CINXE.COM
Gyorgy Gat | University of Debrecen - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Gyorgy Gat | University of Debrecen - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="IQ3OI710GnV4enmzDql6aheJMLo1+eGCqeFWJUKZtdgXZXa5yMDgQF62nScXkCcCFg96ykvKlcUYDgoaQH6g1A==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="gyorgy gat" /> <meta name="description" content="I am a mathematician interested in Fourier analysis of one and multivariable functions mainly with respect to the trigonometric, Walsh and Walsh-like systems." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277141968,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732395857000); window.Aedu.timeDifference = new Date().getTime() - 1732395857000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unideb.academia.edu/GyorgyGat" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat","photo":"https://0.academia-photos.com/32476274/18444977/18396189/s65_gyorgy.gat.jpg","has_photo":true,"department":{"id":575000,"name":"Institute of Mathematics","url":"https://unideb.academia.edu/Departments/Institute_of_Mathematics/Documents","university":{"id":1460,"name":"University of Debrecen","url":"https://unideb.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":58906,"name":"Fourier Analysis","url":"https://www.academia.edu/Documents/in/Fourier_Analysis"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unideb.academia.edu/GyorgyGat","location":"/GyorgyGat","scheme":"https","host":"unideb.academia.edu","port":null,"pathname":"/GyorgyGat","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-2cfff77f-96f0-475f-b442-066c756001f1"></div> <div id="ProfileCheckPaperUpdate-react-component-2cfff77f-96f0-475f-b442-066c756001f1"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Gyorgy Gat" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/32476274/18444977/18396189/s200_gyorgy.gat.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Gyorgy Gat</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unideb.academia.edu/">University of Debrecen</a>, <a class="u-tcGrayDarker" href="https://unideb.academia.edu/Departments/Institute_of_Mathematics/Documents">Institute of Mathematics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Gyorgy" data-follow-user-id="32476274" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32476274"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">13</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I am a mathematician interested in Fourier analysis of one and multivariable functions mainly with respect to the trigonometric, Walsh and Walsh-like systems.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32476274" href="https://www.academia.edu/Documents/in/Fourier_Analysis"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unideb.academia.edu/GyorgyGat","location":"/GyorgyGat","scheme":"https","host":"unideb.academia.edu","port":null,"pathname":"/GyorgyGat","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fourier Analysis"]}" data-trace="false" data-dom-id="Pill-react-component-9fc83175-29a7-47c2-8f8e-5abb0bae4c6d"></div> <div id="Pill-react-component-9fc83175-29a7-47c2-8f8e-5abb0bae4c6d"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Gyorgy Gat</h3></div><div class="js-work-strip profile--work_container" data-work-id="110444358"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems"><img alt="Research paper thumbnail of On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems" class="work-thumbnail" src="https://attachments.academia-assets.com/108260154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems">On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems</a></div><div class="wp-workCard_item"><span>Miskolc Mathematical Notes</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4210aa0f402c0915cfc022b85b007b6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260154,"asset_id":110444358,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444358"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444358"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444358; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444358]").text(description); $(".js-view-count[data-work-id=110444358]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444358; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444358']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444358, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4210aa0f402c0915cfc022b85b007b6" } } $('.js-work-strip[data-work-id=110444358]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444358,"title":"On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Miskolc Mathematical Notes"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems","translated_internal_url":"","created_at":"2023-12-03T06:26:40.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260154/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260154/3062-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=JbZe2hj90Kj3lpY7NHHiKT9GP7DSb0-zeyVFrKGp615EO9rRstxBe8hzlvj9eqRSmc~kgpn3FJG-AnOyt56TJCcPfVwnIxXsngGeUU9feTEitI0KZ7cGU29Sp80UrXVcZyCZIt2YTrLLmohLrvwpeCLRn1nhyhy0F~fOFfdo0whC9JUrYPQiIdDtnvVvTjdL9B0Tlqrva-FF5HOgFxe-xbnUJlH6sseMGBU66PQA6WrT28wNNnUqBndGEj8YPrHgef06RukqQv1jMmLlo9QX53saOzcDHBNCNVMm3r98Vp0YgDjKi4agDLybdKws8OZIznopU4LfG~jM0Rrv-TzGOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260154/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260154/3062-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=JbZe2hj90Kj3lpY7NHHiKT9GP7DSb0-zeyVFrKGp615EO9rRstxBe8hzlvj9eqRSmc~kgpn3FJG-AnOyt56TJCcPfVwnIxXsngGeUU9feTEitI0KZ7cGU29Sp80UrXVcZyCZIt2YTrLLmohLrvwpeCLRn1nhyhy0F~fOFfdo0whC9JUrYPQiIdDtnvVvTjdL9B0Tlqrva-FF5HOgFxe-xbnUJlH6sseMGBU66PQA6WrT28wNNnUqBndGEj8YPrHgef06RukqQv1jMmLlo9QX53saOzcDHBNCNVMm3r98Vp0YgDjKi4agDLybdKws8OZIznopU4LfG~jM0Rrv-TzGOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260155,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260155/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260155/download_file","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260155/3062-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=GGmJf-35UGIM~yBAytVE0uX-a60yA66MoyoKHDgAni~QzAQUQPe0TGQxNsreKTA~8eSA~RvFTFr6K6VzYDfXXMUr6kjHTarzTWYUIPll8ABO3dNUIGlzz7KWLxJy5qEwNG6RuqhaCRHNYR1wBOriJScmt52usTf-CfSdewWaNkVipuSEYGCcC7VkwX-RgWDTU0fSpYY3mv9kFYKmaE97QKU3ZOoxEQt9pK2LGmBLBoFwZ1d2sExvKX4lRcATwt5S7B7n2wLxD8zXuxQ~K7q6ar4rGJFn0aaAXRKBZEtEB5jgoP~O6LWk-if2Krsdv3vs3RAlw-btQc39uOaIlJNVMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":36348774,"url":"http://mat76.mat.uni-miskolc.hu/mnotes/download_article/3062.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260151/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series">Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series</a></div><div class="wp-workCard_item"><span>Facta universitatis. Series electronics and energetics</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="155c6df59d0f3f506b512bf16578d9b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260151,"asset_id":110444357,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444357]").text(description); $(".js-view-count[data-work-id=110444357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "155c6df59d0f3f506b512bf16578d9b2" } } $('.js-work-strip[data-work-id=110444357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444357,"title":"Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series","translated_title":"","metadata":{"publisher":"University of Niš","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Facta universitatis. Series electronics and energetics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:40.328-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260151,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260151/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260151/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=XB5TxELwckExDk9c3goemYZ8jpwQLSsccK5PMuY6mcmq~raTRXBqJcrAto1kJMtGlHI3LRDWWDbtl1uwgjDt~TBUlGkF3ha2-jtU7bQxfQZ0FLmJ9uFQZs6RBLyd22snepJ92IC0fh8~TBHvJuk62HtZyo2dJJ25DoMazgqgvy640k1V3vOFyJXeka6IMfZPh8gR0HqutDQZ0tAR~8um5wjQld4wFH0TZjVhgMSg02Qx~iu~l-3CwMJ2PfN4YVtonrUnjiln~-LAa~KwSzFGtZVMZS7auvMmG60no8VZMoV~DmvDaqNkKZHsXSXNrA9rfFDpu2GkK3NDgcvL6sGj2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260151,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260151/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260151/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=XB5TxELwckExDk9c3goemYZ8jpwQLSsccK5PMuY6mcmq~raTRXBqJcrAto1kJMtGlHI3LRDWWDbtl1uwgjDt~TBUlGkF3ha2-jtU7bQxfQZ0FLmJ9uFQZs6RBLyd22snepJ92IC0fh8~TBHvJuk62HtZyo2dJJ25DoMazgqgvy640k1V3vOFyJXeka6IMfZPh8gR0HqutDQZ0tAR~8um5wjQld4wFH0TZjVhgMSg02Qx~iu~l-3CwMJ2PfN4YVtonrUnjiln~-LAa~KwSzFGtZVMZS7auvMmG60no8VZMoV~DmvDaqNkKZHsXSXNrA9rfFDpu2GkK3NDgcvL6sGj2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260152/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260152/download_file","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260152/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=NxvjxPt7CvlAQxrySYVDHzydrgsowr0ZHyxGid2W~8HVoW19T5qd7Ny~a62i8O2Pq0az6XqfBXU9Xexwvq7ycOobBy-uSg170XRRzTs1TDRHy0abDE8AtNpOnOiKztgff1MQwnWd-H9LH82Mob9WxsvSx80neRXQU7nHR3rMAUXEUvwe0JaWTz5VqcCGz2wDYPC7P6Mx7bGO0MCjScPk27q~JUpyfGHmVo6QBxIT49yafz2jN-OwEYs7sLk-J6rUe3oSePM6Pw5qVTlTByPrVzbVUcuwq0tErcccSg1rh0xkFN64FwMpvBG1irbz~4DASsZzf7VmuhhE7yCtbL9kzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348773,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0353-36700803275G"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260150/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series">Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series</a></div><div class="wp-workCard_item"><span>Arabian Journal of Mathematics</span><span>, Dec 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bc430dd7e1be9248b15eb7ac92f8b3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260150,"asset_id":110444355,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444355]").text(description); $(".js-view-count[data-work-id=110444355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444355, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bc430dd7e1be9248b15eb7ac92f8b3f" } } $('.js-work-strip[data-work-id=110444355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444355,"title":"Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":29,"month":12,"year":2021,"errors":{}},"publication_name":"Arabian Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:40.117-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260150,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260150/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260150/s40065-021-00356-8-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=V-xkz7BmvD~xrnbyb41chXoVlexGwuby8lBX3Z51PJfrLj5ptCzhrH4xUUiRKIRx--8X9fsWIGGVLjDjFB6sOt-1mhv7BSfr-Ccqa8hp-prytaQYAY6b5mai46haK1Mvg9bob91c0FHI7zK1wP4k4cb9jjM34IYqlJPtgHtJFSYFgBAYSaqaBTJBxIesHJat49MdAYTp7sK56URyQmEf~79jx434h8E7lkNvKbEBowrmYGxOtNuYAphD~cy6nD69vtf6N46Q3TiyLARIyMBTDpZPIWwCrJN4zD7XxZ-W~hn0dlZGfTd1NmoeR5E67-unJ349LUozMSLo952C6WXrCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_convergence_and_divergence_of_Cesàro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260150,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260150/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260150/s40065-021-00356-8-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=V-xkz7BmvD~xrnbyb41chXoVlexGwuby8lBX3Z51PJfrLj5ptCzhrH4xUUiRKIRx--8X9fsWIGGVLjDjFB6sOt-1mhv7BSfr-Ccqa8hp-prytaQYAY6b5mai46haK1Mvg9bob91c0FHI7zK1wP4k4cb9jjM34IYqlJPtgHtJFSYFgBAYSaqaBTJBxIesHJat49MdAYTp7sK56URyQmEf~79jx434h8E7lkNvKbEBowrmYGxOtNuYAphD~cy6nD69vtf6N46Q3TiyLARIyMBTDpZPIWwCrJN4zD7XxZ-W~hn0dlZGfTd1NmoeR5E67-unJ349LUozMSLo952C6WXrCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260149,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260149/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260149/download_file","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260149/s40065-021-00356-8-libre.pdf?1701614490=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=FQ0f3rD1HoWyT8sHCAqVwViIP7mHnU1vZv~3EJwDA6g1QPY-ph1nxIYXewJjAo3JwWqxlyY5ekJOrwpVgGeWe2poD1kvTvy6jnf5SsmqHdD3eGbwpjrjt6gIqHc5BKvFPRqTyC4M-vGi19zvwci1nMOGZ8vAL19VSBNG3JW~IRSxiPATS2O7T5mC6yrmbIMvrL~IvRnVA0M1q2QDxCLIsiQoXM0odr9khh~o3cQCKtgRsCb-uY78rZb0Z8Y-op30tyaUwgtMi-iPScYX2vQWtXQ78v3Ra~waJXX~k0HQbedQ6SNAyEs-~kRObjzXSv7LQ9uEWVzT-3eMf-aYRacZYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348771,"url":"https://link.springer.com/content/pdf/10.1007/s40065-021-00356-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line"><img alt="Research paper thumbnail of The Walsh-Fourier transform on the real line" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line">The Walsh-Fourier transform on the real line</a></div><div class="wp-workCard_item"><span>Izvestiâ Akademii nauk Armânskoj SSR. Matematika</span><span>, Jul 18, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The element of the Walsh system, that is the Walsh functions map from the unit interval to the se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444353]").text(description); $(".js-view-count[data-work-id=110444353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444353,"title":"The Walsh-Fourier transform on the real line","translated_title":"","metadata":{"abstract":"The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.","publisher":"NAS RA Academic Publications","publication_date":{"day":18,"month":7,"year":2022,"errors":{}},"publication_name":"Izvestiâ Akademii nauk Armânskoj SSR. Matematika"},"translated_abstract":"The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.","internal_url":"https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line","translated_internal_url":"","created_at":"2023-12-03T06:26:39.