CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–18 of 18 results for author: <span class="mathjax">Bastiaans, K M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Bastiaans%2C+K+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bastiaans, K M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bastiaans%2C+K+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bastiaans, K M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15928">arXiv:2409.15928</a> <span> [<a href="https://arxiv.org/pdf/2409.15928">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Equivalence of pseudogap and pairing energy in a cuprate high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Larrazabal%2C+M+O">Maialen Ortego Larrazabal</a>, <a href="/search/cond-mat?searchtype=author&query=Gozlinski%2C+T">Thomas Gozlinski</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+Y">Yudai Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Swart%2C+I">Ingmar Swart</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15928v1-abstract-short" style="display: inline;"> The pseudogap stands out in the phase diagram of the cuprate high-temperature superconductors because its origin and relationship to superconductivity remain elusive. The origin of the pseudogap has been debated, with competing hypotheses attributing it to preformed electron pairs or local order, such as charge density waves. Here, we present unambiguous evidence supporting the pairing scenario, u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15928v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15928v1-abstract-full" style="display: none;"> The pseudogap stands out in the phase diagram of the cuprate high-temperature superconductors because its origin and relationship to superconductivity remain elusive. The origin of the pseudogap has been debated, with competing hypotheses attributing it to preformed electron pairs or local order, such as charge density waves. Here, we present unambiguous evidence supporting the pairing scenario, using local shot-noise spectroscopy measurements in Bi2Sr2CaCu2O8+未. Our data demonstrates that the pseudogap energy coincides with the onset of electron pairing, and is spatially heterogeneous with values reaching up to 70 meV. Our results exclude a pure local order origin of the pseudogap, link the pseudogap to Cooper pair formation, and show that the limiting factor for higher Tc in cuprates is phase coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15928v1-abstract-full').style.display = 'none'; document.getElementById('2409.15928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures and Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16598">arXiv:2408.16598</a> <span> [<a href="https://arxiv.org/pdf/2408.16598">pdf</a>, <a href="https://arxiv.org/format/2408.16598">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Signatures of Amorphous Shiba State in FeTe$_{0.55}$Se$_{0.45}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jinwon Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Sanghun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&query=Paaske%2C+J">Jens Paaske</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16598v1-abstract-short" style="display: inline;"> The iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$ is a peculiar material: it hosts a surface state with a Dirac dispersion, is a putative topological superconductor hosting Majorana modes in vortices, and has an unusually low Fermi energy. The superconducting state is generally thought to be characterized by three gaps in different bands, with the usual homogenous, spatially extended Bogoliub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16598v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16598v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16598v1-abstract-full" style="display: none;"> The iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$ is a peculiar material: it hosts a surface state with a Dirac dispersion, is a putative topological superconductor hosting Majorana modes in vortices, and has an unusually low Fermi energy. The superconducting state is generally thought to be characterized by three gaps in different bands, with the usual homogenous, spatially extended Bogoliubov excitations -- in this work, we uncover evidence that it is instead of a very different nature. Our scanning tunneling spectroscopy data shows several peaks in the density of states above a full gap, and by analyzing the spatial and junction-resistance dependence of the peaks, we conclude that the peaks above the first one are not coherence peaks from different bands. Instead, comparisons with our simulations indicate that they originate from generalized Shiba states that are spatially overlapping. This can lead to an amorphous state of Bogoliubov quasiparticles, reminiscent of impurity bands in semiconductors. We discuss the origin and implications of this new state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16598v1-abstract-full').style.display = 'none'; document.getElementById('2408.16598v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05716">arXiv:2310.05716</a> <span> [<a href="https://arxiv.org/pdf/2310.05716">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0240672">10.1063/5.0240672 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct visualization of quasiparticle concentration around superconducting vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Larrazabal%2C+M+O">Maialen Ortego Larrazabal</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05716v3-abstract-short" style="display: inline;"> Bogoliubov quasiparticles play a crucial role in understanding the behavior of a superconductor, and in achieving reliable operations of superconducting quantum circuits. Diagnosis of quasiparticle poisoning at the nanoscale provides invaluable benefits in designing superconducting qubits. Here, we use scanning tunneling noise microscopy to locally quantify quasiparticles by measuring the effectiv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05716v3-abstract-full').style.display = 'inline'; document.getElementById('2310.05716v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05716v3-abstract-full" style="display: