CINXE.COM

(PDF) Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series | Gyorgy Gat - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="hpGobNkIKglYvkj9MAhreH/Q6EgXwKKmAkIrrgqp5uzkIhxtz2MfxBwR7f9wcV+qjoe6+IwpJg9afm+ERLOIRQ==" /> <meta name="citation_title" content="Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series" /> <meta name="citation_publication_date" content="2014/01/01" /> <meta name="citation_journal_title" content="Analysis Mathematica" /> <meta name="citation_author" content="Gyorgy Gat" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series" /> <meta name="twitter:title" content="Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series" /> <meta name="twitter:description" content="In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L" /> <meta name="twitter:image" content="https://0.academia-photos.com/32476274/18444977/18396189/s200_gyorgy.gat.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series" /> <meta property="og:title" content="Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L" /> <meta property="article:author" content="https://unideb.academia.edu/GyorgyGat" /> <meta name="description" content="In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L" /> <title>(PDF) Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series | Gyorgy Gat - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '3180645286f3c9e536897c9e222337a6555bcffe'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734487279000); window.Aedu.timeDifference = new Date().getTime() - 1734487279000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Gyorgy Gat"}],"contributor":[],"dateCreated":"2022-01-20","datePublished":"2014-01-01","headline":"Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series","image":"https://attachments.academia-assets.com/79223376/thumbnails/1.jpg","inLanguage":"en","keywords":["Mathematics","Pure Mathematics"],"publication":"Analysis Mathematica","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Springer Nature"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"unideb"}],"thumbnailUrl":"https://attachments.academia-assets.com/79223376/thumbnails/1.jpg","url":"https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "26a62192aaa17783cb3349a908787526024ccf66bdb42e0b9d0f6ee7a23b6fca", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ZjWN3dfS7qOHKsJ0VYE3Ji/IGGnPUw/ps90LwWftSFIEhjncwbnbbsOFZ3YV+AP03p9K2VS6i0Dr4U/rKfcm+w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="6rmuuXQIZvLLFDOIcAtgQgsCMXz3wRpj4+gj7teQBNWIChq4YmNTP4+7loowclSQ+lVjzGwonsq71GfEmYpqfA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><button class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{&quot;location&quot;:&quot;login-button--header&quot;}" rel="nofollow">Log In</button><button class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{&quot;location&quot;:&quot;signup-button--header&quot;}" rel="nofollow">Sign Up</button><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-3f6c8d93606e71610593edcc4a66814b5eb01028a2b32194979a5b0c3df849c2.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 32476274; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F68924074%2FAlmost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F68924074%2FAlmost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":79223376,"identifier":"Attachment_79223376","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":68924074,"created_at":"2022-01-20T22:06:04.097-08:00","from_world_paper_id":192735806,"updated_at":"2024-11-25T03:18:28.023-08:00","_data":{"publisher":"Springer Nature","grobid_abstract":"In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L log L and 0 \u003c p ≤ 2. From the theorem of Getsadze [6] it follows that the space L log L can not be enlarged with preserving this strong summability property.","publication_date":"2014,,","publication_name":"Analysis Mathematica","grobid_abstract_attachment_id":"79223376"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [32476274]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:79223376,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/79223376/mini_magick20220120-19692-9axd3n.png?1642745762" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat"><img alt="Profile image of Gyorgy Gat" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/32476274/18444977/18396189/s65_gyorgy.gat.jpg" />Gyorgy Gat</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2014, Analysis Mathematica</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">19 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 68924074; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=68924074"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L log L and 0 &lt; p ≤ 2. From the theorem of Getsadze [6] it follows that the space L log L can not be enlarged with preserving this strong summability property.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:79223376,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:79223376,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="79223376" data-landing_url="https://www.academia.edu/68924074/Almost_everywhere_strong_summability_of_Marcinkiewicz_means_of_double_Walsh_Fourier_series" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="110444322" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series">Almost everywhere strong summability of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Contemporary Mathematical Analysis, 2015</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation (1 n n−1 m=0 |Smmf − f | p) 1/p → 0 for every two-dimensional functions belonging to L log L and 0 &lt; p ≤ 2. From the theorem of Getsadze [6] it follows that the space L log L can not be enlarged with preserving this strong summability property.