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Walsh_Fourier_transform_on_the_real_line","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"}],"urls":[{"id":36348769,"url":"https://doi.org/10.54503/0002-3043-2022.57.4-3-13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260147/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series">Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series</a></div><div class="wp-workCard_item"><span>Journal of Fourier Analysis and Applications</span><span>, Oct 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a10cac4979be5c699f3bf71e727a2b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260147,"asset_id":110444351,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444351]").text(description); $(".js-view-count[data-work-id=110444351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a10cac4979be5c699f3bf71e727a2b2" } } $('.js-work-strip[data-work-id=110444351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444351,"title":"Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":10,"year":2017,"errors":{}},"publication_name":"Journal of Fourier Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:39.709-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260147/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260147/1705-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=AQZTxLLqjvaM7RqMu-OPmargrMi4uA~7Egvon4eEWiAX9NTb4EY1etAWNDY~brWSR-xubOOH74NvE0QQ4CnzKq3bZh0qWcBZUrtkkS86QpuSSPMOPRm2owKQGTUS21FTMBTckEny~-hodtFz0poP5kVu04S0loOc3ViCjXU~3JyeyXL1Sgt2cXHUdwScjMhylGFz6PajnvrSx0PKVRynhaa6~6CaiCjjtWzuk5bzkhQGuAru1jrd-xrXPrIFVgT~ZmaKy5p6adHrrtCgkU6yCW3gXtpkfEmsmRtPVAD1Zbdxc~2Y7uI47~zH1xiPbuD7s0onwXw4CYBjBRe6rfzjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_Everywhere_Convergence_of_Fejér_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260147/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260147/1705-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=AQZTxLLqjvaM7RqMu-OPmargrMi4uA~7Egvon4eEWiAX9NTb4EY1etAWNDY~brWSR-xubOOH74NvE0QQ4CnzKq3bZh0qWcBZUrtkkS86QpuSSPMOPRm2owKQGTUS21FTMBTckEny~-hodtFz0poP5kVu04S0loOc3ViCjXU~3JyeyXL1Sgt2cXHUdwScjMhylGFz6PajnvrSx0PKVRynhaa6~6CaiCjjtWzuk5bzkhQGuAru1jrd-xrXPrIFVgT~ZmaKy5p6adHrrtCgkU6yCW3gXtpkfEmsmRtPVAD1Zbdxc~2Y7uI47~zH1xiPbuD7s0onwXw4CYBjBRe6rfzjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260148,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260148/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260148/download_file","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260148/1705-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=B4rNNWzRjGH1o4BXMeiguFWEakSPUI6cqfqQ44L8zazuxFUR-F8JLGIXlLLF2NT1R8EWnmzLK6TNldUl0Z58VgpgnEw1btXTmuSYGZtdih3iPOnxJsrJ~5wesJkSPhgMXgLUKOq~6uDrmovtbJj~TaNGeO7g9UStO136YZN5deL8UIrnkWd~tnmic0xI184eCLGPvO0l2Prt86YOgF-5XnLKdBq6-PMPCTEWyZbGVkgMZzBwE~xLT3VMEE1q85AwX2n8fhkbjNXhPVuvp5Ssy3UY4AmC2i5zgiNOqSy9CC~EoJXbARqCdB0SW~wu7RgoyzG86UzpAC48GPA-5SqeHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348767,"url":"http://arxiv.org/pdf/1705.05792"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups">Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68baeb328040a03cb3a2857951dead32" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260146,"asset_id":110444349,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444349]").text(description); $(".js-view-count[data-work-id=110444349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444349, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68baeb328040a03cb3a2857951dead32" } } $('.js-work-strip[data-work-id=110444349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444349,"title":"Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"University of Niš","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Filomat"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:39.469-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260146/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260146/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=aG8pJL14ZoDuthaV43nzyLso1ICrUcYQSqgPK7cNK-7wP-Jw9KhUFysMEHA~OVhV68-ED8r~nLBwB8cjuUtXz8e-lUjV0VMG1omGE9gPcLAuBZV1O013piyPza8OSbVJ1oN9JIL~NAzCVcX9yvVSwYYXPA9xByJb4Zk5LiVFT0MGMoQltwyyORZmeA6i~3qXtpv0PweW-MAuHsAgL0rf~pgNNwHpKOyLW-gTMIuPE6mKsC2riA1WHpqoBOWlYEum1PkxJZWTPsiNYyPVK-PQmemcw7mbnW2fR19i~~mnCqnraugzl1qATbqxiXHx4UufSIoTPu6ygVsNeD~i-36bVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260146/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260146/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=aG8pJL14ZoDuthaV43nzyLso1ICrUcYQSqgPK7cNK-7wP-Jw9KhUFysMEHA~OVhV68-ED8r~nLBwB8cjuUtXz8e-lUjV0VMG1omGE9gPcLAuBZV1O013piyPza8OSbVJ1oN9JIL~NAzCVcX9yvVSwYYXPA9xByJb4Zk5LiVFT0MGMoQltwyyORZmeA6i~3qXtpv0PweW-MAuHsAgL0rf~pgNNwHpKOyLW-gTMIuPE6mKsC2riA1WHpqoBOWlYEum1PkxJZWTPsiNYyPVK-PQmemcw7mbnW2fR19i~~mnCqnraugzl1qATbqxiXHx4UufSIoTPu6ygVsNeD~i-36bVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260145,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260145/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260145/download_file","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260145/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=IgbEFozxFJTHVUrJUZ27uufBFYkYZ-jl9745AFPAvgsUqqgXkbV~XIEVwsfND1Nz5qOlANG4Xd9MKwDahThxS7NRtLO622WYyF8rDVBHY3qc3dwUVXrYxxe~pBJN5tGtOPQaIh8dVgfaYhXgweDjtxfxn5dMybyRt-4~Dg4sN4aaukRDEHBUF6thkfslIsCF253SWRbLIkRYQoQ6YdVg7YKg~2CIogXLFwEh~2KtYRgeqiR11DjLGA5CwVy29OHjyqV0h-EyFRUKcv6YZJKhQ6HjCUb~hGvWxXvRHr9-nyga6opyVSWgYjftGY6i6Li09QbEvdcwvYzOn-uF5CVsVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348765,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0354-51801811769G"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444347"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences"><img alt="Research paper thumbnail of On Convergence Properties of Tensor Products of Some Operator Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/108260190/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences">On Convergence Properties of Tensor Products of Some Operator Sequences</a></div><div class="wp-workCard_item"><span>Journal of Geometric Analysis</span><span>, Nov 18, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db8ec9d5c95294be8bd9e4b0410850f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260190,"asset_id":110444347,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444347"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444347"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444347; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444347]").text(description); $(".js-view-count[data-work-id=110444347]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444347; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444347']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444347, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db8ec9d5c95294be8bd9e4b0410850f1" } } $('.js-work-strip[data-work-id=110444347]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444347,"title":"On Convergence Properties of Tensor Products of Some Operator Sequences","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":18,"month":11,"year":2015,"errors":{}},"publication_name":"Journal of Geometric Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences","translated_internal_url":"","created_at":"2023-12-03T06:26:39.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260190/thumbnails/1.jpg","file_name":"EquiKernels.pdf","download_url":"https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Convergence_Properties_of_Tensor_Prod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260190/EquiKernels-libre.pdf?1701614466=\u0026response-content-disposition=attachment%3B+filename%3DOn_Convergence_Properties_of_Tensor_Prod.pdf\u0026Expires=1731455187\u0026Signature=f2RaKLi5U0rYCsA0aFybloesN1tlIhKzMh-FKXwPrZC-Skj16MIhbAJHHH9J1X59K2de6fDKsfm4C9jVO0N7XzTszU0ekIyK~f1vM8gZ1nkQvwUsDQkxisAORDRzfcxLYUqgnPwWviBsu6Qa098vZBAaP33emkB8QMTKqvgmkQ1zf9iENVs9AM6XEJWHuOukkcKS9LC9aduexgC5ftoQ6TEJksDdJYTryHNP~69eSk1-Vm1YwCdU3~V552smjiGS1kNjrlc8MQ9bqUVCSluvBnsveZq-iQi7dKWDCAXQN8~ZCcDVgkUy932ksPnsVJIv5EsjP0gOCZoOj9A-jvSs3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260190/thumbnails/1.jpg","file_name":"EquiKernels.pdf","download_url":"https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Convergence_Properties_of_Tensor_Prod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260190/EquiKernels-libre.pdf?1701614466=\u0026response-content-disposition=attachment%3B+filename%3DOn_Convergence_Properties_of_Tensor_Prod.pdf\u0026Expires=1731455187\u0026Signature=f2RaKLi5U0rYCsA0aFybloesN1tlIhKzMh-FKXwPrZC-Skj16MIhbAJHHH9J1X59K2de6fDKsfm4C9jVO0N7XzTszU0ekIyK~f1vM8gZ1nkQvwUsDQkxisAORDRzfcxLYUqgnPwWviBsu6Qa098vZBAaP33emkB8QMTKqvgmkQ1zf9iENVs9AM6XEJWHuOukkcKS9LC9aduexgC5ftoQ6TEJksDdJYTryHNP~69eSk1-Vm1YwCdU3~V552smjiGS1kNjrlc8MQ9bqUVCSluvBnsveZq-iQi7dKWDCAXQN8~ZCcDVgkUy932ksPnsVJIv5EsjP0gOCZoOj9A-jvSs3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":33367,"name":"Geometric Analysis","url":"https://www.academia.edu/Documents/in/Geometric_Analysis"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348763,"url":"https://doi.org/10.1007/s12220-015-9662-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444344"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series">Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series</a></div><div class="wp-workCard_item"><span>Journal of Contemporary Mathematical Analysis</span><span>, Jul 1, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In 1987 Harris proved-among others that for each 1 ≤ p &lt; 2 there exists a two-dimensional func...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In 1987 Harris proved-among others that for each 1 ≤ p &lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p &lt; 2) with subsequence of triangular partial means $$S_{2^A}^\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\Delta (f) \rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444344"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444344"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444344; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444344]").text(description); $(".js-view-count[data-work-id=110444344]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444344; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444344']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444344, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444344]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444344,"title":"Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series","translated_title":"","metadata":{"abstract":"In 1987 Harris proved-among others that for each 1 ≤ p \u0026lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p \u0026lt; 2) with subsequence of triangular partial means $$S_{2^A}^\\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\\Delta (f) \\rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.","publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":1,"month":7,"year":2019,"errors":{}},"publication_name":"Journal of Contemporary Mathematical Analysis"},"translated_abstract":"In 1987 Harris proved-among others that for each 1 ≤ p \u0026lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p \u0026lt; 2) with subsequence of triangular partial means $$S_{2^A}^\\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\\Delta (f) \\rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.","internal_url":"https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:39.079-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348759,"url":"https://doi.org/10.3103/s1068362319040034"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444342"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Norm convergence of double Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260241/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups">Norm convergence of double Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Mar 20, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f8d5fdd9b461ed1aa8a5e4d16be3cb57" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260241,"asset_id":110444342,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444342"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444342"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444342; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444342]").text(description); $(".js-view-count[data-work-id=110444342]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444342; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444342']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444342, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f8d5fdd9b461ed1aa8a5e4d16be3cb57" } } $('.js-work-strip[data-work-id=110444342]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444342,"title":"Norm convergence of double Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":20,"month":3,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:38.892-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260241/thumbnails/1.jpg","file_name":"s10474-017-0703-920231203-1-gqopo6.pdf","download_url":"https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_double_Fourier_serie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260241/s10474-017-0703-920231203-1-gqopo6-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_double_Fourier_serie.pdf\u0026Expires=1731455187\u0026Signature=QFZpezI35C0l232eDTqsPtCM0ITC7VIJYK4G-RQuWEFi7ur~LND9DdHnDHhcx9pn1zo3lrRknU-Zdp5Z2j4gWjnJLaRTca3M5yA6lwH42Cl7Eb2ySRHnnghO~vrO5g7~~1TszVX2KnwUir0Ygeao2b1IiGTmMcjvXz6o7P4W67AicfcPeIOUcqd~AEnPPxa7Fem8nq8SvA5Srga3PQof9q6LTp86ckvGJUogxXxme9chMbRFMWuumztalfxmUjTjCz3PzIgxBzbyFFkNVLwkQDLL~~elwak-Ky9OafJBc8RiId3~pmFVBmEFHw2xJfWHYFo5JhyRikWK3cwspFOVKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260241/thumbnails/1.jpg","file_name":"s10474-017-0703-920231203-1-gqopo6.pdf","download_url":"https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_double_Fourier_serie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260241/s10474-017-0703-920231203-1-gqopo6-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_double_Fourier_serie.pdf\u0026Expires=1731455187\u0026Signature=QFZpezI35C0l232eDTqsPtCM0ITC7VIJYK4G-RQuWEFi7ur~LND9DdHnDHhcx9pn1zo3lrRknU-Zdp5Z2j4gWjnJLaRTca3M5yA6lwH42Cl7Eb2ySRHnnghO~vrO5g7~~1TszVX2KnwUir0Ygeao2b1IiGTmMcjvXz6o7P4W67AicfcPeIOUcqd~AEnPPxa7Fem8nq8SvA5Srga3PQof9q6LTp86ckvGJUogxXxme9chMbRFMWuumztalfxmUjTjCz3PzIgxBzbyFFkNVLwkQDLL~~elwak-Ky9OafJBc8RiId3~pmFVBmEFHw2xJfWHYFo5JhyRikWK3cwspFOVKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348756,"url":"https://doi.org/10.1007/s10474-017-0703-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444339"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260144/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series">On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 3, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90ec8610e8b442ac8653fc1715a33ea9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260144,"asset_id":110444339,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444339"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444339"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444339; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444339]").text(description); $(".js-view-count[data-work-id=110444339]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444339; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444339']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444339, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90ec8610e8b442ac8653fc1715a33ea9" } } $('.js-work-strip[data-work-id=110444339]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444339,"title":"On everywhere divergence of the strong $\\Phi$-means of Walsh-Fourier series","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":3,"month":12,"year":2013,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260144/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260144/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=Hua250qQyhEAQR6k-0E8a~CZ64OIiwTjw25tDq37Q60F~HsnZg19ebf0yUfc3h~mOSl3q2BpkuTdICwE5Dq0WeDRiuPHC7a5Hi-aoYmBxjGYvaPK3TvO1FPYan-niJOaEnhM61~vnlHcC~3QYY4oMYnTfR8fDTMwkSIi~UxEWQfmpKQTJErCCNIlwIhyuf5BVhElEvCint1gWW2B4Dla4II5GBVLDP8h1TEyjAsoIufk-LXaHO2kXsbehJAD8tZ48xQz7LF6ESeiWqKIanmVOnT9Y4vXVnMXFIUBq5E6CFbwX1wllG~t1dBjA-pORyRQNGqnJHA7S~2TeC2rbnsgcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260144/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260144/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=Hua250qQyhEAQR6k-0E8a~CZ64OIiwTjw25tDq37Q60F~HsnZg19ebf0yUfc3h~mOSl3q2BpkuTdICwE5Dq0WeDRiuPHC7a5Hi-aoYmBxjGYvaPK3TvO1FPYan-niJOaEnhM61~vnlHcC~3QYY4oMYnTfR8fDTMwkSIi~UxEWQfmpKQTJErCCNIlwIhyuf5BVhElEvCint1gWW2B4Dla4II5GBVLDP8h1TEyjAsoIufk-LXaHO2kXsbehJAD8tZ48xQz7LF6ESeiWqKIanmVOnT9Y4vXVnMXFIUBq5E6CFbwX1wllG~t1dBjA-pORyRQNGqnJHA7S~2TeC2rbnsgcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260143/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260143/download_file","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260143/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=RgQsryj53zmCU8fOKsWJUscdGrKxzuVg91DPrDpv3kfXn6SKj9xHkNVzCAMRqiwZVn07rfP9P~jjAhUUNiKA13XK~-29kMc1dX-EiKcEvuW7qFdLBu4b2vSsC4GcNhjcvwIw6bbh4wNnNdTAiYpqmBjjqVLYENQz0~fJNwX19Glbz1W-3mQzs0eIWuQspFHYghaBsTXcjznNLfMu2ydOUPIFBpFcFlIc0TskzonNhF5~IbIzB2xAT48BDl2ZR0RCnYklfjfrorbyMdm3MPHuqYUc705OBbQeWl8kHWbb8XExMsDuVAFLg6jGNcUj5V-sevswNLOEqgwZLS1qIYVfkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":740976,"name":"Trigonometry","url":"https://www.academia.edu/Documents/in/Trigonometry"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":36348754,"url":"https://arxiv.org/pdf/1312.0855"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444337"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series"><img alt="Research paper thumbnail of Pointwise Strong Summability of Vilenkin–Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series">Pointwise Strong Summability of Vilenkin–Fourier Series</a></div><div class="wp-workCard_item"><span>Mathematical Notes</span><span>, Oct 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we give a description of points at which the strong means of VilenkinFourier serie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444337"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444337"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444337; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444337]").text(description); $(".js-view-count[data-work-id=110444337]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444337; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444337']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444337, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444337]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444337,"title":"Pointwise Strong Summability of Vilenkin–Fourier Series","translated_title":"","metadata":{"abstract":"In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":10,"year":2020,"errors":{}},"publication_name":"Mathematical Notes"},"translated_abstract":"In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.","internal_url":"https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348752,"url":"https://doi.org/10.1134/s0001434620090229"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series"><img alt="Research paper thumbnail of Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260192/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series">Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series</a></div><div class="wp-workCard_item"><span>Constructive Approximation</span><span>, Jun 7, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8301ed7a781da1c8845aa274b2027a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260192,"asset_id":110444336,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444336]").text(description); $(".js-view-count[data-work-id=110444336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444336, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8301ed7a781da1c8845aa274b2027a0" } } $('.js-work-strip[data-work-id=110444336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444336,"title":"Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":7,"month":6,"year":2018,"errors":{}},"publication_name":"Constructive Approximation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.373-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260192/thumbnails/1.jpg","file_name":"1805.05366v1.pdf","download_url":"https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_Means_of_Subsequences_of_Partial.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260192/1805.05366v1-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_Means_of_Subsequences_of_Partial.pdf\u0026Expires=1731455187\u0026Signature=RUa7BXo-Zxw-i60BLSebZQV99npa30yQRL7TRjlSFBeVwB2vYY1OYO8uLbPIzennYgHT6pLEdd9Iu3a51rRN1EVfFSlzECKFu2MZzLbvXNNJF8AkAkUBIMpGg15bzPhORkdIIP0IKkT7OQjra34M38cDoAYyNtAusIEyaLSnDBi8-dCXaC3zaNrkGsxk1foYUSVLaY6jwD82fPL8P1ZeKS5bgfZOCK-GQabD~FjfMH~-veoSFoYXnZayjPrlhAp3Z5oMjOxwhIOa~U2YxH9gWg-4XwZkkUlCqGWMbq3FEXFuyOtGFfA5b4nQO9dbxooGBFJ-1QKy-1h5a3ca8zzADQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cesàro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260192/thumbnails/1.jpg","file_name":"1805.05366v1.pdf","download_url":"https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_Means_of_Subsequences_of_Partial.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260192/1805.05366v1-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_Means_of_Subsequences_of_Partial.pdf\u0026Expires=1731455187\u0026Signature=RUa7BXo-Zxw-i60BLSebZQV99npa30yQRL7TRjlSFBeVwB2vYY1OYO8uLbPIzennYgHT6pLEdd9Iu3a51rRN1EVfFSlzECKFu2MZzLbvXNNJF8AkAkUBIMpGg15bzPhORkdIIP0IKkT7OQjra34M38cDoAYyNtAusIEyaLSnDBi8-dCXaC3zaNrkGsxk1foYUSVLaY6jwD82fPL8P1ZeKS5bgfZOCK-GQabD~FjfMH~-veoSFoYXnZayjPrlhAp3Z5oMjOxwhIOa~U2YxH9gWg-4XwZkkUlCqGWMbq3FEXFuyOtGFfA5b4nQO9dbxooGBFJ-1QKy-1h5a3ca8zzADQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":740976,"name":"Trigonometry","url":"https://www.academia.edu/Documents/in/Trigonometry"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":1699838,"name":"Natural number","url":"https://www.academia.edu/Documents/in/Natural_number"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":36348751,"url":"https://doi.org/10.1007/s00365-018-9438-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444334"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Norm convergence of logarithmic means on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups">Norm convergence of logarithmic means on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Banach Journal of Mathematical Analysis</span><span>, Apr 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4203f3b3ef46e4a020b93141b452e44" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260191,"asset_id":110444334,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444334"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444334"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444334; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444334]").text(description); $(".js-view-count[data-work-id=110444334]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444334; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444334']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444334, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4203f3b3ef46e4a020b93141b452e44" } } $('.js-work-strip[data-work-id=110444334]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444334,"title":"Norm convergence of logarithmic means on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Birkhäuser","publication_date":{"day":1,"month":4,"year":2018,"errors":{}},"publication_name":"Banach Journal of Mathematical Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:38.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260191/thumbnails/1.jpg","file_name":"17358787-2017-003120231203-1-vxefuh.pdf","download_url":"https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_logarithmic_means_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260191/17358787-2017-003120231203-1-vxefuh-libre.pdf?1701614456=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_logarithmic_means_on.pdf\u0026Expires=1731455187\u0026Signature=cyMT4mHPOLTu2UCtz9wllGxmm0p8wAxC5tNdPTMoQXOyzef27DK9CaoEN2SUN-gwzP1ofL02EBcI8JDnVxtqPNVwx4lqBBTE9cSA23fHJMJLFaNjqKgeel8QgDX6F5OcGnvNZoCUZUJF1uZGg4-y9O~VnZunz~ZB51yZ6G5-zG9pIittj7ha6yXBjPfSNXwiTgHQBi~oTawsNvy--6rJVkLMmn7TvgBL8XIRFEILs-yVjjrlKu0824cUpY~uN~LIxOIOgizVDLdjtDA-GZ7H6M5jNO3-0~kRB4fNhfvTUWEphuAf2z6-ji~AP5uQ42eDZrwjk4ztsYfmGz4AwQSBhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260191/thumbnails/1.jpg","file_name":"17358787-2017-003120231203-1-vxefuh.pdf","download_url":"https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_logarithmic_means_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260191/17358787-2017-003120231203-1-vxefuh-libre.pdf?1701614456=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_logarithmic_means_on.pdf\u0026Expires=1731455187\u0026Signature=cyMT4mHPOLTu2UCtz9wllGxmm0p8wAxC5tNdPTMoQXOyzef27DK9CaoEN2SUN-gwzP1ofL02EBcI8JDnVxtqPNVwx4lqBBTE9cSA23fHJMJLFaNjqKgeel8QgDX6F5OcGnvNZoCUZUJF1uZGg4-y9O~VnZunz~ZB51yZ6G5-zG9pIittj7ha6yXBjPfSNXwiTgHQBi~oTawsNvy--6rJVkLMmn7TvgBL8XIRFEILs-yVjjrlKu0824cUpY~uN~LIxOIOgizVDLdjtDA-GZ7H6M5jNO3-0~kRB4fNhfvTUWEphuAf2z6-ji~AP5uQ42eDZrwjk4ztsYfmGz4AwQSBhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348749,"url":"https://doi.org/10.1215/17358787-2017-0031"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of Cesàro means with varying parameters of Walsh–Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series">Cesàro means with varying parameters of Walsh–Fourier series</a></div><div class="wp-workCard_item"><span>Periodica Mathematica Hungarica</span><span>, Nov 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3632721d2e822c8c50210a34b6daa3f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260141,"asset_id":110444333,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444333]").text(description); $(".js-view-count[data-work-id=110444333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3632721d2e822c8c50210a34b6daa3f0" } } $('.js-work-strip[data-work-id=110444333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444333,"title":"Cesàro means with varying parameters of Walsh–Fourier series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":4,"month":11,"year":2022,"errors":{}},"publication_name":"Periodica Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:37.993-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260141/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260141/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=M7Q2916clpU12MetphFqGhQye8T1YTm5qNS~hY0M47YEMj6DmXrjDh4ZmYX0~QtOIRGJ2d7Hgt8n3ISyJQ8iG7UuE6TYNsu27H7sSMGGwjIgd2kCkCzlk2PIxMV3~rZVG27CiSb~wK-yk-46F9zVJL4tbMtCphmaRNzBKvA9KHQHNepB-0KAy-mSdA73vkiJ8UPtZ-J~VipalAWrJYJVhCPy0udT5NNvXjVHqnJ-Ou5XUfRvaW~NvDfKRlY7pp1G1BPgq4afNRlmzOWzmZk-OsrYfsGx8mj937Q6IpLc6N4rtSS9fjdk4-wBHLU~ZGm5ml3~1KpgMaOH5ah7q-BAuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cesàro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260141/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260141/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=M7Q2916clpU12MetphFqGhQye8T1YTm5qNS~hY0M47YEMj6DmXrjDh4ZmYX0~QtOIRGJ2d7Hgt8n3ISyJQ8iG7UuE6TYNsu27H7sSMGGwjIgd2kCkCzlk2PIxMV3~rZVG27CiSb~wK-yk-46F9zVJL4tbMtCphmaRNzBKvA9KHQHNepB-0KAy-mSdA73vkiJ8UPtZ-J~VipalAWrJYJVhCPy0udT5NNvXjVHqnJ-Ou5XUfRvaW~NvDfKRlY7pp1G1BPgq4afNRlmzOWzmZk-OsrYfsGx8mj937Q6IpLc6N4rtSS9fjdk4-wBHLU~ZGm5ml3~1KpgMaOH5ah7q-BAuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260142,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260142/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260142/download_file","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260142/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=L54Uz1utF8mKpQaX7zO2AORmpRSNtT49p1-EJU3fF-9H0fUqNFQPogse0EH9jbqCiCPhRXbGOc6B1Ku1ORtWFZmy3vMW00n50-fkBjhNugbkEcSTYU8TayPAHys7CsibpgGkVv~iwy3CBDx4DEtxLKMAYERveUcLG1mkzDxP0I6x5dz5CyjLrSZ-AfjqBAqAa3uG60WVYub3rQ-skRjo0e2rr-K0VhZNZM0P9dclSeuP1ApfYfLTsqyEk6XxALrpasM--3qE0GySlaR-QlNQbHXDpWACu1BlmtU~Vr0NvclS4aURiG-qsLel3PrCWmo~M-lFay9-lmEY6ai-L7ueIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348748,"url":"https://link.springer.com/content/pdf/10.1007/s10998-022-00499-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series"><img alt="Research paper thumbnail of Convergence of logarithmic means of Multiple Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series">Convergence of logarithmic means of Multiple Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Feb 6, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6210447a259b32499460a2d54648c219" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260137,"asset_id":110444330,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444330]").text(description); $(".js-view-count[data-work-id=110444330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6210447a259b32499460a2d54648c219" } } $('.js-work-strip[data-work-id=110444330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444330,"title":"Convergence of logarithmic means of Multiple Walsh-Fourier series","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":6,"month":2,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:37.