effect leading to a broader spread of defects. The influence of temperature on surface irradiation damage of $尾$-Ga2O3 should be evaluated based on the unique crystal surface characteristics. Moreover, the formation energy and defect concentration calculated by DFT corroborate the results of the MD simulations. Comprehending surface radiation damage at the atomic level is crucial for assessing the radiation tolerance and predicting the performance changes of $尾$-Ga2O3-based device in high-radiation environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07270v1-abstract-full').style.display = 'none'; document.getElementById('2408.07270v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19563">arXiv:2407.19563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19563">pdf</a>, <a href="https://arxiv.org/format/2407.19563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Criticality enhances the reinforcement of disordered networks by rigid inclusions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shivers%2C+J+L">Jordan L. Shivers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jingchen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacKintosh%2C+F+C">Fred C. MacKintosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19563v1-abstract-short" style="display: inline;"> The mechanical properties of biological materials are spatially heterogeneous. Typical tissues are made up of a spanning fibrous extracellular matrix in which various inclusions, such as living cells, are embedded. While the influence of inclusions on the stiffness of common elastic materials such as rubber has been studied for decades and can be understood in terms of the volume fraction and shap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19563v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19563v1-abstract-full" style="display: none;"> The mechanical properties of biological materials are spatially heterogeneous. Typical tissues are made up of a spanning fibrous extracellular matrix in which various inclusions, such as living cells, are embedded. While the influence of inclusions on the stiffness of common elastic materials such as rubber has been studied for decades and can be understood in terms of the volume fraction and shape of inclusions, the same is not true for disordered filamentous and fibrous networks. Recent work has shown that, in isolation, such networks exhibit unusual viscoelastic behavior indicative of an underlying mechanical phase transition controlled by network connectivity and strain. How this behavior is modified when inclusions are present is unclear. Here, we present a theoretical and computational study of the influence of rigid inclusions on the mechanics of disordered elastic networks near the connectivity-controlled central force rigidity transition. Combining scaling theory and coarse-grained simulations, we predict and confirm an anomalously strong dependence of the composite stiffness on inclusion volume fraction, beyond that seen in ordinary composites. This stiffening exceeds the well-established volume fraction-dependent stiffening expected in conventional composites, e.g., as an elastic analogue of the classic volume fraction dependent increase in the viscosity of liquids first identified by Einstein. We show that this enhancement is a consequence of the interplay between inter-particle spacing and an emergent correlation length, leading to an effective finite-size scaling imposed by the presence of inclusions. We outline the expected scaling of the shear modulus and strain fluctuations with the inclusion volume fraction and network connectivity, confirm these predictions in simulations, and discuss potential experimental tests and implications for our predictions in real systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19563v1-abstract-full').style.display = 'none'; document.getElementById('2407.19563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08676">arXiv:2407.08676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08676">pdf</a>, <a href="https://arxiv.org/format/2407.08676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Theory for the Anomalous Phase Behavior of Inertial Active Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiechao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omar%2C+A+K">Ahmad K. Omar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08676v2-abstract-short" style="display: inline;"> In contrast to equilibrium systems, inertia can profoundly impact the phase behavior of active systems. This has been made particularly evident in recent years, with motility-induced phase separation (MIPS) exhibiting several intriguing dependencies on translational inertia. Here we report extensive simulations characterizing the phase behavior of inertial active matter and develop a mechanical th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08676v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08676v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08676v2-abstract-full" style="display: none;"> In contrast to equilibrium systems, inertia can profoundly impact the phase behavior of active systems. This has been made particularly evident in recent years, with motility-induced phase separation (MIPS) exhibiting several intriguing dependencies on translational inertia. Here we report extensive simulations characterizing the phase behavior of inertial active matter and develop a mechanical theory for the complete phase diagram without appealing to equilibrium notions. Our theory qualitatively captures all aspects of liquid-gas coexistence, including the critical value of inertia above which MIPS ceases. Notably, our findings highlight that particle softness, and not inertia, is responsible for the MIPS reentrance effect at the center of a proposed active refrigeration cycle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08676v2-abstract-full').style.display = 'none'; document.getElementById('2407.08676v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08168">arXiv:2407.08168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08168">pdf</a>, <a href="https://arxiv.org/format/2407.08168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Berry phases in Coulomb drag of double-layer graphene system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jianghui Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lijun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Changgan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08168v1-abstract-short" style="display: inline;"> Recent experiments suggest quantum interference effects in the Coulomb drag of double-layer graphene systems. By accounting for correlated interlayer impurity scattering under a weak magnetic field, our theoretical results reveal drag resistivities resembling those in weak (anti-)localization. It is established that the quantum interference effect is most significant when the chemical potentials m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08168v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08168v1-abstract-full" style="display: none;"> Recent experiments suggest quantum interference effects in the Coulomb drag of double-layer graphene systems. By accounting for correlated interlayer impurity scattering under a weak magnetic field, our theoretical results reveal drag resistivities resembling those in weak (anti-)localization. It is established that the quantum interference effect is most significant when the chemical potentials match. The theory clarifies the roles of intra- and interlayer Berry phases in Coulomb drag in double-layer graphene systems and helps delineate the intra- and intervalley contributions. These insights are valuable for designing graphene-based electronic devices exploiting quantum effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08168v1-abstract-full').style.display = 'none'; document.getElementById('2407.08168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05681">arXiv:2407.05681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05681">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bulk high-temperature superconductivity in the high-pressure tetragonal phase of bilayer La2PrNi2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaoling Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoping Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huaixin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lifen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+J">Jie Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jie Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yunqing Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hanming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xiaoli Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianping Sun</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05681v1-abstract-short" style="display: inline;"> The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa. Subsequent investigations achieved zero resistance in single- and poly-crystalline samples under hydrostatic pressure conditions. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05681v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05681v1-abstract-full" style="display: none;"> The Ruddlesden-Popper (R-P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa. Subsequent investigations achieved zero resistance in single- and poly-crystalline samples under hydrostatic pressure conditions. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the filamentary nature with low superconducting volume fraction. The presence of a novel &#34;1313&#34; polymorph and competing R-P phases obscured proper identification of the phase for HTSC. Thus, achieving bulk HTSC and identifying the phase at play are the most prominent tasks at present. Here, we address these issues in the praseodymium (Pr)-doped La2PrNi2O7 polycrystalline samples. We find that the substitutions of Pr for La effectively inhibits the intergrowth of different R-P phases, resulting in nearly pure bilayer structure. For La2PrNi2O7, pressure-induced orthorhombic-to-tetragonal structural transition takes place at Pc ~ 11 GPa, above which HTSC emerges gradually upon further compression. The superconducting transition temperatures at 18-20 GPa reach Tconset = 82.5 K and Tczero = 60 K, which are the highest values among known nickelate superconductors. More importantly, bulk HTSC was testified by detecting clear diamagnetic signals below ~75 K corresponding to an estimated superconducting volume fraction ~ 57(5)% at 20 GPa. Our results not only resolve the existing controversies but also illuminate directions for exploring bulk HTSC in the bilayer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05681v1-abstract-full').style.display = 'none'; document.getElementById('2407.05681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02383">arXiv:2407.02383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02383">pdf</a>, <a href="https://arxiv.org/format/2407.02383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Long-range crossed Andreev reflection in topological insulator nanowires proximitized by a superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junya Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legg%2C+H+F">Henry F. Legg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bagchi%2C+M">Mahasweta Bagchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loss%2C+D">Daniel Loss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klinovaja%2C+J">Jelena Klinovaja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+Y">Yoichi Ando</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02383v2-abstract-short" style="display: inline;"> Crossed Andreev reflection (CAR) is a nonlocal transport phenomenon that creates/detects Cooper-pair correlations between distant places. It is also the basis of Cooper-pair splitting to generate remote entanglement. Although CAR has been extensively studied in semiconductors proximity-coupled to a superconductor, it has been very difficult to observe it in a topological insulator (TI). Here we re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02383v2-abstract-full').style.display = 'inline'; document.getElementById('2407.02383v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02383v2-abstract-full" style="display: none;"> Crossed Andreev reflection (CAR) is a nonlocal transport phenomenon that creates/detects Cooper-pair correlations between distant places. It is also the basis of Cooper-pair splitting to generate remote entanglement. Although CAR has been extensively studied in semiconductors proximity-coupled to a superconductor, it has been very difficult to observe it in a topological insulator (TI). Here we report the first observation of CAR in a proximitized TI nanowire (TINW). We performed local and nonlocal conductance spectroscopy on mesoscopic TINW devices in which superconducting (Nb) and metallic (Pt/Au) contacts are made on a bulk-insulating TINW. The local conductance detected a hard gap, accompanied by the appearance of Andreev bound states that can reach zero-bias, while a negative nonlocal conductance was occasionally observed upon sweeping the chemical potential, giving evidence for CAR. Surprisingly, the CAR signal was detected even over 1.5 $渭$m, which implies that pair correlations extend over a length scale much longer than the expected superconducting coherence length of either Nb or the proximitised TINW. Such a long-range CAR effect is possibly due to an intricate role of disorder in proximitized nanowires. Also, our 0.9-$渭$m device presented a decent Cooper-pair splitting efficiency of up to 0.5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02383v2-abstract-full').style.display = 'none'; document.getElementById('2407.02383v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, 41 pages total; 29 pages of main text with 6 figures, 12 pages of supplement with 7 figures. The raw data and codes are available at the online depository Zenodo with the identifier DOI:10.5281/zenodo.12611922</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03338">arXiv:2406.03338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03338">pdf</a>, <a href="https://arxiv.org/format/2406.03338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strength of Kitaev Interaction in Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zefeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Binhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weiqin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lianchuang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Boyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Changsong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03338v2-abstract-short" style="display: inline;"> Kitaev spin liquid is proposed to be promisingly realized in low spin-orbit coupling $3d$ systems, represented by Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$. However, the existence of Kitaev interaction is still debatable among experiments, and obtaining the strength of Kitaev interaction from first-principles calculations is also challenging. Here, we report the state-dependent anisotropy of Kit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03338v2-abstract-full').style.display = 'inline'; document.getElementById('2406.03338v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03338v2-abstract-full" style="display: none;"> Kitaev spin liquid is proposed to be promisingly realized in low spin-orbit coupling $3d$ systems, represented by Na$_3$Co$_2$SbO$_6$ and Na$_3$Ni$_2$BiO$_6$. However, the existence of Kitaev interaction is still debatable among experiments, and obtaining the strength of Kitaev interaction from first-principles calculations is also challenging. Here, we report the state-dependent anisotropy of Kitaev interaction, based on which a convenient method is developed to rapidly determine the strength of Kitaev interaction. Applying such method and density functional theory calculations, it is found that Na$_3$Co$_2$SbO$_6$ with $3d^7$ configuration exhibits considerable ferromagnetic Kitaev interaction. Moreover, by further applying the symmetry-adapted cluster expansion method, a realistic spin model is determined for Na$_3$Ni$_2$BiO$_6$ with $3d^8$ configuration. Such model indicates negligible small Kitaev interaction, but it predicts many properties, such as ground states and field effects, which are well consistent with measurements. Furthermore, we demonstrate that the heavy elements, Sb or Bi, located at the hollow sites of honeycomb lattice, do not contribute to emergence of Kitaev interaction through proximity, contradictory to common belief. The presently developed anisotropy method will be beneficial not only for computations but also for measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03338v2-abstract-full').style.display = 'none'; document.getElementById('2406.03338v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00484">arXiv:2405.00484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin Hamiltonians in the Modulated Momenta of Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Juan Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zengya Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasman%2C+E">Erez Hasman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00484v2-abstract-short" style="display: inline;"> Photonic solvers that are able to find the ground states of different spin Hamiltonians can be used to study many interactive physical systems and combinatorial optimization problems. Here, we establish a real-and-momentum space correspondence of spin Hamiltonians by spatial light transport. The real-space spin interaction is determined by modulating the momentum-space flow of light. This principl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00484v2-abstract-full').style.display = 'inline'; document.getElementById('2405.00484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00484v2-abstract-full" style="display: none;"> Photonic solvers that are able to find the ground states of different spin Hamiltonians can be used to study many interactive physical systems and combinatorial optimization problems. Here, we establish a real-and-momentum space correspondence of spin Hamiltonians by spatial light transport. The real-space spin interaction is determined by modulating the momentum-space flow of light. This principle is formulated as a generalized Plancherel theorem, allowing us to implement a simple optical simulator that can find the ground states for any displacement-dependent spin interactions. Particularly, we use this principle to reveal the exotic magnetic phase diagram from a J1-J2-J3 model, and we also observe the vortex-mediated Berezinskii-Kosterlitz-Thouless dynamics from the XY model. These experiments exhibit high calculation precision by subtly controlling spin interactions from the momentum space of light, offering a promising scheme to explore novel physical effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00484v2-abstract-full').style.display = 'none'; document.getElementById('2405.00484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05175">arXiv:2404.05175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05175">pdf</a>, <a href="https://arxiv.org/format/2404.05175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Solute strengthening and softening from screw dislocation in BCC tantalum: A first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajun Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kangzhi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaowei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiuting Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziran Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05175v1-abstract-short" style="display: inline;"> Improving the high-temperature performance and low-temperature plasticity of tantalum (Ta) alloys is a significant scientific challenge. We employed first-principles calculations to study the interaction between screw dislocations and solute atoms in the body centered cubic (BCC) structure of Ta, with a particular focus on solid solution softening and strengthening. We analyzed the impact of vario&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05175v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05175v1-abstract-full" style="display: none;"> Improving the high-temperature performance and low-temperature plasticity of tantalum (Ta) alloys is a significant scientific challenge. We employed first-principles calculations to study the interaction between screw dislocations and solute atoms in the body centered cubic (BCC) structure of Ta, with a particular focus on solid solution softening and strengthening. We analyzed the impact of various solute elements on the generalized stacking fault energy (GSFE), energy barriers within the single-atom column displacement model, and their interaction with screw dislocations. The results indicate that Hf and Zr, either individually or in combination, exhibit notable solute softening effects in BCC Ta, significantly reducing GSFE, energy barriers, and interaction energies. In contrast, Nb shows relative insensitivity to solute effects, while Mo, W, and Ir demonstrate solute strengthening effects. The calculations suggest that the interaction energy between screw dislocations and solute atoms is a reliable indicator for predicting strengthening and softening effects. Additionally, we extend these predictions to ternary alloys, demonstrating that the strengthening and softening phenomena in these materials can be explained through the electronic work function at the electronic level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05175v1-abstract-full').style.display = 'none'; document.getElementById('2404.05175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04897">arXiv:2404.04897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04897">pdf</a>, <a href="https://arxiv.org/format/2404.04897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electronic origin of solute effects on the mobility of screw dislocation in bcc molybdenum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kangzhi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajun Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Huiqiu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+L">Lixia Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xinfu He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04897v1-abstract-short" style="display: inline;"> In body-centered cubic (bcc) metals such as molybdenum, screw dislocations often exhibit non-Schmid behavior, moving in directions unpredicted by the Schmid law. The mobility of these dislocations is notably influenced by the presence of solute atoms within the alloy matrix. In this study, employing first-principles calculations, we delve into the electronic origins of these influences.Initially,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04897v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04897v1-abstract-full" style="display: none;"> In body-centered cubic (bcc) metals such as molybdenum, screw dislocations often exhibit non-Schmid behavior, moving in directions unpredicted by the Schmid law. The mobility of these dislocations is notably influenced by the presence of solute atoms within the alloy matrix. In this study, employing first-principles calculations, we delve into the electronic origins of these influences.Initially, we construct both single atomic column and triple atomic column models to simulate the formation of screw dislocations with solute atoms. Our investigation reveals that tantalum (Ta) and tungsten (W) increase the formation energy of solute-dislocation complexes, in contrast to osmium (Os), iridium (Ir), and platinum (Pt). Subsequently, employing a comprehensive screw dislocation dipole model under shear deformation, we explore the combined effects of solute atoms and deformation on dislocation core movement. Our findings demonstrate that Ta and W, positioned as first nearest neighbors, reduce the stress required to move dislocation cores away from corresponding dislocation dipoles. Conversely, Os, Ir, and Pt exhibit an attractive effect on dislocation cores, lowering the energy barrier for screw dislocation formation and enticing dislocation cores towards these solute atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04897v1-abstract-full').style.display = 'none'; document.getElementById('2404.04897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16701">arXiv:2403.16701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16701">pdf</a>, <a href="https://arxiv.org/format/2403.16701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c05052">10.1021/acs.nanolett.3c05052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer Control of Magneto-Optical Effects and Their Quantization in Spin-Valley Splitting Antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiaqi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Meiling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jingming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinwei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16701v1-abstract-short" style="display: inline;"> Magneto-optical effects (MOE), interfacing the fundamental interplay between magnetism and light, have served as a powerful probe for magnetic order, band topology, and valley index. Here, based on multiferroic and topological bilayer antiferromagnets (AFMs), we propose a layer control of MOE (L-MOE), which is created and annihilated by layer-stacking or an electric field effect. The key character&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16701v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16701v1-abstract-full" style="display: none;"> Magneto-optical effects (MOE), interfacing the fundamental interplay between magnetism and light, have served as a powerful probe for magnetic order, band topology, and valley index. Here, based on multiferroic and topological bilayer antiferromagnets (AFMs), we propose a layer control of MOE (L-MOE), which is created and annihilated by layer-stacking or an electric field effect. The key character of L-MOE is the sign-reversible response controlled by ferroelectric polarization, the Neel vector, or the electric field direction. Moreover, the sign-reversible L-MOE can be quantized in topologically insulating AFMs. We reveal that the switchable L-MOE originates from the combined contributions of spin-conserving and spin-flip interband transitions in spin-valley splitting AFMs, a phenomenon not observed in conventional AFMs. Our findings bridge the ancient MOE to the emergent realms of layertronics, valleytronics, and multiferroics and may hold immense potential in these fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16701v1-abstract-full').style.display = 'none'; document.getElementById('2403.16701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08456">arXiv:2403.08456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08456">pdf</a>, <a href="https://arxiv.org/format/2403.08456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layered Kagome Compound Na$_2$Ni$_3$S$_4$ with Topological Flat Band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+J">Junyao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zida Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08456v2-abstract-short" style="display: inline;"> We report structural and electronic properties of Na$_2$Ni$_3$S$_4$, a quasi-two-dimensional compound composed of alternating layers of [Ni$_3$S$_4$]$^{2-}$ and Na$^{+}$. The compound features a remarkable Ni-based kagome lattice with a square planar configuration of four surrounding S atoms for each Ni atom. Magnetization and electrical measurements reveal a weak paramagnetic insulator with a gap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08456v2-abstract-full').style.display = 'inline'; document.getElementById('2403.08456v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08456v2-abstract-full" style="display: none;"> We report structural and electronic properties of Na$_2$Ni$_3$S$_4$, a quasi-two-dimensional compound composed of alternating layers of [Ni$_3$S$_4$]$^{2-}$ and Na$^{+}$. The compound features a remarkable Ni-based kagome lattice with a square planar configuration of four surrounding S atoms for each Ni atom. Magnetization and electrical measurements reveal a weak paramagnetic insulator with a gap of about 0.5 eV. Our band structure calculation highlights a set of topological flat bands of the kagome lattice derived from the rotated d$_{xz}$-orbital with $C_\mathrm{3}$ + $T$ symmetry in the presence of crystal-field splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08456v2-abstract-full').style.display = 'none'; document.getElementById('2403.08456v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05473">arXiv:2402.05473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05473">pdf</a>, <a href="https://arxiv.org/format/2402.05473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Assessing the atomic moment picture of spin dynamics: the perspective of \textit{ab initio} magnon wavefunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05473v2-abstract-short" style="display: inline;"> Our understanding of collective spin fluctuation in materials relies largely on Heisenberg-type spin Hamiltonians. Implicit in these spin models is the atomic moment picture that in transverse spin dynamics the magnetization around an atom undergoes precessional motion as a rigid moment, which has been challenged by emerging theoretical and experimental advances. To assess the validity of the atom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05473v2-abstract-full').style.display = 'inline'; document.getElementById('2402.05473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05473v2-abstract-full" style="display: none;"> Our understanding of collective spin fluctuation in materials relies largely on Heisenberg-type spin Hamiltonians. Implicit in these spin models is the atomic moment picture that in transverse spin dynamics the magnetization around an atom undergoes precessional motion as a rigid moment, which has been challenged by emerging theoretical and experimental advances. To assess the validity of the atomic moment picture in spin dynamics, however, necessitates magnon wavefunctions from \textit{ab initio} methods without \textit{a priori} spin models. To this end, we develop an efficient model-free {\it ab initio} method for computing magnon spectrum and wavefunctions. Niu-Kleinman&#39;s adiabatic spin-wave dynamics is reformulated using linear perturbation theory into a generalized eigenvalue problem, which can be solved to produce magnon spectrum and wavefunctions without assuming atomic moments. We have implemented this method in the framework of density functional perturbation theory (DFPT). A dynamical extension of Niu-Kleinman equation of motion is proposed to improve inaccurate predicted magnon energies due to imperfect adiabaticity at higher energies. Based on so-obtained {\it ab initio} magnon wavefunctions, we find the atomic moment picture to be valid in typical ferromagnets and antiferromagnets, but fails in the molecular orbital crystal Na$_2$IrO$_3$. Our results suggest that the usual spin Hamiltonian approach should be taken with a grain of salt, and possible experimental ramification on the issue is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05473v2-abstract-full').style.display = 'none'; document.getElementById('2402.05473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05513">arXiv:2401.05513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05513">pdf</a>, <a href="https://arxiv.org/format/2401.05513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.9.043302">10.1103/PhysRevFluids.9.043302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flow rate-pressure drop relations for shear-thinning fluids in deformable configurations: theory and experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chun%2C+S">SungGyu Chun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+E">Evgeniy Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christov%2C+I+C">Ivan C. Christov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05513v2-abstract-short" style="display: inline;"> We provide an experimental framework to measure the flow rate--pressure drop relation for Newtonian and shear-thinning fluids in two common deformable configurations: (\textit{i}) a rectangular channel and (\textit{ii}) an axisymmetric tube. Using the Carreau model to describe the shear-dependent viscosity, we identify the key dimensionless rheological number, $Cu$, which characterizes shear thinn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05513v2-abstract-full').style.display = 'inline'; document.getElementById('2401.05513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05513v2-abstract-full" style="display: none;"> We provide an experimental framework to measure the flow rate--pressure drop relation for Newtonian and shear-thinning fluids in two common deformable configurations: (\textit{i}) a rectangular channel and (\textit{ii}) an axisymmetric tube. Using the Carreau model to describe the shear-dependent viscosity, we identify the key dimensionless rheological number, $Cu$, which characterizes shear thinning, and we show that our experiments lie within the power-law regime of shear rates. To rationalize the experimental data, we derive the flow rate-pressure drop relation taking into account the two-way-coupled fluid-structure interaction between the flow and its compliant confining boundaries. We thus identify the second key dimensionless number, $伪$, which characterizes the compliance of the conduit. We then compare the theoretical flow rate-pressure drop relation to our experimental measurements, finding excellent agreement between the two. We further contrast our results for shear-thinning and Newtonian fluids to highlight the influence of $Cu$ on the flow rate-pressure drop relation. Finally, we delineate four distinct physical regimes of flow and deformation by mapping our experimental flow rate-pressure drop data for Newtonian and shear-thinning fluids into a $Cu-伪$ plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05513v2-abstract-full').style.display = 'none'; document.getElementById('2401.05513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; v2 accepted for publication in Physical Review Fluids</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 9 (2024) 043302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01203">arXiv:2401.01203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01203">pdf</a>, <a href="https://arxiv.org/ps/2401.01203">ps</a>, <a href="https://arxiv.org/format/2401.01203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Origin of zigzag antiferromagnetic orders in XPS3 (X= Fe, Ni) monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xueyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J">Jinyang Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhi-Xin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01203v1-abstract-short" style="display: inline;"> Recently, two monolayer magnetic materials, i.e., FePS3 and NiPS3, have been successfully fabricated. Despite that they have the same atomic structure, the two monolayers exhibit distinct magnetic properties. FePS3 holds an out-of-plane zigzag antiferromagnetic (AFM-ZZ) structure, while NiPS3 exhibits an in-plane AFM-ZZ structure. However, there is no theoretical model which can properly describe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01203v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01203v1-abstract-full" style="display: none;"> Recently, two monolayer magnetic materials, i.e., FePS3 and NiPS3, have been successfully fabricated. Despite that they have the same atomic structure, the two monolayers exhibit distinct magnetic properties. FePS3 holds an out-of-plane zigzag antiferromagnetic (AFM-ZZ) structure, while NiPS3 exhibits an in-plane AFM-ZZ structure. However, there is no theoretical model which can properly describe its magnetic ground state due to the lack of a full understanding of its magnetic interactions. Here, by combining the first-principles calculations and the newly developed machine learning method, we construct an exact spin Hamiltonian of the two magnetic materials. Different from the previous studies which failed to fully consider the spin-orbit coupling effect, we find that the AFM-ZZ ground state in FePS3 is stabilized by competing ferromagnetic nearest-neighbor and antiferromagnetic third nearest-neighbor exchange interactions, and combining single-ion anisotropy. Whereas, the often ignored nearest-neighbor biquadratic exchange is responsible for the in-plane AFM-ZZ ground state in NiPS3. We additionally calculate spin-wave spectrum of AFM-ZZ structure in the two monolayers based on the exact spin Hamiltonian, which can be directly verified by the experimental investigation. Our work provides a theoretical framework for the origin of AFM-ZZ ground state in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01203v1-abstract-full').style.display = 'none'; document.getElementById('2401.01203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09055">arXiv:2312.09055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09055">pdf</a>, <a href="https://arxiv.org/format/2312.09055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115142">10.1103/PhysRevB.110.115142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploration of magnetoelastic deformations in spin-chain compound CuBr$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Biaoyan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krogstad%2C+M+J">Matthew J. Krogstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honda%2C+T">Takashi Honda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09055v1-abstract-short" style="display: inline;"> We investigate a spin-$\frac{1}{2}$ antiferromagnet, CuBr$_2$, which has quasi-one-dimensional structural motifs. The system has previously been observed to exhibit unusual Raman modes possibly due to a locally deformed crystal structure driven by the low-dimensional magnetism. Using hard X-ray scattering and neutron total scattering, here we aim to verify a specific form of tetramerized lattice d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09055v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09055v1-abstract-full" style="display: none;"> We investigate a spin-$\frac{1}{2}$ antiferromagnet, CuBr$_2$, which has quasi-one-dimensional structural motifs. The system has previously been observed to