none;"> Bogoliubov quasiparticles play a crucial role in understanding the behavior of a superconductor, and in achieving reliable operations of superconducting quantum circuits. Diagnosis of quasiparticle poisoning at the nanoscale provides invaluable benefits in designing superconducting qubits. Here, we use scanning tunneling noise microscopy to locally quantify quasiparticles by measuring the effective charge. Using the vortex lattice as a model system, we directly visualize the spatial variation of the quasiparticle concentration around superconducting vortices, which can be described within the Ginzburg-Landau framework. This shows a direct, noninvasive approach for the atomic-scale detection of relative quasiparticle concentration as small as 10^-4 in various superconducting qubit systems. Our results alert of a quick increase in quasiparticle concentration with decreasing intervortex distance in vortex-based Majorana qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05716v3-abstract-full').style.display = 'none'; document.getElementById('2310.05716v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02397">arXiv:2306.02397</a> <span> [<a href="https://arxiv.org/pdf/2306.02397">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.076001">10.1103/PhysRevLett.132.076001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Why shot noise does not generally detect pairing in mesoscopic superconducting tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jianfeng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Tomar%2C+R">Ruchi Tomar</a>, <a href="/search/cond-mat?searchtype=author&query=Jesudasan%2C+J">John Jesudasan</a>, <a href="/search/cond-mat?searchtype=author&query=Raychaudhuri%2C+P">Pratap Raychaudhuri</a>, <a href="/search/cond-mat?searchtype=author&query=Karrer%2C+M">Max Karrer</a>, <a href="/search/cond-mat?searchtype=author&query=Kleiner%2C+R">Reinhold Kleiner</a>, <a href="/search/cond-mat?searchtype=author&query=Koelle%2C+D">Dieter Koelle</a>, <a href="/search/cond-mat?searchtype=author&query=Barbier%2C+A">Arnaud Barbier</a>, <a href="/search/cond-mat?searchtype=author&query=Driessen%2C+E+F+C">Eduard F. C. Driessen</a>, <a href="/search/cond-mat?searchtype=author&query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02397v2-abstract-short" style="display: inline;"> The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot noise spectroscopy thus enables, in principle, to determine the effective charge q of the charge carriers that tunnel. This can be used to detect electron pairing in superconductors:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02397v2-abstract-full').style.display = 'inline'; document.getElementById('2306.02397v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02397v2-abstract-full" style="display: none;"> The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot noise spectroscopy thus enables, in principle, to determine the effective charge q of the charge carriers that tunnel. This can be used to detect electron pairing in superconductors: in the normal state, the noise corresponds to single electron tunneling (q = 1e), while in the paired state, the noise corresponds to q = 2e. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q = 1e. We show that transparency can control the shot noise and this q = 1e is due to the large number of tunneling channels with each having very low transparency. Our results indicate that in typical mesoscopic superconducting junctions one should expect q = 1e noise, and lead to design guidelines for junctions that allow the detection of electron pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02397v2-abstract-full').style.display = 'none'; document.getElementById('2306.02397v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 076001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10346">arXiv:2205.10346</a> <span> [<a href="https://arxiv.org/pdf/2205.10346">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39109-w">10.1038/s41467-023-39109-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-electron charge transfer into putative Majorana and trivial modes in individual vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10346v2-abstract-short" style="display: inline;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10346v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10346v2-abstract-full" style="display: none;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling process into vortex bound states in the conventional superconductor NbSe2, and in the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibits charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 exclude the possibility of Yu-Shiba-Rusinov states and are consistent with both Majorana bound states and trivial vortex bound states. Our results open an avenue for investigating the exotic states in vortex cores and for future Majorana devices, although further theoretical investigations involving charge dynamics and superconducting tips are necessary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'none'; document.getElementById('2205.10346v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, and 16 pages for supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3341 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09740">arXiv:2205.09740</a> <span> [<a href="https://arxiv.org/pdf/2205.09740">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01497-1">10.1038/s41563-023-01497-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Puddle formation, persistent gaps, and non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+未 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Vervloet%2C+A">Amber Vervloet</a>, <a href="/search/cond-mat?searchtype=author&query=Smit%2C+S">Steef Smit</a>, <a href="/search/cond-mat?searchtype=author&query=van+Heumen%2C+E">Erik van Heumen</a>, <a href="/search/cond-mat?searchtype=author&query=Golden%2C+M+S">Mark S. Golden</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yingkai Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Kondo%2C+T">Takeshi Kondo</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Y">Yi Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffman%2C+J+E">Jennifer E. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&query=Sulangi%2C+M+A">Miguel Antonio Sulangi</a>, <a href="/search/cond-mat?searchtype=author&query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09740v1-abstract-short" style="display: inline;"> The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to ze… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09740v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09740v1-abstract-full" style="display: none;"> The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero[2], in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+未 high-temperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix[3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09740v1-abstract-full').style.display = 'none'; document.getElementById('2205.09740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 703-709 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08535">arXiv:2101.08535</a> <span> [<a href="https://arxiv.org/pdf/2101.08535">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abe3987">10.1126/science.abe3987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above $T_{C}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&query=van+Ruitenbeek%2C+J+M">Jan M. van Ruitenbeek</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=de+Visser%2C+P+J">Pieter J. de Visser</a>, <a href="/search/cond-mat?searchtype=author&query=Thoen%2C+D+J">David J. Thoen</a>, <a href="/search/cond-mat?searchtype=author&query=Driessen%2C+E+F+C">Eduard F. C. Driessen</a>, <a href="/search/cond-mat?searchtype=author&query=Klapwijk%2C+T+M">Teunis M. Klapwijk</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08535v1-abstract-short" style="display: inline;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08535v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08535v1-abstract-full" style="display: none;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical temperature $T_{C}$ in the disordered superconductor titanium nitride, by observing a clear enhancement in the shot noise that is equivalent to a change of the effective charge from 1 to 2 electron charges. We further show that spectroscopic gap fills up rather than closes when increasing temperature. Our results thus demonstrate the existence of a novel state above $T_{C}$ that, much like an ordinary metal, has no (pseudo)gap, but carries charge via paired electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'none'; document.getElementById('2101.08535v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 608 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12840">arXiv:2006.12840</a> <span> [<a href="https://arxiv.org/pdf/2006.12840">pdf</a>, <a href="https://arxiv.org/format/2006.12840">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-20529-x">10.1038/s41467-020-20529-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially dispersing Yu-Shiba-Rusinov states in the unconventional superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Steffensen%2C+G+O">Gorm O. Steffensen</a>, <a href="/search/cond-mat?searchtype=author&query=Bouwmeester%2C+D">Damian Bouwmeester</a>, <a href="/search/cond-mat?searchtype=author&query=Akbari%2C+A">Alireza Akbari</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Paaske%2C+J">Jens Paaske</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12840v1-abstract-short" style="display: inline;"> By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which ena… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12840v1-abstract-full').style.display = 'inline'; document.getElementById('2006.12840v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12840v1-abstract-full" style="display: none;"> By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which enables us to show that impurity states can be tuned through the Fermi level with varying tip-sample distance. We find that the impurity state is of the Yu-Shiba-Rusinov (YSR) type, and argue that the energy shift is caused by the low superfluid density in $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, which allows the electric field of the tip to slightly penetrate the sample. We model the newly introduced tip-gating scenario within the single-impurity Anderson model and find good agreement to the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12840v1-abstract-full').style.display = 'none'; document.getElementById('2006.12840v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 298 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05808">arXiv:1907.05808</a> <span> [<a href="https://arxiv.org/pdf/1907.05808">pdf</a>, <a href="https://arxiv.org/format/1907.05808">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.104506">10.1103/PhysRevB.100.104506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging doubled shot noise in a Josephson scanning tunneling microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Leeuwenhoek%2C+M">M. Leeuwenhoek</a>, <a href="/search/cond-mat?searchtype=author&query=Koks%2C+C">C. Koks</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05808v1-abstract-short" style="display: inline;"> We have imaged the current noise with atomic resolution in a Josephson scanning tunneling microscope with a Pb-Pb junction. By measuring the current noise as a function of applied bias, we reveal the change from single electron tunneling above the superconducting gap energy to double electron charge transfer below the gap energy when Andreev processes become dominant. Our spatially resolved noise… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05808v1-abstract-full').style.display = 'inline'; document.getElementById('1907.05808v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05808v1-abstract-full" style="display: none;"> We have imaged the current noise with atomic resolution in a Josephson scanning tunneling microscope with a Pb-Pb junction. By measuring the current noise as a function of applied bias, we reveal the change from single electron tunneling above the superconducting gap energy to double electron charge transfer below the gap energy when Andreev processes become dominant. Our