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260137/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260137/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=W8tK4kX8fw2QA71U3p7ALn4-beMjJjHwChBD~PidW3aTpjw1EzxZLeY~VDlQAZGoeocwUk94qOZtOGJCphod0SvhjetyysD4FdkIPUzvegwwfaf-5IFBWLLkwzVkzdxitTQe2cNwbaK3xSFuhw7-Ls5qwRc~AwVG1C8-LwoMqZH4qII8hzcwfAdRiyuf-ZC0nDGRukmBR8WK5FqZ2e79OcxBm9LwUiz5CXm-W3H9HV7eKdtrf7A4oK-6oCz67AtAeT6DxWC6-ge5nj7yWGuVBF3Fvig5jmDf2wR3bFcwfYEGt34Zca1tC9nNmvSZ2CMNKfuf9f2ClShMwwUETBpFsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260137/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260137/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=W8tK4kX8fw2QA71U3p7ALn4-beMjJjHwChBD~PidW3aTpjw1EzxZLeY~VDlQAZGoeocwUk94qOZtOGJCphod0SvhjetyysD4FdkIPUzvegwwfaf-5IFBWLLkwzVkzdxitTQe2cNwbaK3xSFuhw7-Ls5qwRc~AwVG1C8-LwoMqZH4qII8hzcwfAdRiyuf-ZC0nDGRukmBR8WK5FqZ2e79OcxBm9LwUiz5CXm-W3H9HV7eKdtrf7A4oK-6oCz67AtAeT6DxWC6-ge5nj7yWGuVBF3Fvig5jmDf2wR3bFcwfYEGt34Zca1tC9nNmvSZ2CMNKfuf9f2ClShMwwUETBpFsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260138/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260138/download_file","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260138/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=YNiHcVYdqXrpQSQ~kXlNZoUXbboeZxKpRa67cIBLg~L9HvW8rzw0iJnUMfXlQFXfvDyVFEv9dqBpjQpN7cpLID9GS1DgsGiZHlaqID~wlAU8xCwOxU5g3Tc1ZL1LnxmHpDSa4GREVlWLu-A6roqych93D5y8m-1FBAXKrfJfOESrNEi3HkwsCuypvW0ke5AjxCQ3ATrpRWPDY79wftL4TjP14snmrDNVKp7-tOiaIzMh7jxc5rEoVAECMf9224Jw45lTtw2pfe6ffFwheaqa784pU6vaeXZ9WTK0nVXM-MFniCk1HUbgPpg26eX9W5uE9qiQ~0pktpn6R0pN033yaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348746,"url":"http://arxiv.org/pdf/1402.1308"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers">Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers</a></div><div class="wp-workCard_item"><span>P-adic Numbers, Ultrametric Analysis, and Applications</span><span>, May 23, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444328]").text(description); $(".js-view-count[data-work-id=110444328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444328,"title":"Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":23,"month":5,"year":2022,"errors":{}},"publication_name":"P-adic Numbers, Ultrametric Analysis, and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers","translated_internal_url":"","created_at":"2023-12-03T06:26:37.596-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Everywhere_Convergence_of_Cesàro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348744,"url":"https://doi.org/10.1134/s2070046622020030"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444326"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels"><img alt="Research paper thumbnail of On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels" class="work-thumbnail" src="https://attachments.academia-assets.com/108260193/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels">On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels</a></div><div class="wp-workCard_item"><span>Mathematica Pannonica</span><span>, Oct 26, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49f574170cceccd7ee2517fd6426c05e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260193,"asset_id":110444326,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444326"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444326]").text(description); $(".js-view-count[data-work-id=110444326]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444326']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444326, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49f574170cceccd7ee2517fd6426c05e" } } $('.js-work-strip[data-work-id=110444326]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444326,"title":"On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels","translated_title":"","metadata":{"publisher":"Akademiai Kiado Zrt.","publication_date":{"day":26,"month":10,"year":2021,"errors":{}},"publication_name":"Mathematica Pannonica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels","translated_internal_url":"","created_at":"2023-12-03T06:26:37.205-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260193/thumbnails/1.jpg","file_name":"article-10.1556-314.2021.00018.pdf","download_url":"https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Negativity_of_the_Walsh_Kaczmarz.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260193/article-10.1556-314.2021.00018-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Negativity_of_the_Walsh_Kaczmarz.pdf\u0026Expires=1731455187\u0026Signature=JDZvPiIwLzxb4AxBFmYTq6TDOZSPmE0YczLdWmEt-LdGI0aZHOP5D01jM8pNyEDAhShC7dVXmvwuM1Zb4hpL1RTUnq4yaELVPZrEGMj~5GfnqxP2QI3Y8B9SZNgByVK54QFdUf7HgyBuAk-jfw6hYp5w72-ufnKFNDWA4P-UTjLxCtrp7NEtHGvtktLCVkhD-CMQ4CsWx699cSjGr0Ew1G8pEIdkzyp3ZS7okmwxK7dL~kKPY4jWiO2TWaPQ3CI~BocAQ7YuSMrTROw8ZnKqRKDTCSstJlaN2A3D00VjGElhgqsZCW8RxkjqXPXToFT2JLmnXLPDI3Cc9Y4-CJ9qrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260193/thumbnails/1.jpg","file_name":"article-10.1556-314.2021.00018.pdf","download_url":"https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Negativity_of_the_Walsh_Kaczmarz.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260193/article-10.1556-314.2021.00018-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Negativity_of_the_Walsh_Kaczmarz.pdf\u0026Expires=1731455187\u0026Signature=JDZvPiIwLzxb4AxBFmYTq6TDOZSPmE0YczLdWmEt-LdGI0aZHOP5D01jM8pNyEDAhShC7dVXmvwuM1Zb4hpL1RTUnq4yaELVPZrEGMj~5GfnqxP2QI3Y8B9SZNgByVK54QFdUf7HgyBuAk-jfw6hYp5w72-ufnKFNDWA4P-UTjLxCtrp7NEtHGvtktLCVkhD-CMQ4CsWx699cSjGr0Ew1G8pEIdkzyp3ZS7okmwxK7dL~kKPY4jWiO2TWaPQ3CI~BocAQ7YuSMrTROw8ZnKqRKDTCSstJlaN2A3D00VjGElhgqsZCW8RxkjqXPXToFT2JLmnXLPDI3Cc9Y4-CJ9qrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348742,"url":"https://doi.org/10.1556/314.2021.00018"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers"><img alt="Research paper thumbnail of Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers">Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers</a></div><div class="wp-workCard_item"><span>Novi Sad Journal of Mathematics</span><span>, Apr 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444324]").text(description); $(".js-view-count[data-work-id=110444324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444324,"title":"Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers","translated_title":"","metadata":{"publisher":"Faculty of Sciences, University of Novi Sad","publication_date":{"day":29,"month":4,"year":2021,"errors":{}},"publication_name":"Novi Sad Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers","translated_internal_url":"","created_at":"2023-12-03T06:26:36.955-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348739,"url":"https://doi.org/10.30755/nsjom.12069"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series">Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series</a></div><div class="wp-workCard_item"><span>Analysis Mathematica</span><span>, Mar 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \sum\limits_{j = 0}^\infty {\left| {{n_j} - {n_{j + 1}}} \right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) &lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\square}}_A\left( f \right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) &lt; ∞ and a function f ∈ φ(L)(I2) for which $$\text{sup} _A|S{_n^{\square}}_A\left( {{x^1},{x^2};f} \right)| = \infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444323]").text(description); $(".js-view-count[data-work-id=110444323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444323,"title":"Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series","translated_title":"","metadata":{"abstract":"For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \\sum\\limits_{j = 0}^\\infty {\\left| {{n_j} - {n_{j + 1}}} \\right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) \u0026lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\\square}}_A\\left( f \\right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) \u0026lt; ∞ and a function f ∈ φ(L)(I2) for which $$\\text{sup} _A|S{_n^{\\square}}_A\\left( {{x^1},{x^2};f} \\right)| = \\infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":3,"year":2018,"errors":{}},"publication_name":"Analysis Mathematica"},"translated_abstract":"For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \\sum\\limits_{j = 0}^\\infty {\\left| {{n_j} - {n_{j + 1}}} \\right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) \u0026lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\\square}}_A\\left( f \\right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) \u0026lt; ∞ and a function f ∈ φ(L)(I2) for which $$\\text{sup} _A|S{_n^{\\square}}_A\\left( {{x^1},{x^2};f} \\right)| = \\infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.","internal_url":"https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:36.775-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348738,"url":"https://doi.org/10.1007/s10476-018-0107-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere strong summability of double Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series">Almost everywhere strong summability of double Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>Journal of Contemporary Mathematical Analysis</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b23381a7590bf1182202a9c4160b33d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260131,"asset_id":110444322,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444322]").text(description); $(".js-view-count[data-work-id=110444322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b23381a7590bf1182202a9c4160b33d" } } $('.js-work-strip[data-work-id=110444322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444322,"title":"Almost everywhere strong summability of double Walsh-Fourier series","translated_title":"","metadata":{"publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Contemporary Mathematical Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:36.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260131/thumbnails/1.jpg","file_name":"1310.pdf","download_url":"https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_strong_summability_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260131/1310-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_strong_summability_of.pdf\u0026Expires=1731455187\u0026Signature=eLcRicOoJZ3ireSG8hFfVWIJBRsNLAa24OvTGUVX8wlXkXH6WejWY6aOCsSFrSbjyPp1odyH90CGeTj7dHMt4qoJBIhHrP4SRTxic2kdlXFEwHZgwcmRJJ6guD7ooD7vi3~tnhFUoeC6epeqc0YHubzuBITz2nWTnLwhWvdX6B2vEeHwggM9vJRvqJr-hsHGdS~2uRbEM4iI1WIVrMZCd9WwyY9TFnBYrXsxazR1cJXdU6I~EgjRcwnDspINOQApd7TUW17Ffy1fVO1qAaB43IrbvZp0trN2gcW7kb1coIG7wOTFs6mz2FEihb7gYMr7cncmlcoGtbisBR-A2uo9pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260131/thumbnails/1.jpg","file_name":"1310.pdf","download_url":"https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_strong_summability_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260131/1310-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_strong_summability_of.pdf\u0026Expires=1731455187\u0026Signature=eLcRicOoJZ3ireSG8hFfVWIJBRsNLAa24OvTGUVX8wlXkXH6WejWY6aOCsSFrSbjyPp1odyH90CGeTj7dHMt4qoJBIhHrP4SRTxic2kdlXFEwHZgwcmRJJ6guD7ooD7vi3~tnhFUoeC6epeqc0YHubzuBITz2nWTnLwhWvdX6B2vEeHwggM9vJRvqJr-hsHGdS~2uRbEM4iI1WIVrMZCd9WwyY9TFnBYrXsxazR1cJXdU6I~EgjRcwnDspINOQApd7TUW17Ffy1fVO1qAaB43IrbvZp0trN2gcW7kb1coIG7wOTFs6mz2FEihb7gYMr7cncmlcoGtbisBR-A2uo9pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348737,"url":"http://arxiv.org/pdf/1310.8212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="13788225" id="papers"><div class="js-work-strip profile--work_container" data-work-id="110444358"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems"><img alt="Research paper thumbnail of On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems" class="work-thumbnail" src="https://attachments.academia-assets.com/108260154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems">On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems</a></div><div class="wp-workCard_item"><span>Miskolc Mathematical Notes</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4210aa0f402c0915cfc022b85b007b6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260154,"asset_id":110444358,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444358"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444358"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444358; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444358]").text(description); $(".js-view-count[data-work-id=110444358]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444358; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444358']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444358, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4210aa0f402c0915cfc022b85b007b6" } } $('.js-work-strip[data-work-id=110444358]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444358,"title":"On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Miskolc Mathematical Notes"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444358/On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems","translated_internal_url":"","created_at":"2023-12-03T06:26:40.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260154/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260154/3062-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=JbZe2hj90Kj3lpY7NHHiKT9GP7DSb0-zeyVFrKGp615EO9rRstxBe8hzlvj9eqRSmc~kgpn3FJG-AnOyt56TJCcPfVwnIxXsngGeUU9feTEitI0KZ7cGU29Sp80UrXVcZyCZIt2YTrLLmohLrvwpeCLRn1nhyhy0F~fOFfdo0whC9JUrYPQiIdDtnvVvTjdL9B0Tlqrva-FF5HOgFxe-xbnUJlH6sseMGBU66PQA6WrT28wNNnUqBndGEj8YPrHgef06RukqQv1jMmLlo9QX53saOzcDHBNCNVMm3r98Vp0YgDjKi4agDLybdKws8OZIznopU4LfG~jM0Rrv-TzGOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_almost_everywhere_convergence_of_the_generalized_Marcienkiwicz_means_with_respect_to_two_dimensional_Vilenkin_like_systems","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260154/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260154/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260154/3062-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=JbZe2hj90Kj3lpY7NHHiKT9GP7DSb0-zeyVFrKGp615EO9rRstxBe8hzlvj9eqRSmc~kgpn3FJG-AnOyt56TJCcPfVwnIxXsngGeUU9feTEitI0KZ7cGU29Sp80UrXVcZyCZIt2YTrLLmohLrvwpeCLRn1nhyhy0F~fOFfdo0whC9JUrYPQiIdDtnvVvTjdL9B0Tlqrva-FF5HOgFxe-xbnUJlH6sseMGBU66PQA6WrT28wNNnUqBndGEj8YPrHgef06RukqQv1jMmLlo9QX53saOzcDHBNCNVMm3r98Vp0YgDjKi4agDLybdKws8OZIznopU4LfG~jM0Rrv-TzGOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260155,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260155/thumbnails/1.jpg","file_name":"3062.pdf","download_url":"https://www.academia.edu/attachments/108260155/download_file","bulk_download_file_name":"On_almost_everywhere_convergence_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260155/3062-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DOn_almost_everywhere_convergence_of_the.pdf\u0026Expires=1731455187\u0026Signature=GGmJf-35UGIM~yBAytVE0uX-a60yA66MoyoKHDgAni~QzAQUQPe0TGQxNsreKTA~8eSA~RvFTFr6K6VzYDfXXMUr6kjHTarzTWYUIPll8ABO3dNUIGlzz7KWLxJy5qEwNG6RuqhaCRHNYR1wBOriJScmt52usTf-CfSdewWaNkVipuSEYGCcC7VkwX-RgWDTU0fSpYY3mv9kFYKmaE97QKU3ZOoxEQt9pK2LGmBLBoFwZ1d2sExvKX4lRcATwt5S7B7n2wLxD8zXuxQ~K7q6ar4rGJFn0aaAXRKBZEtEB5jgoP~O6LWk-if2Krsdv3vs3RAlw-btQc39uOaIlJNVMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":36348774,"url":"http://mat76.mat.uni-miskolc.hu/mnotes/download_article/3062.