exhibit unusual Raman modes possibly due to a locally deformed crystal structure driven by the low-dimensional magnetism. Using hard X-ray scattering and neutron total scattering, here we aim to verify a specific form of tetramerized lattice deformation proposed in the previous study. Apart from diffuse scattering signals which we can reproduce by performing a thorough modeling of the lattice&#39;s thermal vibrations, we do not observe evidence for a tetramerized lattice structure within our detection sensitivity. As a result, it is more likely that the unusual Raman modes in CuBr$_2$ arise from classical magnon-phonon hybridization, rather than from quantum spin-singlet-driven lattice deformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09055v1-abstract-full').style.display = 'none'; document.getElementById('2312.09055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115142 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18282">arXiv:2311.18282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18282">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wuxiao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajia Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hongliang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Mo Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yunfei Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+G">Guoshuai Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yubing Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiansong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jianping Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yabin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18282v1-abstract-short" style="display: inline;"> Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18282v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18282v1-abstract-full" style="display: none;"> Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18282v1-abstract-full').style.display = 'none'; document.getElementById('2311.18282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 Pages, 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14472">arXiv:2311.14472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14472">pdf</a>, <a href="https://arxiv.org/ps/2311.14472">ps</a>, <a href="https://arxiv.org/format/2311.14472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184504">10.1103/PhysRevB.108.184504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple superconducting phases driven by pressure in the topological insulator GeSb4Te7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">W. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">B. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J+J">J. J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Q">C. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H+T">H. T. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Z. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+B">B. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziming Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14472v1-abstract-short" style="display: inline;"> Tuning superconductivity in topological materials by means of chemical substitution, electrostatic gating, or pressure is thought to be an effective route towards realizing topological superconductivity with their inherent Majorana fermions, the manipulation of which may form the basis for future topological quantum computing. It has recently been established that the pseudo-binary chalcogenides (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14472v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14472v1-abstract-full" style="display: none;"> Tuning superconductivity in topological materials by means of chemical substitution, electrostatic gating, or pressure is thought to be an effective route towards realizing topological superconductivity with their inherent Majorana fermions, the manipulation of which may form the basis for future topological quantum computing. It has recently been established that the pseudo-binary chalcogenides (ACh)m(Pn2Ch3)n (A = Ge, Mn, Pb, etc.; Pn = Sb or Bi; Ch = Te, Se) may host novel topological quantum states such as the quantum anomalous Hall effect and topological axion states. Here we map out the phase diagram of one member in this series, the topological insulator candidate GeSb4Te7 up to pressures of ~35 GPa, through a combination of electrical resistance measurements, Raman spectroscopy, as well as first-principles calculations. Three distinct superconducting phases emerge under the pressure above ~11, ~17, and ~31 GPa, which are accompanied by concomitant structural transitions, evidenced from the changes in the Raman modes. The first-principles calculations validate the existence of a topological insulating state at ambient pressure and predict two possible structural transitions at 10 and 17 GPa, in agreement with the experimental observations. Overall, our results establish the GeSb4Te7 family of materials as a fertile arena for further exploring various topological phenomena, including topological phase transitions and putative topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14472v1-abstract-full').style.display = 'none'; document.getElementById('2311.14472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108, 184504 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06760">arXiv:2309.06760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06760">pdf</a>, <a href="https://arxiv.org/format/2309.06760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhuocheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06760v2-abstract-short" style="display: inline;"> A Weyl node is characterized by its chirality and tilt. We develop a theory of how $n$th-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarify how chirality-dependent and -independent parts of optical conductivity transform under the reversal of tilt and chirality. Built on this theory, we propose ferromagnetic $\rm MnBi_{2}Te_{4}$ as a ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06760v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06760v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06760v2-abstract-full" style="display: none;"> A Weyl node is characterized by its chirality and tilt. We develop a theory of how $n$th-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarify how chirality-dependent and -independent parts of optical conductivity transform under the reversal of tilt and chirality. Built on this theory, we propose ferromagnetic $\rm MnBi_{2}Te_{4}$ as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chirality-dependent and -independent dc photocurrents. These results are useful for creating nonlinear optical devices based on topological Weyl semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06760v2-abstract-full').style.display = 'none'; document.getElementById('2309.06760v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16438">arXiv:2307.16438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16438">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of Superconductivity and ferromagnetism in high entropy carbide ceramics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+H">Huchen Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajia Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hongyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+F">Fang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+B">Binbin Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16438v1-abstract-short" style="display: inline;"> Generally, the superconductivity was expected to be absent in magnetic systems, but this reception was disturbed by unconventional superconductors, such as cuprates, iron-based superconductors and recently discovered nickelate, since their superconductivity is proposed to be related to the electron-electron interaction mediated by the spin fluctuation. However, the coexistence of superconductivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16438v1-abstract-full').style.display = 'inline'; document.getElementById('2307.16438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16438v1-abstract-full" style="display: none;"> Generally, the superconductivity was expected to be absent in magnetic systems, but this reception was disturbed by unconventional superconductors, such as cuprates, iron-based superconductors and recently discovered nickelate, since their superconductivity is proposed to be related to the electron-electron interaction mediated by the spin fluctuation. However, the coexistence of superconductivity and magnetism is still rare in conventional superconductors. In this work, we reported the coexistence of these two quantum orderings in high entropy carbide ceramics (Mo0.2Nb0.2Ta0.2V0.2W0.2)C0.9, (Ta0.25Ti0.25Nb0.25Zr0.25)C, and they are expected to be conventional superconductors. Clear magnetic hysteresis loop was observed in these high entropy carbides, indicating a ferromagnetic ground state. A sharp superconducting transition is observed in (Mo0.2Nb0.2Ta0.2V0.2W0.2)C0.9 with a Tc of 3.4 K and upper critical field of ~3.35 T. Meanwhile, superconductivity is suppressed to some extent and zero-resistance state disappears in (Ta0.25Ti0.25Nb0.25Zr0.25)C, in which stronger magnetism is presented. The upper critical field of (Ta0.25Ti0.25Nb0.25Zr0.25)C is only ~1.5 T, though they show higher transition temperature near 5.7 K. The ferromagnetism stems from the carbon vacancies which occurs often during the high temperature synthesis process. This work not just demonstrate the observation of superconductivity in high entropy carbide ceramics, but also provide alternative exotic platform to study the correlation between superconductivity and magnetism, and is of great benefit for the design of multifunctional electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16438v1-abstract-full').style.display = 'none'; document.getElementById('2307.16438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, 1 table. Suggestion and comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13035">arXiv:2306.13035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13035">pdf</a>, <a href="https://arxiv.org/format/2306.13035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strain-induced frustrated helimagnetism and topological spin textures in LiCrTe$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+W">Weiyi Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13035v1-abstract-short" style="display: inline;"> By performing first-principles calculations in conjunction with Monte Carlo simulations, we systematically investigated the frustrated magnetic states induced by in-plane compressive strain in LiCrTe$_{2}$. Our calculations support that the magnetic ground state of LiCrTe$_{2}$ crystal is A-type antiferromagnetic (AFM), with an in-plane ferromagnetic (FM) state and interlayer AFM coupling. Further&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13035v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13035v1-abstract-full" style="display: none;"> By performing first-principles calculations in conjunction with Monte Carlo simulations, we systematically investigated the frustrated magnetic states induced by in-plane compressive strain in LiCrTe$_{2}$. Our calculations support that the magnetic ground state of LiCrTe$_{2}$ crystal is A-type antiferromagnetic (AFM), with an in-plane ferromagnetic (FM) state and interlayer AFM coupling. Furthermore, it is found that compressive strain can significantly alter the magnetic interactions, giving rise to a transition from an in-plane FM to an AFM state, undergoing a helimagnetic phase. Remarkably, a highly frustrated helimagnetic state with disordered spin spirals under moderate strain arises from the competition between spiral propagation modes along distinct directions. In addition, various topological spin defects emerge in this frustrated helimagnetic phase, which are assembled from various domain wall units. These topological defects can be further tuned with external magnetic fields. Our calculations not only uncover the origin of exotic frustrated magnetism in triangular lattice magnetic systems, but also offer a promising route to engineer the frustrated and topological magnetic state, which is of significance in both fundamental research and technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13035v1-abstract-full').style.display = 'none'; document.getElementById('2306.13035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09568">arXiv:2306.09568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09568">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.35848/1347-4065/acfde6">10.35848/1347-4065/acfde6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial 伪-Ta (110) film on a-plane sapphire substrate for superconducting qubits on wafer scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Boyi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lina Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanfu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiagui Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09568v2-abstract-short" style="display: inline;"> Realization of practical superconducting quantum computing requires many qubits of long coherence time. Compared to the commonly used Ta deposited on c-plane sapphire, which occasionally form 伪-Ta (111) grains and \b{eta}-tantalum grains, high quality Ta (110) film can grow epitaxial on a-plane sapphire because of the atomic relationships at the interface. Well-ordered 伪-Ta (110) film on wafer-sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09568v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09568v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09568v2-abstract-full" style="display: none;"> Realization of practical superconducting quantum computing requires many qubits of long coherence time. Compared to the commonly used Ta deposited on c-plane sapphire, which occasionally form 伪-Ta (111) grains and \b{eta}-tantalum grains, high quality Ta (110) film can grow epitaxial on a-plane sapphire because of the atomic relationships at the interface. Well-ordered 伪-Ta (110) film on wafer-scale a-plane sapphire has been prepared. The film exhibits high residual resistance ratio. Transmon qubits fabricated using these film shows relaxation times exceeding 150 渭s. The results suggest Ta film on a-plane sapphire is a promising choice for long coherence time qubit on wafer scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09568v2-abstract-full').style.display = 'none'; document.getElementById('2306.09568v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Jpn. J. Appl. Phys. 62 100901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09566">arXiv:2306.09566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09566">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/6.0002886">10.1116/6.0002886 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of the deposition of $伪$-tantalum (110) films on a-plane sapphire substrate by molecular beam epitaxy for superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Haolin Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Boyi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanfu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+l">lina Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zengqian Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiagui Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09566v2-abstract-short" style="display: inline;"> Polycrystalline 伪-tantalum (110) films deposited on c-plane sapphire substrate by sputtering are used in superconducting qubits nowadays. However, these films always occasionally form other structures, such as 伪-tantalum (111) grains and \b{eta}-tantalum grains. To improve the film quality, we investigate the growth of 伪-tantalum (110) films on a-plane sapphire substrate under varying conditions b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09566v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09566v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09566v2-abstract-full" style="display: none;"> Polycrystalline 伪-tantalum (110) films deposited on c-plane sapphire substrate by sputtering are used in superconducting qubits nowadays. However, these films always occasionally form other structures, such as 伪-tantalum (111) grains and \b{eta}-tantalum grains. To improve the film quality, we investigate the growth of 伪-tantalum (110) films on a-plane sapphire substrate under varying conditions by molecular beam epitaxy technology. The optimized 伪-tantalum (110) film is single crystal, with a smooth surface and atomically flat metal-substrate interface. The film with thickness of 30 nm shows a Tc of 4.12K and a high residual resistance ratio of 9.53. The quarter wavelength coplanar waveguide resonators fabricated with the 150 nm optimized 伪-tantalum (110) film, exhibits intrinsic quality factor of over one million under single photon excitation at millikelvin temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09566v2-abstract-full').style.display = 'none'; document.getElementById('2306.09566v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Vac. Sci. Technol. B 41, 052210 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11395">arXiv:2305.11395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/6.0003368">10.1116/6.0003368 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable and low loss oxide layer on 伪-Ta (110) film for superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zengqian Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=zhou%2C+B">Boyi zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lina Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanfu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiagui Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11395v2-abstract-short" style="display: inline;"> The presence of amorphous oxide layers can significantly affect the coherent time of superconducting qubits due to their high dielectric loss. Typically, the surface oxides of superconductor films exhibit lossy and unstable behavior when exposed to air. To increase the coherence time, it is essential for qubits to have stable and low dielectric loss oxides, either as barrier or passivation layers.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11395v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11395v2-abstract-full" style="display: none;"> The presence of amorphous oxide layers can significantly affect the coherent time of superconducting qubits due to their high dielectric loss. Typically, the surface oxides of superconductor films exhibit lossy and unstable behavior when exposed to air. To increase the coherence time, it is essential for qubits to have stable and low dielectric loss oxides, either as barrier or passivation layers. In this study, we highlight the robust and stable nature of an amorphous tantalum oxide layer formed on 伪-Ta (110) film by employing chemical and structural analyses. Such kind of oxide layer forms in a self-limiting process on the surface of 伪-Ta (110) film in piranha solution, yielding stable thickness and steady chemical composition. Quarter wavelength coplanar waveguide resonators are made to study the loss of this oxide. One resonator has a Qi of 3.0x10^6 in the single photon region. The Qi of most devices are higher than 2.0x10^6. Moreover, most of them are still over 1x10^6 even after exposed to air for months. Based on these findings, we propose an all-tantalum superconducting qubit utilizing such oxide as passivation layers, which possess low dielectric loss and improved stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11395v2-abstract-full').style.display = 'none'; document.getElementById('2305.11395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Vac. Sci. Technol. B 42, 022209 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10957">arXiv:2305.10957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10957">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-39420-y">10.1038/s41598-023-39420-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-quality superconducting 伪-Ta film sputtered on heated silicon substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanfu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zengqian Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiagui Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10957v2-abstract-short" style="display: inline;"> Intrigued by the discovery of the long lifetime in the 伪-Ta/Al2O3-based Transmon qubit, researchers recently found 伪-Ta film is a promising platform for fabricating multi-qubits with long coherence time. To meet the requirements for integrating superconducting quantum circuits, the ideal method is to grow 伪-Ta film on a silicon substrate compatible with industrial manufacturing. Here we report the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10957v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10957v2-abstract-full" style="display: none;"> Intrigued by the discovery of the long lifetime in the 伪-Ta/Al2O3-based Transmon qubit, researchers recently found 伪-Ta film is a promising platform for fabricating multi-qubits with long coherence time. To meet the requirements for integrating superconducting quantum circuits, the ideal method is to grow 伪-Ta film on a silicon substrate compatible with industrial manufacturing. Here we report the 伪-Ta film sputter-grown on Si (100) with a low-loss superconducting TiNx buffer layer. The 伪-Ta film with a large growth temperature window has a good crystalline character. The superconducting critical transition temperature (Tc) and residual resistivity ratio (RRR) in the 伪-Ta film grown at 500 掳C are higher than that in the 伪-Ta film grown at room temperature (RT). These results provide crucial experimental clues toward understanding the connection between the superconductivity and the materials&#39; properties in the 伪-Ta film and open a new route for producing a high-quality 伪-Ta film on silicon substrate for future industrial superconducting quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10957v2-abstract-full').style.display = 'none'; document.getElementById('2305.10957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Rep 13, 12810 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10956">arXiv:2305.10956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-39052-2">10.1038/s41598-023-39052-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fabrication of Al/AlOx/Al junctions with high uniformity and stability on sapphire substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yuzhen Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zengqian Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+K">Kanglin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiagui Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10956v2-abstract-short" style="display: inline;"> Tantalum and aluminum on sapphire are widely used platforms for qubits of long coherent time. As quantum chips scale up, the number of Josephson junctions on Sapphire increases. Thus, both the uniformity and stability of the junctions are crucial to quantum devices, such as scalable superconducting quantum computer circuit, and quantum-limited amplifiers. By optimizing the fabrication process, esp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10956v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10956v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10956v2-abstract-full" style="display: none;"> Tantalum and aluminum on sapphire are widely used platforms for qubits of long coherent time. As quantum chips scale up, the number of Josephson junctions on Sapphire increases. Thus, both the uniformity and stability of the junctions are crucial to quantum devices, such as scalable superconducting quantum computer circuit, and quantum-limited amplifiers. By optimizing the fabrication process, especially, the conductive layer during the electron beam lithography process, Al/AlOx/Al junctions of sizes ranging from 0.0169 to 0.04 渭m2 on sapphire substrates were prepared. The relative standard deviation of room temperature resistances (RN) of these junctions is better than 1.7% on 15 mmx15 mm chips, and better than 2.66% on 2 inch wafers, which is the highest uniformity on sapphire substrates has been reported. The junctions are robust and stable in resistances as temperature changes. The resistances increase by the ratio of 9.73% relative to RN as the temperature ramp down to 4K, and restore their initial values in the reverse process as the temperature ramps back to RT. After being stored in a nitrogen cabinet for 100 days, the resistance of the junctions changed by1.16% in average. The demonstration of uniform and stable Josephson junctions in large area paves the way for the fabrication of superconducting chip of hundreds of qubits on sapphire substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10956v2-abstract-full').style.display = 'none'; document.getElementById('2305.10956v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Rep 13, 11874 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07191">arXiv:2305.07191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07191">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwab191">10.1093/nsr/nwab191 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of 1D Fermi arc states in Weyl semimetal TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaohu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu1%2C+Y">Yiyuan Liu1</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+B">Bingbing Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du1%2C+R">Rui-Rui Du1</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07191v1-abstract-short" style="display: inline;"> Fermi arcs on