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost everywhere strong summability of double Walsh-Fourier series&quot;,&quot;attachmentId&quot;:108260131,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="68924008" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series">Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2006</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the logarithmic means of the double Walsh-Fourier series do not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of L log L(I 2), the set of functions for which quadratic logarithmic means of the double Walsh-Fourier series converge in measure is of first Baire category.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Convergence in measure of logarithmic means of quadratical partial sums of double Walsh–Fourier series&quot;,&quot;attachmentId&quot;:79223354,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924008/Convergence_in_measure_of_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="65305605" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65305605/Strong_Approximation_by_Marcinkiewicz_Means_of_Two_dimensional_Walsh_Fourier_Series">Strong Approximation by Marcinkiewicz Means of Two-dimensional Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="63716633" href="https://independent.academia.edu/LevanGogoladze">Levan Gogoladze</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Constructive Approximation, 2012</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper we study the exponential uniform strong approximation of Marcinkiewicz type of two-dimensional Walsh-Kaczmarz-Fourier series. In particular, it is proved that the Marcinkiewicz type of two-dimensional Walsh-Kaczmarz-Fourier series of the continuous function f is uniformly strong summable to the function f exponentially in the power 1/2. Moreover, it is proved that this result is best possible.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Strong Approximation by Marcinkiewicz Means of Two-dimensional Walsh-Fourier Series&quot;,&quot;attachmentId&quot;:76962348,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/65305605/Strong_Approximation_by_Marcinkiewicz_Means_of_Two_dimensional_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65305605/Strong_Approximation_by_Marcinkiewicz_Means_of_Two_dimensional_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="68924097" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series">Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Publicationes Mathematicae, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Fourier series is of weak type (1, 1) provided that the supremum in the maximal operator is taken over special indicies. The set of Walsh polynomials is dense in L 1 (I × I) , so by the well-known density argument we have that t 2 n f x 1 , x 2 → f x 1 , x 2 a. e. for all integrable two-variable function f .</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223359,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924097/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_quadratical_partial_sums_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="68924085" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series">A remark on the divergence of strong power means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical Notes, 2014</p><p class="ds-related-work--abstract ds2-5-body-sm">F. Schipp in 1969 proved almost everywhere p-strong summability of Walsh-Fourier series and if λ(n) → ∞ there exists a function f ∈ L 1 [0, 1) which Walsh partial sums S k (x, f) satisfy the divergence condition lim sup n→∞ 1 n n k=1 |S k (x, f)| λ(k) = ∞ almost everywhere on [0, 1). In the present paper we show that this condition may hold everywhere.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A remark on the divergence of strong power means of Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223443,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924085/A_remark_on_the_divergence_of_strong_power_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="110444351" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series">Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Fourier Analysis and Applications, 2017</p><p class="ds-related-work--abstract ds2-5-body-sm">In 1987 Harris proved [11]-among others-that for each 1 ≤ p &lt; 2 there exists a two-dimensional function f ∈ L p such that its triangular Walsh-Fourier series diverges almost everywhere. In this paper we investigate the Fejér (or (C, 1)) means of the triangle two variable Walsh-Fourier series of L 1 functions. Namely, we prove the a.e. convergence σ △ n f = 1 n n−1 k=0 S k,n−k f → f (n → ∞) for each integrable two-variable function f. 2010 Mathematics Subject Classification. 42C10.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series&quot;,&quot;attachmentId&quot;:108260147,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="68924048" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system">On almost everywhere convergence and divergence of Marcinkiewicz-like means of integrable functions with respect to the two-dimensional Walsh system</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Approximation Theory, 2012</p><p class="ds-related-work--abstract ds2-5-body-sm">Let |n| be the lower integer part of the binary logarithm of the positive integer n and α : N 2 → N 2. In this paper we generalize the notion of the two dimensional Marcinkiewicz means of Fourier series of two-variable integrable functions as t α n f := 1 n  n−1 k=0 S α(|n|,k) f and give a kind of necessary and sufficient condition for functions in order to have the almost everywhere relation t α n f → f for all f ∈ L 1 ([0, 1) 2) with respect to the Walsh-Paley system. The original version of the Marcinkiewicz means are defined by α(|n|, k) = (k, k) and discussed by a lot of authors. See for instance [13,</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On almost everywhere convergence and divergence of Marcinkiewicz-like means of integrable functions with respect to the two-dimensional Walsh system&quot;,&quot;attachmentId&quot;:79223064,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924048/On_almost_everywhere_convergence_and_divergence_of_Marcinkiewicz_like_means_of_integrable_functions_with_respect_to_the_two_dimensional_Walsh_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="6119563" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series">Strong means and the oscillation of multiple Fourier-Walsh series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="9266195" href="https://bakustate.academia.edu/VladimirRodin">Vladimir Rodin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical Notes, 1994</p><p class="ds-related-work--abstract ds2-5-body-sm">1. Using the method by Bochkarev, Kheladze proved [1] an analog of the Kolmogorov theorem on everywhere-divergent Fourier-Walsh-Paley series. Based on this result, it seems natural to use the apparatus of strong means to represent functions integrable on the group I-Ik Zk(2) = G.