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260151/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series">Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series</a></div><div class="wp-workCard_item"><span>Facta universitatis. Series electronics and energetics</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="155c6df59d0f3f506b512bf16578d9b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260151,"asset_id":110444357,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444357]").text(description); $(".js-view-count[data-work-id=110444357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "155c6df59d0f3f506b512bf16578d9b2" } } $('.js-work-strip[data-work-id=110444357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444357,"title":"Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series","translated_title":"","metadata":{"publisher":"University of Niš","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Facta universitatis. Series electronics and energetics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444357/Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:40.328-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260151,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260151/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260151/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=XB5TxELwckExDk9c3goemYZ8jpwQLSsccK5PMuY6mcmq~raTRXBqJcrAto1kJMtGlHI3LRDWWDbtl1uwgjDt~TBUlGkF3ha2-jtU7bQxfQZ0FLmJ9uFQZs6RBLyd22snepJ92IC0fh8~TBHvJuk62HtZyo2dJJ25DoMazgqgvy640k1V3vOFyJXeka6IMfZPh8gR0HqutDQZ0tAR~8um5wjQld4wFH0TZjVhgMSg02Qx~iu~l-3CwMJ2PfN4YVtonrUnjiln~-LAa~KwSzFGtZVMZS7auvMmG60no8VZMoV~DmvDaqNkKZHsXSXNrA9rfFDpu2GkK3NDgcvL6sGj2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_convergence_of_a_subsequence_of_the_logarithmic_means_of_Vilenkin_Fourier_series","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260151,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260151/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260151/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260151/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=XB5TxELwckExDk9c3goemYZ8jpwQLSsccK5PMuY6mcmq~raTRXBqJcrAto1kJMtGlHI3LRDWWDbtl1uwgjDt~TBUlGkF3ha2-jtU7bQxfQZ0FLmJ9uFQZs6RBLyd22snepJ92IC0fh8~TBHvJuk62HtZyo2dJJ25DoMazgqgvy640k1V3vOFyJXeka6IMfZPh8gR0HqutDQZ0tAR~8um5wjQld4wFH0TZjVhgMSg02Qx~iu~l-3CwMJ2PfN4YVtonrUnjiln~-LAa~KwSzFGtZVMZS7auvMmG60no8VZMoV~DmvDaqNkKZHsXSXNrA9rfFDpu2GkK3NDgcvL6sGj2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260152/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260152/download_file","bulk_download_file_name":"Almost_everywhere_convergence_of_a_subse.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260152/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_of_a_subse.pdf\u0026Expires=1731455187\u0026Signature=NxvjxPt7CvlAQxrySYVDHzydrgsowr0ZHyxGid2W~8HVoW19T5qd7Ny~a62i8O2Pq0az6XqfBXU9Xexwvq7ycOobBy-uSg170XRRzTs1TDRHy0abDE8AtNpOnOiKztgff1MQwnWd-H9LH82Mob9WxsvSx80neRXQU7nHR3rMAUXEUvwe0JaWTz5VqcCGz2wDYPC7P6Mx7bGO0MCjScPk27q~JUpyfGHmVo6QBxIT49yafz2jN-OwEYs7sLk-J6rUe3oSePM6Pw5qVTlTByPrVzbVUcuwq0tErcccSg1rh0xkFN64FwMpvBG1irbz~4DASsZzf7VmuhhE7yCtbL9kzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348773,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0353-36700803275G"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260150/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series">Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series</a></div><div class="wp-workCard_item"><span>Arabian Journal of Mathematics</span><span>, Dec 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bc430dd7e1be9248b15eb7ac92f8b3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260150,"asset_id":110444355,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444355]").text(description); $(".js-view-count[data-work-id=110444355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444355, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bc430dd7e1be9248b15eb7ac92f8b3f" } } $('.js-work-strip[data-work-id=110444355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444355,"title":"Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh–Fourier series","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":29,"month":12,"year":2021,"errors":{}},"publication_name":"Arabian Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444355/Almost_everywhere_convergence_and_divergence_of_Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:40.117-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260150,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260150/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260150/s40065-021-00356-8-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=V-xkz7BmvD~xrnbyb41chXoVlexGwuby8lBX3Z51PJfrLj5ptCzhrH4xUUiRKIRx--8X9fsWIGGVLjDjFB6sOt-1mhv7BSfr-Ccqa8hp-prytaQYAY6b5mai46haK1Mvg9bob91c0FHI7zK1wP4k4cb9jjM34IYqlJPtgHtJFSYFgBAYSaqaBTJBxIesHJat49MdAYTp7sK56URyQmEf~79jx434h8E7lkNvKbEBowrmYGxOtNuYAphD~cy6nD69vtf6N46Q3TiyLARIyMBTDpZPIWwCrJN4zD7XxZ-W~hn0dlZGfTd1NmoeR5E67-unJ349LUozMSLo952C6WXrCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_convergence_and_divergence_of_Cesàro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260150,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260150/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260150/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260150/s40065-021-00356-8-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=V-xkz7BmvD~xrnbyb41chXoVlexGwuby8lBX3Z51PJfrLj5ptCzhrH4xUUiRKIRx--8X9fsWIGGVLjDjFB6sOt-1mhv7BSfr-Ccqa8hp-prytaQYAY6b5mai46haK1Mvg9bob91c0FHI7zK1wP4k4cb9jjM34IYqlJPtgHtJFSYFgBAYSaqaBTJBxIesHJat49MdAYTp7sK56URyQmEf~79jx434h8E7lkNvKbEBowrmYGxOtNuYAphD~cy6nD69vtf6N46Q3TiyLARIyMBTDpZPIWwCrJN4zD7XxZ-W~hn0dlZGfTd1NmoeR5E67-unJ349LUozMSLo952C6WXrCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260149,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260149/thumbnails/1.jpg","file_name":"s40065-021-00356-8.pdf","download_url":"https://www.academia.edu/attachments/108260149/download_file","bulk_download_file_name":"Almost_everywhere_convergence_and_diverg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260149/s40065-021-00356-8-libre.pdf?1701614490=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_convergence_and_diverg.pdf\u0026Expires=1731455187\u0026Signature=FQ0f3rD1HoWyT8sHCAqVwViIP7mHnU1vZv~3EJwDA6g1QPY-ph1nxIYXewJjAo3JwWqxlyY5ekJOrwpVgGeWe2poD1kvTvy6jnf5SsmqHdD3eGbwpjrjt6gIqHc5BKvFPRqTyC4M-vGi19zvwci1nMOGZ8vAL19VSBNG3JW~IRSxiPATS2O7T5mC6yrmbIMvrL~IvRnVA0M1q2QDxCLIsiQoXM0odr9khh~o3cQCKtgRsCb-uY78rZb0Z8Y-op30tyaUwgtMi-iPScYX2vQWtXQ78v3Ra~waJXX~k0HQbedQ6SNAyEs-~kRObjzXSv7LQ9uEWVzT-3eMf-aYRacZYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348771,"url":"https://link.springer.com/content/pdf/10.1007/s40065-021-00356-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line"><img alt="Research paper thumbnail of The Walsh-Fourier transform on the real line" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line">The Walsh-Fourier transform on the real line</a></div><div class="wp-workCard_item"><span>Izvestiâ Akademii nauk Armânskoj SSR. Matematika</span><span>, Jul 18, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The element of the Walsh system, that is the Walsh functions map from the unit interval to the se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444353]").text(description); $(".js-view-count[data-work-id=110444353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444353,"title":"The Walsh-Fourier transform on the real line","translated_title":"","metadata":{"abstract":"The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.","publisher":"NAS RA Academic Publications","publication_date":{"day":18,"month":7,"year":2022,"errors":{}},"publication_name":"Izvestiâ Akademii nauk Armânskoj SSR. Matematika"},"translated_abstract":"The element of the Walsh system, that is the Walsh functions map from the unit interval to the set {−1, 1}. They can be extended to the set of nonnegative reals, but not to the whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function system which can be extended on the real line.","internal_url":"https://www.academia.edu/110444353/The_Walsh_Fourier_transform_on_the_real_line","translated_internal_url":"","created_at":"2023-12-03T06:26:39.879-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Walsh_Fourier_transform_on_the_real_line","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"}],"urls":[{"id":36348769,"url":"https://doi.org/10.54503/0002-3043-2022.57.4-3-13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260147/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series">Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series</a></div><div class="wp-workCard_item"><span>Journal of Fourier Analysis and Applications</span><span>, Oct 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a10cac4979be5c699f3bf71e727a2b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260147,"asset_id":110444351,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444351]").text(description); $(".js-view-count[data-work-id=110444351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a10cac4979be5c699f3bf71e727a2b2" } } $('.js-work-strip[data-work-id=110444351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444351,"title":"Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh–Fourier Series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":10,"year":2017,"errors":{}},"publication_name":"Journal of Fourier Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444351/Almost_Everywhere_Convergence_of_Fej%C3%A9r_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:39.709-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260147/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260147/1705-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=AQZTxLLqjvaM7RqMu-OPmargrMi4uA~7Egvon4eEWiAX9NTb4EY1etAWNDY~brWSR-xubOOH74NvE0QQ4CnzKq3bZh0qWcBZUrtkkS86QpuSSPMOPRm2owKQGTUS21FTMBTckEny~-hodtFz0poP5kVu04S0loOc3ViCjXU~3JyeyXL1Sgt2cXHUdwScjMhylGFz6PajnvrSx0PKVRynhaa6~6CaiCjjtWzuk5bzkhQGuAru1jrd-xrXPrIFVgT~ZmaKy5p6adHrrtCgkU6yCW3gXtpkfEmsmRtPVAD1Zbdxc~2Y7uI47~zH1xiPbuD7s0onwXw4CYBjBRe6rfzjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_Everywhere_Convergence_of_Fejér_Means_of_Two_dimensional_Triangular_Walsh_Fourier_Series","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260147,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260147/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260147/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260147/1705-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=AQZTxLLqjvaM7RqMu-OPmargrMi4uA~7Egvon4eEWiAX9NTb4EY1etAWNDY~brWSR-xubOOH74NvE0QQ4CnzKq3bZh0qWcBZUrtkkS86QpuSSPMOPRm2owKQGTUS21FTMBTckEny~-hodtFz0poP5kVu04S0loOc3ViCjXU~3JyeyXL1Sgt2cXHUdwScjMhylGFz6PajnvrSx0PKVRynhaa6~6CaiCjjtWzuk5bzkhQGuAru1jrd-xrXPrIFVgT~ZmaKy5p6adHrrtCgkU6yCW3gXtpkfEmsmRtPVAD1Zbdxc~2Y7uI47~zH1xiPbuD7s0onwXw4CYBjBRe6rfzjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260148,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260148/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/108260148/download_file","bulk_download_file_name":"Almost_Everywhere_Convergence_of_Fejer_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260148/1705-libre.pdf?1701614493=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_Everywhere_Convergence_of_Fejer_M.pdf\u0026Expires=1731455187\u0026Signature=B4rNNWzRjGH1o4BXMeiguFWEakSPUI6cqfqQ44L8zazuxFUR-F8JLGIXlLLF2NT1R8EWnmzLK6TNldUl0Z58VgpgnEw1btXTmuSYGZtdih3iPOnxJsrJ~5wesJkSPhgMXgLUKOq~6uDrmovtbJj~TaNGeO7g9UStO136YZN5deL8UIrnkWd~tnmic0xI184eCLGPvO0l2Prt86YOgF-5XnLKdBq6-PMPCTEWyZbGVkgMZzBwE~xLT3VMEE1q85AwX2n8fhkbjNXhPVuvp5Ssy3UY4AmC2i5zgiNOqSy9CC~EoJXbARqCdB0SW~wu7RgoyzG86UzpAC48GPA-5SqeHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348767,"url":"http://arxiv.org/pdf/1705.05792"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups">Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68baeb328040a03cb3a2857951dead32" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260146,"asset_id":110444349,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444349]").text(description); $(".js-view-count[data-work-id=110444349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444349, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68baeb328040a03cb3a2857951dead32" } } $('.js-work-strip[data-work-id=110444349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444349,"title":"Subsequences of triangular partial sums of double fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"University of Niš","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Filomat"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444349/Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:39.469-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260146/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260146/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=aG8pJL14ZoDuthaV43nzyLso1ICrUcYQSqgPK7cNK-7wP-Jw9KhUFysMEHA~OVhV68-ED8r~nLBwB8cjuUtXz8e-lUjV0VMG1omGE9gPcLAuBZV1O013piyPza8OSbVJ1oN9JIL~NAzCVcX9yvVSwYYXPA9xByJb4Zk5LiVFT0MGMoQltwyyORZmeA6i~3qXtpv0PweW-MAuHsAgL0rf~pgNNwHpKOyLW-gTMIuPE6mKsC2riA1WHpqoBOWlYEum1PkxJZWTPsiNYyPVK-PQmemcw7mbnW2fR19i~~mnCqnraugzl1qATbqxiXHx4UufSIoTPu6ygVsNeD~i-36bVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subsequences_of_triangular_partial_sums_of_double_fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260146/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260146/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260146/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=aG8pJL14ZoDuthaV43nzyLso1ICrUcYQSqgPK7cNK-7wP-Jw9KhUFysMEHA~OVhV68-ED8r~nLBwB8cjuUtXz8e-lUjV0VMG1omGE9gPcLAuBZV1O013piyPza8OSbVJ1oN9JIL~NAzCVcX9yvVSwYYXPA9xByJb4Zk5LiVFT0MGMoQltwyyORZmeA6i~3qXtpv0PweW-MAuHsAgL0rf~pgNNwHpKOyLW-gTMIuPE6mKsC2riA1WHpqoBOWlYEum1PkxJZWTPsiNYyPVK-PQmemcw7mbnW2fR19i~~mnCqnraugzl1qATbqxiXHx4UufSIoTPu6ygVsNeD~i-36bVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260145,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260145/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/108260145/download_file","bulk_download_file_name":"Subsequences_of_triangular_partial_sums.