CINXE.COM
M. Mursaleen | Aligarh Muslim University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>M. Mursaleen | Aligarh Muslim University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="9bUi9cbI6k+tMiK5nTi/45asZBJJPg/0ih28cu6KyY3u5CKJP0FsG/og2xKflZlVK+Hy7cXIwNyG7sAFm8jRxA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="m. mursaleen" /> <meta name="description" content="M. Mursaleen, Aligarh Muslim University: 143 Followers, 16 Following, 198 Research papers. Research interest: Topological Vector Spaces, Locally Convex spaces,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15279,"monthly_visitors":"124 million","monthly_visitor_count":124494275,"monthly_visitor_count_in_millions":124,"user_count":278990597,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734498510000); window.Aedu.timeDifference = new Date().getTime() - 1734498510000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-772ddef14990ef25ff745ff7a68e1f5d083987771af2b9046e5dd4ece84c9e02.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-8ced32df41cb1a30061eaa13a8fe865a252f94d76a6a6a05ea0ba77c04f53a96.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://amu-in.academia.edu/MMursaleen" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-77c1bbdf640d3ab9a9b87cd905f5a36d6e6aeca610cba7e42bc42af726770bbb.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen","photo":"https://0.academia-photos.com/599035/2847060/3324298/s65_m..mursaleen.jpg","has_photo":true,"department":{"id":197144,"name":"Department of Mathematics","url":"https://amu-in.academia.edu/Departments/Department_of_Mathematics/Documents","university":{"id":4282,"name":"Aligarh Muslim University","url":"https://amu-in.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":199899,"name":"Topological Vector Spaces, Locally Convex spaces, Sequence Spaces","url":"https://www.academia.edu/Documents/in/Topological_Vector_Spaces_Locally_Convex_spaces_Sequence_Spaces"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://amu-in.academia.edu/MMursaleen","location":"/MMursaleen","scheme":"https","host":"amu-in.academia.edu","port":null,"pathname":"/MMursaleen","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-292ae792-883a-461d-bd33-b31b14ad3a8d"></div> <div id="ProfileCheckPaperUpdate-react-component-292ae792-883a-461d-bd33-b31b14ad3a8d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="M. Mursaleen" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/599035/2847060/3324298/s200_m..mursaleen.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">M. Mursaleen</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://amu-in.academia.edu/">Aligarh Muslim University</a>, <a class="u-tcGrayDarker" href="https://amu-in.academia.edu/Departments/Department_of_Mathematics/Documents">Department of Mathematics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="M." data-follow-user-id="599035" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="599035"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">143</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">16</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">9</p></div></a><a href="/MMursaleen/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="599035" href="https://www.academia.edu/Documents/in/Topological_Vector_Spaces_Locally_Convex_spaces_Sequence_Spaces"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://amu-in.academia.edu/MMursaleen","location":"/MMursaleen","scheme":"https","host":"amu-in.academia.edu","port":null,"pathname":"/MMursaleen","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Topological Vector Spaces, Locally Convex spaces, Sequence Spaces"]}" data-trace="false" data-dom-id="Pill-react-component-23be7a4f-6aa4-47d8-9644-a196b98b6ed5"></div> <div id="Pill-react-component-23be7a4f-6aa4-47d8-9644-a196b98b6ed5"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="MyCV2.pdf" data-placement="top" data-toggle="tooltip" href="/MMursaleen/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by M. Mursaleen</h3></div><div class="js-work-strip profile--work_container" data-work-id="126084333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I"><img alt="Research paper thumbnail of Onsomenewdifferencesequencespacesofnon-absolutetype I" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I">Onsomenewdifferencesequencespacesofnon-absolutetype I</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequenc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084333]").text(description); $(".js-view-count[data-work-id=126084333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126084333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084333,"title":"Onsomenewdifferencesequencespacesofnon-absolutetype I","translated_title":"","metadata":{"abstract":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","internal_url":"https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I","translated_internal_url":"","created_at":"2024-12-05T03:12:54.942-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Onsomenewdifferencesequencespacesofnon_absolutetype_I","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126084332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences"><img alt="Research paper thumbnail of On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/120016172/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences">On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a195d489a5268026a6954b13e3f711d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120016172,"asset_id":126084332,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084332]").text(description); $(".js-view-count[data-work-id=126084332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a195d489a5268026a6954b13e3f711d6" } } $('.js-work-strip[data-work-id=126084332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084332,"title":"On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences","translated_title":"","metadata":{"grobid_abstract":"For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.","grobid_abstract_attachment_id":120016172},"translated_abstract":null,"internal_url":"https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences","translated_internal_url":"","created_at":"2024-12-05T03:12:54.451-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120016172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016172/thumbnails/1.jpg","file_name":"61_982_10.pdf","download_url":"https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Ideal_Analogue_of_Asymptotically_Lacu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016172/61_982_10-libre.pdf?1733397941=\u0026response-content-disposition=attachment%3B+filename%3DOn_Ideal_Analogue_of_Asymptotically_Lacu.pdf\u0026Expires=1734473669\u0026Signature=fOw74kq-WI6BfAX8dbSHFekgTsUlLXxq5dDQZoI3DzMoNYcJKEdcIv4ONrTD61d0fwQXnXEVFj6hFo4TC8fZ~n4EK2pbCEJmuT2cUj37vBoOimls1XBaGOiJ9xmX~B8mtcaHNRi1urCBVF9PExekZkex-mWZZ4H4zW-UA8ATOuTw43qkhKEx2VtaLBes9fB8WYOblCUXmlNlQ8n7yjMDiVHuvQTHVzxbjpD5z9-AbIGYq3IjiJYzC7LSsI36izYO5Br7iVwWmGbaqRNVhGnDIwfHZmkZZJJDo81kITffAZx4gnTeK-BY4hMICVnqhWEjpQAQqCs~wqPTqcHm1HdZIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":120016172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016172/thumbnails/1.jpg","file_name":"61_982_10.pdf","download_url":"https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Ideal_Analogue_of_Asymptotically_Lacu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016172/61_982_10-libre.pdf?1733397941=\u0026response-content-disposition=attachment%3B+filename%3DOn_Ideal_Analogue_of_Asymptotically_Lacu.pdf\u0026Expires=1734473669\u0026Signature=fOw74kq-WI6BfAX8dbSHFekgTsUlLXxq5dDQZoI3DzMoNYcJKEdcIv4ONrTD61d0fwQXnXEVFj6hFo4TC8fZ~n4EK2pbCEJmuT2cUj37vBoOimls1XBaGOiJ9xmX~B8mtcaHNRi1urCBVF9PExekZkex-mWZZ4H4zW-UA8ATOuTw43qkhKEx2VtaLBes9fB8WYOblCUXmlNlQ8n7yjMDiVHuvQTHVzxbjpD5z9-AbIGYq3IjiJYzC7LSsI36izYO5Br7iVwWmGbaqRNVhGnDIwfHZmkZZJJDo81kITffAZx4gnTeK-BY4hMICVnqhWEjpQAQqCs~wqPTqcHm1HdZIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126084291"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators"><img alt="Research paper thumbnail of Linear isomorphic spaces of fractional-order difference operators" class="work-thumbnail" src="https://attachments.academia-assets.com/120016158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators">Linear isomorphic spaces of fractional-order difference operators</a></div><div class="wp-workCard_item"><span>Alexandria Engineering Journal</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we intend to make an approach to introduce and study the applications of fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8708f8a32d34c5c60e2d408470197f7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120016158,"asset_id":126084291,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084291"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084291"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084291; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084291]").text(description); $(".js-view-count[data-work-id=126084291]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084291; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084291']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084291, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8708f8a32d34c5c60e2d408470197f7a" } } $('.js-work-strip[data-work-id=126084291]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084291,"title":"Linear isomorphic spaces of fractional-order difference operators","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Alexandria Engineering Journal","grobid_abstract_attachment_id":120016158},"translated_abstract":null,"internal_url":"https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators","translated_internal_url":"","created_at":"2024-12-05T03:12:23.522-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120016158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016158/thumbnails/1.jpg","file_name":"j.aej.2020.10.03920241205-1-m5g3ef.pdf","download_url":"https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Linear_isomorphic_spaces_of_fractional_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016158/j.aej.2020.10.03920241205-1-m5g3ef-libre.pdf?1733397948=\u0026response-content-disposition=attachment%3B+filename%3DLinear_isomorphic_spaces_of_fractional_o.pdf\u0026Expires=1734473669\u0026Signature=V4yYzuVTJsMsyqsX~J80YiD03m-g~FxfZUPaoJYvW6nLEFX6xUPhe95nOrEWCS3XQ53THBKfWblVCbq6~u1ZqUn07~Fw6ZBRJ~SBMEUwiYxIj~yTChagHQ1--MaJ~W9i1M4Dxao1rECfmxDMSQqz8brUsXCLWfqLSYgi7gANcklMTcP67L0NI9KMEOH5B1EC~d5I2LO1JA6690T0HtWA0IaefYVwa6AhK85hXHrrqSxuL3atAMB0MSyoq8daVGJSbLiI5wWOyoc3u5F~KTTHCl69ipAsH7yjSIUyARuiUmOsXXYRwn9133tk46LS5nwRF4nDFOXH3FjMfk~1~Agplg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Linear_isomorphic_spaces_of_fractional_order_difference_operators","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":120016158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016158/thumbnails/1.jpg","file_name":"j.aej.2020.10.03920241205-1-m5g3ef.pdf","download_url":"https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Linear_isomorphic_spaces_of_fractional_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016158/j.aej.2020.10.03920241205-1-m5g3ef-libre.pdf?1733397948=\u0026response-content-disposition=attachment%3B+filename%3DLinear_isomorphic_spaces_of_fractional_o.pdf\u0026Expires=1734473669\u0026Signature=V4yYzuVTJsMsyqsX~J80YiD03m-g~FxfZUPaoJYvW6nLEFX6xUPhe95nOrEWCS3XQ53THBKfWblVCbq6~u1ZqUn07~Fw6ZBRJ~SBMEUwiYxIj~yTChagHQ1--MaJ~W9i1M4Dxao1rECfmxDMSQqz8brUsXCLWfqLSYgi7gANcklMTcP67L0NI9KMEOH5B1EC~d5I2LO1JA6690T0HtWA0IaefYVwa6AhK85hXHrrqSxuL3atAMB0MSyoq8daVGJSbLiI5wWOyoc3u5F~KTTHCl69ipAsH7yjSIUyARuiUmOsXXYRwn9133tk46LS5nwRF4nDFOXH3FjMfk~1~Agplg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":303,"name":"Algebraic Number Theory","url":"https://www.academia.edu/Documents/in/Algebraic_Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":3236067,"name":"Algebraic Structure","url":"https://www.academia.edu/Documents/in/Algebraic_Structure"}],"urls":[{"id":45927787,"url":"https://api.elsevier.com/content/article/PII:S1110016820305470?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107375490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space"><img alt="Research paper thumbnail of Approximation by Jakimovski–Leviatan-beta operators in weighted space" class="work-thumbnail" src="https://attachments.academia-assets.com/106058366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space">Approximation by Jakimovski–Leviatan-beta operators in weighted space</a></div><div class="wp-workCard_item"><span>Advances in Difference Equations</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviata...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54a6b3dfe075269439b641bfd24c749d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":106058366,"asset_id":107375490,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107375490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107375490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107375490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107375490]").text(description); $(".js-view-count[data-work-id=107375490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107375490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107375490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107375490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54a6b3dfe075269439b641bfd24c749d" } } $('.js-work-strip[data-work-id=107375490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107375490,"title":"Approximation by Jakimovski–Leviatan-beta operators in weighted space","translated_title":"","metadata":{"abstract":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","publisher":"Springer Science and Business Media LLC","ai_title_tag":"Generalized Jakimovski–Leviatan-beta Operators and Convergence","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Advances in Difference Equations"},"translated_abstract":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","internal_url":"https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space","translated_internal_url":"","created_at":"2023-09-29T02:30:30.