spatially resolved noise maps show that this doubling occurs homogeneously on the surface, also on impurity locations, demonstrating that indeed the charge pairing is not influenced by disruptions in the superconductor smaller than the superconducting coherence length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05808v1-abstract-full').style.display = 'none'; document.getElementById('1907.05808v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 104506 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00149">arXiv:1901.00149</a> <span> [<a href="https://arxiv.org/pdf/1901.00149">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1408-8">10.1038/s41586-019-1408-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A strongly inhomogeneous superfluid in an iron-based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00149v1-abstract-short" style="display: inline;"> Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00149v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00149v1-abstract-full" style="display: none;"> Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that this inhomogeneity in the superfluid density is not caused by structural disorder or strong inter-pocket scattering, and does not correlate with variations in Cooper pair-breaking gap. Instead, we see a clear spatial correlation between superfluid density and quasiparticle strength, putting the iron-based superconductors on equal footing with the cuprates and demonstrating that locally, the quasiparticles are sharpest when the superconductivity is strongest. When repeated at different temperatures, our technique could further help elucidate what local and global mechanisms limit the critical temperature in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00149v1-abstract-full').style.display = 'none'; document.getElementById('1901.00149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 571, 541 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09727">arXiv:1810.09727</a> <span> [<a href="https://arxiv.org/pdf/1810.09727">pdf</a>, <a href="https://arxiv.org/format/1810.09727">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5064442">10.1063/1.5064442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Definition of design guidelines, construction and performance of an ultra-stable scanning tunneling microscope for spectroscopic imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Verdoes%2C+G">Gijsbert Verdoes</a>, <a href="/search/cond-mat?searchtype=author&query=van+Oosten%2C+K">Kees van Oosten</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09727v1-abstract-short" style="display: inline;"> Spectroscopic-imaging scanning tunneling microscopy is a powerful technique to study quantum materials, with the ability to provide information about the local electronic structure with subatomic resolution. However, as most spectroscopic measurements are conducted without feedback to the tip, it is extremely sensitive to vibrations coming from the environment. This requires the use of laboratorie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09727v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09727v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09727v1-abstract-full" style="display: none;"> Spectroscopic-imaging scanning tunneling microscopy is a powerful technique to study quantum materials, with the ability to provide information about the local electronic structure with subatomic resolution. However, as most spectroscopic measurements are conducted without feedback to the tip, it is extremely sensitive to vibrations coming from the environment. This requires the use of laboratories with low-vibration facilities combined with a very rigid microscope construction. In this article, we report on the design and fabrication of an ultra-stable STM for spectroscopic-imaging measurements that operates in ultra high vacuum and at low temperatures (4 K). We perform finite element analysis calculations for the main components of the microscope in order to guide design choices towards higher stiffness and we choose sapphire as the main material of the STM head. By combining these two strategies, we construct a STM head with measured lowest resonant frequencies above f0=13 kHz for the coarse approach mechanism, a value three times higher than previously reported, and in good agreement with the calculations. With this, we achieve an average vibration level of $\sim$ 6 fm/sqrt(Hz), without a dedicated low-vibration lab. We demonstrate the microscope's performance with topographic and spectroscopic measurements on the correlated metal Sr2RhO4, showing the quasiparticle interference pattern in real and reciprocal space with high signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09727v1-abstract-full').style.display = 'none'; document.getElementById('1810.09727v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 89, 123705 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09606">arXiv:1809.09606</a> <span> [<a href="https://arxiv.org/pdf/1809.09606">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0300-z">10.1038/s41567-018-0300-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge trapping and super-Poissonian noise centers in a cuprate high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">T. Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">I. Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Golden%2C+M+S">M. S. Golden</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+Q">Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Y. Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09606v1-abstract-short" style="display: inline;"> The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4. This anisotropy has been identified as one of the mysteries of the cuprates early on, and while widely different proposals exist for its microscopic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09606v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09606v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09606v1-abstract-full" style="display: none;"> The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4. This anisotropy has been identified as one of the mysteries of the cuprates early on, and while widely different proposals exist for its microscopic origin, little is known empirically on the microscopic scale. Here, we elucidate the properties of the insulating layers with a newly developed scanning noise spectroscopy technique that can spatially map not only the current but also the current fluctuations in time. We discover atomic-scale noise centers that exhibit MHz current fluctuations 40 times the expectation from Poissonian noise, more than what has been observed in mesoscopic systems. Such behaviour can only happen in highly polarizable insulators and represents strong evidence for trapping of charge in the charge reservoir layers. Our measurements suggest a picture of metallic layers separated by polarizable insulators within a three-dimensional superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09606v1-abstract-full').style.display = 'none'; document.getElementById('1809.09606v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 14, 1183 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00374">arXiv:1806.00374</a> <span> [<a href="https://arxiv.org/pdf/1806.00374">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5043267">10.1063/1.5043267 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplifier for scanning tunneling microscopy at MHz frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Benschop%2C+T">T. Benschop</a>, <a href="/search/cond-mat?searchtype=author&query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D+H">D. H. Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+Q">Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Y. Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00374v1-abstract-short" style="display: inline;"> Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of circa 1kHz around DC. Here, we develop, build and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00374v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00374v1-abstract-full" style="display: none;"> Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of circa 1kHz around DC. Here, we develop, build and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor (HEMT). The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e. at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00374v1-abstract-full').style.display = 'none'; document.getElementById('1806.00374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 89, 093709 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08620">arXiv:1712.08620</a> <span> [<a href="https://arxiv.org/pdf/1712.08620">pdf</a>, <a href="https://arxiv.org/format/1712.08620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6528/ab1c7f">10.1088/1361-6528/ab1c7f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanofabricated tips for device-based scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Leeuwenhoek%2C+M">Maarten Leeuwenhoek</a>, <a href="/search/cond-mat?searchtype=author&query=Norte%2C+R+A">Richard A. Norte</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6blacher%2C+S">Simon Gr枚blacher</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08620v2-abstract-short" style="display: inline;"> We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08620v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08620v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08620v2-abstract-full" style="display: none;"> We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08620v2-abstract-full').style.display = 'none'; document.getElementById('1712.08620v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology 30, 335702 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.08796">arXiv:1705.08796</a> <span> [<a href="https://arxiv.org/pdf/1705.08796">pdf</a>, <a href="https://arxiv.org/format/1705.08796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3762/bjnano.8.238">10.3762/bjnano.8.238 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tewari%2C+S">Sumit Tewari</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a>, <a href="/search/cond-mat?searchtype=author&query=van+Ruitenbeek%2C+J+M">Jan M. van Ruitenbeek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.08796v1-abstract-short" style="display: inline;"> Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, the control of the atomic-scale shape of STM tips remains a poorly solved problem. Here, we present a method for preparing tips {\it in-situ} and for ensuring the crystalline structure and reproducibly preparing tip structure up to the se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08796v1-abstract-full').style.display = 'inline'; document.getElementById('1705.08796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.08796v1-abstract-full" style="display: none;"> Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, the control of the atomic-scale shape of STM tips remains a poorly solved problem. Here, we present a method for preparing tips {\it in-situ} and for ensuring the crystalline structure and reproducibly preparing tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08796v1-abstract-full').style.display = 'none'; document.getElementById('1705.08796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages preprint-style; 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Beilstein Journal of Nanotechnology 8, 2389-2395 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04492">arXiv:1703.04492</a> <span> [<a href="https://arxiv.org/pdf/1703.04492">pdf</a>, <a href="https://arxiv.org/format/1703.04492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.235141">10.1103/PhysRevB.95.235141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Poor electronic screening in lightly doped Mott insulators observed with scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Fedoseev%2C+V">Vitaliy Fedoseev</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=de+la+Torre%2C+A">Alberto de la Torre</a>, <a href="/search/cond-mat?searchtype=author&query=Perry%2C+R+S">Robin S. Perry</a>, <a href="/search/cond-mat?searchtype=author&query=Baumberger%2C+F">Felix Baumberger</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04492v2-abstract-short" style="display: inline;"> The effective Mott gap measured by