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260145/ft-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DSubsequences_of_triangular_partial_sums.pdf\u0026Expires=1731455187\u0026Signature=IgbEFozxFJTHVUrJUZ27uufBFYkYZ-jl9745AFPAvgsUqqgXkbV~XIEVwsfND1Nz5qOlANG4Xd9MKwDahThxS7NRtLO622WYyF8rDVBHY3qc3dwUVXrYxxe~pBJN5tGtOPQaIh8dVgfaYhXgweDjtxfxn5dMybyRt-4~Dg4sN4aaukRDEHBUF6thkfslIsCF253SWRbLIkRYQoQ6YdVg7YKg~2CIogXLFwEh~2KtYRgeqiR11DjLGA5CwVy29OHjyqV0h-EyFRUKcv6YZJKhQ6HjCUb~hGvWxXvRHr9-nyga6opyVSWgYjftGY6i6Li09QbEvdcwvYzOn-uF5CVsVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348765,"url":"http://www.doiserbia.nb.rs/ft.aspx?id=0354-51801811769G"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444347"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences"><img alt="Research paper thumbnail of On Convergence Properties of Tensor Products of Some Operator Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/108260190/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences">On Convergence Properties of Tensor Products of Some Operator Sequences</a></div><div class="wp-workCard_item"><span>Journal of Geometric Analysis</span><span>, Nov 18, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db8ec9d5c95294be8bd9e4b0410850f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260190,"asset_id":110444347,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444347"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444347"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444347; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444347]").text(description); $(".js-view-count[data-work-id=110444347]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444347; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444347']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444347, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db8ec9d5c95294be8bd9e4b0410850f1" } } $('.js-work-strip[data-work-id=110444347]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444347,"title":"On Convergence Properties of Tensor Products of Some Operator Sequences","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":18,"month":11,"year":2015,"errors":{}},"publication_name":"Journal of Geometric Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444347/On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences","translated_internal_url":"","created_at":"2023-12-03T06:26:39.269-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260190/thumbnails/1.jpg","file_name":"EquiKernels.pdf","download_url":"https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Convergence_Properties_of_Tensor_Prod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260190/EquiKernels-libre.pdf?1701614466=\u0026response-content-disposition=attachment%3B+filename%3DOn_Convergence_Properties_of_Tensor_Prod.pdf\u0026Expires=1731455187\u0026Signature=f2RaKLi5U0rYCsA0aFybloesN1tlIhKzMh-FKXwPrZC-Skj16MIhbAJHHH9J1X59K2de6fDKsfm4C9jVO0N7XzTszU0ekIyK~f1vM8gZ1nkQvwUsDQkxisAORDRzfcxLYUqgnPwWviBsu6Qa098vZBAaP33emkB8QMTKqvgmkQ1zf9iENVs9AM6XEJWHuOukkcKS9LC9aduexgC5ftoQ6TEJksDdJYTryHNP~69eSk1-Vm1YwCdU3~V552smjiGS1kNjrlc8MQ9bqUVCSluvBnsveZq-iQi7dKWDCAXQN8~ZCcDVgkUy932ksPnsVJIv5EsjP0gOCZoOj9A-jvSs3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Convergence_Properties_of_Tensor_Products_of_Some_Operator_Sequences","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260190/thumbnails/1.jpg","file_name":"EquiKernels.pdf","download_url":"https://www.academia.edu/attachments/108260190/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Convergence_Properties_of_Tensor_Prod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260190/EquiKernels-libre.pdf?1701614466=\u0026response-content-disposition=attachment%3B+filename%3DOn_Convergence_Properties_of_Tensor_Prod.pdf\u0026Expires=1731455187\u0026Signature=f2RaKLi5U0rYCsA0aFybloesN1tlIhKzMh-FKXwPrZC-Skj16MIhbAJHHH9J1X59K2de6fDKsfm4C9jVO0N7XzTszU0ekIyK~f1vM8gZ1nkQvwUsDQkxisAORDRzfcxLYUqgnPwWviBsu6Qa098vZBAaP33emkB8QMTKqvgmkQ1zf9iENVs9AM6XEJWHuOukkcKS9LC9aduexgC5ftoQ6TEJksDdJYTryHNP~69eSk1-Vm1YwCdU3~V552smjiGS1kNjrlc8MQ9bqUVCSluvBnsveZq-iQi7dKWDCAXQN8~ZCcDVgkUy932ksPnsVJIv5EsjP0gOCZoOj9A-jvSs3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":33367,"name":"Geometric Analysis","url":"https://www.academia.edu/Documents/in/Geometric_Analysis"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348763,"url":"https://doi.org/10.1007/s12220-015-9662-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444344"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series">Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series</a></div><div class="wp-workCard_item"><span>Journal of Contemporary Mathematical Analysis</span><span>, Jul 1, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In 1987 Harris proved-among others that for each 1 ≤ p &lt; 2 there exists a two-dimensional func...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In 1987 Harris proved-among others that for each 1 ≤ p &lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p &lt; 2) with subsequence of triangular partial means $$S_{2^A}^\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\Delta (f) \rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444344"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444344"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444344; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444344]").text(description); $(".js-view-count[data-work-id=110444344]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444344; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444344']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444344, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444344]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444344,"title":"Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series","translated_title":"","metadata":{"abstract":"In 1987 Harris proved-among others that for each 1 ≤ p \u0026lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p \u0026lt; 2) with subsequence of triangular partial means $$S_{2^A}^\\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\\Delta (f) \\rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.","publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":1,"month":7,"year":2019,"errors":{}},"publication_name":"Journal of Contemporary Mathematical Analysis"},"translated_abstract":"In 1987 Harris proved-among others that for each 1 ≤ p \u0026lt; 2 there exists a two-dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost everywhere. In this paper we prove that the set of the functions from the space Lp(II2) (1 ≤ p \u0026lt; 2) with subsequence of triangular partial means $$S_{2^A}^\\Delta(f)$$ of the double Walsh-Fourier series convergent in measure on II2 is of first Baire category in Lp(II2). We also prove that for each function f ∈ L2(II2) a.e. convergence $$S_{a(n)}^\\Delta (f) \\rightarrow f$$ holds, where a(n) is a lacunary sequence of positive integers.","internal_url":"https://www.academia.edu/110444344/Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:39.079-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Convergence_of_a_Subsequence_of_Triangular_Partial_Sums_of_Double_Walsh_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348759,"url":"https://doi.org/10.3103/s1068362319040034"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444342"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Norm convergence of double Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260241/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups">Norm convergence of double Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Mar 20, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f8d5fdd9b461ed1aa8a5e4d16be3cb57" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260241,"asset_id":110444342,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444342"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444342"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444342; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444342]").text(description); $(".js-view-count[data-work-id=110444342]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444342; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444342']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444342, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f8d5fdd9b461ed1aa8a5e4d16be3cb57" } } $('.js-work-strip[data-work-id=110444342]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444342,"title":"Norm convergence of double Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":20,"month":3,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444342/Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:38.892-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260241/thumbnails/1.jpg","file_name":"s10474-017-0703-920231203-1-gqopo6.pdf","download_url":"https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_double_Fourier_serie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260241/s10474-017-0703-920231203-1-gqopo6-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_double_Fourier_serie.pdf\u0026Expires=1731455187\u0026Signature=QFZpezI35C0l232eDTqsPtCM0ITC7VIJYK4G-RQuWEFi7ur~LND9DdHnDHhcx9pn1zo3lrRknU-Zdp5Z2j4gWjnJLaRTca3M5yA6lwH42Cl7Eb2ySRHnnghO~vrO5g7~~1TszVX2KnwUir0Ygeao2b1IiGTmMcjvXz6o7P4W67AicfcPeIOUcqd~AEnPPxa7Fem8nq8SvA5Srga3PQof9q6LTp86ckvGJUogxXxme9chMbRFMWuumztalfxmUjTjCz3PzIgxBzbyFFkNVLwkQDLL~~elwak-Ky9OafJBc8RiId3~pmFVBmEFHw2xJfWHYFo5JhyRikWK3cwspFOVKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Norm_convergence_of_double_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260241/thumbnails/1.jpg","file_name":"s10474-017-0703-920231203-1-gqopo6.pdf","download_url":"https://www.academia.edu/attachments/108260241/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_double_Fourier_serie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260241/s10474-017-0703-920231203-1-gqopo6-libre.pdf?1701614459=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_double_Fourier_serie.pdf\u0026Expires=1731455187\u0026Signature=QFZpezI35C0l232eDTqsPtCM0ITC7VIJYK4G-RQuWEFi7ur~LND9DdHnDHhcx9pn1zo3lrRknU-Zdp5Z2j4gWjnJLaRTca3M5yA6lwH42Cl7Eb2ySRHnnghO~vrO5g7~~1TszVX2KnwUir0Ygeao2b1IiGTmMcjvXz6o7P4W67AicfcPeIOUcqd~AEnPPxa7Fem8nq8SvA5Srga3PQof9q6LTp86ckvGJUogxXxme9chMbRFMWuumztalfxmUjTjCz3PzIgxBzbyFFkNVLwkQDLL~~elwak-Ky9OafJBc8RiId3~pmFVBmEFHw2xJfWHYFo5JhyRikWK3cwspFOVKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348756,"url":"https://doi.org/10.1007/s10474-017-0703-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444339"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260144/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series">On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 3, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90ec8610e8b442ac8653fc1715a33ea9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260144,"asset_id":110444339,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444339"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444339"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444339; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444339]").text(description); $(".js-view-count[data-work-id=110444339]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444339; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444339']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444339, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90ec8610e8b442ac8653fc1715a33ea9" } } $('.js-work-strip[data-work-id=110444339]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444339,"title":"On everywhere divergence of the strong $\\Phi$-means of Walsh-Fourier series","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":3,"month":12,"year":2013,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444339/On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260144/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260144/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=Hua250qQyhEAQR6k-0E8a~CZ64OIiwTjw25tDq37Q60F~HsnZg19ebf0yUfc3h~mOSl3q2BpkuTdICwE5Dq0WeDRiuPHC7a5Hi-aoYmBxjGYvaPK3TvO1FPYan-niJOaEnhM61~vnlHcC~3QYY4oMYnTfR8fDTMwkSIi~UxEWQfmpKQTJErCCNIlwIhyuf5BVhElEvCint1gWW2B4Dla4II5GBVLDP8h1TEyjAsoIufk-LXaHO2kXsbehJAD8tZ48xQz7LF6ESeiWqKIanmVOnT9Y4vXVnMXFIUBq5E6CFbwX1wllG~t1dBjA-pORyRQNGqnJHA7S~2TeC2rbnsgcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_everywhere_divergence_of_the_strong_Phi_means_of_Walsh_Fourier_series","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260144,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260144/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260144/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260144/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=Hua250qQyhEAQR6k-0E8a~CZ64OIiwTjw25tDq37Q60F~HsnZg19ebf0yUfc3h~mOSl3q2BpkuTdICwE5Dq0WeDRiuPHC7a5Hi-aoYmBxjGYvaPK3TvO1FPYan-niJOaEnhM61~vnlHcC~3QYY4oMYnTfR8fDTMwkSIi~UxEWQfmpKQTJErCCNIlwIhyuf5BVhElEvCint1gWW2B4Dla4II5GBVLDP8h1TEyjAsoIufk-LXaHO2kXsbehJAD8tZ48xQz7LF6ESeiWqKIanmVOnT9Y4vXVnMXFIUBq5E6CFbwX1wllG~t1dBjA-pORyRQNGqnJHA7S~2TeC2rbnsgcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260143/thumbnails/1.jpg","file_name":"1312.pdf","download_url":"https://www.academia.edu/attachments/108260143/download_file","bulk_download_file_name":"On_everywhere_divergence_of_the_strong_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260143/1312-libre.pdf?1701614488=\u0026response-content-disposition=attachment%3B+filename%3DOn_everywhere_divergence_of_the_strong_P.pdf\u0026Expires=1731455187\u0026Signature=RgQsryj53zmCU8fOKsWJUscdGrKxzuVg91DPrDpv3kfXn6SKj9xHkNVzCAMRqiwZVn07rfP9P~jjAhUUNiKA13XK~-29kMc1dX-EiKcEvuW7qFdLBu4b2vSsC4GcNhjcvwIw6bbh4wNnNdTAiYpqmBjjqVLYENQz0~fJNwX19Glbz1W-3mQzs0eIWuQspFHYghaBsTXcjznNLfMu2ydOUPIFBpFcFlIc0TskzonNhF5~IbIzB2xAT48BDl2ZR0RCnYklfjfrorbyMdm3MPHuqYUc705OBbQeWl8kHWbb8XExMsDuVAFLg6jGNcUj5V-sevswNLOEqgwZLS1qIYVfkw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":740976,"name":"Trigonometry","url":"https://www.academia.edu/Documents/in/Trigonometry"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":36348754,"url":"https://arxiv.org/pdf/1312.0855"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444337"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series"><img alt="Research paper thumbnail of Pointwise Strong Summability of Vilenkin–Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series">Pointwise