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":106058366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058366/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058366/s13662-020-02848-x-libre.pdf?1695984388=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=RYn8Dn5~lqvl0n5dBBDWyeSQztvFpMgtXBZq98QaWsqyHj4hf65y8PvncBSFdON~ko9Aa9u-Hu~X3O69WTjBs5yXdRo~FLkm9~LxyOKvXtiIvGiu2UoTqzmFUbJHWfLsHyyZIKFwep~K4XQnN-sIdNlANcf8KdXLia80XcRf8yDxplo2bY8-sU7sbjeCeFd1irz0neWEdLsvnai~I8XNnRcpspvmpmbtH92StPvSxT6uV7xySGe-nOLqafqqyairGSU6p-E~60VPNuMUh2ul~EjtCzgSxS4gaA40oXz5Fs~Nd5xpsrifXEgk~yKk73zVaK2jUk6UvN06QSpaML6CzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":106058366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058366/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058366/s13662-020-02848-x-libre.pdf?1695984388=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=RYn8Dn5~lqvl0n5dBBDWyeSQztvFpMgtXBZq98QaWsqyHj4hf65y8PvncBSFdON~ko9Aa9u-Hu~X3O69WTjBs5yXdRo~FLkm9~LxyOKvXtiIvGiu2UoTqzmFUbJHWfLsHyyZIKFwep~K4XQnN-sIdNlANcf8KdXLia80XcRf8yDxplo2bY8-sU7sbjeCeFd1irz0neWEdLsvnai~I8XNnRcpspvmpmbtH92StPvSxT6uV7xySGe-nOLqafqqyairGSU6p-E~60VPNuMUh2ul~EjtCzgSxS4gaA40oXz5Fs~Nd5xpsrifXEgk~yKk73zVaK2jUk6UvN06QSpaML6CzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106058365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058365/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058365/download_file","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058365/s13662-020-02848-x-libre.pdf?1695984382=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=VMpq7GWsn3mQjAGz8iqctJ~54UbnIfgVm59FGsoi5yplX9HSEbdAgUWvLMZl95F5L6pxJZHShuswDQ8DZGC5keXczAPz-85OKKnVqXsnoB-hECQ-KWYD3cD3BHZRsrSuxqhxU1LmLUQYj18UngybkqvoC3nLpr8I-3T7cuH40tVOQEvB3CPD-dr1rr3UKAvWhOyiJ6gmIUtwvbFyZOmll3IswoFiwkwY7Q2E1gmp6obEI55td1D5hq8nlcKWUOmwDSUR5q3pqk0VEgY9oHOS4PRoYBmC7XbQWZ8VwFAqu7yvPEIJQ-W3GBlCnjlmhJawHQA-N0Z9btmGRFA8igYukA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":672441,"name":"Difference Equations","url":"https://www.academia.edu/Documents/in/Difference_Equations"},{"id":2728929,"name":"Rate of Convergence","url":"https://www.academia.edu/Documents/in/Rate_of_Convergence"},{"id":4100370,"name":"modulus of continuity","url":"https://www.academia.edu/Documents/in/modulus_of_continuity"}],"urls":[{"id":34161137,"url":"https://link.springer.com/content/pdf/10.1186/s13662-020-02848-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104392772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space"><img alt="Research paper thumbnail of Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space" class="work-thumbnail" src="https://attachments.academia-assets.com/104135388/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space">Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to obtain existence results for an infinite system of second order diffe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p &lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01f0c0e445cf4153d949dcf1483e0463" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104135388,"asset_id":104392772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104392772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104392772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104392772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104392772]").text(description); $(".js-view-count[data-work-id=104392772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104392772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104392772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104392772, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01f0c0e445cf4153d949dcf1483e0463" } } $('.js-work-strip[data-work-id=104392772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104392772,"title":"Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space","translated_title":"","metadata":{"abstract":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","publisher":"National Library of Serbia","ai_title_tag":"Existence Results for Infinite Differential Equations in lp-Space","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","internal_url":"https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space","translated_internal_url":"","created_at":"2023-07-09T07:50:11.826-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104135388,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104135388/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_measure_of_noncompactness_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104135388/ft-libre.pdf?1688914509=\u0026response-content-disposition=attachment%3B+filename%3DApplication_measure_of_noncompactness_an.pdf\u0026Expires=1734473669\u0026Signature=Q4i2N90RGygsHXNTGSOli5Wx6A8jDFQm8HJ08w7FD0NFdK2nlwY6z~svzn5UqZMpGPrIKou186bacb7osIRCj35OhbwRKKRfxbOL6LSzBarXOJTO1qNyd6NDiyW8Oi2p7wsukUs06jhLioo69PT44tjKSVj6VOOAmH2OPDWrdMYye2O~7YJQ-ZbOUyH~8bqHxiVaas1cJeQTOuuwpBaOabnLGPrfsV1PjYHYjdZ1viJIxOdCi8v38ea~L~OrDSgRaLdPZu3BArg70XsSChoRJKMPjqHw5RBsw2z-6B5BkApfu5AgFybFRZ1zHkW6LPgaoQGqFdU~3dn5XmyK~mGpcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":104135388,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104135388/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_measure_of_noncompactness_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104135388/ft-libre.pdf?1688914509=\u0026response-content-disposition=attachment%3B+filename%3DApplication_measure_of_noncompactness_an.pdf\u0026Expires=1734473669\u0026Signature=Q4i2N90RGygsHXNTGSOli5Wx6A8jDFQm8HJ08w7FD0NFdK2nlwY6z~svzn5UqZMpGPrIKou186bacb7osIRCj35OhbwRKKRfxbOL6LSzBarXOJTO1qNyd6NDiyW8Oi2p7wsukUs06jhLioo69PT44tjKSVj6VOOAmH2OPDWrdMYye2O~7YJQ-ZbOUyH~8bqHxiVaas1cJeQTOuuwpBaOabnLGPrfsV1PjYHYjdZ1viJIxOdCi8v38ea~L~OrDSgRaLdPZu3BArg70XsSChoRJKMPjqHw5RBsw2z-6B5BkApfu5AgFybFRZ1zHkW6LPgaoQGqFdU~3dn5XmyK~mGpcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="99789521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties"><img alt="Research paper thumbnail of Modified (p, q)-Bernstein-Schurer operators and their approximation properties" class="work-thumbnail" src="https://attachments.academia-assets.com/100784780/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties">Modified (p, q)-Bernstein-Schurer operators and their approximation properties</a></div><div class="wp-workCard_item"><span>Cogent Mathematics</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5b896186e48e37e8c86b3efda29ea21b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100784780,"asset_id":99789521,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="99789521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="99789521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 99789521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=99789521]").text(description); $(".js-view-count[data-work-id=99789521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 99789521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='99789521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 99789521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5b896186e48e37e8c86b3efda29ea21b" } } $('.js-work-strip[data-work-id=99789521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":99789521,"title":"Modified (p, q)-Bernstein-Schurer operators and their approximation properties","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Cogent Mathematics","grobid_abstract_attachment_id":100784780},"translated_abstract":null,"internal_url":"https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties","translated_internal_url":"","created_at":"2023-04-06T16:52:08.568-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100784780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100784780/thumbnails/1.jpg","file_name":"23311835.2016.1236534.pdf","download_url":"https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_p_q_Bernstein_Schurer_operators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100784780/23311835.2016.1236534-libre.pdf?1680825794=\u0026response-content-disposition=attachment%3B+filename%3DModified_p_q_Bernstein_Schurer_operators.pdf\u0026Expires=1734473669\u0026Signature=AHCKMYN273OLtOgRQRtG2UqF1WeNrtpqZtCyarRyHO~EamN4K5K9PneCweebGQns7kXW30L4Z3Fsx2eF06MWcPXLDb7YY0ccSkAox6CmeCtA-Aq1hdSkJPJxSuWJG~MwhONxjTHwla8Evp9rCXttRjA0rag~g4hS6jYQ1U3cevRTTZX5ALOLkLcS-hUEsqoPRhqJnkMltTmjKfdJRMX4Hie3gYDN0UAkUSWkwZB3vnp3rAnAsPlG5sBcyeBTPqNp3BlIm6js4pfSIP4O7~Y9ogT8aApR7JimRSTN4LJiDM8xLDLv28Iiqx6YMlFO9j2wb~v5vMOOVI3~rXk1j53jZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":100784780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100784780/thumbnails/1.jpg","file_name":"23311835.2016.1236534.pdf","download_url":"https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_p_q_Bernstein_Schurer_operators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100784780/23311835.2016.1236534-libre.pdf?1680825794=\u0026response-content-disposition=attachment%3B+filename%3DModified_p_q_Bernstein_Schurer_operators.pdf\u0026Expires=1734473669\u0026Signature=AHCKMYN273OLtOgRQRtG2UqF1WeNrtpqZtCyarRyHO~EamN4K5K9PneCweebGQns7kXW30L4Z3Fsx2eF06MWcPXLDb7YY0ccSkAox6CmeCtA-Aq1hdSkJPJxSuWJG~MwhONxjTHwla8Evp9rCXttRjA0rag~g4hS6jYQ1U3cevRTTZX5ALOLkLcS-hUEsqoPRhqJnkMltTmjKfdJRMX4Hie3gYDN0UAkUSWkwZB3vnp3rAnAsPlG5sBcyeBTPqNp3BlIm6js4pfSIP4O7~Y9ogT8aApR7JimRSTN4LJiDM8xLDLv28Iiqx6YMlFO9j2wb~v5vMOOVI3~rXk1j53jZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":296726,"name":"Bernstein Polynomial","url":"https://www.academia.edu/Documents/in/Bernstein_Polynomial"},{"id":2728929,"name":"Rate of Convergence","url":"https://www.academia.edu/Documents/in/Rate_of_Convergence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="90817624"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY"><img alt="Research paper thumbnail of Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY">Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90817624"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90817624"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90817624; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90817624]").text(description); $(".js-view-count[data-work-id=90817624]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90817624; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90817624']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90817624, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90817624]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90817624,"title":"Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY","translated_internal_url":"","created_at":"2022-11-15T02:34:47.001-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564434/Lambda_Statistical_Convergence"><img alt="Research paper thumbnail of Lambda Statistical Convergence" class="work-thumbnail" src="https://attachments.academia-assets.com/90225101/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564434/Lambda_Statistical_Convergence">Lambda Statistical Convergence</a></div><div class="wp-workCard_item"><span>Mathematical Institute of the Slovak Academy of Sciences</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62febe2e68d47cb12c0e93738a135179" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225101,"asset_id":85564434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564434]").text(description); $(".js-view-count[data-work-id=85564434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62febe2e68d47cb12c0e93738a135179" } } $('.js-work-strip[data-work-id=85564434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564434,"title":"Lambda Statistical Convergence","translated_title":"","metadata":{"publisher":"Mathematical Institute of the Slovak Academy of Sciences","grobid_abstract":"Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Mathematical Institute of the Slovak Academy of Sciences","grobid_abstract_attachment_id":90225101},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564434/Lambda_Statistical_Convergence","translated_internal_url":"","created_at":"2022-08-24T21:56:15.386-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225101/thumbnails/1.jpg","file_name":"MathSlov_50-2000-1_10.pdf","download_url":"https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lambda_Statistical_Convergence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225101/MathSlov_50-2000-1_10-libre.pdf?1661416970=\u0026response-content-disposition=attachment%3B+filename%3DLambda_Statistical_Convergence.pdf\u0026Expires=1734473669\u0026Signature=Yj7byd8Z2~ufYPsFOtVsW7E7e7GvSIKvnBwYAMsA4OJsrdI4ozboQPr3HNZyNREJlmZ6UR6Ymi9x8OaE~xe8nyRDBsd12LYIH3cEks9DPojRvBkNnOotoQvbnW8UABOZlHc8bbgU0xWkfnTyrI1Np7FKnrAO7C5rYPErrU8CX2WBXhGOcan2QDT7ZLnZMpcQBZPAoTLlsa21XeKzVQzKUd1uB2h~xmRY9U7REDLqayy1xWuzPwkOsP5vSkZ~EUA9rXJXliXTHGhDk2qphx37Hcs~NZgUaQFucigZxnn6KuPi9Q~-Es5hj17l5unfBV7NP7Xl5e2k~rtNtGGyVYYF7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lambda_Statistical_Convergence","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225101/thumbnails/1.jpg","file_name":"MathSlov_50-2000-1_10.pdf","download_url":"https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lambda_Statistical_Convergence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225101/MathSlov_50-2000-1_10-libre.pdf?1661416970=\u0026response-content-disposition=attachment%3B+filename%3DLambda_Statistical_Convergence.pdf\u0026Expires=1734473669\u0026Signature=Yj7byd8Z2~ufYPsFOtVsW7E7e7GvSIKvnBwYAMsA4OJsrdI4ozboQPr3HNZyNREJlmZ6UR6Ymi9x8OaE~xe8nyRDBsd12LYIH3cEks9DPojRvBkNnOotoQvbnW8UABOZlHc8bbgU0xWkfnTyrI1Np7FKnrAO7C5rYPErrU8CX2WBXhGOcan2QDT7ZLnZMpcQBZPAoTLlsa21XeKzVQzKUd1uB2h~xmRY9U7REDLqayy1xWuzPwkOsP5vSkZ~EUA9rXJXliXTHGhDk2qphx37Hcs~NZgUaQFucigZxnn6KuPi9Q~-Es5hj17l5unfBV7NP7Xl5e2k~rtNtGGyVYYF7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23329807,"url":"https://dml.cz/handle/10338.dmlcz/136769"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564403"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method"><img alt="Research paper thumbnail of Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method">Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method</a></div><div class="wp-workCard_item"><span>Bulletin of the Malaysian Mathematical Sciences Society</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators v...