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Strong means and the oscillation of multiple Fourier-Walsh series&quot;,&quot;attachmentId&quot;:49010905,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/6119563/Strong_means_and_the_oscillation_of_multiple_Fourier_Walsh_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="68924106" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series">Maximal Convergence Space of a Subsequence of the Logarithmic Means of Rectangular Partial Sums of Double Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Real Analysis Exchange</p><p class="ds-related-work--abstract ds2-5-body-sm">The main aim of this paper is to prove that the maximal operator of the logarithmic means of rectangular partial sums of double Walsh-Fourier series is of type (H # , L 1) provided that the supremum in the maximal operator is taken over some special indicies. The set of Walsh polynomials is dense in H # , so by the well-known density argument we have that t 2 n ,2 m f x 1 , x 2 → f x 1 , x 2 a. e. as m, n → ∞ for all f ∈ H # (⊃ L log + L). We also prove the sharpness of this result. Namely, For all measurable function δ : [0, +∞) → [0, +∞), lim t→∞ δ(t) = 0 we have a function f such as f ∈ Llog + Lδ(L) and the two-dimensional Nörlund logarithmic means does not converge to f a.e. (in the Pringsheim sense) on I 2 .</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Maximal Convergence Space of a Subsequence of the Logarithmic Means of Rectangular Partial Sums of Double Walsh-Fourier Series&quot;,&quot;attachmentId&quot;:79223372,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/68924106/Maximal_Convergence_Space_of_a_Subsequence_of_the_Logarithmic_Means_of_Rectangular_Partial_Sums_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="21953862" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series">Cesaro Summability of Double Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43203026" href="https://independent.academia.edu/FerencSchipp">Ferenc Schipp</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Transactions of the American Mathematical Society, 1992</p><p class="ds-related-work--abstract ds2-5-body-sm">We introduce Quasi-local operators (these include operators of Calderon-Zygmund type), a hybrid Hardy space H# of functions of two variables, and we obtain sufficient conditions for a Quasi-local maximal operator to be of weak type (&quot;, I). As an application, we show that Cesaro means of the double Walsh-Fourier series of a function f converge a.e. when f belongs to H#. We also obtain the dyadic analogue of a summability result of Marcienkiewicz and Zygmund valid for all fELl provided summability takes place in some positive cone.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Cesaro Summability of Double Walsh-Fourier Series&quot;,&quot;attachmentId&quot;:42674062,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/21953862/Cesaro_Summability_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:79223376,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:79223376,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_79223376" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="68924086" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series">On everywhere divergence of the strong Φ-means of Walsh–Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On everywhere divergence of the strong Φ-means of Walsh–Fourier series&quot;,&quot;attachmentId&quot;:79223537,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="68924076" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series">On the $(C,\alpha)$-means of quadratic partial sums of double Walsh-Kaczmarz-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Georgian Mathematical Journal</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the $(C,\\alpha)$-means of quadratic partial sums of double Walsh-Kaczmarz-Fourier series&quot;,&quot;attachmentId&quot;:79223212,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924076/On_the_C_alpha_means_of_quadratic_partial_sums_of_double_Walsh_Kaczmarz_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="68923995" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series">On the divergence of the (C, 1) means of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the divergence of the (C, 1) means of double Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223023,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923995/On_the_divergence_of_the_C_1_means_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="68924006" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system">On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system&quot;,&quot;attachmentId&quot;:79223203,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924006/On_the_Marcinkiewicz_Fej%C3%A9r_means_of_double_Fourier_series_with_respect_to_the_Walsh_Kaczmarz_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="110444339" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series">On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On everywhere divergence of the strong $\\Phi$-means of Walsh-Fourier series&quot;,&quot;attachmentId&quot;:108260144,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="68924094" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series">Uniform and $L$-convergence of logarithmic means of cubical partial sums of double Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Uniform