Strong Summability of Vilenkin–Fourier Series</a></div><div class="wp-workCard_item"><span>Mathematical Notes</span><span>, Oct 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we give a description of points at which the strong means of VilenkinFourier serie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444337"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444337"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444337; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444337]").text(description); $(".js-view-count[data-work-id=110444337]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444337; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444337']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444337, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444337]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444337,"title":"Pointwise Strong Summability of Vilenkin–Fourier Series","translated_title":"","metadata":{"abstract":"In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":10,"year":2020,"errors":{}},"publication_name":"Mathematical Notes"},"translated_abstract":"In this paper, we give a description of points at which the strong means of VilenkinFourier series converge.","internal_url":"https://www.academia.edu/110444337/Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pointwise_Strong_Summability_of_Vilenkin_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348752,"url":"https://doi.org/10.1134/s0001434620090229"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444336"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series"><img alt="Research paper thumbnail of Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260192/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series">Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series</a></div><div class="wp-workCard_item"><span>Constructive Approximation</span><span>, Jun 7, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8301ed7a781da1c8845aa274b2027a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260192,"asset_id":110444336,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444336"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444336"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444336; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444336]").text(description); $(".js-view-count[data-work-id=110444336]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444336; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444336']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444336, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8301ed7a781da1c8845aa274b2027a0" } } $('.js-work-strip[data-work-id=110444336]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444336,"title":"Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":7,"month":6,"year":2018,"errors":{}},"publication_name":"Constructive Approximation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444336/Ces%C3%A0ro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:38.373-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260192/thumbnails/1.jpg","file_name":"1805.05366v1.pdf","download_url":"https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_Means_of_Subsequences_of_Partial.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260192/1805.05366v1-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_Means_of_Subsequences_of_Partial.pdf\u0026Expires=1731455187\u0026Signature=RUa7BXo-Zxw-i60BLSebZQV99npa30yQRL7TRjlSFBeVwB2vYY1OYO8uLbPIzennYgHT6pLEdd9Iu3a51rRN1EVfFSlzECKFu2MZzLbvXNNJF8AkAkUBIMpGg15bzPhORkdIIP0IKkT7OQjra34M38cDoAYyNtAusIEyaLSnDBi8-dCXaC3zaNrkGsxk1foYUSVLaY6jwD82fPL8P1ZeKS5bgfZOCK-GQabD~FjfMH~-veoSFoYXnZayjPrlhAp3Z5oMjOxwhIOa~U2YxH9gWg-4XwZkkUlCqGWMbq3FEXFuyOtGFfA5b4nQO9dbxooGBFJ-1QKy-1h5a3ca8zzADQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cesàro_Means_of_Subsequences_of_Partial_Sums_of_Trigonometric_Fourier_Series","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260192/thumbnails/1.jpg","file_name":"1805.05366v1.pdf","download_url":"https://www.academia.edu/attachments/108260192/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_Means_of_Subsequences_of_Partial.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260192/1805.05366v1-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_Means_of_Subsequences_of_Partial.pdf\u0026Expires=1731455187\u0026Signature=RUa7BXo-Zxw-i60BLSebZQV99npa30yQRL7TRjlSFBeVwB2vYY1OYO8uLbPIzennYgHT6pLEdd9Iu3a51rRN1EVfFSlzECKFu2MZzLbvXNNJF8AkAkUBIMpGg15bzPhORkdIIP0IKkT7OQjra34M38cDoAYyNtAusIEyaLSnDBi8-dCXaC3zaNrkGsxk1foYUSVLaY6jwD82fPL8P1ZeKS5bgfZOCK-GQabD~FjfMH~-veoSFoYXnZayjPrlhAp3Z5oMjOxwhIOa~U2YxH9gWg-4XwZkkUlCqGWMbq3FEXFuyOtGFfA5b4nQO9dbxooGBFJ-1QKy-1h5a3ca8zzADQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":740976,"name":"Trigonometry","url":"https://www.academia.edu/Documents/in/Trigonometry"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":1699838,"name":"Natural number","url":"https://www.academia.edu/Documents/in/Natural_number"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":36348751,"url":"https://doi.org/10.1007/s00365-018-9438-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444334"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Norm convergence of logarithmic means on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/108260191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups">Norm convergence of logarithmic means on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Banach Journal of Mathematical Analysis</span><span>, Apr 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4203f3b3ef46e4a020b93141b452e44" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260191,"asset_id":110444334,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444334"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444334"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444334; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444334]").text(description); $(".js-view-count[data-work-id=110444334]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444334; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444334']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444334, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4203f3b3ef46e4a020b93141b452e44" } } $('.js-work-strip[data-work-id=110444334]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444334,"title":"Norm convergence of logarithmic means on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Birkhäuser","publication_date":{"day":1,"month":4,"year":2018,"errors":{}},"publication_name":"Banach Journal of Mathematical Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444334/Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2023-12-03T06:26:38.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260191/thumbnails/1.jpg","file_name":"17358787-2017-003120231203-1-vxefuh.pdf","download_url":"https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_logarithmic_means_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260191/17358787-2017-003120231203-1-vxefuh-libre.pdf?1701614456=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_logarithmic_means_on.pdf\u0026Expires=1731455187\u0026Signature=cyMT4mHPOLTu2UCtz9wllGxmm0p8wAxC5tNdPTMoQXOyzef27DK9CaoEN2SUN-gwzP1ofL02EBcI8JDnVxtqPNVwx4lqBBTE9cSA23fHJMJLFaNjqKgeel8QgDX6F5OcGnvNZoCUZUJF1uZGg4-y9O~VnZunz~ZB51yZ6G5-zG9pIittj7ha6yXBjPfSNXwiTgHQBi~oTawsNvy--6rJVkLMmn7TvgBL8XIRFEILs-yVjjrlKu0824cUpY~uN~LIxOIOgizVDLdjtDA-GZ7H6M5jNO3-0~kRB4fNhfvTUWEphuAf2z6-ji~AP5uQ42eDZrwjk4ztsYfmGz4AwQSBhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Norm_convergence_of_logarithmic_means_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260191/thumbnails/1.jpg","file_name":"17358787-2017-003120231203-1-vxefuh.pdf","download_url":"https://www.academia.edu/attachments/108260191/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Norm_convergence_of_logarithmic_means_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260191/17358787-2017-003120231203-1-vxefuh-libre.pdf?1701614456=\u0026response-content-disposition=attachment%3B+filename%3DNorm_convergence_of_logarithmic_means_on.pdf\u0026Expires=1731455187\u0026Signature=cyMT4mHPOLTu2UCtz9wllGxmm0p8wAxC5tNdPTMoQXOyzef27DK9CaoEN2SUN-gwzP1ofL02EBcI8JDnVxtqPNVwx4lqBBTE9cSA23fHJMJLFaNjqKgeel8QgDX6F5OcGnvNZoCUZUJF1uZGg4-y9O~VnZunz~ZB51yZ6G5-zG9pIittj7ha6yXBjPfSNXwiTgHQBi~oTawsNvy--6rJVkLMmn7TvgBL8XIRFEILs-yVjjrlKu0824cUpY~uN~LIxOIOgizVDLdjtDA-GZ7H6M5jNO3-0~kRB4fNhfvTUWEphuAf2z6-ji~AP5uQ42eDZrwjk4ztsYfmGz4AwQSBhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348749,"url":"https://doi.org/10.1215/17358787-2017-0031"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series"><img alt="Research paper thumbnail of Cesàro means with varying parameters of Walsh–Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series">Cesàro means with varying parameters of Walsh–Fourier series</a></div><div class="wp-workCard_item"><span>Periodica Mathematica Hungarica</span><span>, Nov 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3632721d2e822c8c50210a34b6daa3f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260141,"asset_id":110444333,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444333]").text(description); $(".js-view-count[data-work-id=110444333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3632721d2e822c8c50210a34b6daa3f0" } } $('.js-work-strip[data-work-id=110444333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444333,"title":"Cesàro means with varying parameters of Walsh–Fourier series","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":4,"month":11,"year":2022,"errors":{}},"publication_name":"Periodica Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444333/Ces%C3%A0ro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:37.993-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260141/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260141/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=M7Q2916clpU12MetphFqGhQye8T1YTm5qNS~hY0M47YEMj6DmXrjDh4ZmYX0~QtOIRGJ2d7Hgt8n3ISyJQ8iG7UuE6TYNsu27H7sSMGGwjIgd2kCkCzlk2PIxMV3~rZVG27CiSb~wK-yk-46F9zVJL4tbMtCphmaRNzBKvA9KHQHNepB-0KAy-mSdA73vkiJ8UPtZ-J~VipalAWrJYJVhCPy0udT5NNvXjVHqnJ-Ou5XUfRvaW~NvDfKRlY7pp1G1BPgq4afNRlmzOWzmZk-OsrYfsGx8mj937Q6IpLc6N4rtSS9fjdk4-wBHLU~ZGm5ml3~1KpgMaOH5ah7q-BAuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cesàro_means_with_varying_parameters_of_Walsh_Fourier_series","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260141/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260141/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260141/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=M7Q2916clpU12MetphFqGhQye8T1YTm5qNS~hY0M47YEMj6DmXrjDh4ZmYX0~QtOIRGJ2d7Hgt8n3ISyJQ8iG7UuE6TYNsu27H7sSMGGwjIgd2kCkCzlk2PIxMV3~rZVG27CiSb~wK-yk-46F9zVJL4tbMtCphmaRNzBKvA9KHQHNepB-0KAy-mSdA73vkiJ8UPtZ-J~VipalAWrJYJVhCPy0udT5NNvXjVHqnJ-Ou5XUfRvaW~NvDfKRlY7pp1G1BPgq4afNRlmzOWzmZk-OsrYfsGx8mj937Q6IpLc6N4rtSS9fjdk4-wBHLU~ZGm5ml3~1KpgMaOH5ah7q-BAuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260142,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260142/thumbnails/1.jpg","file_name":"s10998-022-00499-x.pdf","download_url":"https://www.academia.edu/attachments/108260142/download_file","bulk_download_file_name":"Cesaro_means_with_varying_parameters_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260142/s10998-022-00499-x-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DCesaro_means_with_varying_parameters_of.pdf\u0026Expires=1731455187\u0026Signature=L54Uz1utF8mKpQaX7zO2AORmpRSNtT49p1-EJU3fF-9H0fUqNFQPogse0EH9jbqCiCPhRXbGOc6B1Ku1ORtWFZmy3vMW00n50-fkBjhNugbkEcSTYU8TayPAHys7CsibpgGkVv~iwy3CBDx4DEtxLKMAYERveUcLG1mkzDxP0I6x5dz5CyjLrSZ-AfjqBAqAa3uG60WVYub3rQ-skRjo0e2rr-K0VhZNZM0P9dclSeuP1ApfYfLTsqyEk6XxALrpasM--3qE0GySlaR-QlNQbHXDpWACu1BlmtU~Vr0NvclS4aURiG-qsLel3PrCWmo~M-lFay9-lmEY6ai-L7ueIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348748,"url":"https://link.springer.com/content/pdf/10.1007/s10998-022-00499-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444330"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series"><img alt="Research paper thumbnail of Convergence of logarithmic means of Multiple Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series">Convergence of logarithmic means of Multiple Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Feb 6, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6210447a259b32499460a2d54648c219" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260137,"asset_id":110444330,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444330"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444330"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444330; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444330]").text(description); $(".js-view-count[data-work-id=110444330]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444330; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444330']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444330, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6210447a259b32499460a2d54648c219" } } $('.js-work-strip[data-work-id=110444330]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444330,"title":"Convergence of logarithmic means of Multiple Walsh-Fourier series","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":6,"month":2,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444330/Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:37.