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564403"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564403"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564403; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564403]").text(description); $(".js-view-count[data-work-id=85564403]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564403; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564403']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564403, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564403]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564403,"title":"Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method","translated_title":"","metadata":{"abstract":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Bulletin of the Malaysian Mathematical Sciences Society"},"translated_abstract":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","internal_url":"https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method","translated_internal_url":"","created_at":"2022-08-24T21:55:46.344-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Approximation_by_Modified_Meyer_König_and_Zeller_Operators_via_Power_Series_Summability_Method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23329791,"url":"http://link.springer.com/content/pdf/10.1007/s40840-020-01045-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators"><img alt="Research paper thumbnail of Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators" class="work-thumbnail" src="https://attachments.academia-assets.com/90225065/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators">Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer oper...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a1bf8f273982e0a8ed8ce137104e089" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225065,"asset_id":85564377,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564377]").text(description); $(".js-view-count[data-work-id=85564377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a1bf8f273982e0a8ed8ce137104e089" } } $('.js-work-strip[data-work-id=85564377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564377,"title":"Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators","translated_title":"","metadata":{"abstract":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","internal_url":"https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators","translated_internal_url":"","created_at":"2022-08-24T21:55:27.700-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225065/thumbnails/1.jpg","file_name":"0354-51801906517M.pdf","download_url":"https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_Sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225065/0354-51801906517M-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_Sta.pdf\u0026Expires=1734473669\u0026Signature=anJxLsE3sbA3jvufkD80euRzo~18Xn63ZEvMtCzbTeWHhCdeeVKFVLhN4gtw9Rc3Fz1VukbeeT7VxR6t6dD6tRwhWBz3UwPmqOHhdSiZV702URyZktpW6zG5e~oDWODIEDl~1ZrQ6eAFayxNmyhKY9i8GLaGsJ-g3jq43xEVNCGEMvu9y3RyZHvkT9fqaGwDy5rl5zDzErZM1V2xpG7uHZKGmo80c4hD1M7pBPY-5JvOcJbGUVD22cYDKhCBaEbIvHbirlJhOjxhYetD~LEr0yHIphBm10BS3F~h4W5CKpwV7RbLsNMJpV~Y~puME3pl92ZESk9W1R0eVIGntn2lTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225065/thumbnails/1.jpg","file_name":"0354-51801906517M.pdf","download_url":"https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_Sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225065/0354-51801906517M-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_Sta.pdf\u0026Expires=1734473669\u0026Signature=anJxLsE3sbA3jvufkD80euRzo~18Xn63ZEvMtCzbTeWHhCdeeVKFVLhN4gtw9Rc3Fz1VukbeeT7VxR6t6dD6tRwhWBz3UwPmqOHhdSiZV702URyZktpW6zG5e~oDWODIEDl~1ZrQ6eAFayxNmyhKY9i8GLaGsJ-g3jq43xEVNCGEMvu9y3RyZHvkT9fqaGwDy5rl5zDzErZM1V2xpG7uHZKGmo80c4hD1M7pBPY-5JvOcJbGUVD22cYDKhCBaEbIvHbirlJhOjxhYetD~LEr0yHIphBm10BS3F~h4W5CKpwV7RbLsNMJpV~Y~puME3pl92ZESk9W1R0eVIGntn2lTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions"><img alt="Research paper thumbnail of A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/90225021/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions">A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions</a></div><div class="wp-workCard_item"><span>Sādhanā</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Iron-based alloys are materials of choice for engineering applications such as bearings and gears...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8336f0ab373e4037776caa7d64aab31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225021,"asset_id":85564315,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564315]").text(description); $(".js-view-count[data-work-id=85564315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8336f0ab373e4037776caa7d64aab31" } } $('.js-work-strip[data-work-id=85564315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564315,"title":"A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Sādhanā","grobid_abstract_attachment_id":90225021},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions","translated_internal_url":"","created_at":"2022-08-24T21:54:53.950-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225021,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225021/thumbnails/1.jpg","file_name":"0240.pdf","download_url":"https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_study_on_friction_and_wear_characteris.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225021/0240-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DA_study_on_friction_and_wear_characteris.pdf\u0026Expires=1734473670\u0026Signature=FqLE-AyfvQxvYdhLi0JUu4Fx-rRGlOmigdU88X8XhVrtiV5ONgqkZRri6fqutsu15b5Q2mswMpbXq5u2Bk5MAshyQyfMiHxkJDKsbzeAjHsFynf8Vd7Sbe9i6Tp7ljRTXDfjv-506VRTdh3nZ0xQuu586eVSmR4tFeBw3lC6jU3YMuQ-cqhKKDEPcanlQlh93taOEjHkwB7IgCUH3rLDLEb03B6v6uXsvj1Vm~tySfaFYnTDEMbC2kU0ol8c19o8bc-wpiTkwr6nq5MumYYpF~zNe4DeRShEGksvwH4IJt~YkbXtJVOCvL25So5bWldnOn6jC-9ySu0hgTAH9h5j8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225021,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225021/thumbnails/1.jpg","file_name":"0240.pdf","download_url":"https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_study_on_friction_and_wear_characteris.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225021/0240-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DA_study_on_friction_and_wear_characteris.pdf\u0026Expires=1734473670\u0026Signature=FqLE-AyfvQxvYdhLi0JUu4Fx-rRGlOmigdU88X8XhVrtiV5ONgqkZRri6fqutsu15b5Q2mswMpbXq5u2Bk5MAshyQyfMiHxkJDKsbzeAjHsFynf8Vd7Sbe9i6Tp7ljRTXDfjv-506VRTdh3nZ0xQuu586eVSmR4tFeBw3lC6jU3YMuQ-cqhKKDEPcanlQlh93taOEjHkwB7IgCUH3rLDLEb03B6v6uXsvj1Vm~tySfaFYnTDEMbC2kU0ol8c19o8bc-wpiTkwr6nq5MumYYpF~zNe4DeRShEGksvwH4IJt~YkbXtJVOCvL25So5bWldnOn6jC-9ySu0hgTAH9h5j8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":23032,"name":"Tribology","url":"https://www.academia.edu/Documents/in/Tribology"},{"id":133994,"name":"Lubricant","url":"https://www.academia.edu/Documents/in/Lubricant"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[{"id":23329739,"url":"http://link.springer.com/content/pdf/10.1007/s12046-019-1208-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators"><img alt="Research paper thumbnail of Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators" class="work-thumbnail" src="https://attachments.academia-assets.com/90225011/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators">Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer oper...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fdffe03358c2c3c8e1a0decd16bb47d4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225011,"asset_id":85564308,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564308]").text(description); $(".js-view-count[data-work-id=85564308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fdffe03358c2c3c8e1a0decd16bb47d4" } } $('.js-work-strip[data-work-id=85564308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564308,"title":"Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Inequalities and Applications","grobid_abstract_attachment_id":90225011},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators","translated_internal_url":"","created_at":"2022-08-24T21:54:28.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225011/thumbnails/1.jpg","file_name":"s13660-017-1451-7.pdf","download_url":"https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_properties_of_Chlodowsky_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225011/s13660-017-1451-7-libre.pdf?1661416985=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_properties_of_Chlodowsky_v.pdf\u0026Expires=1734473670\u0026Signature=g4qCBwBfY8SkqhRVYtzJ9oFCcolVeHw7e4fM6yXpXcgPVt-fIuuDJIGD9hTPGvpdEPmv~t9PStWNWkMYA6oRPIOVZh-i98aW-f8RHZcEm6fW8fMzuzbE-zMDKuGDs6tGaPqu~FxSWZ4W7Yx1wHpJXh1Sgnal2YwqcXGvynuBPIO5BjLtKBSambdsP9iYCPziOsg2L18Y~WtPaGsKb7iz5T8S4AgN~nG5iifxQk4JaEqNNcPllJrh7Z7WCBY1-yVLQorWNst00gPZbXtfEQ-WfV~41n4eirWCp3KRSzCaBSriPvOrN8DM-1h-2luWDb9xvY0UKcESZ2mIREWwgyLL1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225011/thumbnails/1.jpg","file_name":"s13660-017-1451-7.pdf","download_url":"https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_properties_of_Chlodowsky_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225011/s13660-017-1451-7-libre.pdf?1661416985=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_properties_of_Chlodowsky_v.pdf\u0026Expires=1734473670\u0026Signature=g4qCBwBfY8SkqhRVYtzJ9oFCcolVeHw7e4fM6yXpXcgPVt-fIuuDJIGD9hTPGvpdEPmv~t9PStWNWkMYA6oRPIOVZh-i98aW-f8RHZcEm6fW8fMzuzbE-zMDKuGDs6tGaPqu~FxSWZ4W7Yx1wHpJXh1Sgnal2YwqcXGvynuBPIO5BjLtKBSambdsP9iYCPziOsg2L18Y~WtPaGsKb7iz5T8S4AgN~nG5iifxQk4JaEqNNcPllJrh7Z7WCBY1-yVLQorWNst00gPZbXtfEQ-WfV~41n4eirWCp3KRSzCaBSriPvOrN8DM-1h-2luWDb9xvY0UKcESZ2mIREWwgyLL1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"}],"urls":[{"id":23329731,"url":"http://link.springer.com/content/pdf/10.1186/s13660-017-1451-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564298"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces"><img alt="Research paper thumbnail of Multiplication operators on Cesàro function spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/90225005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces">Multiplication operators on Cesàro function spaces</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df6c47b0f5e153c72b0e45c3199c0aec" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225005,"asset_id":85564298,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564298"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564298"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564298; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564298]").text(description); $(".js-view-count[data-work-id=85564298]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564298; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564298']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564298, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df6c47b0f5e153c72b0e45c3199c0aec" } } $('.js-work-strip[data-work-id=85564298]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564298,"title":"Multiplication operators on Cesàro function spaces","translated_title":"","metadata":{"abstract":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","internal_url":"https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces","translated_internal_url":"","created_at":"2022-08-24T21:54:14.622-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225005/thumbnails/1.jpg","file_name":"212d7e88af73ba151f2473deef99ea8a9649.pdf","download_url":"https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multiplication_operators_on_Cesaro_funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225005/212d7e88af73ba151f2473deef99ea8a9649-libre.pdf?1661416978=\u0026response-content-disposition=attachment%3B+filename%3DMultiplication_operators_on_Cesaro_funct.pdf\u0026Expires=1734473670\u0026Signature=KKd2-U9nS5z~SWy8AFMS9vZLfbxliMRmUNhifvbomRi4Shrmj~PY~dfbN85dw1~q~21xb-T6rfbSEcQlF5Um1gBryA6SP0W3fu3MR8DQOq2-2~FJLeRyrtqidOnaoLqchgUtiktaS2Idddee1OseUY4kgz5CNkKA2jy665XqeEO~gdISUvWId~gf-LoP7rQNmu5P~xF2JY7rPMVRL6pVFRq9RKMVQiM6Kq3-ZIgZu3Ly8pKGYfhk1b8dZPnjJTnOf9ea5preod2JbFx8xRM9Vo3mltupG2otWLw3MtbnQHSBGNKvoRnQXb5IFqxhWUxLn52RyFJ8DzTaf4GfAuEjuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multiplication_operators_on_Cesàro_function_spaces","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225005/thumbnails/1.jpg","file_name":"212d7e88af73ba151f2473deef99ea8a9649.pdf","download_url":"https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multiplication_operators_on_Cesaro_funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225005/212d7e88af73ba151f2473deef99ea8a9649-libre.pdf?1661416978=\u0026response-content-disposition=attachment%3B+filename%3DMultiplication_operators_on_Cesaro_funct.pdf\u0026Expires=1734473670\u0026Signature=KKd2-U9nS5z~SWy8AFMS9vZLfbxliMRmUNhifvbomRi4Shrmj~PY~dfbN85dw1~q~21xb-T6rfbSEcQlF5Um1gBryA6SP0W3fu3MR8DQOq2-2~FJLeRyrtqidOnaoLqchgUtiktaS2Idddee1OseUY4kgz5CNkKA2jy665XqeEO~gdISUvWId~gf-LoP7rQNmu5P~xF2JY7rPMVRL6pVFRq9RKMVQiM6Kq3-ZIgZu3Ly8pKGYfhk1b8dZPnjJTnOf9ea5preod2JbFx8xRM9Vo3mltupG2otWLw3MtbnQHSBGNKvoRnQXb5IFqxhWUxLn52RyFJ8DzTaf4GfAuEjuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564082"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative"><img alt="Research paper thumbnail of The Stability of an Affine Type Functional Equation with the Fixed Point Alternative" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative">The Stability of an Affine Type Functional Equation with the Fixed Point Alternative</a></div><div class="wp-workCard_item"><span>Springer Optimization and Its Applications</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564082"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564082"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564082; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564082]").text(description); $(".js-view-count[data-work-id=85564082]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564082; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564082']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564082, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564082]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564082,"title":"The Stability of an Affine Type Functional Equation with the Fixed Point Alternative","translated_title":"","metadata":{"abstract":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Springer Optimization and Its Applications"},"translated_abstract":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","internal_url":"https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative","translated_internal_url":"","created_at":"2022-08-24T21:50:25.591-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1554856,"name":"Affine Transformation","url":"https://www.academia.edu/Documents/in/Affine_Transformation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564079"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators"><img alt="Research paper thumbnail of Application to Compact Matrix Operators" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators">Application to Compact Matrix Operators</a></div><div class="wp-workCard_item"><span>Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this chapter, we present some identities or estimates for the operator norms and the Hausdorff...