scanning tunneling microscopy (STM) in the lightly doped Mott insulator $(\rm{Sr}_{1 -x}\rm{La}_x)_2\rm{IrO}_4$ differs greatly from values reported by photoemission and optical experiments. Here, we show that this is a consequence of the poor electronic screening of the tip-induced electric field in this material. Such effects are well known from STM experiments… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04492v2-abstract-full').style.display = 'inline'; document.getElementById('1703.04492v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04492v2-abstract-full" style="display: none;"> The effective Mott gap measured by scanning tunneling microscopy (STM) in the lightly doped Mott insulator $(\rm{Sr}_{1 -x}\rm{La}_x)_2\rm{IrO}_4$ differs greatly from values reported by photoemission and optical experiments. Here, we show that this is a consequence of the poor electronic screening of the tip-induced electric field in this material. Such effects are well known from STM experiments on semiconductors, and go under the name of tip-induced band bending (TIBB). We show that this phenomenon also exists in the lightly doped Mott insulator $(\rm{Sr}_{1 -x}\rm{La}_x)_2\rm{IrO}_4$ and that, at doping concentrations of $x\leq 4 \%$, it causes the measured energy gap in the sample density of states to be bigger than the one measured with other techniques. We develop a model able to retrieve the intrinsic energy gap leading to a value which is in rough agreement with other experiments, bridging the apparent contradiction. At doping $x \approx 5 \%$ we further observe circular features in the conductance layers that point to the emergence of a significant density of free carriers in this doping range, and to the presence of a small concentration of donor atoms. We illustrate the importance of considering the presence of TIBB when doing STM experiments on correlated-electron systems and discuss the similarities and differences between STM measurements on semiconductors and lightly doped Mott insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04492v2-abstract-full').style.display = 'none'; document.getElementById('1703.04492v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 235141 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.08343">arXiv:1604.08343</a> <span> [<a href="https://arxiv.org/pdf/1604.08343">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3894">10.1038/nphys3894 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality of pseudogap and emergent order in lightly doped Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Fedoseev%2C+V">Vitaly Fedoseev</a>, <a href="/search/cond-mat?searchtype=author&query=de+la+Torre%2C+A">Alberto de la Torre</a>, <a href="/search/cond-mat?searchtype=author&query=Iliopoulos%2C+N">Nikolaos Iliopoulos</a>, <a href="/search/cond-mat?searchtype=author&query=Tamai%2C+A">Anna Tamai</a>, <a href="/search/cond-mat?searchtype=author&query=Hunter%2C+E+C">Emily C. Hunter</a>, <a href="/search/cond-mat?searchtype=author&query=Perry%2C+R+S">Robin S. Perry</a>, <a href="/search/cond-mat?searchtype=author&query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&query=Baumberger%2C+F">Felix Baumberger</a>, <a href="/search/cond-mat?searchtype=author&query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.08343v2-abstract-short" style="display: inline;"> It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08343v2-abstract-full').style.display = 'inline'; document.getElementById('1604.08343v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.08343v2-abstract-full" style="display: none;"> It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08343v2-abstract-full').style.display = 'none'; document.getElementById('1604.08343v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version contains the supplementary information and small updates on figures and text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 13, 21 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.04238">arXiv:1603.04238</a> <span> [<a href="https://arxiv.org/pdf/1603.04238">pdf</a>, <a href="https://arxiv.org/format/1603.04238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.6.014007">10.1103/PhysRevApplied.6.014007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wagenaar%2C+J+J+T">J. J. T. Wagenaar</a>, <a href="/search/cond-mat?searchtype=author&query=Haan%2C+A+M+J+d">A. M. J. den Haan</a>, <a href="/search/cond-mat?searchtype=author&query=de+Voogd%2C+J+M">J. M. de Voogd</a>, <a href="/search/cond-mat?searchtype=author&query=Bossoni%2C+L">L. Bossoni</a>, <a href="/search/cond-mat?searchtype=author&query=de+Jong%2C+T+A">T. A. de Jong</a>, <a href="/search/cond-mat?searchtype=author&query=de+Wit%2C+M">M. de Wit</a>, <a href="/search/cond-mat?searchtype=author&query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&query=Thoen%2C+D+J">D. J. Thoen</a>, <a href="/search/cond-mat?searchtype=author&query=Endo%2C+A">A. Endo</a>, <a href="/search/cond-mat?searchtype=author&query=Klapwijk%2C+T+M">T. M. Klapwijk</a>, <a href="/search/cond-mat?searchtype=author&query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&query=Oosterkamp%2C+T+H">T. H. Oosterkamp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.04238v2-abstract-short" style="display: inline;"> Nuclear spin-lattice relaxation times are measured on copper using magnetic resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04238v2-abstract-full').style.display = 'inline'; document.getElementById('1603.04238v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.04238v2-abstract-full" style="display: none;"> Nuclear spin-lattice relaxation times are measured on copper using magnetic resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators and other strongly correlated electron systems such as high-Tc superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04238v2-abstract-full').style.display = 'none'; document.getElementById('1603.04238v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We revised the manuscript by including the supplemental material. The manuscript is changed from a Letter to a Research Article after change of journal</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>