CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 235 results for author: <span class="mathjax">Chen, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Chen%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02599">arXiv:2412.02599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02599">pdf</a>, <a href="https://arxiv.org/format/2412.02599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for reduced periodic lattice distortion within the Sb-terminated surface layer of the kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kurtz%2C+F">Felix Kurtz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Witte%2C+G">Gevin von Witte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jehn%2C+L">Lukas Jehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akbiyik%2C+A">Alp Akbiyik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">Igor Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">Matthieu Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ropers%2C+C">Claus Ropers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02599v1-abstract-short" style="display: inline;"> The discovery of the kagome metal CsV$_3$Sb$_5$ sparked broad interest, due to the coexistence of a charge density wave (CDW) phase and possible unconventional superconductivity in the material. In this study, we use low-energy electron diffraction (LEED) with a $渭$m-sized electron beam to explore the periodic lattice distortion at the antimony-terminated surface in the CDW phase. We recorded high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02599v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02599v1-abstract-full" style="display: none;"> The discovery of the kagome metal CsV$_3$Sb$_5$ sparked broad interest, due to the coexistence of a charge density wave (CDW) phase and possible unconventional superconductivity in the material. In this study, we use low-energy electron diffraction (LEED) with a $渭$m-sized electron beam to explore the periodic lattice distortion at the antimony-terminated surface in the CDW phase. We recorded high-quality backscattering diffraction patterns in ultrahigh vacuum from multiple cleaved samples. Unexpectedly, we did not find superstructure reflexes at intensity levels predicted from dynamical LEED calculations for the reported $2 \times 2 \times 2$ bulk structure. Our results suggest that in CsV$_3$Sb$_5$ the periodic lattice distortion accompanying the CDW is less pronounced at Sb-terminated surfaces than in the bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02599v1-abstract-full').style.display = 'none'; document.getElementById('2412.02599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09385">arXiv:2411.09385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09385">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Sinking Approach to Explore Arbitrary Areas in Free Energy Landscapes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Z">Zhijun Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dechin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09385v1-abstract-short" style="display: inline;"> To address the time-scale limitations in molecular dynamics (MD) simulations, numerous enhanced sampling methods have been developed to expedite the exploration of complex free energy landscapes. A commonly employed approach accelerates the sampling of degrees of freedom associated with predefined collective variables (CVs), which typically tends to traverse the entire CV range. However, in many s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09385v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09385v1-abstract-full" style="display: none;"> To address the time-scale limitations in molecular dynamics (MD) simulations, numerous enhanced sampling methods have been developed to expedite the exploration of complex free energy landscapes. A commonly employed approach accelerates the sampling of degrees of freedom associated with predefined collective variables (CVs), which typically tends to traverse the entire CV range. However, in many scenarios, the focus of interest is on specific regions within the CV space. In this paper, we introduce a novel &#34;sinking&#34; approach that enables enhanced sampling of arbitrary areas within the CV space. We begin by proposing a gridded convolutional approximation that productively replicates the effects of metadynamics, a powerful CV-based enhanced sampling technique. Building on this, we present the SinkMeta method, which &#34;sinks&#34; the interior bias potential to create a restraining potential &#34;cliff&#34; at the grid edges. This technique can confine the exploration of CVs in MD simulations to a predefined area. Our experimental results demonstrate that SinkMeta requires minimal sampling steps to estimate the free energy landscape for CV subspaces of various shapes and dimensions, including irregular two-dimensional regions and one-dimensional pathways between metastable states. We believe that SinkMeta will pioneer a new paradigm for sampling partial phase spaces, especially offering an efficient and flexible solution for sampling minimum free energy paths in high-dimensional spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09385v1-abstract-full').style.display = 'none'; document.getElementById('2411.09385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00203">arXiv:2411.00203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00203">pdf</a>, <a href="https://arxiv.org/format/2411.00203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A Toffoli Gadget for Magnetic Tunnel Junctions Boltzmann Machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dairong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyporek%2C+A+C">Augustin Couton Wyporek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chailloleau%2C+P">Pierre Chailloleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valli%2C+A+S+E">Ahmed Sidi El Valli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morone%2C+F">Flaviano Morone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">Stephane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J+Z">Jonathan Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sels%2C+D">Dries Sels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00203v1-abstract-short" style="display: inline;"> Magnetic Tunnel Junctions (MTJs) are of great interest for non-conventional computing applications. The Toffoli gate is a universal reversible logic gate, enabling the construction of arbitrary boolean circuits. Here, we present a proof-of-concept construction of a gadget which encodes the Toffoli gate&#39;s truth table into the ground state of coupled uniaxial nanomagnets that could form the free lay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00203v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00203v1-abstract-full" style="display: none;"> Magnetic Tunnel Junctions (MTJs) are of great interest for non-conventional computing applications. The Toffoli gate is a universal reversible logic gate, enabling the construction of arbitrary boolean circuits. Here, we present a proof-of-concept construction of a gadget which encodes the Toffoli gate&#39;s truth table into the ground state of coupled uniaxial nanomagnets that could form the free layers of perpendicularly magnetized MTJs. This construction has three input bits, three output bits, and one ancilla bit. We numerically simulate the seven macrospins evolving under the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. We investigate the effect of the anisotropy-to-exchange-coupling strength ratio $H_A/H_\text{ex}$ on the working of the gadget. We find that for $H_A/H_\text{ex} \lesssim 0.93$, the spins evolve to the Toffoli gate truth table configurations under LLG dynamics alone, while higher $H_A/H_\text{ex}$ ratios require thermal annealing due to suboptimal metastable states. Under our chosen annealing procedure, the s-LLG simulation with thermal annealing achieves a 100% success rate up to $H_A/H_\text{ex}\simeq3.0$. The feasibility of constructing MTJ-free-layer-based Toffoli gates highlights their potential in designing new types of MTJ-based circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00203v1-abstract-full').style.display = 'none'; document.getElementById('2411.00203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17562">arXiv:2410.17562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17562">pdf</a>, <a href="https://arxiv.org/format/2410.17562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Universal Entanglement Revival of Topological Origin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongni Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chesi%2C+S">Stefano Chesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+M">Mahn-Soo Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17562v1-abstract-short" style="display: inline;"> We have analyzed the dynamics of entanglement in dissipative fermionic and bosonic Su-Schrieffer-Heeger (SSH) models and found that, when the decoherence channel preserves the chiral symmetry, they exhibit a revival of entanglement in a wide range of parameters. This behavior only emerges in the topological phase, with the visibility of the revival dropping to zero at the phase boundary. Furthermo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17562v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17562v1-abstract-full" style="display: none;"> We have analyzed the dynamics of entanglement in dissipative fermionic and bosonic Su-Schrieffer-Heeger (SSH) models and found that, when the decoherence channel preserves the chiral symmetry, they exhibit a revival of entanglement in a wide range of parameters. This behavior only emerges in the topological phase, with the visibility of the revival dropping to zero at the phase boundary. Furthermore, the revival acquires a universal character once the system size exceeds the localization length of the edge modes. Our findings indicate that the universal entanglement revival has its origin in the topological properties of the SSH model. These dynamical properties may be experimentally accessible, for example, using photonic quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17562v1-abstract-full').style.display = 'none'; document.getElementById('2410.17562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages with 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17461">arXiv:2410.17461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17461">pdf</a>, <a href="https://arxiv.org/format/2410.17461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Impurity States in D-wave Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D+C">D. C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rainer%2C+D">D. Rainer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sauls%2C+J+A">J. A. Sauls</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17461v1-abstract-short" style="display: inline;"> The structure of the order parameter and the excitation spectrum are investigated for isolated impurities in d-wave superconductors. Atomic scale impurities, or defects, scatter quasiparticles and lead to local suppression (pair-breaking) near the impurity. The pair-breaking effect arises from the formation of quasiparticle states bound to the impurity. The corresponding reduction in spectral weig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17461v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17461v1-abstract-full" style="display: none;"> The structure of the order parameter and the excitation spectrum are investigated for isolated impurities in d-wave superconductors. Atomic scale impurities, or defects, scatter quasiparticles and lead to local suppression (pair-breaking) near the impurity. The pair-breaking effect arises from the formation of quasiparticle states bound to the impurity. The corresponding reduction in spectral weight in the pair condensate is responsible for pair-breaking. The formation of the bound state is due to multiple Andreev scattering by the combined effects of potential scattering, which leads to changes in momentum of the scattered quasiparticle, and the anisotropy of the d-wave order on the Fermi surface. The spectral weight of the bound state decays exponentially away from the impurity on a length scale $尉_{*}=\hbar v_f/ \sqrt{|螖({\bf p}_f)|^2-\varepsilon_{*}^2}$, where $\varepsilon_{*}$ is the energy of the impurity state. The continuum spectrum exhibits Tomasch oscillations due to the interference between Andreev reflected particle- and hole-like quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17461v1-abstract-full').style.display = 'none'; document.getElementById('2410.17461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Chapter in the Proceedings of the 1996 Verditz Workshop on Quasiclassical Methods in Superconductvity and Superfluidity, edited by D. Rainer and J. A. Sauls</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06572">arXiv:2408.06572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06572">pdf</a>, <a href="https://arxiv.org/format/2408.06572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Using $k$-means to sort spectra: electronic order mapping from scanning tunneling spectroscopy measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+V">V. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Seokhwan Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuart%2C+B">Brandon Stuart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jisun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudah%2C+M">Mohamed Oudah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jimin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+J">B. J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">S. A. Burke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06572v1-abstract-short" style="display: inline;"> Hyperspectral imaging techniques have a unique ability to probe the inhomogeneity of material properties whether driven by compositional variation or other forms of phase segregation. In the doped cuprates, iridates, and related materials, scanning tunneling microscopy/spectroscopy (STM/STS) measurements have found the emergence of pseudogap &#39;puddles&#39; from the macroscopically Mott insulating phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06572v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06572v1-abstract-full" style="display: none;"> Hyperspectral imaging techniques have a unique ability to probe the inhomogeneity of material properties whether driven by compositional variation or other forms of phase segregation. In the doped cuprates, iridates, and related materials, scanning tunneling microscopy/spectroscopy (STM/STS) measurements have found the emergence of pseudogap &#39;puddles&#39; from the macroscopically Mott insulating phase with increased doping. However, categorizing this hyperspectral data by electronic order is not trivial, and has often been done with ad hoc methods. In this paper we demonstrate the utility of $k$-means, a simple and easy-to-use unsupervised clustering method, as a tool for classifying heterogeneous scanning tunneling spectroscopy data by electronic order for Rh-doped Sr$_2$IrO$_{4}$, a cuprate-like material. Applied to STM data acquired within the Mott phase, $k$-means successfully identified areas of Mott order and of pseudogap order. The unsupervised nature of $k$-means limits avenues for bias, and provides clustered spectral shapes without a priori knowledge of the physics. Additionally, we demonstrate successful use of $k$-means as a preprocessing tool to constrain phenomenological function fitting. Clustering the data allows us to reduce the fitting parameter