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \(c_{0}\), \(c\), \(\ell _{\infty }\) and \(\ell _{1}\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564079"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564079"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564079; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564079]").text(description); $(".js-view-count[data-work-id=85564079]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564079; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564079']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564079, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564079]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564079,"title":"Application to Compact Matrix Operators","translated_title":"","metadata":{"abstract":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations"},"translated_abstract":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","internal_url":"https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators","translated_internal_url":"","created_at":"2022-08-24T21:50:22.743-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Application_to_Compact_Matrix_Operators","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers"><img alt="Research paper thumbnail of Some difference sequence spaces of fuzzy numbers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers">Some difference sequence spaces of fuzzy numbers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564078]").text(description); $(".js-view-count[data-work-id=85564078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564078, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564078,"title":"Some difference sequence spaces of fuzzy numbers","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers","translated_internal_url":"","created_at":"2022-08-24T21:50:21.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_difference_sequence_spaces_of_fuzzy_numbers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564077"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564077/Almost_Summability"><img alt="Research paper thumbnail of Almost Summability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564077/Almost_Summability">Almost Summability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564077"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564077"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564077; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564077]").text(description); $(".js-view-count[data-work-id=85564077]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564077; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564077']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564077, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564077]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564077,"title":"Almost Summability","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564077/Almost_Summability","translated_internal_url":"","created_at":"2022-08-24T21:50:20.435-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Summability","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564076/Statistical_Summability"><img alt="Research paper thumbnail of Statistical Summability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564076/Statistical_Summability">Statistical Summability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564076]").text(description); $(".js-view-count[data-work-id=85564076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564076,"title":"Statistical Summability","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564076/Statistical_Summability","translated_internal_url":"","created_at":"2022-08-24T21:50:18.990-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Statistical_Summability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564073"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations"><img alt="Research paper thumbnail of New type of generalized difference sequence space of non-absolute type and some matrix transformations" class="work-thumbnail" src="https://attachments.academia-assets.com/90224865/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations">New type of generalized difference sequence space of non-absolute type and some matrix transformations</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90fe6948af38c1a7021ca5197d8096be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90224865,"asset_id":85564073,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564073"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564073"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564073; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564073]").text(description); $(".js-view-count[data-work-id=85564073]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564073; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564073']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564073, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90fe6948af38c1a7021ca5197d8096be" } } $('.js-work-strip[data-work-id=85564073]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564073,"title":"New type of generalized difference sequence space of non-absolute type and some matrix transformations","translated_title":"","metadata":{"abstract":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","internal_url":"https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations","translated_internal_url":"","created_at":"2022-08-24T21:50:16.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90224865,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90224865/thumbnails/1.jpg","file_name":"48bf0ff31dd4007f8ee102ad74f56ffc337f.pdf","download_url":"https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_type_of_generalized_difference_seque.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90224865/48bf0ff31dd4007f8ee102ad74f56ffc337f-libre.pdf?1661417253=\u0026response-content-disposition=attachment%3B+filename%3DNew_type_of_generalized_difference_seque.pdf\u0026Expires=1734473670\u0026Signature=CJSTiS-PogPstpY7L8sU3Kf-kXyBhDODgkn5IOxHU9hK21yrpmTc5XTfcZhYSq9mjCo7qNVUEenxGJlxF3QibQBUDx9l~lHVbMjTFfsrzBy7KZTH0Dq6s5EGwJvEYvocLeyIB-JAfimVI8JzUFrpFy2UhG4ocIO-ucrjgNIVhix338qB5anhRpWkKIjh4nP~Dh3EfxzR-ntoeI17425O~V4Qgp0uVof3ffB6TGWAPV9fu9RDPDlJN9O~E~1FgVPvtrghI-cKnKD0z1YotFVjzd3EXVMcXgjknBTcfsEfIMxS02FoGq3-x1EDOBpKM7ksxeRD2v6uMAA5eT3mvJM0nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90224865,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90224865/thumbnails/1.jpg","file_name":"48bf0ff31dd4007f8ee102ad74f56ffc337f.pdf","download_url":"https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_type_of_generalized_difference_seque.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90224865/48bf0ff31dd4007f8ee102ad74f56ffc337f-libre.pdf?1661417253=\u0026response-content-disposition=attachment%3B+filename%3DNew_type_of_generalized_difference_seque.pdf\u0026Expires=1734473670\u0026Signature=CJSTiS-PogPstpY7L8sU3Kf-kXyBhDODgkn5IOxHU9hK21yrpmTc5XTfcZhYSq9mjCo7qNVUEenxGJlxF3QibQBUDx9l~lHVbMjTFfsrzBy7KZTH0Dq6s5EGwJvEYvocLeyIB-JAfimVI8JzUFrpFy2UhG4ocIO-ucrjgNIVhix338qB5anhRpWkKIjh4nP~Dh3EfxzR-ntoeI17425O~V4Qgp0uVof3ffB6TGWAPV9fu9RDPDlJN9O~E~1FgVPvtrghI-cKnKD0z1YotFVjzd3EXVMcXgjknBTcfsEfIMxS02FoGq3-x1EDOBpKM7ksxeRD2v6uMAA5eT3mvJM0nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564070"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations"><img alt="Research paper thumbnail of Sequence spaces of invariant means and some matrix transformations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations">Sequence spaces of invariant means and some matrix transformations</a></div><div class="wp-workCard_item"><span>Progress in Analysis and its Applications - Proceedings of the 7th International ISAAC Congress</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564070"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564070"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564070; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564070]").text(description); $(".js-view-count[data-work-id=85564070]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564070; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564070']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564070, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564070]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564070,"title":"Sequence spaces of invariant means and some matrix transformations","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Progress in Analysis and its Applications - Proceedings of the 7th International ISAAC Congress"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations","translated_internal_url":"","created_at":"2022-08-24T21:50:15.439-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sequence_spaces_of_invariant_means_and_some_matrix_transformations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="395322" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126084333"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I"><img alt="Research paper thumbnail of Onsomenewdifferencesequencespacesofnon-absolutetype I" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I">Onsomenewdifferencesequencespacesofnon-absolutetype I</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequenc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084333"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084333"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084333; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084333]").text(description); $(".js-view-count[data-work-id=126084333]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084333; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084333']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084333, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126084333]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084333,"title":"Onsomenewdifferencesequencespacesofnon-absolutetype I","translated_title":"","metadata":{"abstract":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","internal_url":"https://www.academia.edu/126084333/Onsomenewdifferencesequencespacesofnon_absolutetype_I","translated_internal_url":"","created_at":"2024-12-05T03:12:54.942-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Onsomenewdifferencesequencespacesofnon_absolutetype_I","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"a b s t r a c t In the present paper, we introduce the spacesc 0 . /andc . /of difference sequences which are theBK-spaces of non-absolute type and prove that these spaces are linearly isomorphic to the spacesc0andc, respectively. We also derive some inclusion relations. Furthermore, we determine the -, - and -duals of those spaces and construct their bases.Finally,wecharacterizesomematrixclassesconcerningthespacesc 0. /andc . /. ’2010ElsevierLtd.Allrightsreserved.