Weyl semimetals exhibit many exotic quantum phenomena. Usually considered on atomically-flat surfaces with approximate translation symmetry, Fermi arcs are rooted in peculiar topology of bulk Bloch bands of three-dimensional (3D) crystals. The fundamental question of whether a 1D Fermi arc can be probed remains unanswered. Such answer could significantly broaden potential application&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07191v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07191v1-abstract-full" style="display: none;"> Fermi arcs on Weyl semimetals exhibit many exotic quantum phenomena. Usually considered on atomically-flat surfaces with approximate translation symmetry, Fermi arcs are rooted in peculiar topology of bulk Bloch bands of three-dimensional (3D) crystals. The fundamental question of whether a 1D Fermi arc can be probed remains unanswered. Such answer could significantly broaden potential applications of Weyl semimetals. Here, we report a direct observation of robust edge states on atomic-scale ledges in TaAs using low-temperature scanning tunneling microscopy/spectroscopy. Spectroscopic signatures and theoretical calculations reveal that the 1D Fermi arcs arise from the chiral Weyl points of bulk crystal. The crossover from 2D Fermi arcs to eventual complete localization on 1D edges was arrested experimentally on a sequence of surfaces. Our results demonstrate extreme robustness of the bulk-boundary correspondence, which offers topological protection for Fermi arcs, even in cases in which the boundaries are down to atomic-scale. The persistent 1D Fermi arcs can be profitably exploited in miniaturized quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07191v1-abstract-full').style.display = 'none'; document.getElementById('2305.07191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review 9:nwab191, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09507">arXiv:2303.09507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09507">pdf</a>, <a href="https://arxiv.org/format/2303.09507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41597-023-02079-1">10.1038/s41597-023-02079-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant inelastic x-ray scattering data for Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+G+S">G. S. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolaou%2C+A">A. Nicolaou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09507v1-abstract-short" style="display: inline;"> Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates are intriguing candidates for mimicking the properties of high-temperature superconducting cuprates. The degree of similarity between these nickelates and cuprates has been the subject of considerable debate. Resonant inelastic x-ray scattering (RIXS) has played an important role in exploring their electronic and magnetic excitations, but&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09507v1-abstract-full').style.display = 'inline'; document.getElementById('2303.09507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09507v1-abstract-full" style="display: none;"> Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates are intriguing candidates for mimicking the properties of high-temperature superconducting cuprates. The degree of similarity between these nickelates and cuprates has been the subject of considerable debate. Resonant inelastic x-ray scattering (RIXS) has played an important role in exploring their electronic and magnetic excitations, but these efforts have been stymied by inconsistencies between different samples and the lack of publicly available data for detailed comparison. To address this issue, we present open RIXS data on La4Ni3O10 and La4Ni3O8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09507v1-abstract-full').style.display = 'none'; document.getElementById('2303.09507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data descriptor article; accepted in Scientific Data; 8 pages; 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Data 10, Article number: 174 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01209">arXiv:2302.01209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01209">pdf</a>, <a href="https://arxiv.org/format/2302.01209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00169">10.1021/acs.nanolett.3c00169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Top-down fabrication of bulk-insulating topological insulator nanowires for quantum devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6%C3%9Fler%2C+M">Matthias R枚脽ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+D">Dingxun Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCnning%2C+F">Felix M眉nning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legg%2C+H+F">Henry F. Legg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bliesener%2C+A">Andrea Bliesener</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippertz%2C+G">Gertjan Lippertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uday%2C+A">Anjana Uday</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdanpanah%2C+R">Roozbeh Yazdanpanah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junya Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taskin%2C+A+A">Alexey A. Taskin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+Y">Yoichi Ando</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01209v1-abstract-short" style="display: inline;"> In a nanowire (NW) of a three-dimensional topological insulator (TI), the quantum-confinement of topological surface states leads to a peculiar subband structure that is useful for generating Majorana bound states. Top-down fabrication of TINWs from a high-quality thin film would be a scalable technology with great design flexibility, but there has been no report on top-down-fabricated TINWs where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01209v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01209v1-abstract-full" style="display: none;"> In a nanowire (NW) of a three-dimensional topological insulator (TI), the quantum-confinement of topological surface states leads to a peculiar subband structure that is useful for generating Majorana bound states. Top-down fabrication of TINWs from a high-quality thin film would be a scalable technology with great design flexibility, but there has been no report on top-down-fabricated TINWs where the chemical potential can be tuned to the charge neutrality point (CNP). Here we present a top-down fabrication process for bulk-insulating TINWs etched from high-quality (Bi$_{1-x}$Sb$_{x}$)$_2$Te$_3$ thin films without degradation. We show that the chemical potential can be gate-tuned to the CNP and the resistance of the NW presents characteristic oscillations as functions of the gate voltage and the parallel magnetic field, manifesting the TI-subband physics. We further demonstrate the superconducting proximity effect in these TINWs, preparing the groundwork for future devices to investigate Majorana bound states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01209v1-abstract-full').style.display = 'none'; document.getElementById('2302.01209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages. 22 main text, 10 SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00143">arXiv:2301.00143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00143">pdf</a>, <a href="https://arxiv.org/format/2301.00143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An implementation of the density functional perturbation theory in the PAW framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoqiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00143v1-abstract-short" style="display: inline;"> Quantifying materials&#39; dynamical responses to external electromagnetic fields is central to understanding their physical properties. Here we present an implementation of the density functional perturbation theory for the computation of linear susceptibilities using the projector augmented-wave method. The Sternheimer equations are solved self-consistently through a nested iterative procedure to co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00143v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00143v1-abstract-full" style="display: none;"> Quantifying materials&#39; dynamical responses to external electromagnetic fields is central to understanding their physical properties. Here we present an implementation of the density functional perturbation theory for the computation of linear susceptibilities using the projector augmented-wave method. The Sternheimer equations are solved self-consistently through a nested iterative procedure to compute the first-order wavefunctions, from which the linear susceptibilities are obtained. As a demonstration, we compute the spin wave spectral functions of two magnetic metals. The computed magnon spectra for half-metallic CrO$_2$ and a Heusler intermetallic Cu$_2$MnAl show gapless Goldstone modes when spin rotation symmetry is preserved and display reasonable agreement with available experimental data. The Landau damping is computed to be small in CrO$_2$, but significant in Cu$_2$MnAl producing an asymmetric Lorentzian spectral lineshape. The access to linear susceptibilities as well as first-order wavefunctions offers a range of novel possibilities in quantitative understanding of materials&#39; electronic properties from \textit{ab initio} methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00143v1-abstract-full').style.display = 'none'; document.getElementById('2301.00143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11886">arXiv:2208.11886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11886">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac7b1b">10.1088/1674-1056/ac7b1b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Computational studies on magnetism and ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11886v1-abstract-short" style="display: inline;"> Magnetics, ferroelectrics and multiferroics have attracted great attentions because they are not only extremely important for investigating fundamental physics, but also have important applications in information technology. Here, recent computational studies on magnetism and ferroelectricity are reviewed. We first give a brief introduction to magnets, ferroelectrics, and multiferroics. Then, theo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11886v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11886v1-abstract-full" style="display: none;"> Magnetics, ferroelectrics and multiferroics have attracted great attentions because they are not only extremely important for investigating fundamental physics, but also have important applications in information technology. Here, recent computational studies on magnetism and ferroelectricity are reviewed. We first give a brief introduction to magnets, ferroelectrics, and multiferroics. Then, theoretical models and corresponding computational methods for investigating these materials are presented. In particular, a new method for computing the linear magnetoelectric coupling tensor without applying an external field in the first principle calculations is proposed for the first time. The functionalities of our homemade Property Analysis and Simulation Package for materials (PASP) and its applications in the field of magnetism and ferroelectricity are discussed. Finally, we summarize this review and give a perspective on possible directions of future computational studies on magnetism and ferroelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11886v1-abstract-full').style.display = 'none'; document.getElementById('2208.11886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07822">arXiv:2208.07822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07822">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Minimum Surfactant Concentration Required for Inducing Self-shaping of Oil Droplets and Competitive Adsorption Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiale Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valkova%2C+Z">Zhulieta Valkova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+E+E">E Emily Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nourafkan%2C+E">Ehsan Nourafkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiesheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tcholakova%2C+S">Slavka Tcholakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slavchov%2C+R">Radomir Slavchov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smoukov%2C+S+K">Stoyan K. Smoukov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07822v1-abstract-short" style="display: inline;"> Surfactant choice is key in starting the phenomena of artificial morphogenesis, the bottom-up growth of geometric particles from cooled emulsion droplets, as well as the bottom-up self-assembly of rechargeable microswimmer robots from similar droplets. The choice of surfactant is