space, limiting over-fitting. We suggest $k$-means as a fast, simple model for processing hyperspectral data on materials of mixed electronic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06572v1-abstract-full').style.display = 'none'; document.getElementById('2408.06572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05878">arXiv:2408.05878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05878">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Drone based superconducting single photon detection system with detection efficiency more than 90% </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+R">Ruoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhimin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">Xiaojun Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">You Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">ChengJun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+J">Jiamin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jia Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+L">Liangliang Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaofu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+L">Lixing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05878v1-abstract-short" style="display: inline;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05878v1-abstract-full" style="display: none;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographical constraints. We herein designed and manufactured the first drone based SSPD system with a SDE as high as 91.8%. This drone based SSPD system is established with high performance NbTiN SSPDs, self-developed miniature liquid helium dewar, and homemade integrated electric setups, which is able to be launched in complex topographical conditions. Such a drone based SSPD system may open the use of SSPDs for applications that demand high-SDE in complex environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'none'; document.getElementById('2408.05878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13497">arXiv:2407.13497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Observation of surface Fermi arcs in altermagnetic Weyl semimetal CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenlong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shiyu Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuzhi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zihan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+X">Xin Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+W">Wanxiang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junzhang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13497v1-abstract-short" style="display: inline;"> As a special type of collinear antiferromagnetism (AFM), altermagnetism has garnered significant research interest recently. Altermagnets exhibit broken parity-time symmetry and zero net magnetization in real space, leading to substantial band splitting in momentum space even in the absence of spin-orbit coupling. Meanwhile, parity-time symmetry breaking always induce nontrivial band topology such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13497v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13497v1-abstract-full" style="display: none;"> As a special type of collinear antiferromagnetism (AFM), altermagnetism has garnered significant research interest recently. Altermagnets exhibit broken parity-time symmetry and zero net magnetization in real space, leading to substantial band splitting in momentum space even in the absence of spin-orbit coupling. Meanwhile, parity-time symmetry breaking always induce nontrivial band topology such as Weyl nodes. While Weyl semimetal states and nodal lines have been theoretically proposed in altermagnets, rare reports of experimental observation have been made up to this point. Using ARPES and first-principles calculations, we systematically studied the electronic structure of the room-temperature altermagnet candidate CrSb. At generic locations in momentum space, we clearly observed band spin splitting. Furthermore, we identified discrete surface Fermi arcs on the (100) cleaved side surface close to the Fermi level originating from bulk band topology. Our results imply that CrSb contains interesting nontrivial topological Weyl physics, in addition to being an excellent room temperature altermagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13497v1-abstract-full').style.display = 'none'; document.getElementById('2407.13497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13121">arXiv:2407.13121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Nematic Ising superconductivity with hidden magnetism in few-layer 6R-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shao-Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+C">Congkuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuqiang Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+L">Lu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xinjian Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Hang Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mantang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yuanjun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiankun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fuqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuhang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jinhai Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian-Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13121v1-abstract-short" style="display: inline;"> In van der Waals heterostructures (vdWHs), the manipulation of interlayer stacking/coupling allows for the construction of customizable quantum systems exhibiting exotic physics. An illustrative example is the diverse range of states of matter achieved through varying the proximity coupling between two-dimensional (2D) quantum spin liquid (QSL) and superconductors within the TaS2 family. This stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13121v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13121v1-abstract-full" style="display: none;"> In van der Waals heterostructures (vdWHs), the manipulation of interlayer stacking/coupling allows for the construction of customizable quantum systems exhibiting exotic physics. An illustrative example is the diverse range of states of matter achieved through varying the proximity coupling between two-dimensional (2D) quantum spin liquid (QSL) and superconductors within the TaS2 family. This study presents a demonstration of the intertwined physics of spontaneous rotational symmetry breaking, hidden magnetism, and Ising superconductivity in the three-fold rotationally symmetric, non-magnetic natural vdWHs 6R-TaS2. A distinctive phase emerges in 6R-TaS2 below a characteristic temperature (T*) of approximately 30 K, which is characterized by a remarkable set of features, including a giant extrinsic anomalous Hall effect (AHE), Kondo screening, magnetic field-tunable thermal hysteresis, and nematic magneto-resistance. At lower temperatures, a coexistence of nematicity and Kondo screening with Ising superconductivity is observed, providing compelling evidence of hidden magnetism within a superconductor. This research not only sheds light on unexpected emergent physics resulting from the coupling of itinerant electrons and localized/correlated electrons in natural vdWHs but also emphasizes the potential for tailoring exotic quantum states through the manipulation of interlayer interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13121v1-abstract-full').style.display = 'none'; document.getElementById('2407.13121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00530">arXiv:2407.00530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00530">pdf</a>, <a href="https://arxiv.org/format/2407.00530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0232164">10.1063/5.0232164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solving combinatorial optimization problems through stochastic Landau-Lifshitz-Gilbert dynamical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dairong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sels%2C+D">Dries Sels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morone%2C+F">Flaviano Morone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00530v1-abstract-short" style="display: inline;"> We present a method to approximately solve general instances of combinatorial optimization problems using the physical dynamics of 3d rotors obeying Landau-Lifshitz-Gilbert dynamics. Conventional techniques to solve discrete optimization problems that use simple continuous relaxation of the objective function followed by gradient descent minimization are inherently unable to avoid local optima, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00530v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00530v1-abstract-full" style="display: none;"> We present a method to approximately solve general instances of combinatorial optimization problems using the physical dynamics of 3d rotors obeying Landau-Lifshitz-Gilbert dynamics. Conventional techniques to solve discrete optimization problems that use simple continuous relaxation of the objective function followed by gradient descent minimization are inherently unable to avoid local optima, thus producing poor-quality solutions. Our method considers the physical dynamics of macrospins capable of escaping from local minima, thus facilitating the discovery of high-quality, nearly optimal solutions, as supported by extensive numerical simulations on a prototypical quadratic unconstrained binary optimization (QUBO) problem. Our method produces solutions that compare favorably with those obtained using state-of-the-art minimization algorithms (such as simulated annealing) while offering the advantage of being physically realizable by means of arrays of stochastic magnetic tunnel junction devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00530v1-abstract-full').style.display = 'none'; document.getElementById('2407.00530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 136, 193901 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00802">arXiv:2405.00802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00802">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adk8495">10.1126/sciadv.adk8495 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensing Spin Wave Excitations by Spin Defects in Few-Layer Thick Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+G+Q">Gerald Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-matouq%2C+F">Faris Al-matouq</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Jiu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djugba%2C+D">Dziga Djugba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00802v1-abstract-short" style="display: inline;"> Optically active spin defects in wide band-gap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of &#34;hard&#34; and &#34;soft&#34; condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy $V_B^-$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00802v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00802v1-abstract-full" style="display: none;"> Optically active spin defects in wide band-gap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of &#34;hard&#34; and &#34;soft&#34; condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy $V_B^-$ spin defects contained in few-layer thick hexagonal boron nitride nanoflakes. We show that the ferromagnetic resonance and parametric spin excitations can be effectively detected by $V_B^-$ spin defects under various experimental conditions through optically detected magnetic resonance measurements. The off-resonant dipole interaction between YIG magnons and $V_B^-$ spin defects is mediated by multi-magnon scattering processes, which may find relevant applications in a range of emerging quantum sensing, computing, and metrology technologies. Our results also highlight the opportunities offered by quantum spin defects in layered two-dimensional vdW materials for investigating local spin dynamic behaviors in magnetic solid-state matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00802v1-abstract-full').style.display = 'none'; document.getElementById('2405.00802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14790">arXiv:2404.14790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14790">pdf</a>, <a href="https://arxiv.org/format/2404.14790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-dependent Electronic Superlattice in the Kagome-Superconductor CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stier%2C+F">F. Stier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+-">A. -A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">S. Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stilkerich%2C+N">N. Stilkerich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacmann%2C+T">T. Lacmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritschel%2C+T">T. Ritschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14790v2-abstract-short" style="display: inline;"> We present a high-resolution single crystal x-ray diffraction study of kagome-superconductor \cvs, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around $p \sim$ 0.7 GPa from the familiar $2\times2$ pattern&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14790v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14790v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14790v2-abstract-full" style="display: none;"> We present a high-resolution single crystal x-ray diffraction study of kagome-superconductor \cvs, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around $p \sim$ 0.7 GPa from the familiar $2\times2$ pattern to a long-range-ordered modulation at wavevector $q=(0, 3/8, 1/2)$. Our observations align with inferred changes in the CDW pattern from prior transport and nuclear-magnetic-resonance studies, providing new insights into these transitions. Interestingly, the pressure-induced variations in the electronic superlattice correlate with two peaks in the superconducting transition temperature as pressure changes, hinting that fluctuations within the electronic superlattice could be key to stabilizing superconductivity. However, our findings contrast with the minimal pressure dependency anticipated by ab initio calculations of the electronic structure. They also challenge prevailing scenarios based on a Peierls-like nesting mechanism involving van Hove singularities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14790v2-abstract-full').style.display = 'none'; document.getElementById('2404.14790v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, to appear in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05138">arXiv:2404.05138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Out-of-plane orientated self-trapped excitons enabled polarized light guiding in 2D perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junze Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Junchao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+T">Ting Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yingying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zeyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+D">Dingshan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xinglin Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dehui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05138v1-abstract-short" style="display: inline;"> Active optical waveguides combine light source and waveguides together in an individual component, which are essential for the integrated photonic chips. Although 1D luminescent materials