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126084332"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences"><img alt="Research paper thumbnail of On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/120016172/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences">On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a195d489a5268026a6954b13e3f711d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120016172,"asset_id":126084332,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084332"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084332"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084332; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084332]").text(description); $(".js-view-count[data-work-id=126084332]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084332; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084332']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084332, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a195d489a5268026a6954b13e3f711d6" } } $('.js-work-strip[data-work-id=126084332]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084332,"title":"On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences","translated_title":"","metadata":{"grobid_abstract":"For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.","grobid_abstract_attachment_id":120016172},"translated_abstract":null,"internal_url":"https://www.academia.edu/126084332/On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences","translated_internal_url":"","created_at":"2024-12-05T03:12:54.451-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120016172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016172/thumbnails/1.jpg","file_name":"61_982_10.pdf","download_url":"https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Ideal_Analogue_of_Asymptotically_Lacu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016172/61_982_10-libre.pdf?1733397941=\u0026response-content-disposition=attachment%3B+filename%3DOn_Ideal_Analogue_of_Asymptotically_Lacu.pdf\u0026Expires=1734473669\u0026Signature=fOw74kq-WI6BfAX8dbSHFekgTsUlLXxq5dDQZoI3DzMoNYcJKEdcIv4ONrTD61d0fwQXnXEVFj6hFo4TC8fZ~n4EK2pbCEJmuT2cUj37vBoOimls1XBaGOiJ9xmX~B8mtcaHNRi1urCBVF9PExekZkex-mWZZ4H4zW-UA8ATOuTw43qkhKEx2VtaLBes9fB8WYOblCUXmlNlQ8n7yjMDiVHuvQTHVzxbjpD5z9-AbIGYq3IjiJYzC7LSsI36izYO5Br7iVwWmGbaqRNVhGnDIwfHZmkZZJJDo81kITffAZx4gnTeK-BY4hMICVnqhWEjpQAQqCs~wqPTqcHm1HdZIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Ideal_Analogue_of_Asymptotically_Lacunary_Statistical_Equivalence_of_Sequences","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"For an admissible ideal I ⊆ P (N) and a lacunary sequence θ = (k r), the aim of the present work is to introduce certain new notions of asymptotically I− lacunary statistically equivalent, asymptotically I−statistically equivalent, and asymptotically I − N θ −equivalent sequences of multiple L which are natural combination of notions of asymptotically equivalent, lacunary statistical convergence and N θ −convergence of sequences of numbers. We study some connections between these notions.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":120016172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016172/thumbnails/1.jpg","file_name":"61_982_10.pdf","download_url":"https://www.academia.edu/attachments/120016172/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Ideal_Analogue_of_Asymptotically_Lacu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016172/61_982_10-libre.pdf?1733397941=\u0026response-content-disposition=attachment%3B+filename%3DOn_Ideal_Analogue_of_Asymptotically_Lacu.pdf\u0026Expires=1734473669\u0026Signature=fOw74kq-WI6BfAX8dbSHFekgTsUlLXxq5dDQZoI3DzMoNYcJKEdcIv4ONrTD61d0fwQXnXEVFj6hFo4TC8fZ~n4EK2pbCEJmuT2cUj37vBoOimls1XBaGOiJ9xmX~B8mtcaHNRi1urCBVF9PExekZkex-mWZZ4H4zW-UA8ATOuTw43qkhKEx2VtaLBes9fB8WYOblCUXmlNlQ8n7yjMDiVHuvQTHVzxbjpD5z9-AbIGYq3IjiJYzC7LSsI36izYO5Br7iVwWmGbaqRNVhGnDIwfHZmkZZJJDo81kITffAZx4gnTeK-BY4hMICVnqhWEjpQAQqCs~wqPTqcHm1HdZIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126084291"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators"><img alt="Research paper thumbnail of Linear isomorphic spaces of fractional-order difference operators" class="work-thumbnail" src="https://attachments.academia-assets.com/120016158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators">Linear isomorphic spaces of fractional-order difference operators</a></div><div class="wp-workCard_item"><span>Alexandria Engineering Journal</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we intend to make an approach to introduce and study the applications of fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8708f8a32d34c5c60e2d408470197f7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120016158,"asset_id":126084291,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126084291"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126084291"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126084291; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126084291]").text(description); $(".js-view-count[data-work-id=126084291]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126084291; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126084291']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126084291, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8708f8a32d34c5c60e2d408470197f7a" } } $('.js-work-strip[data-work-id=126084291]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126084291,"title":"Linear isomorphic spaces of fractional-order difference operators","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Alexandria Engineering Journal","grobid_abstract_attachment_id":120016158},"translated_abstract":null,"internal_url":"https://www.academia.edu/126084291/Linear_isomorphic_spaces_of_fractional_order_difference_operators","translated_internal_url":"","created_at":"2024-12-05T03:12:23.522-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120016158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016158/thumbnails/1.jpg","file_name":"j.aej.2020.10.03920241205-1-m5g3ef.pdf","download_url":"https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Linear_isomorphic_spaces_of_fractional_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016158/j.aej.2020.10.03920241205-1-m5g3ef-libre.pdf?1733397948=\u0026response-content-disposition=attachment%3B+filename%3DLinear_isomorphic_spaces_of_fractional_o.pdf\u0026Expires=1734473669\u0026Signature=V4yYzuVTJsMsyqsX~J80YiD03m-g~FxfZUPaoJYvW6nLEFX6xUPhe95nOrEWCS3XQ53THBKfWblVCbq6~u1ZqUn07~Fw6ZBRJ~SBMEUwiYxIj~yTChagHQ1--MaJ~W9i1M4Dxao1rECfmxDMSQqz8brUsXCLWfqLSYgi7gANcklMTcP67L0NI9KMEOH5B1EC~d5I2LO1JA6690T0HtWA0IaefYVwa6AhK85hXHrrqSxuL3atAMB0MSyoq8daVGJSbLiI5wWOyoc3u5F~KTTHCl69ipAsH7yjSIUyARuiUmOsXXYRwn9133tk46LS5nwRF4nDFOXH3FjMfk~1~Agplg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Linear_isomorphic_spaces_of_fractional_order_difference_operators","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"In the present paper, we intend to make an approach to introduce and study the applications of fractional-order difference operators by generating Orlicz almost null and almost convergent sequence spaces. We also show that aforesaid spaces are linearly isomorphic and BK-spaces. Further, we investigate inclusion relations between newly formed sequence spaces and compute the b-, c-duals. Moreover, we characterize several classes of infinite matrices and give some interesting examples. Finally, we study aforesaid sequence spaces over n-normed space and demonstrate their several algebraic and topological properties.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":120016158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120016158/thumbnails/1.jpg","file_name":"j.aej.2020.10.03920241205-1-m5g3ef.pdf","download_url":"https://www.academia.edu/attachments/120016158/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Linear_isomorphic_spaces_of_fractional_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120016158/j.aej.2020.10.03920241205-1-m5g3ef-libre.pdf?1733397948=\u0026response-content-disposition=attachment%3B+filename%3DLinear_isomorphic_spaces_of_fractional_o.pdf\u0026Expires=1734473669\u0026Signature=V4yYzuVTJsMsyqsX~J80YiD03m-g~FxfZUPaoJYvW6nLEFX6xUPhe95nOrEWCS3XQ53THBKfWblVCbq6~u1ZqUn07~Fw6ZBRJ~SBMEUwiYxIj~yTChagHQ1--MaJ~W9i1M4Dxao1rECfmxDMSQqz8brUsXCLWfqLSYgi7gANcklMTcP67L0NI9KMEOH5B1EC~d5I2LO1JA6690T0HtWA0IaefYVwa6AhK85hXHrrqSxuL3atAMB0MSyoq8daVGJSbLiI5wWOyoc3u5F~KTTHCl69ipAsH7yjSIUyARuiUmOsXXYRwn9133tk46LS5nwRF4nDFOXH3FjMfk~1~Agplg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":303,"name":"Algebraic Number Theory","url":"https://www.academia.edu/Documents/in/Algebraic_Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":407806,"name":"Sequence Space","url":"https://www.academia.edu/Documents/in/Sequence_Space"},{"id":3236067,"name":"Algebraic Structure","url":"https://www.academia.edu/Documents/in/Algebraic_Structure"}],"urls":[{"id":45927787,"url":"https://api.elsevier.com/content/article/PII:S1110016820305470?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107375490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space"><img alt="Research paper thumbnail of Approximation by Jakimovski–Leviatan-beta operators in weighted space" class="work-thumbnail" src="https://attachments.academia-assets.com/106058366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space">Approximation by Jakimovski–Leviatan-beta operators in weighted space</a></div><div class="wp-workCard_item"><span>Advances in Difference Equations</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviata...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54a6b3dfe075269439b641bfd24c749d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":106058366,"asset_id":107375490,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107375490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107375490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107375490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107375490]").text(description); $(".js-view-count[data-work-id=107375490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107375490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107375490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107375490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54a6b3dfe075269439b641bfd24c749d" } } $('.js-work-strip[data-work-id=107375490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107375490,"title":"Approximation by Jakimovski–Leviatan-beta operators in weighted space","translated_title":"","metadata":{"abstract":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","publisher":"Springer Science and Business Media LLC","ai_title_tag":"Generalized Jakimovski–Leviatan-beta Operators and Convergence","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Advances in Difference Equations"},"translated_abstract":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","internal_url":"https://www.academia.edu/107375490/Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space","translated_internal_url":"","created_at":"2023-09-29T02:30:30.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":106058366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058366/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058366/s13662-020-02848-x-libre.pdf?1695984388=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=RYn8Dn5~lqvl0n5dBBDWyeSQztvFpMgtXBZq98QaWsqyHj4hf65y8PvncBSFdON~ko9Aa9u-Hu~X3O69WTjBs5yXdRo~FLkm9~LxyOKvXtiIvGiu2UoTqzmFUbJHWfLsHyyZIKFwep~K4XQnN-sIdNlANcf8KdXLia80XcRf8yDxplo2bY8-sU7sbjeCeFd1irz0neWEdLsvnai~I8XNnRcpspvmpmbtH92StPvSxT6uV7xySGe-nOLqafqqyairGSU6p-E~60VPNuMUh2ul~EjtCzgSxS4gaA40oXz5Fs~Nd5xpsrifXEgk~yKk73zVaK2jUk6UvN06QSpaML6CzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_by_Jakimovski_Leviatan_beta_operators_in_weighted_space","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The main purpose of this article is to introduce a more generalized version of Jakimovski–Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin’s theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre’s K-functional and give some direct theorems.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":106058366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058366/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058366/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058366/s13662-020-02848-x-libre.pdf?1695984388=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=RYn8Dn5~lqvl0n5dBBDWyeSQztvFpMgtXBZq98QaWsqyHj4hf65y8PvncBSFdON~ko9Aa9u-Hu~X3O69WTjBs5yXdRo~FLkm9~LxyOKvXtiIvGiu2UoTqzmFUbJHWfLsHyyZIKFwep~K4XQnN-sIdNlANcf8KdXLia80XcRf8yDxplo2bY8-sU7sbjeCeFd1irz0neWEdLsvnai~I8XNnRcpspvmpmbtH92StPvSxT6uV7xySGe-nOLqafqqyairGSU6p-E~60VPNuMUh2ul~EjtCzgSxS4gaA40oXz5Fs~Nd5xpsrifXEgk~yKk73zVaK2jUk6UvN06QSpaML6CzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106058365,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106058365/thumbnails/1.jpg","file_name":"s13662-020-02848-x.pdf","download_url":"https://www.academia.edu/attachments/106058365/download_file","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_bet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106058365/s13662-020-02848-x-libre.pdf?1695984382=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_bet.pdf\u0026Expires=1734473669\u0026Signature=VMpq7GWsn3mQjAGz8iqctJ~54UbnIfgVm59FGsoi5yplX9HSEbdAgUWvLMZl95F5L6pxJZHShuswDQ8DZGC5keXczAPz-85OKKnVqXsnoB-hECQ-KWYD3cD3BHZRsrSuxqhxU1LmLUQYj18UngybkqvoC3nLpr8I-3T7cuH40tVOQEvB3CPD-dr1rr3UKAvWhOyiJ6gmIUtwvbFyZOmll3IswoFiwkwY7Q2E1gmp6obEI55td1D5hq8nlcKWUOmwDSUR5q3pqk0VEgY9oHOS4PRoYBmC7XbQWZ8VwFAqu7yvPEIJQ-W3GBlCnjlmhJawHQA-N0Z9btmGRFA8igYukA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":672441,"name":"Difference Equations","url":"https://www.academia.edu/Documents/in/Difference_Equations"},{"id":2728929,"name":"Rate of Convergence","url":"https://www.academia.edu/Documents/in/Rate_of_Convergence"},{"id":4100370,"name":"modulus of continuity","url":"https://www.academia.edu/Documents/in/modulus_of_continuity"}],"urls":[{"id":34161137,"url":"https://link.springer.com/content/pdf/10.1186/s13662-020-02848-x.