crucial for the formation of a plastic phase at the oil-water interface, for the kinetics, and for the onset temperatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07822v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07822v1-abstract-full" style="display: none;"> Surfactant choice is key in starting the phenomena of artificial morphogenesis, the bottom-up growth of geometric particles from cooled emulsion droplets, as well as the bottom-up self-assembly of rechargeable microswimmer robots from similar droplets. The choice of surfactant is crucial for the formation of a plastic phase at the oil-water interface, for the kinetics, and for the onset temperature of these processes. But further details are needed to control these processes for bottom-up manufacturing and understand their molecular mechanisms. Still unknown are the minimum concentration of the surfactant necessary to induce the processes, or competing effects in a mixture of surfactants when only one is capable of inducing shapes. Here we systematically study the effect of surfactant nature and concentration on the shape-inducing behaviour of hexadecane-in-water emulsions with both cationic (CTAB) and non-ionic (Tween, Brij) surfactants over up to five orders of magnitude of concentration. The minimum effective concentration is found approximately equal to the critical micelle concentration (CMC), or the solubility limit below the Krafft point of the surfactant. However, the emulsions show low stability at the vicinity of CMC. In a mixed surfactant experiment (Tween 60 and Tween 20), where only one (Tween 60) can induce shapes we elucidate the role of competition at the interface during mixed surfactant adsorption by varying the composition. We find that a lower bound of ~ 75% surface coverage of the shape-inducing surfactant with C14 or longer chain length is necessary for self-shaping to occur. The resulting technique produces a clear visual readout of otherwise difficult to investigate molecular events and establish basic requirements for minimum concentration and protocols to find % surface coverage to induce oil self-shaping by surfactant mixtures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07822v1-abstract-full').style.display = 'none'; document.getElementById('2208.07822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, Supplementary with 3 tables, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00591">arXiv:2208.00591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-Dimensional Organic-Inorganic Room-Temperature Multiferroic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yali Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Junyi Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Junsheng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bellaiche%2C+L">Laurent Bellaiche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00591v1-abstract-short" style="display: inline;"> Organic-inorganic multiferroics are promising for the next generation of electronic devices. To date, dozens of organic-inorganic multiferroics have been reported; however, most of them show magnetic Curie temperature much lower than room temperature, which drastically hampers their application. Here, by performing first-principle calculations and building effective model Hamiltonians, we reveal a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00591v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00591v1-abstract-full" style="display: none;"> Organic-inorganic multiferroics are promising for the next generation of electronic devices. To date, dozens of organic-inorganic multiferroics have been reported; however, most of them show magnetic Curie temperature much lower than room temperature, which drastically hampers their application. Here, by performing first-principle calculations and building effective model Hamiltonians, we reveal a molecular orbital-mediated magnetic coupling mechanism in two-dimensional Cr(pyz)2 (pyz=pyrazine), and the role that the valence state of the molecule plays in determining the magnetic coupling type between metal ions. Based on these, we demonstrate that a two-dimensional organic-inorganic room-temperature multiferroic, Cr(h-fpyz)2 (h-fpyz= half-fluoropyrazine), can be rationally designed by introducing ferroelectricity in Cr(pyz)2 while keeping the valence state of the molecule unchanged. Our work not only reveals the origin of magnetic coupling in 2D organic-inorganic systems, but also provides a way to design room temperature multiferroic materials rationally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00591v1-abstract-full').style.display = 'none'; document.getElementById('2208.00591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05045">arXiv:2207.05045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05045">pdf</a>, <a href="https://arxiv.org/format/2207.05045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.115119">10.1103/PhysRevB.107.115119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of bond-dependent highly anisotropic magnetic interactions in Sr$_4$RhO$_6$: a theoretical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S+K">Shishir Kumar Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+R">Rajarshi Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05045v3-abstract-short" style="display: inline;"> The quantum spin liquid states as a natural ground state of the Kitaev model has led to a quest for new materials candidates hosting Kitaev physics. Yet, there are very few material candidates in this category. Using a combination of $ab$ $initio$ and model Hamiltonian methods, we propose that Ruddlesden-Popper compound Sr$_4$RhO$_6$ belongs to this category. With a tight-binding model and exact d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05045v3-abstract-full').style.display = 'inline'; document.getElementById('2207.05045v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05045v3-abstract-full" style="display: none;"> The quantum spin liquid states as a natural ground state of the Kitaev model has led to a quest for new materials candidates hosting Kitaev physics. Yet, there are very few material candidates in this category. Using a combination of $ab$ $initio$ and model Hamiltonian methods, we propose that Ruddlesden-Popper compound Sr$_4$RhO$_6$ belongs to this category. With a tight-binding model and exact diagonalization approach, we show that despite substantial trigonal-like distortion, the electronic and magnetic properties of Sr$_4$RhO$_6$ can be well described in terms of pseudo-spin = 1/2 states. Magnetic interactions among pseudo-spins, estimated using the second-order perturbation method are highly bond-dependent anisotropic in nature with two particularly noticeable features, antiferromagnetic Kitaev and Dzyaloshinskii-Moriya interactions. The gaped spin-wave spectra of Sr$_4$RhO$_6$ obtained with linear spin-wave theory is consistent with the underlying magnetic frustration. Additional analysis of the role of individual or a particular combination of magnetic interactions reveals that the spin-wave spectra of Sr$_4$RhO$_6$ is a combined effect of the highly anisotropic interactions and a relatively simpler minimal model may not be plausible in the current case. The crucial insights about coupling between the local structural features and magnetic properties of Sr$_4$RhO$_6$ obtained in this study may be helpful for future studies belonging to this class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05045v3-abstract-full').style.display = 'none'; document.getElementById('2207.05045v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03836">arXiv:2205.03836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03836">pdf</a>, <a href="https://arxiv.org/format/2205.03836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.174411">10.1103/PhysRevB.106.174411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin interaction and magnetism in cobaltate Kitaev candidate materials: an $ab$ $initio$ and model Hamiltonian approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S+K">Shishir Kumar Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03836v2-abstract-short" style="display: inline;"> In the quest for materials hosting Kitaev spin liquids, much of the efforts have been focused on the fourth- and fifth-row transition metal compounds, which are spin-orbit coupling assisted Mott insulators. Here, we study the structural and magnetic properties of 3$d$ transition metal oxides, Na$_2$Co$_2$TeO$_6$ and Na$_3$Co$_2$SbO$_6$. The partial occupancy of sodium in former compound is address&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03836v2-abstract-full').style.display = 'inline'; document.getElementById('2205.03836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03836v2-abstract-full" style="display: none;"> In the quest for materials hosting Kitaev spin liquids, much of the efforts have been focused on the fourth- and fifth-row transition metal compounds, which are spin-orbit coupling assisted Mott insulators. Here, we study the structural and magnetic properties of 3$d$ transition metal oxides, Na$_2$Co$_2$TeO$_6$ and Na$_3$Co$_2$SbO$_6$. The partial occupancy of sodium in former compound is addressed using a cluster expansion, and a honeycomb lattice of sodiums is found to be energetically favored. Starting from the \textit{ab initio} band structures, a many-body second order perturbation theory leads to a pseudospin-$\frac{1}{2}$ Hamiltonian with estimated magnetic interactions. We show that the experimentally observed zigzag magnetic state is stabilized only when the first neighbor Kitaev coupling dominates over the Heisenberg term, both of which are highly suppressed due to presence of $e_g$ orbitals. A third neighbor Heisenberg interaction is found dominant in both these compounds. We also present a phase diagram for Na$_2$Co$_2$TeO$_6$ by varying the electron-electron and spin-orbit interactions. The computed spin excitation spectra are found to capture essential features of recent experimental magnon spectrum, lending support to our results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03836v2-abstract-full').style.display = 'none'; document.getElementById('2205.03836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 106, 174411, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09923">arXiv:2204.09923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09923">pdf</a>, <a href="https://arxiv.org/format/2204.09923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.257001">10.1103/PhysRevLett.129.257001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport theory for topological Josephson junctions with a Majorana qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jia-Jin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09923v1-abstract-short" style="display: inline;"> We construct a semiclassical theory for the transport of topological junctions starting from a microscopic Hamiltonian that comprehensively includes the interplay among the Majorana qubit, the Josephson phase, and the dissipation process. With the path integral approach, we derive a set of semiclassical equations of motion that can be used to calculate the time evolution of the Josephson phase and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09923v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09923v1-abstract-full" style="display: none;"> We construct a semiclassical theory for the transport of topological junctions starting from a microscopic Hamiltonian that comprehensively includes the interplay among the Majorana qubit, the Josephson phase, and the dissipation process. With the path integral approach, we derive a set of semiclassical equations of motion that can be used to calculate the time evolution of the Josephson phase and the Majorana qubit. In the equations we reveal rich dynamical phenomena such as the qubit induced charge pumping, the effective spin-orbit torque, and the Gilbert damping. We demonstrate the influence of these dynamical phenomena on the transport signatures of the junction. We apply the theory to study the Shapiro steps of the junction, and find the suppression of the first Shapiro step due to the dynamical feedback of the Majorana qubit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09923v1-abstract-full').style.display = 'none'; document.getElementById('2204.09923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08020">arXiv:2202.08020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08020">pdf</a>, <a href="https://arxiv.org/format/2202.08020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Influenced Coordinate Jump of the Guiding Center and Magnetotransport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jingjing Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08020v1-abstract-short" style="display: inline;"> We derived an electrical current formula in the presence of a strong out