and $L$-convergence of logarithmic means of cubical partial sums of double Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223452,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924094/Uniform_and_L_convergence_of_logarithmic_means_of_cubical_partial_sums_of_double_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="68924070" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924070/Triangular_Fej%C3%A9r_summability_of_two_dimensional_Walsh_Fourier_series">Triangular Fejér summability of two-dimensional Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Analysis Mathematica, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Triangular Fejér summability of two-dimensional Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223382,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924070/Triangular_Fej%C3%A9r_summability_of_two_dimensional_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924070/Triangular_Fej%C3%A9r_summability_of_two_dimensional_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="68924061" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series">Uniform and 𝐿-Convergence of Logarithmic Means of Double Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Uniform and 𝐿-Convergence of Logarithmic Means of Double Walsh–Fourier Series&quot;,&quot;attachmentId&quot;:79223039,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924061/Uniform_and_L_Convergence_of_Logarithmic_Means_of_Double_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="68924007" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series">Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223200,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924007/Divergence_of_the_C_1_means_of_d_dimensional_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="68923982" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series">Uniform and L–convergence of Logarithmic Means of Walsh–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Uniform and L–convergence of Logarithmic Means of Walsh–Fourier Series&quot;,&quot;attachmentId&quot;:79223055,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923982/Uniform_and_L_convergence_of_Logarithmic_Means_of_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="68923986" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series">Convergence of logarithmic means of multiple Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Analysis in Theory and Applications, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Convergence of logarithmic means of multiple Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79222978,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923986/Convergence_of_logarithmic_means_of_multiple_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="14524342" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results">Absolute convergence of double Walsh–Fourier series and related results</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33480643" href="https://independent.academia.edu/FerencM%C3%B3ricz">Ferenc Móricz</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33525817" href="https://independent.academia.edu/AntalVeres">Antal Veres</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Hungarica, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Absolute convergence of double Walsh–Fourier series and related results&quot;,&quot;attachmentId&quot;:44092452,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14524342/Absolute_convergence_of_double_Walsh_Fourier_series_and_related_results"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="5316802" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1">Lacunary Fourier and Walsh-Fourier series near L^1</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2000086" href="https://brown.academia.edu/FrancescoDiPlinio">Francesco Di Plinio</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Lacunary Fourier and Walsh-Fourier series near L^1&quot;,&quot;attachmentId&quot;:32479273,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5316802/Lacunary_Fourier_and_Walsh_Fourier_series_near_L_1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="68924066" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence">Summation of Walsh-Fourier Series, Convergence and Divergence</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Summation of Walsh-Fourier Series, Convergence and Divergence&quot;,&quot;attachmentId&quot;:79223038,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924066/Summation_of_Walsh_Fourier_Series_Convergence_and_Divergence"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="68923996" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923996/Pointwise_convergence_of_the_Cesaro_means_of_double_Walsh_series">Pointwise convergence of the Cesaro means of double Walsh series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1996</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Pointwise convergence of the Cesaro means of double Walsh series&quot;,&quot;attachmentId&quot;:79223033,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923996/Pointwise_convergence_of_the_Cesaro_means_of_double_Walsh_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923996/Pointwise_convergence_of_the_Cesaro_means_of_double_Walsh_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="68923984" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series">Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223364,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923984/Pointwise_convergence_of_cone_like_restricted_two_dimensional_Fej%C3%A9r_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="79991379" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79991379/Strong_convergence_theorem_of_Ces%C3%A0ro_means_with_respect_to_the_Walsh_system">Strong convergence theorem of Cesàro means with respect to the Walsh system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142093004" href="https://independent.academia.edu/Istv%C3%A1nBlahota">István Blahota</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Tohoku