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260137/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260137/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=W8tK4kX8fw2QA71U3p7ALn4-beMjJjHwChBD~PidW3aTpjw1EzxZLeY~VDlQAZGoeocwUk94qOZtOGJCphod0SvhjetyysD4FdkIPUzvegwwfaf-5IFBWLLkwzVkzdxitTQe2cNwbaK3xSFuhw7-Ls5qwRc~AwVG1C8-LwoMqZH4qII8hzcwfAdRiyuf-ZC0nDGRukmBR8WK5FqZ2e79OcxBm9LwUiz5CXm-W3H9HV7eKdtrf7A4oK-6oCz67AtAeT6DxWC6-ge5nj7yWGuVBF3Fvig5jmDf2wR3bFcwfYEGt34Zca1tC9nNmvSZ2CMNKfuf9f2ClShMwwUETBpFsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convergence_of_logarithmic_means_of_Multiple_Walsh_Fourier_series","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260137/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260137/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260137/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=W8tK4kX8fw2QA71U3p7ALn4-beMjJjHwChBD~PidW3aTpjw1EzxZLeY~VDlQAZGoeocwUk94qOZtOGJCphod0SvhjetyysD4FdkIPUzvegwwfaf-5IFBWLLkwzVkzdxitTQe2cNwbaK3xSFuhw7-Ls5qwRc~AwVG1C8-LwoMqZH4qII8hzcwfAdRiyuf-ZC0nDGRukmBR8WK5FqZ2e79OcxBm9LwUiz5CXm-W3H9HV7eKdtrf7A4oK-6oCz67AtAeT6DxWC6-ge5nj7yWGuVBF3Fvig5jmDf2wR3bFcwfYEGt34Zca1tC9nNmvSZ2CMNKfuf9f2ClShMwwUETBpFsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108260138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260138/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/108260138/download_file","bulk_download_file_name":"Convergence_of_logarithmic_means_of_Mult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260138/1402-libre.pdf?1701614491=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_of_logarithmic_means_of_Mult.pdf\u0026Expires=1731455187\u0026Signature=YNiHcVYdqXrpQSQ~kXlNZoUXbboeZxKpRa67cIBLg~L9HvW8rzw0iJnUMfXlQFXfvDyVFEv9dqBpjQpN7cpLID9GS1DgsGiZHlaqID~wlAU8xCwOxU5g3Tc1ZL1LnxmHpDSa4GREVlWLu-A6roqych93D5y8m-1FBAXKrfJfOESrNEi3HkwsCuypvW0ke5AjxCQ3ATrpRWPDY79wftL4TjP14snmrDNVKp7-tOiaIzMh7jxc5rEoVAECMf9224Jw45lTtw2pfe6ffFwheaqa784pU6vaeXZ9WTK0nVXM-MFniCk1HUbgPpg26eX9W5uE9qiQ~0pktpn6R0pN033yaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348746,"url":"http://arxiv.org/pdf/1402.1308"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers">Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers</a></div><div class="wp-workCard_item"><span>P-adic Numbers, Ultrametric Analysis, and Applications</span><span>, May 23, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444328]").text(description); $(".js-view-count[data-work-id=110444328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444328,"title":"Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of $$2$$-Adic Integers","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":23,"month":5,"year":2022,"errors":{}},"publication_name":"P-adic Numbers, Ultrametric Analysis, and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444328/Almost_Everywhere_Convergence_of_Ces%C3%A0ro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers","translated_internal_url":"","created_at":"2023-12-03T06:26:37.596-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Everywhere_Convergence_of_Cesàro_Marczinkiewicz_Means_of_Two_Dimensional_Fourier_Series_on_the_Group_of_2_Adic_Integers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348744,"url":"https://doi.org/10.1134/s2070046622020030"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444326"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels"><img alt="Research paper thumbnail of On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels" class="work-thumbnail" src="https://attachments.academia-assets.com/108260193/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels">On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels</a></div><div class="wp-workCard_item"><span>Mathematica Pannonica</span><span>, Oct 26, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49f574170cceccd7ee2517fd6426c05e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260193,"asset_id":110444326,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444326"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444326]").text(description); $(".js-view-count[data-work-id=110444326]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444326']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444326, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49f574170cceccd7ee2517fd6426c05e" } } $('.js-work-strip[data-work-id=110444326]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444326,"title":"On the Negativity of the Walsh–Kaczmarz–Riesz Logarithmic Kernels","translated_title":"","metadata":{"publisher":"Akademiai Kiado Zrt.","publication_date":{"day":26,"month":10,"year":2021,"errors":{}},"publication_name":"Mathematica Pannonica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444326/On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels","translated_internal_url":"","created_at":"2023-12-03T06:26:37.205-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260193/thumbnails/1.jpg","file_name":"article-10.1556-314.2021.00018.pdf","download_url":"https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Negativity_of_the_Walsh_Kaczmarz.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260193/article-10.1556-314.2021.00018-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Negativity_of_the_Walsh_Kaczmarz.pdf\u0026Expires=1731455187\u0026Signature=JDZvPiIwLzxb4AxBFmYTq6TDOZSPmE0YczLdWmEt-LdGI0aZHOP5D01jM8pNyEDAhShC7dVXmvwuM1Zb4hpL1RTUnq4yaELVPZrEGMj~5GfnqxP2QI3Y8B9SZNgByVK54QFdUf7HgyBuAk-jfw6hYp5w72-ufnKFNDWA4P-UTjLxCtrp7NEtHGvtktLCVkhD-CMQ4CsWx699cSjGr0Ew1G8pEIdkzyp3ZS7okmwxK7dL~kKPY4jWiO2TWaPQ3CI~BocAQ7YuSMrTROw8ZnKqRKDTCSstJlaN2A3D00VjGElhgqsZCW8RxkjqXPXToFT2JLmnXLPDI3Cc9Y4-CJ9qrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Negativity_of_the_Walsh_Kaczmarz_Riesz_Logarithmic_Kernels","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260193,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260193/thumbnails/1.jpg","file_name":"article-10.1556-314.2021.00018.pdf","download_url":"https://www.academia.edu/attachments/108260193/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Negativity_of_the_Walsh_Kaczmarz.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260193/article-10.1556-314.2021.00018-libre.pdf?1701614461=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Negativity_of_the_Walsh_Kaczmarz.pdf\u0026Expires=1731455187\u0026Signature=JDZvPiIwLzxb4AxBFmYTq6TDOZSPmE0YczLdWmEt-LdGI0aZHOP5D01jM8pNyEDAhShC7dVXmvwuM1Zb4hpL1RTUnq4yaELVPZrEGMj~5GfnqxP2QI3Y8B9SZNgByVK54QFdUf7HgyBuAk-jfw6hYp5w72-ufnKFNDWA4P-UTjLxCtrp7NEtHGvtktLCVkhD-CMQ4CsWx699cSjGr0Ew1G8pEIdkzyp3ZS7okmwxK7dL~kKPY4jWiO2TWaPQ3CI~BocAQ7YuSMrTROw8ZnKqRKDTCSstJlaN2A3D00VjGElhgqsZCW8RxkjqXPXToFT2JLmnXLPDI3Cc9Y4-CJ9qrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":36348742,"url":"https://doi.org/10.1556/314.2021.00018"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers"><img alt="Research paper thumbnail of Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers">Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers</a></div><div class="wp-workCard_item"><span>Novi Sad Journal of Mathematics</span><span>, Apr 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444324]").text(description); $(".js-view-count[data-work-id=110444324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444324,"title":"Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers","translated_title":"","metadata":{"publisher":"Faculty of Sciences, University of Novi Sad","publication_date":{"day":29,"month":4,"year":2021,"errors":{}},"publication_name":"Novi Sad Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444324/Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers","translated_internal_url":"","created_at":"2023-12-03T06:26:36.955-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_everywhere_convergence_of_Riesz_means_of_one_dimensional_Fourier_series_on_the_group_of_2_adic_integers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348739,"url":"https://doi.org/10.30755/nsjom.12069"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series"><img alt="Research paper thumbnail of Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series">Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series</a></div><div class="wp-workCard_item"><span>Analysis Mathematica</span><span>, Mar 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \sum\limits_{j = 0}^\infty {\left| {{n_j} - {n_{j + 1}}} \right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) &lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\square}}_A\left( f \right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) &lt; ∞ and a function f ∈ φ(L)(I2) for which $$\text{sup} _A|S{_n^{\square}}_A\left( {{x^1},{x^2};f} \right)| = \infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444323]").text(description); $(".js-view-count[data-work-id=110444323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110444323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444323,"title":"Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh–Fourier Series","translated_title":"","metadata":{"abstract":"For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \\sum\\limits_{j = 0}^\\infty {\\left| {{n_j} - {n_{j + 1}}} \\right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) \u0026lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\\square}}_A\\left( f \\right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) \u0026lt; ∞ and a function f ∈ φ(L)(I2) for which $$\\text{sup} _A|S{_n^{\\square}}_A\\left( {{x^1},{x^2};f} \\right)| = \\infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":3,"year":2018,"errors":{}},"publication_name":"Analysis Mathematica"},"translated_abstract":"For a non-negative integer n let us denote the dyadic variation of a natural number n by $$V(n): = \\sum\\limits_{j = 0}^\\infty {\\left| {{n_j} - {n_{j + 1}}} \\right| + {n_0},}$$V(n):=∑j=0∞|nj−nj+1|+n0, where n := ∑i=0∞ni2i, ni ∈ {0, 1}. In this paper we prove that for a function f ∈ L log L(I2) under the condition supAV (nA) \u0026lt; ∞, the subsequence of quadratic partial sums $$S{_n^{\\square}}_A\\left( f \\right)$$Sn□A(f) of two-dimensional Walsh–Fourier series converges to the function f almost everywhere. We also prove sharpness of this result. Namely, we prove that for all monotone increasing function φ: [0,∞) → [0,∞) such that φ(u) = o(u log u) as u → ∞ there exists a sequence {nA : A ≥ 1} with the condition supAV(nA) \u0026lt; ∞ and a function f ∈ φ(L)(I2) for which $$\\text{sup} _A|S{_n^{\\square}}_A\\left( {{x^1},{x^2};f} \\right)| = \\infty $$supA|Sn◻A(x1,x2;f)|=∞ for almost all (x1, x2) ∈ I2.","internal_url":"https://www.academia.edu/110444323/Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series","translated_internal_url":"","created_at":"2023-12-03T06:26:36.775-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Everywhere_Convergence_of_Subsequence_of_Quadratic_Partial_Sums_of_Two_Dimensional_Walsh_Fourier_Series","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":454069,"name":"Subsequence","url":"https://www.academia.edu/Documents/in/Subsequence"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348738,"url":"https://doi.org/10.1007/s10476-018-0107-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110444322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series"><img alt="Research paper thumbnail of Almost everywhere strong summability of double Walsh-Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/108260131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series">Almost everywhere strong summability of double Walsh-Fourier series</a></div><div class="wp-workCard_item"><span>Journal of Contemporary Mathematical Analysis</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b23381a7590bf1182202a9c4160b33d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108260131,"asset_id":110444322,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110444322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110444322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110444322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110444322]").text(description); $(".js-view-count[data-work-id=110444322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110444322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110444322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110444322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b23381a7590bf1182202a9c4160b33d" } } $('.js-work-strip[data-work-id=110444322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110444322,"title":"Almost everywhere strong summability of double Walsh-Fourier series","translated_title":"","metadata":{"publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Contemporary Mathematical Analysis"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110444322/Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series","translated_internal_url":"","created_at":"2023-12-03T06:26:36.598-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32476274,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108260131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260131/thumbnails/1.jpg","file_name":"1310.pdf","download_url":"https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_strong_summability_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260131/1310-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_strong_summability_of.pdf\u0026Expires=1731455187\u0026Signature=eLcRicOoJZ3ireSG8hFfVWIJBRsNLAa24OvTGUVX8wlXkXH6WejWY6aOCsSFrSbjyPp1odyH90CGeTj7dHMt4qoJBIhHrP4SRTxic2kdlXFEwHZgwcmRJJ6guD7ooD7vi3~tnhFUoeC6epeqc0YHubzuBITz2nWTnLwhWvdX6B2vEeHwggM9vJRvqJr-hsHGdS~2uRbEM4iI1WIVrMZCd9WwyY9TFnBYrXsxazR1cJXdU6I~EgjRcwnDspINOQApd7TUW17Ffy1fVO1qAaB43IrbvZp0trN2gcW7kb1coIG7wOTFs6mz2FEihb7gYMr7cncmlcoGtbisBR-A2uo9pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Almost_everywhere_strong_summability_of_double_Walsh_Fourier_series","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":32476274,"first_name":"Gyorgy","middle_initials":null,"last_name":"Gat","page_name":"GyorgyGat","domain_name":"unideb","created_at":"2015-06-23T14:37:53.954-07:00","display_name":"Gyorgy Gat","url":"https://unideb.academia.edu/GyorgyGat"},"attachments":[{"id":108260131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108260131/thumbnails/1.jpg","file_name":"1310.pdf","download_url":"https://www.academia.edu/attachments/108260131/download_file?st=MTczMjM5NTg1Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Almost_everywhere_strong_summability_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108260131/1310-libre.pdf?1701614489=\u0026response-content-disposition=attachment%3B+filename%3DAlmost_everywhere_strong_summability_of.pdf\u0026Expires=1731455187\u0026Signature=eLcRicOoJZ3ireSG8hFfVWIJBRsNLAa24OvTGUVX8wlXkXH6WejWY6aOCsSFrSbjyPp1odyH90CGeTj7dHMt4qoJBIhHrP4SRTxic2kdlXFEwHZgwcmRJJ6guD7ooD7vi3~tnhFUoeC6epeqc0YHubzuBITz2nWTnLwhWvdX6B2vEeHwggM9vJRvqJr-hsHGdS~2uRbEM4iI1WIVrMZCd9WwyY9TFnBYrXsxazR1cJXdU6I~EgjRcwnDspINOQApd7TUW17Ffy1fVO1qAaB43IrbvZp0trN2gcW7kb1coIG7wOTFs6mz2FEihb7gYMr7cncmlcoGtbisBR-A2uo9pg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":36348737,"url":"http://arxiv.org/pdf/1310.8212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "ae20f39e5ce71a229388a597c0b5df7b747fc02eff9dea0a51a71e47571166ae", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="OYGfmdWBijuaWxyXQLufvowJVjBKkgesgU+dTyqoDeAP6ScDoDVwDryX+ANZgsLWjY8cQDShc+swoMFwKE8Y7A==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unideb.academia.edu/GyorgyGat" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="IrjomNRu00mV7anFg+uNp1hL8Wr/4xo6cIj/jW9Up4wU0FACodopfLMhTVGa0tDPWc27GoHQbn3BZ6OybbOygA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>