based optical waveguides were extensively investigated, 2D waveguides allow photons to flow within a plane and serve as an ideal component for the ultracompact photonic circuits. Nevertheless, light guiding in 2D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05138v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05138v1-abstract-full" style="display: none;"> Active optical waveguides combine light source and waveguides together in an individual component, which are essential for the integrated photonic chips. Although 1D luminescent materials based optical waveguides were extensively investigated, 2D waveguides allow photons to flow within a plane and serve as an ideal component for the ultracompact photonic circuits. Nevertheless, light guiding in 2D planar structures normally relies on the precise control of molecular orientation, which is complicated and low yield. Here, we report a strategy to guide polarized light in 2D microflakes by making use of the out-of-plane (OP) orientation of self-trapped excitons in as-synthesized 2D perovskite microplates. A space confined crystallization method is developed to synthesize 2D perovskite microflakes with dominated broad self-trapped excitons emission at room temperature, which are highly OP orientated with a percentage of the OP component over 85%. Taking advantages of the negligible absorption coefficient and improved coupling efficiency of OP orientated self-trapped exciton emission to the planar waveguide mode of the as-synthesized perovskite microflakes, we have achieved a broadband polarized light guiding with a full width at half maximum over 120 nm. Our findings provide a promising platform for the development of ultracompact photonic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05138v1-abstract-full').style.display = 'none'; document.getElementById('2404.05138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04863">arXiv:2404.04863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04863">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microscopic Insights into Fatigue Mechanism in Wurtzite Ferroelectric Al$_{0.65}$Sc$_{0.35}$N: Oxygen Infiltration Enabled Grain Amorphization Spanning Boundary to Bulk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruiqing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Danyang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiuren Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+X">Xu Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zixuan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yue Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+G">Genquan Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04863v1-abstract-short" style="display: inline;"> For the first time, the fatigue behavior involving external oxygen in highly Sc-doped AlN ferroelectric film was observed using transmission electron microscope techniques. Despite increasing the Sc composition in AlScN film contributes to reducing the device operation voltage, the inherent affinity of Sc for oxygen introduces instability in device performance. In this study, oxygen incorporation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04863v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04863v1-abstract-full" style="display: none;"> For the first time, the fatigue behavior involving external oxygen in highly Sc-doped AlN ferroelectric film was observed using transmission electron microscope techniques. Despite increasing the Sc composition in AlScN film contributes to reducing the device operation voltage, the inherent affinity of Sc for oxygen introduces instability in device performance. In this study, oxygen incorporation at top electrode edges and grain boundaries accompanied with an increase in current leakage and the disappearance of ferroelectric properties, was observed in nanoscale after long-term field cycling. This observation indicates the emergence of non-ferroelectric and even amorphous states. This presented work revealed solid experimental evidence of an oxygen-involved fatigue mechanism, providing valuable insights into the physical nature of the ferroelectric properties of AlScN films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04863v1-abstract-full').style.display = 'none'; document.getElementById('2404.04863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 Pages,7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13174">arXiv:2402.13174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Stark Effects of Rydberg Excitons in a Monolayer WSe2 P-N Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zhen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yun-Mei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Li Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Lei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongxue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13174v1-abstract-short" style="display: inline;"> The enhanced Coulomb interaction in two-dimensional (2D) semiconductors leads to the tightly bound electron-hole pairs known as excitons. The large binding energy of excitons enables the formation of Rydberg excitons with high principal quantum numbers (n), analogous to Rydberg atoms. Rydberg excitons possess strong interactions among themselves, as well as sensitive responses to external stimuli.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13174v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13174v1-abstract-full" style="display: none;"> The enhanced Coulomb interaction in two-dimensional (2D) semiconductors leads to the tightly bound electron-hole pairs known as excitons. The large binding energy of excitons enables the formation of Rydberg excitons with high principal quantum numbers (n), analogous to Rydberg atoms. Rydberg excitons possess strong interactions among themselves, as well as sensitive responses to external stimuli. Here, we probe Rydberg exciton resonances through photocurrent spectroscopy in a monolayer WSe2 p-n junction formed by a split-gate geometry. We show that an external in-plane electric field not only induces a large Stark shift of Rydberg excitons up to quantum principal number n=3 but also mixes different orbitals and brightens otherwise dark states such as 3p and 3d. Our study provides an exciting platform for engineering Rydberg excitons for new quantum states and quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13174v1-abstract-full').style.display = 'none'; document.getElementById('2402.13174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04995">arXiv:2402.04995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04995">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Observation of Giant Spin Splitting and d-wave Spin Texture in Room Temperature Altermagnet RuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zihan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenlong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+X">Xin Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shiyu Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osiecki%2C+J">Jacek Osiecki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junzhang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04995v1-abstract-short" style="display: inline;"> Recently, a novel magnetic phase called altermagnetism has been proposed, ushering in a third distinct magnetic phase beyond ferromagnetism and antiferromagnetism. It is expected that this groundbreaking phase exhibits unique physical properties such as C-paired spin-valley locking, anomalous Hall effect, nontrivial Berry phase, and giant magnetoresistance, etc. Among all the predicted candidates,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04995v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04995v1-abstract-full" style="display: none;"> Recently, a novel magnetic phase called altermagnetism has been proposed, ushering in a third distinct magnetic phase beyond ferromagnetism and antiferromagnetism. It is expected that this groundbreaking phase exhibits unique physical properties such as C-paired spin-valley locking, anomalous Hall effect, nontrivial Berry phase, and giant magnetoresistance, etc. Among all the predicted candidates, several room temperature altermagnets are suggested to host significant potential applications in the near future. Nevertheless, direct evidence about the spin pattern of the room temperature altermagnet is still unrevealed. Previous studies found that RuO2 is identified as the most promising candidate for room temperature d-wave altermagnetism, exhibiting a substantial spin splitting of up to 1.4 eV. In this study, utilizing angle-resolved photoemission spectroscopy (ARPES), we report experimental observation of the spin splitting in RuO2. Furthermore, employing spin-ARPES, we directly observed the d-wave spin pattern. Our results unequivocally show that RuO2 is a perfect d-wave altermagnet with great potential for upcoming spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04995v1-abstract-full').style.display = 'none'; document.getElementById('2402.04995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16640">arXiv:2312.16640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16640">pdf</a>, <a href="https://arxiv.org/format/2312.16640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermal transport measurements of the charge density wave transition in CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kountz%2C+E+D">Erik D. Kountz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murthy%2C+C+R">Chaitanya R. Murthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zic%2C+M">Mark Zic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16640v1-abstract-short" style="display: inline;"> We study thermalization and thermal transport in single crystals of CsV$_3$Sb$_5$ through the CDW transition by directly measuring thermal diffusivity ($D$), thermal conductivity ($魏$), resistivity ($蟻$), and specific heat ($c$). Commensurate with previous reports, we observe a sharp, narrow anomaly in specific heat associated with a first order transition that results in a CDW state below&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16640v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16640v1-abstract-full" style="display: none;"> We study thermalization and thermal transport in single crystals of CsV$_3$Sb$_5$ through the CDW transition by directly measuring thermal diffusivity ($D$), thermal conductivity ($魏$), resistivity ($蟻$), and specific heat ($c$). Commensurate with previous reports, we observe a sharp, narrow anomaly in specific heat associated with a first order transition that results in a CDW state below $\sim94$ K. While a corresponding sharp anomaly in thermal diffusivity is also observed, resistivity and thermal conductivity only exhibit small steps at the transition, where the feature is sharp for resistivity and broader for thermal conductivity. Scrutinizing the thermal Einstein relation $魏=cD$, we find that this relation is satisfied in the entire temperature range, except in a narrow range around the transition. The Wiedemann-Franz law seems to work outside the critical region as well. Below the transition and persisting below the two-phase regime we find strong resemblance between the resistivity anomaly and the specific heat, which may point to a secondary electronic order parameter that emerges continuously below the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16640v1-abstract-full').style.display = 'none'; document.getElementById('2312.16640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15899">arXiv:2312.15899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15899">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Corrosion-resistant aluminum alloy design through machine learning combined with high-throughput calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yucheng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiaoqian Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+F">Feng Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yongtao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ao%2C+M">Min Ao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+F">Fulai Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dihao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dey%2C+P">Poulumi Dey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+K">Kui Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jingli Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaogang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chaofang Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15899v1-abstract-short" style="display: inline;"> Efficiently designing lightweight alloys with combined high corrosion resistance and mechanical properties remains an enduring topic in materials engineering. To this end, machine learning (ML) coupled ab-initio calculations is proposed within this study. Due to the inadequate accuracy of conventional stress-strain ML models caused by corrosion factors, a novel reinforcement self-learning ML algor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15899v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15899v1-abstract-full" style="display: none;"> Efficiently designing lightweight alloys with combined high corrosion resistance and mechanical properties remains an enduring topic in materials engineering. To this end, machine learning (ML) coupled ab-initio calculations is proposed within this study. Due to the inadequate accuracy of conventional stress-strain ML models caused by corrosion factors, a novel reinforcement self-learning ML algorithm (accuracy R2 &gt;0.92) is developed. Then, a strategy that integrates ML models, calculated energetics and mechanical moduli is implemented to optimize the Al alloys. Next, this Computation Designed Corrosion-Resistant Al alloy is fabricated that verified the simulation. The performance (elongation reaches ~30%) is attributed to the H-captured Al-Sc-Cu phases (-1.44 eV H-1) and Cu-modified 畏/畏&#39; precipitation inside the grain boundaries (GBs). The developed Al-Mg-Zn-Cu interatomic potential (energy accuracy 6.50 meV atom-1) proves the cracking resistance of the GB region enhanced by Cu-modification. Conceptually, our strategy is of practical importance for designing new alloys exhibiting corrosion resistance and mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15899v1-abstract-full').style.display = 'none'; document.getElementById('2312.15899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08541">arXiv:2312.08541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08541">pdf</a>, <a href="https://arxiv.org/format/2312.08541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Disordered Hyperuniformity in Melts of Linear Diblock Copolymers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klatt%2C+M+A">Michael A. Klatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fredrickson%2C+G+H">Glenn H. Fredrickson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08541v2-abstract-short" style="display: inline;"> Disordered hyperuniform (DHU) systems are recently discovered exotic states of matter, where (normalized) large-scale density fluctuations are completely suppressed as in crystals, even though the systems are isotropic and lack conventional long-range order. Despite recent success, realizing such systems using bottom-up approaches remains challenging. Here, we study the large-scale behavior of nea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08541v2-abstract-full').style.display = 'inline'; document.getElementById('2312.08541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08541v2-abstract-full" style="display: none;"> Disordered hyperuniform (DHU) systems are recently discovered exotic states of matter, where (normalized) large-scale density fluctuations are completely suppressed as in crystals, even though the systems are isotropic and lack conventional long-range order. Despite recent success, realizing such systems using bottom-up approaches remains challenging. Here, we study the large-scale behavior of neat melts of linear diblock copolymers using large-cell self-consistent field theory (SCFT) simulations. We initialize SCFT simulations using point patterns that correspond to the local energy minimum of the so-called Quantizer energy, a geometric functional related to the free energy of copolymeric self-assemblies. Upon relaxation via the SCFT simulations, we obtain a new class of metastable disordered micelle mesophases that are hyperuniform. Moreover, we find that DHU micelle mesophases possess very similar free energies to the thermodynamically stable body-centered cubic sphere mesophases and are also much more favorable energetically than previously obtained liquid-like packings. Our findings shed light on the design of novel disordered hyperuniform materials using bottom-up approaches, and suggest new possibilities for technological applications, e.g., novel non-iridescent structural colors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08541v2-abstract-full').style.display = 'none'; document.getElementById('2312.08541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09551">arXiv:2311.09551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09551">pdf</a>, <a href="https://arxiv.org/format/2311.09551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Universal Hyperuniform Organization in Looped Leaf Vein Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+J">Jianxiang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wenxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yang Jiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09551v2-abstract-short" style="display: inline;"> Leaf vein network is a hierarchical vascular system that transports water and nutrients to the leaf cells. The thick primary veins form a branched network, while the secondary veins develop closed circuits forming a well-defined cellular structure. Through extensive analysis of a variety of distinct leaf species, we discover that the apparently disordered cellular structures of the secondary vein&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09551v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09551v2-abstract-full" style="display: none;"> Leaf vein network is a hierarchical vascular system that transports water and nutrients to the leaf cells. The thick primary veins form a branched network, while the secondary veins develop closed circuits forming a well-defined cellular structure. Through extensive analysis of a variety of distinct leaf species, we discover that the apparently disordered cellular structures of the secondary vein networks exhibit a universal hyperuniform organization and possess a hidden order on large scales. Disorder hyperuniform (DHU) systems lack conventional long-range order, yet they completely suppress normalized large-scale density fluctuations like crystals. Specifically, we find that the distributions of the geometric centers associated with the vein network loops possess a vanishing static structure factor in the zero-wavenumber limit, i.e., $S(k) \sim k^伪$, where $伪\approx 0.64$, providing an example of class III hyperuniformity in biology. This hyperuniform organization leads to superior efficiency of diffusive transport, as evidenced by the much faster convergence of the time-dependent spreadability $\mathcal{S}(t)$ to its long-time asymptotic limit, compared to that of other uncorrelated or correlated disordered but non-hyperuniform organizations. Our results also have implications for the discovery and design of novel disordered network materials with optimal transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09551v2-abstract-full').style.display = 'none'; document.getElementById('2311.09551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages; 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06389">arXiv:2311.06389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06389">pdf</a>, <a href="https://arxiv.org/format/2311.06389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Vibrational Properties of One-Dimensional Disordered Hyperuniform Atomic Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+H">Houlong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Ge Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yang Jiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06389v1-abstract-short" style="display: inline;"> Disorder hyperuniformity (DHU) is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel DHU state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numeric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06389v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06389v1-abstract-full" style="display: none;"> Disorder hyperuniformity (DHU) is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel DHU state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered hyperuniform as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique DHU disorder affects the vibrational properties of these low-dimensional materials. We find that the DHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the DHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e., $蠅\in (0, 100)$ cm$^{-1}$, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated with $蠅\sim 200$ cm$^{-1}$, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of DHU chains have implications in the design and engineering of novel DHU quantum materials for thermal and phononic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06389v1-abstract-full').style.display = 'none'; document.getElementById('2311.06389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02336">arXiv:2311.02336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02336">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Green light GaN p-n junction luminescent particles enhance the superconducting properties of B(P)SCCO Smart Meta-Superconductors (SMSCs) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hai%2C+Q">Qingyu Hai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Honggang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Miao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaopeng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02336v1-abstract-short" style="display: inline;"> Superconducting materials exhibit unique physical properties and hold great scientific value and vast industrial application prospects. However, due to limitations such as critical temperature (TC) and critical current density (JC), the large-scale application of superconducting materials remains challenging. Chemical doping has been a commonly used method to enhance the superconductivity of B(P)S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02336v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02336v1-abstract-full" style="display: none;"> Superconducting materials exhibit unique physical properties and hold great scientific value and vast industrial application prospects. However, due to limitations such as critical temperature (TC) and critical current density (JC), the large-scale application of superconducting materials remains challenging. Chemical doping has been a commonly used method to enhance the superconductivity of B(P)SCCO. However, satisfactory enhancement results have been difficult to achieve. In this study, we introduced green light GaN p-n junction particles as inhomogeneous phases into B(P)SCCO polycrystalline particles to form a smart meta-superconductors (SMSCs) structure. Based on the electroluminescence properties of the p-n junction, the Cooper pairs were stimulated and strengthened to enhance the superconductivity of B(P)SCCO. Experimental results demonstrate that the introduction of inhomogeneous phases can indeed enhance the critical temperature TC, critical current density JC, and complete diamagnetism (Meissner effect) of B(P)SCCO superconductors. Moreover, When the particle size of raw material of B(P)SCCO is reduced from 30渭m to 5渭m, the grain size of the sintered samples also decreases, and the optimal doping concentration of the inhomogeneous phases increases from 0.15 wt.% to 0.2 wt.%, further improving the enhancement of superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02336v1-abstract-full').style.display = 'none'; document.getElementById('2311.02336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,7 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07232">arXiv:2310.07232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07232">pdf</a>, <a href="https://arxiv.org/format/2310.07232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.165146">10.1103/PhysRevB.108.165146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-Dependent Collective Excitations in a Three-Dimensional Dirac System ZrTe$_{5}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zijian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Cuixiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Daqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuetao Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07232v2-abstract-short" style="display: inline;"> Zirconium pentatelluride (ZrTe$_{5}$), a system with a Dirac linear band across the Fermi level and anomalous transport features, has attracted considerable research interest for it is predicted to be located at the boundary between strong and weak topological insulators separated by a topological semimetal phase. However, the experimental verification of the topological phase transition and the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07232v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07232v2-abstract-full" style="display: none;"> Zirconium pentatelluride (ZrTe$_{5}$), a system with a Dirac linear band across the Fermi level and anomalous transport features, has attracted considerable research interest for it is predicted to be located at the boundary between strong and weak topological insulators separated by a topological semimetal phase. However, the experimental verification of the topological phase transition and the topological ground state in ZrTe$_{5}$ is full of controversies, mostly due to the difficulty of precisely capturing the small gap evolution with single-particle band structure measurements. Alternatively, the collective excitations of electric charges, known as plasmons, in Dirac systems exhibiting unique behavior, can well reflect the topological nature of the band structure. Here, using reflective high-resolution electron energy loss spectroscopy (HREELS), we investigate the temperature-dependent collective excitations of ZrTe$_{5}$, and discover that the plasmon energy in ZrTe$_{5}$ is proportional to the $1/3$ power of the carrier density $n$, which is a unique feature of plasmons in three-dimensional Dirac systems. Based on this conclusion, the origin of the resistivity anomaly of ZrTe$_{5}$ can be attributed to the temperature-dependent chemical potential shift in extrinsic Dirac semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07232v2-abstract-full').style.display = 'none'; document.getElementById('2310.07232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108, 165146 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05720">arXiv:2309.05720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05720">pdf</a>, <a href="https://arxiv.org/format/2309.05720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable inductive coupler for high fidelity gates between fluxonium qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Helin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+C">Chunyang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weiss%2C+D+K">D. K. Weiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Ziwen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yuwei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guinn%2C+C">Charles Guinn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sussman%2C+S">Sara Sussman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitta%2C+S+P">Sai Pavan Chitta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Danyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Houck%2C+A+A">Andrew A. Houck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+J">Jens Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuster%2C+D+I">David I. Schuster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05720v2-abstract-short" style="display: inline;"> The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductive coupling between two heavy-fluxonium qubits, each with $\sim50$MHz frequencies and $\sim5$ GHz anharmonicities. The coupler enables the qubits to have a large tuning range of $\textit{XX}$ coupling strengths (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05720v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05720v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05720v2-abstract-full" style="display: none;"> The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductive coupling between two heavy-fluxonium qubits, each with $\sim50$MHz frequencies and $\sim5$ GHz anharmonicities. The coupler enables the qubits to have a large tuning range of $\textit{XX}$ coupling strengths ($-35$ to $75$ MHz). The $\textit{ZZ}$ coupling strength is $&lt;3$kHz across the entire coupler bias range, and $&lt;100$Hz at the coupler off-position. These qualities lead to fast, high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a $\sqrt{i\mathrm{SWAP}}$ gate in $258$ns with fidelity $99.72\%$, and by driving at the sum frequency of the two qubits, we achieve a $\sqrt{b\mathrm{SWAP}}$ gate in $102$ns with fidelity $99.91\%$. This latter gate is only 5 qubit Larmor periods in length. We run cross-entropy benchmarking for over $20$ consecutive hours and measure stable gate fidelities, with $\sqrt{b\mathrm{SWAP}}$ drift ($2 蟽$) $&lt; 0.02\%$ and $\sqrt{i\mathrm{SWAP}}$ drift $&lt; 0.08\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05720v2-abstract-full').style.display = 'none'; document.getElementById('2309.05720v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11270">arXiv:2308.11270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11270">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Green-light p-n Junction Particle Inhomogeneous Phase Enhancement of MgB2 Smart Meta-Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongbo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hai%2C+Q">Qingyu Hai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Miao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Honggang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaopeng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11270v1-abstract-short" style="display: inline;"> Improving the critical temperature (TC), critical magnetic field (HC), and critical current (JC) of superconducting materials has always been one of the most significant challenges in the field of superconductivity, but progress has been slow over the years. Based on the concept of injecting energy to enhance electron pairing states, in this study, we have employed a solid-state sintering method t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11270v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11270v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11270v1-abstract-full" style="display: none;"> Improving the critical temperature (TC), critical magnetic field (HC), and critical