of plane magnetic field and an in plane electric field, and within two dimensional disordered systems. This current is originated from the guiding center coordinate jump. At a strong magnetic field regime, the current can be pictured as the migration of the center coordinates. During the electron impurity scattering, the guid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08020v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08020v1-abstract-full" style="display: none;"> We derived an electrical current formula in the presence of a strong out of plane magnetic field and an in plane electric field, and within two dimensional disordered systems. This current is originated from the guiding center coordinate jump. At a strong magnetic field regime, the current can be pictured as the migration of the center coordinates. During the electron impurity scattering, the guiding centers suddenly shift their coordinates. Because of the electric field, the coordinate shift accumulatively contributes to a longitudinal current. During the scattering, the value of cyclotron radius changes, which compensates for the change of the electric potential energy during the coordinate jump. The diversion of cyclotron radius is the classical manifestation of electric field dependent broadening and shifting of the Landau levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08020v1-abstract-full').style.display = 'none'; document.getElementById('2202.08020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06244">arXiv:2202.06244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06244">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.202402749">10.1002/smll.202402749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced superconductivity reentrant in transition metal dichalcogenide TiSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiaxuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhongyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+C">Chao An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Na Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Z">Zhiqiang Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+C">Chunyin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajia Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lili Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhaorong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhenhai Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hanghui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06244v1-abstract-short" style="display: inline;"> Through either elements intercalation or application of pressure, transition metal dichalcogenide 1T-TiSe2 exhibits superconductivity in proximity to a charge density wave (CDW) quantum critical point (QCP), thus providing an ideal avenue to study the correlation between the two symmetry-breaking exotic quantum electronic states. We report herein that, in addition to the well-known superconducting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06244v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06244v1-abstract-full" style="display: none;"> Through either elements intercalation or application of pressure, transition metal dichalcogenide 1T-TiSe2 exhibits superconductivity in proximity to a charge density wave (CDW) quantum critical point (QCP), thus providing an ideal avenue to study the correlation between the two symmetry-breaking exotic quantum electronic states. We report herein that, in addition to the well-known superconducting dome that emerges within the low pressure range of 2 - 4 GPa and peaks with the maximal Tc of about 1.8 K, the pressure induces another separate superconducting transition starting around 15 GPa with a substantially higher Tc that reaches 5.6 K at about 21.5 GPa. The high-pressure X-ray diffraction and Raman spectroscopy measurements unveil that the superconductivity reentrant is caused by a first-order structural phase transition (from P-3m1 space group to Pnma space group), which is also supported by the density functional theory calculation. A comparative theoretical calculation also reveals that the conventional phonon-mediated mechanism can account for the superconductivity of 1T-TiSe2 under low pressure, while the electron-phonon coupling of 4O-TiSe2 under high pressure is too weak to induce the superconductivity with a Tc as high as 5.6 K. This implies that the emergent superconductivity in the 4O-TiSe2 may have an unconventional origin. Our finding would open a new window toward the discovery of more exotic quantum states in transition metal dichalcogenides via high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06244v1-abstract-full').style.display = 'none'; document.getElementById('2202.06244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Small, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11938">arXiv:2201.11938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11938">pdf</a>, <a href="https://arxiv.org/format/2201.11938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Topological surfaces of domain wall-decorated antiferromagnetic topological insulator MnBi$_{2n}$Te$_{3n+1}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11938v1-abstract-short" style="display: inline;"> Antiferromagnetic topological insulators harbor topological in-gap surface states protected by an anti-unitary $S$ symmetry, which is broken by the inevitable presence of domain walls. Whether an antiferromagnetic topological insulator with domain walls is gapless and metallic on its topological surfaces remains to be elucidated. We show that a single non-statistical index characterizing the magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11938v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11938v1-abstract-full" style="display: none;"> Antiferromagnetic topological insulators harbor topological in-gap surface states protected by an anti-unitary $S$ symmetry, which is broken by the inevitable presence of domain walls. Whether an antiferromagnetic topological insulator with domain walls is gapless and metallic on its topological surfaces remains to be elucidated. We show that a single non-statistical index characterizing the magnetic order of domain wall-decorated antiferromagnetic topological insulator, referred to as the Ising moment, determines the topological surface gap, which can be zero even when the $S$ symmetry is manifestly broken. In the thermodynamic limit, the topological surface states tend to be gapless when magnetic fluctuation is bounded. In this case, the Lyapunov exponent of the surface transfer matrix reveals a surface delocalization transition near the zero energy due to a crossover from orthogonal to chiral orthogonal symmetry class. Spectroscopic and transport measurements on the surface states will reveal the critical behavior of the transition, which in return bears on the nature of antiferromagnetic domains walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11938v1-abstract-full').style.display = 'none'; document.getElementById('2201.11938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05211">arXiv:2201.05211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05211">pdf</a>, <a href="https://arxiv.org/format/2201.05211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L012032">10.1103/PhysRevResearch.5.L012032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of Multiple Stacking Charge Density Waves in Kagome Superconductor ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plueckthun%2C+C">Christian Plueckthun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05211v4-abstract-short" style="display: inline;"> The recently discovered Kagome family ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ (A = K, Rb, Cs) exhibits rich physical phenomena, including non-trivial topological electronic structure, giant anomalous Hall effect, charge density waves (CDW) and superconductivity. Notably, CDW in ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ is evidenced to intertwine with its superconductivity and topology, but its nature remains elus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05211v4-abstract-full').style.display = 'inline'; document.getElementById('2201.05211v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05211v4-abstract-full" style="display: none;"> The recently discovered Kagome family ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ (A = K, Rb, Cs) exhibits rich physical phenomena, including non-trivial topological electronic structure, giant anomalous Hall effect, charge density waves (CDW) and superconductivity. Notably, CDW in ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ is evidenced to intertwine with its superconductivity and topology, but its nature remains elusive. Here, we combine x-ray scattering experiments and density-functional theory calculations to investigate the CDWs in ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ and demonstrate the coexistence of 2 $\times$ 2 $\times$ 2 and 2 $\times$ 2 $\times$ 4 CDW stacking phases. Competition between these CDW phases is revealed by tracking the temperature evolution of CDW intensities, which also manifests in different transition temperatures during warming- and cooling measurements. We also identify a meta-stable quenched state of ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ after fast-cooling process. Our study demonstrates the coexistence of competing CDW stacking in ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$, offering new insights in understanding the novel properties of this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05211v4-abstract-full').style.display = 'none'; document.getElementById('2201.05211v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, L012032 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03415">arXiv:2201.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03415">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP00179A">10.1039/D2CP00179A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge doping to flat AgF2 monolayers in a chemical capacitor setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jezierski%2C+D">Daniel Jezierski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grzelak%2C+A">Adam Grzelak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">XiaoQiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S+K">Shishir Kumar Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gastiasoro%2C+M+N">Maria N. Gastiasoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lorenzana%2C+J">Jos茅 Lorenzana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grochala%2C+W">Wojciech Grochala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03415v1-abstract-short" style="display: inline;"> Flat monolayers of silver II fluoride, which could be obtained by epitaxial deposition on an appropriate substrate, have been recently predicted to exhibit very strong antiferromagnetic superexchange and to have large potential for ambient pressure superconductivity if doped to an optimal level. It was shown that AgF2 could become a magnetic glue based superconductor with a critical superconductin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03415v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03415v1-abstract-full" style="display: none;"> Flat monolayers of silver II fluoride, which could be obtained by epitaxial deposition on an appropriate substrate, have been recently predicted to exhibit very strong antiferromagnetic superexchange and to have large potential for ambient pressure superconductivity if doped to an optimal level. It was shown that AgF2 could become a magnetic glue based superconductor with a critical superconducting temperature approaching 200 K at optimum doping. In the current work we calculate the optimum doping to correspond to 14% of holes per formula unit, i.e. quite similar to that for oxocuprates II. Furthermore, using DFT calculations we show that flat AgF2 single layers can indeed be doped to a controlled extent using a recently proposed chemical capacitor setup. Hole doping associated with formation of Ag III proves to be difficult to achieve in the setup explored in this work as it falls at verge of charge stability of fluoride anions and does not affect the d x2 minus y2 manifold . However, in the case of electron doping, manipulation of different factors, such as number of dopant layers and the thickness of the separator, permits fine tuning of the doping level - and concomitantly TC - all the way from underdoped to overdoped regime (in a similar manner as chemical doping for the Nd2CuO4 analogue). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03415v1-abstract-full').style.display = 'none'; document.getElementById('2201.03415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. 24, 15705 (2022) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Feng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10