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104392772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space"><img alt="Research paper thumbnail of Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space" class="work-thumbnail" src="https://attachments.academia-assets.com/104135388/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space">Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to obtain existence results for an infinite system of second order diffe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p &lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01f0c0e445cf4153d949dcf1483e0463" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104135388,"asset_id":104392772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104392772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104392772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104392772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104392772]").text(description); $(".js-view-count[data-work-id=104392772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104392772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104392772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104392772, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01f0c0e445cf4153d949dcf1483e0463" } } $('.js-work-strip[data-work-id=104392772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104392772,"title":"Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in lp-space","translated_title":"","metadata":{"abstract":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","publisher":"National Library of Serbia","ai_title_tag":"Existence Results for Infinite Differential Equations in lp-Space","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","internal_url":"https://www.academia.edu/104392772/Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space","translated_internal_url":"","created_at":"2023-07-09T07:50:11.826-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104135388,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104135388/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_measure_of_noncompactness_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104135388/ft-libre.pdf?1688914509=\u0026response-content-disposition=attachment%3B+filename%3DApplication_measure_of_noncompactness_an.pdf\u0026Expires=1734473669\u0026Signature=Q4i2N90RGygsHXNTGSOli5Wx6A8jDFQm8HJ08w7FD0NFdK2nlwY6z~svzn5UqZMpGPrIKou186bacb7osIRCj35OhbwRKKRfxbOL6LSzBarXOJTO1qNyd6NDiyW8Oi2p7wsukUs06jhLioo69PT44tjKSVj6VOOAmH2OPDWrdMYye2O~7YJQ-ZbOUyH~8bqHxiVaas1cJeQTOuuwpBaOabnLGPrfsV1PjYHYjdZ1viJIxOdCi8v38ea~L~OrDSgRaLdPZu3BArg70XsSChoRJKMPjqHw5RBsw2z-6B5BkApfu5AgFybFRZ1zHkW6LPgaoQGqFdU~3dn5XmyK~mGpcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Application_measure_of_noncompactness_and_operator_type_contraction_for_solvability_of_an_infinite_system_of_differential_equations_in_lp_space","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The aim of this paper is to obtain existence results for an infinite system of second order differential equations in the sequence space lp for 1 ? p \u0026lt; ? with the help of a technique associated with measures of noncompactness and contractive condition of operator type. We also provide some illustrative examples in support of our existence theorems.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":104135388,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104135388/thumbnails/1.jpg","file_name":"ft.pdf","download_url":"https://www.academia.edu/attachments/104135388/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Application_measure_of_noncompactness_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104135388/ft-libre.pdf?1688914509=\u0026response-content-disposition=attachment%3B+filename%3DApplication_measure_of_noncompactness_an.pdf\u0026Expires=1734473669\u0026Signature=Q4i2N90RGygsHXNTGSOli5Wx6A8jDFQm8HJ08w7FD0NFdK2nlwY6z~svzn5UqZMpGPrIKou186bacb7osIRCj35OhbwRKKRfxbOL6LSzBarXOJTO1qNyd6NDiyW8Oi2p7wsukUs06jhLioo69PT44tjKSVj6VOOAmH2OPDWrdMYye2O~7YJQ-ZbOUyH~8bqHxiVaas1cJeQTOuuwpBaOabnLGPrfsV1PjYHYjdZ1viJIxOdCi8v38ea~L~OrDSgRaLdPZu3BArg70XsSChoRJKMPjqHw5RBsw2z-6B5BkApfu5AgFybFRZ1zHkW6LPgaoQGqFdU~3dn5XmyK~mGpcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="99789521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties"><img alt="Research paper thumbnail of Modified (p, q)-Bernstein-Schurer operators and their approximation properties" class="work-thumbnail" src="https://attachments.academia-assets.com/100784780/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties">Modified (p, q)-Bernstein-Schurer operators and their approximation properties</a></div><div class="wp-workCard_item"><span>Cogent Mathematics</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5b896186e48e37e8c86b3efda29ea21b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":100784780,"asset_id":99789521,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="99789521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="99789521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 99789521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=99789521]").text(description); $(".js-view-count[data-work-id=99789521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 99789521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='99789521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 99789521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5b896186e48e37e8c86b3efda29ea21b" } } $('.js-work-strip[data-work-id=99789521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":99789521,"title":"Modified (p, q)-Bernstein-Schurer operators and their approximation properties","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Cogent Mathematics","grobid_abstract_attachment_id":100784780},"translated_abstract":null,"internal_url":"https://www.academia.edu/99789521/Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties","translated_internal_url":"","created_at":"2023-04-06T16:52:08.568-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":100784780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100784780/thumbnails/1.jpg","file_name":"23311835.2016.1236534.pdf","download_url":"https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_p_q_Bernstein_Schurer_operators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100784780/23311835.2016.1236534-libre.pdf?1680825794=\u0026response-content-disposition=attachment%3B+filename%3DModified_p_q_Bernstein_Schurer_operators.pdf\u0026Expires=1734473669\u0026Signature=AHCKMYN273OLtOgRQRtG2UqF1WeNrtpqZtCyarRyHO~EamN4K5K9PneCweebGQns7kXW30L4Z3Fsx2eF06MWcPXLDb7YY0ccSkAox6CmeCtA-Aq1hdSkJPJxSuWJG~MwhONxjTHwla8Evp9rCXttRjA0rag~g4hS6jYQ1U3cevRTTZX5ALOLkLcS-hUEsqoPRhqJnkMltTmjKfdJRMX4Hie3gYDN0UAkUSWkwZB3vnp3rAnAsPlG5sBcyeBTPqNp3BlIm6js4pfSIP4O7~Y9ogT8aApR7JimRSTN4LJiDM8xLDLv28Iiqx6YMlFO9j2wb~v5vMOOVI3~rXk1j53jZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modified_p_q_Bernstein_Schurer_operators_and_their_approximation_properties","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":100784780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/100784780/thumbnails/1.jpg","file_name":"23311835.2016.1236534.pdf","download_url":"https://www.academia.edu/attachments/100784780/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_p_q_Bernstein_Schurer_operators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/100784780/23311835.2016.1236534-libre.pdf?1680825794=\u0026response-content-disposition=attachment%3B+filename%3DModified_p_q_Bernstein_Schurer_operators.pdf\u0026Expires=1734473669\u0026Signature=AHCKMYN273OLtOgRQRtG2UqF1WeNrtpqZtCyarRyHO~EamN4K5K9PneCweebGQns7kXW30L4Z3Fsx2eF06MWcPXLDb7YY0ccSkAox6CmeCtA-Aq1hdSkJPJxSuWJG~MwhONxjTHwla8Evp9rCXttRjA0rag~g4hS6jYQ1U3cevRTTZX5ALOLkLcS-hUEsqoPRhqJnkMltTmjKfdJRMX4Hie3gYDN0UAkUSWkwZB3vnp3rAnAsPlG5sBcyeBTPqNp3BlIm6js4pfSIP4O7~Y9ogT8aApR7JimRSTN4LJiDM8xLDLv28Iiqx6YMlFO9j2wb~v5vMOOVI3~rXk1j53jZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":296726,"name":"Bernstein Polynomial","url":"https://www.academia.edu/Documents/in/Bernstein_Polynomial"},{"id":2728929,"name":"Rate of Convergence","url":"https://www.academia.edu/Documents/in/Rate_of_Convergence"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="90817624"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY"><img alt="Research paper thumbnail of Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY">Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90817624"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90817624"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90817624; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90817624]").text(description); $(".js-view-count[data-work-id=90817624]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90817624; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90817624']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90817624, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90817624]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90817624,"title":"Paper: KOROVKIN TYPE APROXIMATION THEOREM THROUGH STATISTICAL LACUNARY SUMMABILITY","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/90817624/Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY","translated_internal_url":"","created_at":"2022-11-15T02:34:47.001-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Paper_KOROVKIN_TYPE_APROXIMATION_THEOREM_THROUGH_STATISTICAL_LACUNARY_SUMMABILITY","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564434/Lambda_Statistical_Convergence"><img alt="Research paper thumbnail of Lambda Statistical Convergence" class="work-thumbnail" src="https://attachments.academia-assets.com/90225101/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564434/Lambda_Statistical_Convergence">Lambda Statistical Convergence</a></div><div class="wp-workCard_item"><span>Mathematical Institute of the Slovak Academy of Sciences</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62febe2e68d47cb12c0e93738a135179" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225101,"asset_id":85564434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564434]").text(description); $(".js-view-count[data-work-id=85564434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62febe2e68d47cb12c0e93738a135179" } } $('.js-work-strip[data-work-id=85564434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564434,"title":"Lambda Statistical Convergence","translated_title":"","metadata":{"publisher":"Mathematical Institute of the Slovak Academy of Sciences","grobid_abstract":"Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Mathematical Institute of the Slovak Academy of Sciences","grobid_abstract_attachment_id":90225101},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564434/Lambda_Statistical_Convergence","translated_internal_url":"","created_at":"2022-08-24T21:56:15.386-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225101/thumbnails/1.jpg","file_name":"MathSlov_50-2000-1_10.pdf","download_url":"https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lambda_Statistical_Convergence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225101/MathSlov_50-2000-1_10-libre.pdf?1661416970=\u0026response-content-disposition=attachment%3B+filename%3DLambda_Statistical_Convergence.pdf\u0026Expires=1734473669\u0026Signature=Yj7byd8Z2~ufYPsFOtVsW7E7e7GvSIKvnBwYAMsA4OJsrdI4ozboQPr3HNZyNREJlmZ6UR6Ymi9x8OaE~xe8nyRDBsd12LYIH3cEks9DPojRvBkNnOotoQvbnW8UABOZlHc8bbgU0xWkfnTyrI1Np7FKnrAO7C5rYPErrU8CX2WBXhGOcan2QDT7ZLnZMpcQBZPAoTLlsa21XeKzVQzKUd1uB2h~xmRY9U7REDLqayy1xWuzPwkOsP5vSkZ~EUA9rXJXliXTHGhDk2qphx37Hcs~NZgUaQFucigZxnn6KuPi9Q~-Es5hj17l5unfBV7NP7Xl5e2k~rtNtGGyVYYF7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lambda_Statistical_Convergence","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225101/thumbnails/1.jpg","file_name":"MathSlov_50-2000-1_10.pdf","download_url":"https://www.academia.edu/attachments/90225101/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lambda_Statistical_Convergence.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225101/MathSlov_50-2000-1_10-libre.pdf?1661416970=\u0026response-content-disposition=attachment%3B+filename%3DLambda_Statistical_Convergence.pdf\u0026Expires=1734473669\u0026Signature=Yj7byd8Z2~ufYPsFOtVsW7E7e7GvSIKvnBwYAMsA4OJsrdI4ozboQPr3HNZyNREJlmZ6UR6Ymi9x8OaE~xe8nyRDBsd12LYIH3cEks9DPojRvBkNnOotoQvbnW8UABOZlHc8bbgU0xWkfnTyrI1Np7FKnrAO7C5rYPErrU8CX2WBXhGOcan2QDT7ZLnZMpcQBZPAoTLlsa21XeKzVQzKUd1uB2h~xmRY9U7REDLqayy1xWuzPwkOsP5vSkZ~EUA9rXJXliXTHGhDk2qphx37Hcs~NZgUaQFucigZxnn6KuPi9Q~-Es5hj17l5unfBV7NP7Xl5e2k~rtNtGGyVYYF7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23329807,"url":"https://dml.cz/handle/10338.dmlcz/136769"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564403"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method"><img alt="Research paper thumbnail of Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method">Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method</a></div><div class="wp-workCard_item"><span>Bulletin of the Malaysian Mathematical Sciences Society</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators v...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564403"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564403"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564403; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564403]").text(description); $(".js-view-count[data-work-id=85564403]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564403; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564403']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564403, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564403]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564403,"title":"Approximation by Modified Meyer–König and Zeller Operators via Power Series Summability Method","translated_title":"","metadata":{"abstract":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Bulletin of the Malaysian Mathematical Sciences Society"},"translated_abstract":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","internal_url":"https://www.academia.edu/85564403/Approximation_by_Modified_Meyer_K%C3%B6nig_and_Zeller_Operators_via_Power_Series_Summability_Method","translated_internal_url":"","created_at":"2022-08-24T21:55:46.344-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Approximation_by_Modified_Meyer_König_and_Zeller_Operators_via_Power_Series_Summability_Method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we study the Korovkin-type theorem for modified Meyer–Konig and Zeller operators via A-statistical convergence and power series summability method. The rate of convergence for this new summability methods is also obtained with the help of the modulus of continuity. Further, we establish Voronovskaya-type and Gruss–Voronovskaya-type theorems for A-statistical convergence.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23329791,"url":"http://link.springer.com/content/pdf/10.1007/s40840-020-01045-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators"><img alt="Research paper thumbnail of Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators" class="work-thumbnail" src="https://attachments.academia-assets.com/90225065/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators">Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer oper...