current (JC) of superconducting materials has always been one of the most significant challenges in the field of superconductivity, but progress has been slow over the years. Based on the concept of injecting energy to enhance electron pairing states, in this study, we have employed a solid-state sintering method to fabricate a series of smart meta-superconductors (SMSCs) consisting of p-n junction nanostructures with a wavelength of 550 nm, doped within an MgB2 matrix. Experimental results demonstrate that compared to pure MgB2 samples, the critical transition temperature (TC) has increased by 1.2 K, the critical current (JC) has increased by 52.8%, and the Meissner effect (HC) shows significant improvement in its diamagnetic properties. This phenomenon of enhanced superconducting performance can be explained by the coupling between superconducting electrons and evanescent waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11270v1-abstract-full').style.display = 'none'; document.getElementById('2308.11270v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11054">arXiv:2308.11054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11054">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40783-z">10.1038/s41467-023-40783-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exciton Superposition across Moir茅 States in a Semiconducting Moir茅 Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zhen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongxue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yuze Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaotong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+R">Rounak Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11054v1-abstract-short" style="display: inline;"> Moir茅 superlattices of semiconducting transition metal dichalcogenides (TMDCs) enable unprecedented spatial control of electron wavefunctions in an artificial lattice with periodicities more than ten times larger than that of atomic crystals, leading to emerging quantum states with fascinating electronic and optical properties. The breaking of translational symmetry further introduces a new degree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11054v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11054v1-abstract-full" style="display: none;"> Moir茅 superlattices of semiconducting transition metal dichalcogenides (TMDCs) enable unprecedented spatial control of electron wavefunctions in an artificial lattice with periodicities more than ten times larger than that of atomic crystals, leading to emerging quantum states with fascinating electronic and optical properties. The breaking of translational symmetry further introduces a new degree of freedom inside each moir茅 unit cell: high symmetry points of energy minima called moir茅 sites, behaving as spatially separated quantum dots. The superposition of a quasiparticle wavefunction between different moir茅 sites will enable a new platform for quantum information processing but is hindered by the suppressed electron tunneling between moir茅 sites. Here we demonstrate the superposition between two moir茅 sites by constructing an angle-aligned trilayer WSe2/monolayer WS2 moir茅 heterojunction. The two moir茅 sites with energy minimum allow the formation of two different interlayer excitons, with the hole residing in either moir茅 site of the first WSe2 layer interfacing the WS2 layer and the electron in the third WSe2 layer. An external electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2 layer, realizing the continuous tuning of interlayer exciton hopping between two moir茅 sites. Therefore, a superposition of the two interlayer excitons localized at different moir茅 sites can be realized, which can be resolved in the electric-field-dependent optical reflectance spectra, distinctly different from that of the natural trilayer WSe2 in which the moir茅 modulation is absent. Our study illustrates a strategy of harnessing the new moir茅 site degree of freedom for quantum information science, a new direction of twistronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11054v1-abstract-full').style.display = 'none'; document.getElementById('2308.11054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5042 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10799">arXiv:2308.10799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Valley-polarized Exitonic Mott Insulator in WS2/WSe2 Moir茅 Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zhen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yuze Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Lei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maity%2C+I">Indrajit Maity</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Li Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiran Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongxue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaotong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinyue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blei%2C+M">Mark Blei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lischner%2C+J">Johannes Lischner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10799v2-abstract-short" style="display: inline;"> Strongly enhanced electron-electron interaction in semiconducting moir茅 superlattices formed by transition metal dichalcogenides (TMDCs) heterobilayers has led to a plethora of intriguing fermionic correlated states. Meanwhile, interlayer excitons in a type-II aligned TMDC heterobilayer moir茅 superlattice, with electrons and holes separated in different layers, inherit this enhanced interaction an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10799v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10799v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10799v2-abstract-full" style="display: none;"> Strongly enhanced electron-electron interaction in semiconducting moir茅 superlattices formed by transition metal dichalcogenides (TMDCs) heterobilayers has led to a plethora of intriguing fermionic correlated states. Meanwhile, interlayer excitons in a type-II aligned TMDC heterobilayer moir茅 superlattice, with electrons and holes separated in different layers, inherit this enhanced interaction and strongly interact with each other, promising for realizing tunable correlated bosonic quasiparticles with valley degree of freedom. We employ photoluminescence spectroscopy to investigate the strong repulsion between interlayer excitons and correlated electrons in a WS2/WSe2 moir茅 superlattice and combine with theoretical calculations to reveal the spatial extent of interlayer excitons and the band hierarchy of correlated states. We further find that an excitonic Mott insulator state emerges when one interlayer exciton occupies one moir茅 cell, evidenced by emerging photoluminescence peaks under increased optical excitation power. Double occupancy of excitons in one unit cell requires overcoming the energy cost of exciton-exciton repulsion of about 30-40 meV, depending on the stacking configuration of the WS2/WSe2 heterobilayer. Further, the valley polarization of the excitonic Mott insulator state is enhanced by nearly one order of magnitude. Our study demonstrates the WS2/WSe2 moir茅 superlattice as a promising platform for engineering and exploring new correlated states of fermion, bosons, and a mixture of both. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10799v2-abstract-full').style.display = 'none'; document.getElementById('2308.10799v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10687">arXiv:2308.10687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10687">pdf</a>, <a href="https://arxiv.org/format/2308.10687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02259">10.1021/acs.nanolett.4c02259 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitonic interplay between surface polar III-nitride quantum wells and MoS$_2$ monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Danxuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weatherley%2C+T+F+K">Thomas F. K. Weatherley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlin%2C+J">Jean-Fran莽ois Carlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grandjean%2C+N">Nicolas Grandjean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10687v3-abstract-short" style="display: inline;"> III-nitride wide bandgap semiconductors exhibit large exciton binding energies, preserving strong excitonic effects at room temperature. On the other hand, semiconducting two-dimensional (2D) materials, including MoS$_2$, also exhibit strong excitonic effects, attributed to enhanced Coulomb interactions. This study investigates excitonic interactions between surface GaN quantum well (QW) and 2D Mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10687v3-abstract-full').style.display = 'inline'; document.getElementById('2308.10687v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10687v3-abstract-full" style="display: none;"> III-nitride wide bandgap semiconductors exhibit large exciton binding energies, preserving strong excitonic effects at room temperature. On the other hand, semiconducting two-dimensional (2D) materials, including MoS$_2$, also exhibit strong excitonic effects, attributed to enhanced Coulomb interactions. This study investigates excitonic interactions between surface GaN quantum well (QW) and 2D MoS$_2$ in van der Waals heterostructures by varying the spacing between these two excitonic systems. Optical property investigation first demonstrates the effective passivation of defect states at the GaN surface through MoS$_2$ coating. Furthermore, a strong interplay is observed between MoS$_2$ monolayers and GaN QW excitonic transitions. This highlights the interest of the 2D material/III-nitride QW system to study near-field interactions, such as F枚rster resonance energy transfer, which could open up novel optoelectronic devices based on such hybrid excitonic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10687v3-abstract-full').style.display = 'none'; document.getElementById('2308.10687v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected error bars in Fig. 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 24 (33), 10124-10130 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08134">arXiv:2308.08134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08134">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Measurements of Correlated Insulator Gaps in a Transition Metal Dichalcogenide Moir茅 Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongxue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zhen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiran Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rashetnia%2C+M">Mina Rashetnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blei%2C+M">Mark Blei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08134v1-abstract-short" style="display: inline;"> Moir茅 superlattices of transitional metal dichalcogenides exhibit strong electron-electron interaction that has led to experimental observations of Mott insulators and generalized Wigner crystals. In this letter, we report direct measurements of the thermodynamic gaps of these correlated insulating states in a dual-gate WS2/WSe2 moir茅 bilayer. We employ the microwave impedance microscopy to probe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08134v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08134v1-abstract-full" style="display: none;"> Moir茅 superlattices of transitional metal dichalcogenides exhibit strong electron-electron interaction that has led to experimental observations of Mott insulators and generalized Wigner crystals. In this letter, we report direct measurements of the thermodynamic gaps of these correlated insulating states in a dual-gate WS2/WSe2 moir茅 bilayer. We employ the microwave impedance microscopy to probe the electronic features in both the graphene top gate and the moir茅 bilayer, from which we extract the doping dependence of the chemical potential of the moir茅 bilayer and the energy gaps for various correlated insulating states utilizing the Landau quantization of graphene. These gaps are relatively insensitive to the application of an external electric field to the WS2/WSe2 moir茅 bilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08134v1-abstract-full').style.display = 'none'; document.getElementById('2308.08134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07714">arXiv:2308.07714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07714">pdf</a>, <a href="https://arxiv.org/format/2308.07714">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Flashpoints Signal Hidden Inherent Instabilities in Land-Use Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aliahmadi%2C+H">Hazhir Aliahmadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beckett%2C+M">Maeve Beckett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Connolly%2C+S">Sam Connolly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongmei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Anders%2C+G">Greg van Anders</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07714v1-abstract-short" style="display: inline;"> Land-use decision-making processes have a long history of producing globally pervasive systemic equity and sustainability concerns. Quantitative, optimization-based planning approaches, e.g. Multi-Objective Land Allocation (MOLA), seemingly open the possibility to improve objectivity and transparency by explicitly evaluating planning priorities by the type, amount, and location of land uses. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07714v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07714v1-abstract-full" style="display: none;"> Land-use decision-making processes have a long history of producing globally pervasive systemic equity and sustainability concerns. Quantitative, optimization-based planning approaches, e.g. Multi-Objective Land Allocation (MOLA), seemingly open the possibility to improve objectivity and transparency by explicitly evaluating planning priorities by the type, amount, and location of land uses. Here, we show that optimization-based planning approaches with generic planning criteria generate a series of unstable &#34;flashpoints&#34; whereby tiny changes in planning priorities produce large-scale changes in the amount of land use by type. We give quantitative arguments that the flashpoints we uncover in MOLA models are examples of a more general family of instabilities that occur whenever planning accounts for factors that coordinate use on- and between-sites, regardless of whether these planning factors are formulated explicitly or implicitly. We show that instabilities lead to regions of ambiguity in land-use type that we term &#34;gray areas&#34;. By directly mapping gray areas between flashpoints, we show that quantitative methods retain utility by reducing combinatorially large spaces of possible land-use patterns to a small, characteristic set that can engage stakeholders to arrive at more efficient and just outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07714v1-abstract-full').style.display = 'none'; document.getElementById('2308.07714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03219">arXiv:2308.03219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03219">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40288-9">10.1038/s41467-023-40288-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadrupolar Excitons and Hybridized Interlayer Mott Insulator in a Trilayer Moir茅 Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zhen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongxue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Lei Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yuze Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Ying Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Li Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiran Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinyue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blei%2C+M">Mark Blei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03219v1-abstract-short" style="display: inline;"> Transition metal dichalcogenide (TMDC) moir茅 superlattices, owing to the moir茅 flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03219v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03219v1-abstract-full" style="display: none;"> Transition metal dichalcogenide (TMDC) moir茅 superlattices, owing to the moir茅 flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2 trilayer moir茅 superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2 valence moir茅 flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2 layers share one hole laterally confined in one moir茅 unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2 under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moir茅 system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03219v1-abstract-full').style.display = 'none'; document.getElementById('2308.03219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 4604 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13833">arXiv:2307.13833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13833">pdf</a>, <a href="https://arxiv.org/format/2307.13833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Computational Design of Anisotropic Stealthy Hyperuniform Composites with Engineered Directional Scattering Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wenlong Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keeney%2C+D">David Keeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yang Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torquato%2C+S">Salvatore Torquato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13833v1-abstract-short" style="display: inline;"> Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties. Here, we generalize the Fourier-space based numerical construction procedure for designing {\it isotropic} disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. {\bf 142}, 152 (2018)] to {\&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13833v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13833v1-abstract-full" style="display: none;"> Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties. Here, we generalize the Fourier-space based numerical construction procedure for designing {\it isotropic} disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. {\bf 142}, 152 (2018)] to {\it anisotropic} microstructures by explicitly incorporating the {\it vector-dependent} spectral density function ${\tilde 蠂}_{_V}({\bf k})$ of {\it arbitrary form} that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of {\it anisotropic} stealthy hyperuniform (SHU) microstructures with ${\tilde 蠂}_{_V}({\bf k}) = 0$ for ${\bf k} \in 惟$. We show how different exclusion-region shapes with various discrete symmetries and varying size affect the resulting statistically anisotropic microstructures as a function of the and phase volume fraction. We find that, among other properties, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the {\it global} symmetry of the resulting media, they can still possess almost isotropic {\it local} structures. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures which is crucial to engineering directional optical, transport and mechanical properties of two-phase composite media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13833v1-abstract-full').style.display = 'none'; document.getElementById('2307.13833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 figures, 24 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03931">arXiv:2307.03931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Robust anomalous Hall effect in ferromagnetic metal under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lingling Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+J">Junwen Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xingqiu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03931v1-abstract-short" style="display: inline;"> Recently, the giant intrinsic anomalous Hall effect (AHE) has been observed in the materials with kagome lattice. In this study, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn6Sn6 with clean Mn kagome lattice. Our in-situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn6Sn6 maintains a hexagonal phase under high pressure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03931v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03931v1-abstract-full" style="display: none;"> Recently, the giant intrinsic anomalous Hall effect (AHE) has been observed in the materials with kagome lattice. In this study, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn6Sn6 with clean Mn kagome lattice. Our in-situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn6Sn6 maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity (AHC) 蟽xyA remains around 150 惟-1 cm-1, dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in LiMn6Sn6 originates from the robust electronic and magnetic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03931v1-abstract-full').style.display = 'none'; document.getElementById('2307.03931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13297">arXiv:2306.13297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13297">pdf</a>, <a href="https://arxiv.org/format/2306.13297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.144507">10.1103/PhysRevB.109.144507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vortex phase diagram of kagome superconductor CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zic%2C+M">Mark Zic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13297v1-abstract-short" style="display: inline;"> The screening response of vortices in kagome superconductor CsV$_3$Sb$_5$ was measured using the ac mutual inductance technique. Besides confirming the absence of gapless quasiparticles in zero external magnetic field, we observe the peak effect, manifested in enhanced vortex pinning strength and critical current, in a broad intermediate range of magnetic field. The peaks are followed by another c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13297v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13297v1-abstract-full" style="display: none;"> The screening response of vortices in kagome superconductor CsV$_3$Sb$_5$ was measured using the ac mutual inductance technique. Besides confirming the absence of gapless quasiparticles in zero external magnetic field, we observe the peak effect, manifested in enhanced vortex pinning strength and critical current, in a broad intermediate range of magnetic field. The peaks are followed by another crossover from strong to weak pinning, unlike the usual peak effect that diminishes smoothly at $H_{c2}$. Hysteresis in the screening response allows the identification of a vortex glass phase which strongly correlates with the onset of the peaks. A variety of features in the temperature- and field-dependence of the screening response, corroborated by resistance and dc magnetization measurements, have allowed us to extract an $H$-$T$ phase diagram of the vortex states and to infer the irreversibility line $H_\text{irr}(T)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13297v1-abstract-full').style.display = 'none'; document.getElementById('2306.13297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; supplementary: 10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 144507 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08735">arXiv:2306.08735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08735">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Metastable Cation-Disordered Niobium Tungsten Oxides as Li-ion Battery Anode Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Raji-Adefila%2C+B">Basirat Raji-Adefila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">You Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Outka%2C+A">Alexandra Outka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzales%2C+H">Hailey Gonzales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engelstad%2C+K">Kory Engelstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sainio%2C+S">Sami Sainio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nordlund%2C+D">Dennis Nordlund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongchang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08735v1-abstract-short" style="display: inline;"> Metastable cation-disordered compounds have greatly expanded the synthesizable compositions of solid-state materials and drawn sharp attention among battery electrochemists. While such a strategy has been very successful in a few well-known structures, such as rock salts, metastable cation-disordered materials for other structural types, especially for non-close packed structures, are peculiarly u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08735v1-abstract-full').style.display = 'inline'; document.getElementById('2306.08735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08735v1-abstract-full" style="display: none;"> Metastable cation-disordered compounds have greatly expanded the synthesizable compositions of solid-state materials and drawn sharp attention among battery electrochemists. While such a strategy has been very successful in a few well-known structures, such as rock salts, metastable cation-disordered materials for other structural types, especially for non-close packed structures, are peculiarly underexplored. In this work, we develop a new series of fully cation-disordered metastable niobium tungsten oxides with a simple structure, and name this new structural type anti-Li3N. Furthermore, we find that metastable anti-Li3N NWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close packed to close packed conversion between two cation-disordered phases, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. This work enriches the structural and compositional space of niobium tungsten oxide families, cation-disordered solid-state materials, and the working mechanisms of Li-ion battery anodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08735v1-abstract-full').style.display = 'none'; document.getElementById('2306.08735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05713">arXiv:2306.05713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalized Nucleation Theory for Ice Crystallization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yupeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yijie Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dechin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lijiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05713v3-abstract-short" style="display: inline;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'inline'; document.getElementById('2306.05713v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05713v3-abstract-full" style="display: none;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description of ice nucleation in ideal conditions, we propose a generalized nucleation theory that can better characterize the kinetics of ice crystal nucleation in general conditions. This study provides an explanation on why previous experimental and computational studies have yielded widely varying critical nucleation sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'none'; document.getElementById('2306.05713v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03370">arXiv:2306.03370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03370">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Vanadium-Based Superconductivity in a Breathing Kagome Compound Ta2V3.1Si0.9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">HongXiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">JingYu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">JianMin Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">ZhiLong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">DaYu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">DaiHong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+H+L">Hai L Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">ShiLiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">ZhiJun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">YouGuo Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03370v2-abstract-short" style="display: inline;"> Superconductivity in V-based kagome metals has recently raised great interest as they exhibit the competing ground states associated with the flat bands and topological electronic structures. Here we report the discovery of superconductivity in Ta2V3.1Si0.9 with a superconducting transition temperature Tc of 7.5 K, much higher than those in previously reported kagome metals at ambient pressure. Wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03370v2-abstract-full').style.display = 'inline'; document.getElementById('2306.03370v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03370v2-abstract-full" style="display: none;"> Superconductivity in V-based kagome metals has recently raised great interest as they exhibit the competing ground states associated with the flat bands and topological electronic structures. Here we report the discovery of superconductivity in Ta2V3.1Si0.9 with a superconducting transition temperature Tc of 7.5 K, much higher than those in previously reported kagome metals at ambient pressure. While the V ions form a two-dimensional breathing kagome structure, the length difference between two different V-V bonds is just 0.04, making it very close to the perfect kagome structure. Our results show that Ta2V3.1Si0.9 is a moderate-coupled superconductor with a large upper critical field that is close to the Pauli limit. DFT calculations give a van-Hove-singularity band located at Fermi energy, which may explain the relatively high Tc observed in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03370v2-abstract-full').style.display = 'none'; document.getElementById('2306.03370v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00593">arXiv:2306.00593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00593">pdf</a>, <a href="https://arxiv.org/format/2306.00593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00629-3">10.1038/s41535-024-00629-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct switching of chiral transport in the kagome metals KV$_3$Sb$_5$ and CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Delft%2C+M+R">Maarten R. van Delft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">Steffen Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00593v1-abstract-short" style="display: inline;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00593v1-abstract-full" style="display: none;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisotropy (eMChA) in CsV$_3$Sb$_5$ provides intriguing evidence for a rewindable electronic chirality, yet the other family members have not been likewise investigated. Here, we present a comparative study of magneto-chiral transport between CsV$_3$Sb$_5$ and KV$_3$Sb$_5$. Despite their similar electronic structure, KV$_3$Sb$_5$ displays negligible eMChA, if any, and with no field switchability. This is in stark contrast to the non-saturating eMChA in CsV$_3$Sb$_5$ even in high fields up to 35 T. In light of their similar band structures, the stark difference in eMChA suggests its origin in the