Mathematical Journal, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Strong convergence theorem of Cesàro means with respect to the Walsh system&quot;,&quot;attachmentId&quot;:86521281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79991379/Strong_convergence_theorem_of_Ces%C3%A0ro_means_with_respect_to_the_Walsh_system&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79991379/Strong_convergence_theorem_of_Ces%C3%A0ro_means_with_respect_to_the_Walsh_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="2724989" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series">A-Statistical Summability of Fourier Series and Walsh-Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="599035" href="https://amu-in.academia.edu/MMursaleen">M. Mursaleen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A-Statistical Summability of Fourier Series and Walsh-Fourier Series&quot;,&quot;attachmentId&quot;:30703109,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2724989/A_Statistical_Summability_of_Fourier_Series_and_Walsh_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="68924055" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series">Convergence in measure of logarithmic means of multiple Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Contemporary Mathematical Analysis, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Convergence in measure of logarithmic means of multiple Fourier series&quot;,&quot;attachmentId&quot;:79223357,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924055/Convergence_in_measure_of_logarithmic_means_of_multiple_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="126166702" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums">On the divergence of subsequences of partial Walsh-Fourier sums</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="298744359" href="https://independent.academia.edu/GiorgiOniani7">Giorgi Oniani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the divergence of subsequences of partial Walsh-Fourier sums&quot;,&quot;attachmentId&quot;:120085343,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/126166702/On_the_divergence_of_subsequences_of_partial_Walsh_Fourier_sums"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="68924112" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924112/Almost_Everywhere_Convergence_of_C_%CE%B1_Means_of_Quadratical_Partial_Sums_of_Double_Vilenkin_Fourier_Series">Almost Everywhere Convergence of (𝐶, α)-Means of Quadratical Partial Sums of Double Vilenkin–Fourier Series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">gmj</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost Everywhere Convergence of (𝐶, α)-Means of Quadratical Partial Sums of Double Vilenkin–Fourier Series&quot;,&quot;attachmentId&quot;:79223058,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924112/Almost_Everywhere_Convergence_of_C_%CE%B1_Means_of_Quadratical_Partial_Sums_of_Double_Vilenkin_Fourier_Series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924112/Almost_Everywhere_Convergence_of_C_%CE%B1_Means_of_Quadratical_Partial_Sums_of_Double_Vilenkin_Fourier_Series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="68923983" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series">On the divergence of Nörlund logarithmic means of Walsh-Fourier series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Sinica, English Series, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the divergence of Nörlund logarithmic means of Walsh-Fourier series&quot;,&quot;attachmentId&quot;:79223051,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923983/On_the_divergence_of_N%C3%B6rlund_logarithmic_means_of_Walsh_Fourier_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="79990993" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers">Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142093004" href="https://independent.academia.edu/Istv%C3%A1nBlahota">István Blahota</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Georgian Mathematical Journal, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers&quot;,&quot;attachmentId&quot;:86521090,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79990993/Almost_everywhere_convergence_of_a_subsequence_of_logarithmic_means_of_Fourier_series_on_the_group_of_2_adic_integers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="68923994" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68923994/On_C_1_summability_of_integrable_functions_with_respect_to_the_Walsh_Kaczmarz_system">On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system&quot;,&quot;attachmentId&quot;:79223049,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68923994/On_C_1_summability_of_integrable_functions_with_respect_to_the_Walsh_Kaczmarz_system&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68923994/On_C_1_summability_of_integrable_functions_with_respect_to_the_Walsh_Kaczmarz_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="68924109" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68924109/Almost_everywhere_C_alpha_beta_0_C_%CE%B1_%CE%B2_0_summability_of_the_Fourier_series_of_functions_on_the_2_adic_additive_group">Almost everywhere $${(C, \alpha, \beta &gt; 0)}$$ ( C , α , β &gt; 0 ) -summability of the Fourier series of functions on the 2-adic additive group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Acta Mathematica Hungarica</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Almost everywhere $${(C, \\alpha, \\beta \u003e 0)}$$ ( C , α , β \u003e 0 ) -summability of the Fourier series of functions on the 2-adic additive group&quot;,&quot;attachmentId&quot;:79223361,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68924109/Almost_everywhere_C_alpha_beta_0_C_%CE%B1_%CE%B2_0_summability_of_the_Fourier_series_of_functions_on_the_2_adic_additive_group&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68924109/Almost_everywhere_C_alpha_beta_0_C_%CE%B1_%CE%B2_0_summability_of_the_Fourier_series_of_functions_on_the_2_adic_additive_group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10