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a1bf8f273982e0a8ed8ce137104e089" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225065,"asset_id":85564377,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564377]").text(description); $(".js-view-count[data-work-id=85564377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a1bf8f273982e0a8ed8ce137104e089" } } $('.js-work-strip[data-work-id=85564377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564377,"title":"Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators","translated_title":"","metadata":{"abstract":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","internal_url":"https://www.academia.edu/85564377/Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators","translated_internal_url":"","created_at":"2022-08-24T21:55:27.700-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225065/thumbnails/1.jpg","file_name":"0354-51801906517M.pdf","download_url":"https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_Sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225065/0354-51801906517M-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_Sta.pdf\u0026Expires=1734473669\u0026Signature=anJxLsE3sbA3jvufkD80euRzo~18Xn63ZEvMtCzbTeWHhCdeeVKFVLhN4gtw9Rc3Fz1VukbeeT7VxR6t6dD6tRwhWBz3UwPmqOHhdSiZV702URyZktpW6zG5e~oDWODIEDl~1ZrQ6eAFayxNmyhKY9i8GLaGsJ-g3jq43xEVNCGEMvu9y3RyZHvkT9fqaGwDy5rl5zDzErZM1V2xpG7uHZKGmo80c4hD1M7pBPY-5JvOcJbGUVD22cYDKhCBaEbIvHbirlJhOjxhYetD~LEr0yHIphBm10BS3F~h4W5CKpwV7RbLsNMJpV~Y~puME3pl92ZESk9W1R0eVIGntn2lTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_by_Jakimovski_Leviatan_Stancu_Durrmeyer_type_operators","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225065/thumbnails/1.jpg","file_name":"0354-51801906517M.pdf","download_url":"https://www.academia.edu/attachments/90225065/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_by_Jakimovski_Leviatan_Sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225065/0354-51801906517M-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_by_Jakimovski_Leviatan_Sta.pdf\u0026Expires=1734473669\u0026Signature=anJxLsE3sbA3jvufkD80euRzo~18Xn63ZEvMtCzbTeWHhCdeeVKFVLhN4gtw9Rc3Fz1VukbeeT7VxR6t6dD6tRwhWBz3UwPmqOHhdSiZV702URyZktpW6zG5e~oDWODIEDl~1ZrQ6eAFayxNmyhKY9i8GLaGsJ-g3jq43xEVNCGEMvu9y3RyZHvkT9fqaGwDy5rl5zDzErZM1V2xpG7uHZKGmo80c4hD1M7pBPY-5JvOcJbGUVD22cYDKhCBaEbIvHbirlJhOjxhYetD~LEr0yHIphBm10BS3F~h4W5CKpwV7RbLsNMJpV~Y~puME3pl92ZESk9W1R0eVIGntn2lTg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions"><img alt="Research paper thumbnail of A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/90225021/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions">A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions</a></div><div class="wp-workCard_item"><span>Sādhanā</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Iron-based alloys are materials of choice for engineering applications such as bearings and gears...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8336f0ab373e4037776caa7d64aab31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225021,"asset_id":85564315,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564315]").text(description); $(".js-view-count[data-work-id=85564315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8336f0ab373e4037776caa7d64aab31" } } $('.js-work-strip[data-work-id=85564315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564315,"title":"A study on friction and wear characteristics of Fe–Cu–Sn alloy with MoS2 as solid lubricant under dry conditions","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Sādhanā","grobid_abstract_attachment_id":90225021},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564315/A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions","translated_internal_url":"","created_at":"2022-08-24T21:54:53.950-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225021,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225021/thumbnails/1.jpg","file_name":"0240.pdf","download_url":"https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_study_on_friction_and_wear_characteris.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225021/0240-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DA_study_on_friction_and_wear_characteris.pdf\u0026Expires=1734473670\u0026Signature=FqLE-AyfvQxvYdhLi0JUu4Fx-rRGlOmigdU88X8XhVrtiV5ONgqkZRri6fqutsu15b5Q2mswMpbXq5u2Bk5MAshyQyfMiHxkJDKsbzeAjHsFynf8Vd7Sbe9i6Tp7ljRTXDfjv-506VRTdh3nZ0xQuu586eVSmR4tFeBw3lC6jU3YMuQ-cqhKKDEPcanlQlh93taOEjHkwB7IgCUH3rLDLEb03B6v6uXsvj1Vm~tySfaFYnTDEMbC2kU0ol8c19o8bc-wpiTkwr6nq5MumYYpF~zNe4DeRShEGksvwH4IJt~YkbXtJVOCvL25So5bWldnOn6jC-9ySu0hgTAH9h5j8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_study_on_friction_and_wear_characteristics_of_Fe_Cu_Sn_alloy_with_MoS2_as_solid_lubricant_under_dry_conditions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Iron-based alloys are materials of choice for engineering applications such as bearings and gears owing to their low cost, ease of manufacture, high strength, availability, and good wear resistance and low coefficient of friction. In this study, Fe-Cu-Sn composite containing varying percentage of molybdenum disulfide (MoS 2) is developed using simple single stage compaction and sintering. The friction and wear behaviors of these composites were studied ball-on-disc tribometer in which EN8 steel ball was used. It was found that with the increase in percentage of MoS 2 from 0 to 3 wt% the coefficient of friction and wear rate substantially decreases from around 0.85 to 0.25. The wear mechanism in base composition (0% MoS 2) is observed to be adhesive and abrasive, whereas mild abrasive wear was observed in the 3 wt% MoS 2 composite. The hardness of composite was also found to improve with the increase in MoS 2 weight fraction.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225021,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225021/thumbnails/1.jpg","file_name":"0240.pdf","download_url":"https://www.academia.edu/attachments/90225021/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_study_on_friction_and_wear_characteris.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225021/0240-libre.pdf?1661416975=\u0026response-content-disposition=attachment%3B+filename%3DA_study_on_friction_and_wear_characteris.pdf\u0026Expires=1734473670\u0026Signature=FqLE-AyfvQxvYdhLi0JUu4Fx-rRGlOmigdU88X8XhVrtiV5ONgqkZRri6fqutsu15b5Q2mswMpbXq5u2Bk5MAshyQyfMiHxkJDKsbzeAjHsFynf8Vd7Sbe9i6Tp7ljRTXDfjv-506VRTdh3nZ0xQuu586eVSmR4tFeBw3lC6jU3YMuQ-cqhKKDEPcanlQlh93taOEjHkwB7IgCUH3rLDLEb03B6v6uXsvj1Vm~tySfaFYnTDEMbC2kU0ol8c19o8bc-wpiTkwr6nq5MumYYpF~zNe4DeRShEGksvwH4IJt~YkbXtJVOCvL25So5bWldnOn6jC-9ySu0hgTAH9h5j8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":23032,"name":"Tribology","url":"https://www.academia.edu/Documents/in/Tribology"},{"id":133994,"name":"Lubricant","url":"https://www.academia.edu/Documents/in/Lubricant"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[{"id":23329739,"url":"http://link.springer.com/content/pdf/10.1007/s12046-019-1208-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators"><img alt="Research paper thumbnail of Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators" class="work-thumbnail" src="https://attachments.academia-assets.com/90225011/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators">Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer oper...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fdffe03358c2c3c8e1a0decd16bb47d4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225011,"asset_id":85564308,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564308]").text(description); $(".js-view-count[data-work-id=85564308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fdffe03358c2c3c8e1a0decd16bb47d4" } } $('.js-work-strip[data-work-id=85564308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564308,"title":"Approximation properties of Chlodowsky variant of ( p , q ) $(p,q)$ Bernstein-Stancu-Schurer operators","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Inequalities and Applications","grobid_abstract_attachment_id":90225011},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564308/Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators","translated_internal_url":"","created_at":"2022-08-24T21:54:28.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225011/thumbnails/1.jpg","file_name":"s13660-017-1451-7.pdf","download_url":"https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_properties_of_Chlodowsky_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225011/s13660-017-1451-7-libre.pdf?1661416985=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_properties_of_Chlodowsky_v.pdf\u0026Expires=1734473670\u0026Signature=g4qCBwBfY8SkqhRVYtzJ9oFCcolVeHw7e4fM6yXpXcgPVt-fIuuDJIGD9hTPGvpdEPmv~t9PStWNWkMYA6oRPIOVZh-i98aW-f8RHZcEm6fW8fMzuzbE-zMDKuGDs6tGaPqu~FxSWZ4W7Yx1wHpJXh1Sgnal2YwqcXGvynuBPIO5BjLtKBSambdsP9iYCPziOsg2L18Y~WtPaGsKb7iz5T8S4AgN~nG5iifxQk4JaEqNNcPllJrh7Z7WCBY1-yVLQorWNst00gPZbXtfEQ-WfV~41n4eirWCp3KRSzCaBSriPvOrN8DM-1h-2luWDb9xvY0UKcESZ2mIREWwgyLL1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Approximation_properties_of_Chlodowsky_variant_of_p_q_p_q_Bernstein_Stancu_Schurer_operators","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"In the present paper, we introduce the Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators which is a generalization of (p, q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225011/thumbnails/1.jpg","file_name":"s13660-017-1451-7.pdf","download_url":"https://www.academia.edu/attachments/90225011/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Approximation_properties_of_Chlodowsky_v.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225011/s13660-017-1451-7-libre.pdf?1661416985=\u0026response-content-disposition=attachment%3B+filename%3DApproximation_properties_of_Chlodowsky_v.pdf\u0026Expires=1734473670\u0026Signature=g4qCBwBfY8SkqhRVYtzJ9oFCcolVeHw7e4fM6yXpXcgPVt-fIuuDJIGD9hTPGvpdEPmv~t9PStWNWkMYA6oRPIOVZh-i98aW-f8RHZcEm6fW8fMzuzbE-zMDKuGDs6tGaPqu~FxSWZ4W7Yx1wHpJXh1Sgnal2YwqcXGvynuBPIO5BjLtKBSambdsP9iYCPziOsg2L18Y~WtPaGsKb7iz5T8S4AgN~nG5iifxQk4JaEqNNcPllJrh7Z7WCBY1-yVLQorWNst00gPZbXtfEQ-WfV~41n4eirWCp3KRSzCaBSriPvOrN8DM-1h-2luWDb9xvY0UKcESZ2mIREWwgyLL1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"}],"urls":[{"id":23329731,"url":"http://link.springer.com/content/pdf/10.1186/s13660-017-1451-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564298"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces"><img alt="Research paper thumbnail of Multiplication operators on Cesàro function spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/90225005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces">Multiplication operators on Cesàro function spaces</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df6c47b0f5e153c72b0e45c3199c0aec" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90225005,"asset_id":85564298,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564298"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564298"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564298; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564298]").text(description); $(".js-view-count[data-work-id=85564298]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564298; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564298']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564298, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df6c47b0f5e153c72b0e45c3199c0aec" } } $('.js-work-strip[data-work-id=85564298]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564298,"title":"Multiplication operators on Cesàro function spaces","translated_title":"","metadata":{"abstract":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","internal_url":"https://www.academia.edu/85564298/Multiplication_operators_on_Ces%C3%A0ro_function_spaces","translated_internal_url":"","created_at":"2022-08-24T21:54:14.622-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90225005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225005/thumbnails/1.jpg","file_name":"212d7e88af73ba151f2473deef99ea8a9649.pdf","download_url":"https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multiplication_operators_on_Cesaro_funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225005/212d7e88af73ba151f2473deef99ea8a9649-libre.pdf?1661416978=\u0026response-content-disposition=attachment%3B+filename%3DMultiplication_operators_on_Cesaro_funct.pdf\u0026Expires=1734473670\u0026Signature=KKd2-U9nS5z~SWy8AFMS9vZLfbxliMRmUNhifvbomRi4Shrmj~PY~dfbN85dw1~q~21xb-T6rfbSEcQlF5Um1gBryA6SP0W3fu3MR8DQOq2-2~FJLeRyrtqidOnaoLqchgUtiktaS2Idddee1OseUY4kgz5CNkKA2jy665XqeEO~gdISUvWId~gf-LoP7rQNmu5P~xF2JY7rPMVRL6pVFRq9RKMVQiM6Kq3-ZIgZu3Ly8pKGYfhk1b8dZPnjJTnOf9ea5preod2JbFx8xRM9Vo3mltupG2otWLw3MtbnQHSBGNKvoRnQXb5IFqxhWUxLn52RyFJ8DzTaf4GfAuEjuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multiplication_operators_on_Cesàro_function_spaces","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication operators on Ces?ro function spaces.