correlated states. Clearly, the V kagome nets alone are not sufficient to describe the physics and the interactions with their environment are crucial in determining the nature of their low-temperature state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'none'; document.getElementById('2306.00593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials, 9, 20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09459">arXiv:2304.09459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09459">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing Phonon dynamics and Electron-Phonon Coupling by High Harmonic Generation in Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Qi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin-Bao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Da-Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09459v1-abstract-short" style="display: inline;"> Acting as a highly nonlinear response to the strong laser field, high harmonic generation (HHG) naturally contains the fingerprints of atomic and electronic properties of materials. Electronic properties of a solid such as band structure and topology can thus be probed, while the phonon dynamics during HHG are often neglected. Here we show that by exploiting the effects of phonon deformation on HH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09459v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09459v1-abstract-full" style="display: none;"> Acting as a highly nonlinear response to the strong laser field, high harmonic generation (HHG) naturally contains the fingerprints of atomic and electronic properties of materials. Electronic properties of a solid such as band structure and topology can thus be probed, while the phonon dynamics during HHG are often neglected. Here we show that by exploiting the effects of phonon deformation on HHG, the intrinsic phonon information can be deciphered and direct probing of band- and mode-resolved electron-phonon couplings (EPC) of photoexcited materials is possible. Considering HHG spectroscopy can be vacuum free and unrestricted to electron occupation, this work suggests HHG is promising for all-optical characterization of EPC in solids, especially for gapped quantum states or materials under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09459v1-abstract-full').style.display = 'none'; document.getElementById('2304.09459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00972">arXiv:2304.00972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00972">pdf</a>, <a href="https://arxiv.org/format/2304.00972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02374-z">10.1038/s41567-023-02374-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated order at the tipping point in the kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaize Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Ling Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00972v1-abstract-short" style="display: inline;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00972v1-abstract-full" style="display: none;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux order from orbital currents. We fabricated highly symmetric samples of a member of this family, CsV$_3$Sb$_5$, and measured their transport properties. We find the absence of measurable anisotropy at any temperature in the unperturbed material, however, a striking in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for microscopic materials control in the identification of broken symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'none'; document.getElementById('2304.00972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 20, 579 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13003">arXiv:2302.13003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13003">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41330-6">10.1038/s41467-023-41330-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moir茅 heterobilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+H">Hongbing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasmita%2C+A">Abdullah Rasmita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Q">Qinghai Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+J">Jia-Min Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ruihua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Disheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+Z">Zhao Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuanda Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=She%2C+Y">Yongzhi She</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+N">Nan Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaogang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13003v1-abstract-short" style="display: inline;"> Localized interlayer excitons (LIXs) in two-dimensional moir茅 superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13003v1-abstract-full').style.display = 'inline'; document.getElementById('2302.13003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13003v1-abstract-full" style="display: none;"> Localized interlayer excitons (LIXs) in two-dimensional moir茅 superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moir茅 MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moir茅 heterostructures and pave new directions for engineering interlayer exciton properties in moir茅 superlattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13003v1-abstract-full').style.display = 'none'; document.getElementById('2302.13003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03479">arXiv:2302.03479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03479">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2023.01.038">10.1016/j.scib.2023.01.038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical bulk-boundary dichotomy in a quantum spin Hall insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Junfeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+P">Pengcheng Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hailong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Maoyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongyun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jingchuan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Dashuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhi-Ming Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jinjian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Cheng-Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yeliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+Y">Yuxiang Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+W">Wende Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03479v2-abstract-short" style="display: inline;"> The bulk-boundary correspondence is a key concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03479v2-abstract-full').style.display = 'inline'; document.getElementById('2302.03479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03479v2-abstract-full" style="display: none;"> The bulk-boundary correspondence is a key concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques. Here, we utilize mid-infrared absorption micro-spectroscopy and pump-probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi4Br4, a recently discovered room-temperature quantum spin Hall insulator. Benefiting from the low energy of infrared photons and the high spatial resolution, we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap. Moreover, the boundary absorption exhibits a strong polarization anisotropy, consistent with the one-dimensional nature of the topological boundary states. Our infrared pump-probe microscopy further measures a substantially increased carrier lifetime for the boundary states, which reaches one nanosecond scale. The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states. Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-of-principal methodology for studying topological optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03479v2-abstract-full').style.display = 'none'; document.getElementById('2302.03479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05577">arXiv:2301.05577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214429">10.1103/PhysRevB.107.214429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical-controlled ultrafast dynamics of skyrmion in antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S+H">S. H. Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Z+P">Z. P. Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Z. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">M. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X+B">X. B. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X+S">X. S. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M+H">M. H. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+M">J. M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05577v2-abstract-short" style="display: inline;"> Optical vortex, a light beam carrying orbital angular momentum (OAM) has been realized in experiments, and its interactions with magnets show abundant physical characteristics and great application potentials. In this work, we propose that optical vortex can control skyrmion ultrafast in antiferromagnets using numerical and analytical methods. Isolated skyrmion can be generated/erased in a very sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05577v2-abstract-full').style.display = 'inline'; document.getElementById('2301.05577v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05577v2-abstract-full" style="display: none;"> Optical vortex, a light beam carrying orbital angular momentum (OAM) has been realized in experiments, and its interactions with magnets show abundant physical characteristics and great application potentials. In this work, we propose that optical vortex can control skyrmion ultrafast in antiferromagnets using numerical and analytical methods. Isolated skyrmion can be generated/erased in a very short time ~ps by beam focusing. Subsequently, the OAM is transferred to the skyrmion and results in its rotation motion. Different from the case of ferromagnets, the rotation direction can be modulated through tuning the light frequency in antiferromagnets, allowing one to control the rotation easily. Furthermore, the skyrmion Hall motion driven by multipolar spin waves excited by optical vortex is revealed numerically, demonstrating the dependence of the Hall angle on the OAM quantum number. This work unveils the interesting optical-controlled skyrmion dynamics in antiferromagnets, which is a crucial step towards the development of optics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05577v2-abstract-full').style.display = 'none'; document.getElementById('2301.05577v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, 214429 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06503">arXiv:2212.06503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06503">pdf</a>, <a href="https://arxiv.org/format/2212.06503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strong Bulk Photovoltaic Effect in Planar Barium Titanate Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bennett-Jackson%2C+A+L">Andrew L. Bennett-Jackson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafir%2C+O">Or Shafir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will-Cole%2C+A+R">A. R. Will-Cole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+A">Atanu Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongfang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podpirka%2C+A">Adrian Podpirka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+A">Aaron Burger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liyan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sosa%2C+E+L">Eduardo Lupi Sosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+L+W">Lane W. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spanier%2C+J+E">Jonathan E. Spanier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grinberg%2C+I">Ilya Grinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06503v1-abstract-short" style="display: inline;"> The bulk photovoltaic effect (BPE) leads to the generation of a photocurrent from an asymmetric material. Despite drawing much attention due to its ability to generate photovoltages above the band gap ($E_g$), it is considered a weak effect due to the low generated photocurrents. Here, we show that a remarkably high photoresponse can be achieved by exploiting the BPE in simple planar BaTiO$_3$ (BT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06503v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06503v1-abstract-full" style="display: none;"> The bulk photovoltaic effect (BPE) leads to the generation of a photocurrent from an asymmetric material. Despite drawing much attention due to its ability to generate photovoltages above the band gap ($E_g$), it is considered a weak effect due to the low generated photocurrents. Here, we show that a remarkably high photoresponse can be achieved by exploiting the BPE in simple planar BaTiO$_3$ (BTO) films, solely by tuning their fundamental ferroelectric properties via strain and growth orientation induced by epitaxial growth on different substrates. We find a non-monotonic dependence of the responsivity ($R_{\rm SC}$) on the ferroelectric polarization ($P$) and obtain a remarkably high BPE coefficient ($尾$) of $\approx$10$^{-2}$ 1/V, which to the best of our knowledge is the highest reported to date for standard planar BTO thin films. We show that the standard first-principles-based descriptions of BPE in bulk materials cannot account for the photocurrent trends observed for our films and therefore propose a novel mechanism that elucidates the fundamental relationship between $P$ and responsivity in ferroelectric thin films. Our results suggest that practical applications of ferroelectric photovoltaics in standard planar film geometries can be achieved through careful joint optimization of the bulk structure, light absorption, and electrode-absorber interface properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06503v1-abstract-full').style.display = 'none'; document.getElementById('2212.06503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02807">arXiv:2212.02807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02807">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0146374">10.1063/5.0146374 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of hybrid magnetic skyrmion driven by spin-orbit torque in ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T+T">T. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Z+P">Z. P. Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Z. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">M. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X+B">X. B. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X+S">X. S. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M+H">M. H. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+M">J. M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02807v1-abstract-short" style="display: inline;"> Magnetic skyrmions are magnetic textures with topological protection, which are expected to be information carriers in future spintronic devices. In this work, we propose a scheme to implement hybrid magnetic skyrmions (HMS) in ferrimagnets, and we study theoretically and numerically the dynamics of the HMS driven by spin-orbit torque. It is revealed that the skyrmion Hall effect depends on the sk&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02807v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02807v1-abstract-full" style="display: none;"> Magnetic skyrmions are magnetic textures with topological protection, which are expected to be information carriers in future spintronic devices. In this work, we propose a scheme to implement hybrid magnetic skyrmions (HMS) in ferrimagnets, and we study theoretically and numerically the dynamics of the HMS driven by spin-orbit torque. It is revealed that the skyrmion Hall effect depends on the skyrmion helicity and the net angular momentum (未s), allowing the effective modulation of the HMS motion through tuning Dzyaloshinskii-Moriya interaction and 未s. Thus, the Hall effect can be suppressed through selecting suitable materials to better control the HMS motion. Moreover, Magnus force for finite 未s suppresses the transverse motion and enhances the longitudinal propagation, resulting in the HMS dynamics in ferrimagnets faster than that in antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02807v1-abstract-full').style.display = 'none'; document.getElementById('2212.02807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters 122, 172405 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02464">arXiv:2212.02464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02464">pdf</a>, <a href="https://arxiv.org/format/2212.02464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disordered Hyperuniform Solid State Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Duyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+H">Houlong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mohan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Pinshane Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlcek%2C+V">Vojtech Vlcek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yang Jiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02464v1-abstract-short" style="display: inline;"> Disordered hyperuniform (DHU) states are recently discovered exotic states of condensed matter. DHU systems are similar to liquids or glasses in that they are statistically isotropic and lack conventional long-range translational and orientational order. On the other hand, they completely suppress normalized infinite-wavelength density fluctuations like crystals, and in this sense possess a hidden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02464v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02464v1-abstract-full" style="display: none;"> Disordered hyperuniform (DHU) states are recently discovered exotic states of condensed matter. DHU systems are similar to liquids or glasses in that they are statistically isotropic and lack conventional long-range translational and orientational order. On the other hand, they completely suppress normalized infinite-wavelength density fluctuations like crystals, and in this sense possess a hidden long-range order. Very recently, there are several exciting discoveries of disordered hyperuniformity in solid-state materials, including amorphous carbon nanotubes, amorphous 2D silica, amorphous graphene, defected transition metal dichalcogenides, defected pentagonal 2D materials, and medium/high-entropy alloys. It has been found the DHU states of these materials often possess a significantly lower energy than other disorder models, and can lead to unique electronic and thermal transport properties, which resulted from mechanisms distinct from those identified for their crystalline counterparts. For example, DHU states can enhance electronic transport in 2D amorphous silica; DHU medium/high-entropy alloys realize the Vegard&#39;s law, and possess enhanced electronic band gaps and thermal transport at low temperatures. These unique properties open up many promising potential device applications in optoelectronics and thermoelectrics. Here, we provide a focused review on these important new developments of hyperuniformity in solid-state materials, taking an applied and ``materials&#39;&#39; perspective, which complements the existing reviews on hyperuniformity in physical systems and photonic materials. Future directions and outlook are also provided, with a focus on the design and discovery of DHU quantum materials for quantum information science and engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02464v1-abstract-full').style.display = 'none'; document.getElementById('2212.02464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15896">arXiv:2211.15896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15896">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tripling energy storage density through order-disorder transition induced polar nanoregions in PbZrO3 thin films by ion implantation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongjian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Changan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Caiwen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+X">Xiaozhe Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+C">Chunlai Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kentsch%2C+U">Ulrich Kentsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xiangbin Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+M">Mei Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zhen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Minghui Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">Min Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jiyan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G">Guofu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xubing Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+X">Xiaojie Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shengqiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xingsen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Deyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun-Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15896v1-abstract-short" style="display: inline;"> Dielectric capacitors are widely used in pulsed power electronic devices due to their ultrahigh power densities and extremely fast charge/discharge speed. To achieve enhanced energy storage density, both maximum polarization (Pmax) and breakdown strength (Eb) need to be improved simultaneously. However, these two key parameters are inversely correlated. In this study, order-disorder transition ind&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15896v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15896v1-abstract-full" style="display: none;"> Dielectric capacitors are widely used in pulsed power electronic devices due to their ultrahigh power densities and extremely fast charge/discharge speed. To achieve enhanced energy storage density, both maximum polarization (Pmax) and breakdown strength (Eb) need to be improved simultaneously. However, these two key parameters are inversely correlated. In this study, order-disorder transition induced polar nanoregions (PNRs) have been achieved in PbZrO3 thin films by making use of the low-energy ion implantation, enabling us overcome the trade-off between high polarizability and breakdown strength, which leads to the tripling of the energy storage density from 20.5 J/cm3 to 62.3 J/cm3 as well as the great enhancement of breakdown strength. This approach could be extended to other dielectric oxides to improve the energy storage performance, providing a new pathway for tailoring the oxide functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15896v1-abstract-full').style.display = 'none'; document.getElementById('2211.15896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10570">arXiv:2209.10570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10570">pdf</a>, <a href="https://arxiv.org/format/2209.10570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.016901">10.1103/PhysRevLett.131.016901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Resolution Polar Kerr Effect Studies of CsV${}_3$Sb${}_5$: Tests for Time Reversal Symmetry Breaking Below the Charge Order Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saykin%2C+D+R">David R. Saykin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farhang%2C+C">Camron Farhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kountz%2C+E+D">Erik D. Kountz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+B+R">Brenden R. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapitulnik%2C+A">Aharon Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10570v2-abstract-short" style="display: inline;"> We report high resolution polar Kerr effect measurements on CsV${}_3$Sb${}_5$ single crystals in search for signatures of spontaneous time reversal symmetry breaking below the charge order transition at $T^* \approx 94$ K. Utilizing two different versions of zero-area loop Sagnac interferometers operating at 1550 nm wavelength, each with the fundamental attribute that without a time reversal symme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10570v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10570v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10570v2-abstract-full" style="display: none;"> We report high resolution polar Kerr effect measurements on CsV${}_3$Sb${}_5$ single crystals in search for signatures of spontaneous time reversal symmetry breaking below the charge order transition at $T^* \approx 94$ K. Utilizing two different versions of zero-area loop Sagnac interferometers operating at 1550 nm wavelength, each with the fundamental attribute that without a time reversal symmetry breaking sample at its path, the interferometer is perfectly reciprocal, we find no observable Kerr effect to within the noise floor limit of the apparatus at 30 nanoradians. Simultaneous coherent reflection ratio measurements confirm the sharpness of the charge order transition in the same optical volume as the Kerr measurements. At finite magnetic field we observe a sharp onset of a diamagnetic shift in the Kerr signal at $T^*$, which persists down to the lowest temperature without change in trend. Since 1550 nm is an energy that was shown to capture all features of the optical properties of the material that interact with the charge order transition, we are led to conclude that it is highly unlikely that time reversal symmetry is broken in the charge ordered state in CsV${}_3$Sb${}_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10570v2-abstract-full').style.display = 'none'; document.getElementById('2209.10570v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11842">arXiv:2208.11842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11842">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantization of exciton charging in organic semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dongcheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yanfei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiaobo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shi-Jian Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11842v1-abstract-short" style="display: inline;"> Excitons are widely found in semiconductors. In contrast to inorganic-based semiconductors, where the presence of excitons may need special morphonology, like low-dimensional layer structure, the excitons prevailingly exist in molecular organic semiconductors in a three-dimension solid state. The excitons can undergo a charging process to yield another kind of quasiparticles originating from the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11842v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11842v1-abstract-full" style="display: none;"> Excitons are widely found in semiconductors. In contrast to inorganic-based semiconductors, where the presence of excitons may need special morphonology, like low-dimensional layer structure, the excitons prevailingly exist in molecular organic semiconductors in a three-dimension solid state. The excitons can undergo a charging process to yield another kind of quasiparticles originating from the coupling of excitons and free charges. Herein, we investigated the interaction between excitons and free charges in a representative arylamine-derivative organic semiconductor(NPB), by the time-of-flight method. Distinctly different dynamics were observed for the NPB device with different free charge densities. It was proposed that it is the exciton charging that leads to the unique dynamic property of the device with electro-injected hole current. It was also observed that the exciton charging occurs in a quantized manner, which is dependent on the magnitude of the background stationary current. This work may suggest that the exciton charging effect is universally present in organic optoelectronic devices, however, it is only easily observed under certain dynamic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11842v1-abstract-full').style.display = 'none'; document.getElementById('2208.11842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11085">arXiv:2208.11085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11085">pdf</a>, <a href="https://arxiv.org/format/2208.11085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.165116">10.1103/PhysRevB.107.165116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topotactic-hydrogen forms chains in $AB$O$_2$ nickelate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Worm%2C+P">Paul Worm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dachuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Held%2C+K">Karsten Held</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11085v2-abstract-short" style="display: inline;"> Despite enormous experimental and theoretical efforts, obtaining generally accepted conclusions regarding the intrinsic magnetic and electronic properties of superconducting nickelates remains exceptionally challenging. Experiments show a significant degree of uncertainty, indicating hidden factors in the synthesized films, which call for further investigations. One of those &#34;hidden factors&#34; is th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11085v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11085v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11085v2-abstract-full" style="display: none;"> Despite enormous experimental and theoretical efforts, obtaining generally accepted conclusions regarding the intrinsic magnetic and electronic properties of superconducting nickelates remains exceptionally challenging. Experiments show a significant degree of uncertainty, indicating hidden factors in the synthesized films, which call for further investigations. One of those &#34;hidden factors&#34; is the possibility of intercalating hydrogen during the chemical reduction process from Nd(La)NiO$_3$ to Nd(La)NiO$_2$ using CaH$_2$. While hydrogen has been detected in experimental samples, not much is known about its distribution through the crystal and its influence on the electronic environment. Here, we show the tendency toward the formation of one-dimensional hydrogen chains in infinite-layers LaNiO$_2$ superconductors using density-functional theory (DFT) supplemented by dynamical mean-field theory (DMFT). The formation of such hydrogen chains induces a coexistence of different oxidation states of Ni and competing magnetic phases, and possibly explains the recently observed charge order states in nickelate superconductors. Furthermore, it contributes to the difficulty of synthesizing homogeneous nickelates and determining their ground states. The smoking gun to detect excess hydrogen in nickelates are flat phonon modes, which are infrared active and quite insensitive to the exact arrangement of the H atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11085v2-abstract-full').style.display = 'none'; document.getElementById('2208.11085v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures, under PRB review</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10