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90225005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90225005/thumbnails/1.jpg","file_name":"212d7e88af73ba151f2473deef99ea8a9649.pdf","download_url":"https://www.academia.edu/attachments/90225005/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multiplication_operators_on_Cesaro_funct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90225005/212d7e88af73ba151f2473deef99ea8a9649-libre.pdf?1661416978=\u0026response-content-disposition=attachment%3B+filename%3DMultiplication_operators_on_Cesaro_funct.pdf\u0026Expires=1734473670\u0026Signature=KKd2-U9nS5z~SWy8AFMS9vZLfbxliMRmUNhifvbomRi4Shrmj~PY~dfbN85dw1~q~21xb-T6rfbSEcQlF5Um1gBryA6SP0W3fu3MR8DQOq2-2~FJLeRyrtqidOnaoLqchgUtiktaS2Idddee1OseUY4kgz5CNkKA2jy665XqeEO~gdISUvWId~gf-LoP7rQNmu5P~xF2JY7rPMVRL6pVFRq9RKMVQiM6Kq3-ZIgZu3Ly8pKGYfhk1b8dZPnjJTnOf9ea5preod2JbFx8xRM9Vo3mltupG2otWLw3MtbnQHSBGNKvoRnQXb5IFqxhWUxLn52RyFJ8DzTaf4GfAuEjuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564082"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative"><img alt="Research paper thumbnail of The Stability of an Affine Type Functional Equation with the Fixed Point Alternative" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative">The Stability of an Affine Type Functional Equation with the Fixed Point Alternative</a></div><div class="wp-workCard_item"><span>Springer Optimization and Its Applications</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564082"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564082"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564082; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564082]").text(description); $(".js-view-count[data-work-id=85564082]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564082; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564082']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564082, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564082]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564082,"title":"The Stability of an Affine Type Functional Equation with the Fixed Point Alternative","translated_title":"","metadata":{"abstract":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Springer Optimization and Its Applications"},"translated_abstract":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","internal_url":"https://www.academia.edu/85564082/The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative","translated_internal_url":"","created_at":"2022-08-24T21:50:25.591-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Stability_of_an_Affine_Type_Functional_Equation_with_the_Fixed_Point_Alternative","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT In this paper, we consider the following affine functional equation f(3x+y+z)+f(x+3y+z)+f(x+y+3z)+f(x)+f(y)+f(z)=6f(x+y+z). We obtain the general solution and establish some stability results by using direct method as well as the fixed point method. Further we define the stability of the above functional equation by using the fixed point alternative.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":1554856,"name":"Affine Transformation","url":"https://www.academia.edu/Documents/in/Affine_Transformation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564079"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators"><img alt="Research paper thumbnail of Application to Compact Matrix Operators" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators">Application to Compact Matrix Operators</a></div><div class="wp-workCard_item"><span>Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this chapter, we present some identities or estimates for the operator norms and the Hausdorff...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \(c_{0}\), \(c\), \(\ell _{\infty }\) and \(\ell _{1}\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564079"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564079"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564079; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564079]").text(description); $(".js-view-count[data-work-id=85564079]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564079; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564079']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564079, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564079]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564079,"title":"Application to Compact Matrix Operators","translated_title":"","metadata":{"abstract":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations"},"translated_abstract":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","internal_url":"https://www.academia.edu/85564079/Application_to_Compact_Matrix_Operators","translated_internal_url":"","created_at":"2022-08-24T21:50:22.743-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Application_to_Compact_Matrix_Operators","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this chapter, we present some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain operators given by infinite matrices that map an arbitrary BK space into the sequence spaces \\(c_{0}\\), \\(c\\), \\(\\ell _{\\infty }\\) and \\(\\ell _{1}\\), and into the matrix domains of triangles in these spaces. It is shown that many linear compact operators may be represented as matrix operators in sequence spaces or integral operators in function spaces.","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers"><img alt="Research paper thumbnail of Some difference sequence spaces of fuzzy numbers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers">Some difference sequence spaces of fuzzy numbers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564078]").text(description); $(".js-view-count[data-work-id=85564078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564078, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564078,"title":"Some difference sequence spaces of fuzzy numbers","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/85564078/Some_difference_sequence_spaces_of_fuzzy_numbers","translated_internal_url":"","created_at":"2022-08-24T21:50:21.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_difference_sequence_spaces_of_fuzzy_numbers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564077"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564077/Almost_Summability"><img alt="Research paper thumbnail of Almost Summability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564077/Almost_Summability">Almost Summability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564077"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564077"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564077; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564077]").text(description); $(".js-view-count[data-work-id=85564077]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564077; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564077']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564077, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564077]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564077,"title":"Almost Summability","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564077/Almost_Summability","translated_internal_url":"","created_at":"2022-08-24T21:50:20.435-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Almost_Summability","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564076/Statistical_Summability"><img alt="Research paper thumbnail of Statistical Summability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564076/Statistical_Summability">Statistical Summability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564076]").text(description); $(".js-view-count[data-work-id=85564076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564076,"title":"Statistical Summability","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85564076/Statistical_Summability","translated_internal_url":"","created_at":"2022-08-24T21:50:18.990-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Statistical_Summability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564073"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations"><img alt="Research paper thumbnail of New type of generalized difference sequence space of non-absolute type and some matrix transformations" class="work-thumbnail" src="https://attachments.academia-assets.com/90224865/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations">New type of generalized difference sequence space of non-absolute type and some matrix transformations</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90fe6948af38c1a7021ca5197d8096be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90224865,"asset_id":85564073,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564073"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564073"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564073; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564073]").text(description); $(".js-view-count[data-work-id=85564073]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564073; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564073']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564073, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90fe6948af38c1a7021ca5197d8096be" } } $('.js-work-strip[data-work-id=85564073]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564073,"title":"New type of generalized difference sequence space of non-absolute type and some matrix transformations","translated_title":"","metadata":{"abstract":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","internal_url":"https://www.academia.edu/85564073/New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations","translated_internal_url":"","created_at":"2022-08-24T21:50:16.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90224865,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90224865/thumbnails/1.jpg","file_name":"48bf0ff31dd4007f8ee102ad74f56ffc337f.pdf","download_url":"https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_type_of_generalized_difference_seque.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90224865/48bf0ff31dd4007f8ee102ad74f56ffc337f-libre.pdf?1661417253=\u0026response-content-disposition=attachment%3B+filename%3DNew_type_of_generalized_difference_seque.pdf\u0026Expires=1734473670\u0026Signature=CJSTiS-PogPstpY7L8sU3Kf-kXyBhDODgkn5IOxHU9hK21yrpmTc5XTfcZhYSq9mjCo7qNVUEenxGJlxF3QibQBUDx9l~lHVbMjTFfsrzBy7KZTH0Dq6s5EGwJvEYvocLeyIB-JAfimVI8JzUFrpFy2UhG4ocIO-ucrjgNIVhix338qB5anhRpWkKIjh4nP~Dh3EfxzR-ntoeI17425O~V4Qgp0uVof3ffB6TGWAPV9fu9RDPDlJN9O~E~1FgVPvtrghI-cKnKD0z1YotFVjzd3EXVMcXgjknBTcfsEfIMxS02FoGq3-x1EDOBpKM7ksxeRD2v6uMAA5eT3mvJM0nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_type_of_generalized_difference_sequence_space_of_non_absolute_type_and_some_matrix_transformations","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"In the present paper, we introduce a new difference sequence space rqB(u,p) by using the Riesz mean and the B-difference matrix. We show rqB(u,p) is a complete linear metric space and is linearly isomorphic to the space l(p). We have also computed its ?-, ?- and ?-duals. Furthermore, we have constructed the basis of rqB(u,p) and characterize a matrix class (rqB(u, p), l?).","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[{"id":90224865,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90224865/thumbnails/1.jpg","file_name":"48bf0ff31dd4007f8ee102ad74f56ffc337f.pdf","download_url":"https://www.academia.edu/attachments/90224865/download_file?st=MTczNDQ5ODUxMCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_type_of_generalized_difference_seque.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90224865/48bf0ff31dd4007f8ee102ad74f56ffc337f-libre.pdf?1661417253=\u0026response-content-disposition=attachment%3B+filename%3DNew_type_of_generalized_difference_seque.pdf\u0026Expires=1734473670\u0026Signature=CJSTiS-PogPstpY7L8sU3Kf-kXyBhDODgkn5IOxHU9hK21yrpmTc5XTfcZhYSq9mjCo7qNVUEenxGJlxF3QibQBUDx9l~lHVbMjTFfsrzBy7KZTH0Dq6s5EGwJvEYvocLeyIB-JAfimVI8JzUFrpFy2UhG4ocIO-ucrjgNIVhix338qB5anhRpWkKIjh4nP~Dh3EfxzR-ntoeI17425O~V4Qgp0uVof3ffB6TGWAPV9fu9RDPDlJN9O~E~1FgVPvtrghI-cKnKD0z1YotFVjzd3EXVMcXgjknBTcfsEfIMxS02FoGq3-x1EDOBpKM7ksxeRD2v6uMAA5eT3mvJM0nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85564070"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations"><img alt="Research paper thumbnail of Sequence spaces of invariant means and some matrix transformations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations">Sequence spaces of invariant means and some matrix transformations</a></div><div class="wp-workCard_item"><span>Progress in Analysis and its Applications - Proceedings of the 7th International ISAAC Congress</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85564070"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85564070"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85564070; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85564070]").text(description); $(".js-view-count[data-work-id=85564070]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85564070; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85564070']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85564070, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85564070]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85564070,"title":"Sequence spaces of invariant means and some matrix transformations","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Progress in Analysis and its Applications - Proceedings of the 7th International ISAAC Congress"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/85564070/Sequence_spaces_of_invariant_means_and_some_matrix_transformations","translated_internal_url":"","created_at":"2022-08-24T21:50:15.439-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":599035,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sequence_spaces_of_invariant_means_and_some_matrix_transformations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":599035,"first_name":"M.","middle_initials":null,"last_name":"Mursaleen","page_name":"MMursaleen","domain_name":"amu-in","created_at":"2011-07-24T12:52:44.601-07:00","display_name":"M. Mursaleen","url":"https://amu-in.academia.edu/MMursaleen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e4bc0810093f7d34c6e9ca7a4028cc57809e3a679565ae0b811c0b3702b44087", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="VAauyKy6sTPk+IsEp7YotHozt3xm1GvbyNqW7W6/aLxPV660VTM3Z7Pqcq+lGw4Cx34hg+oipPPEKeqaG/1w9Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://amu-in.academia.edu/MMursaleen" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="rn9B7jmAtcYcRaUMfM84G/qsmu7J54SLvsFZZlS0am21LkGSwAkzkktXXKd+Yh6tR+EMEUURS6OyMiURIfZyJA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>