CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;48 of 48 results for author: <span class="mathjax">Fan, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Fan%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fan, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fan%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fan, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12683">arXiv:2411.12683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12683">pdf</a>, <a href="https://arxiv.org/format/2411.12683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Disentangling critical quantum spin chains with Clifford circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chaohui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua-Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Rui-Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12683v1-abstract-short" style="display: inline;"> Clifford circuits can be utilized to disentangle quantum state with polynomial cost, thanks to the Gottesman-Knill theorem. Based on this idea, Clifford Circuits Augmented Matrix Product States (CAMPS) method, which is a seamless integration of Clifford circuits within the DMRG algorithm, was proposed recently and was shown to be able to reduce entanglement in various quantum systems. In this work&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12683v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12683v1-abstract-full" style="display: none;"> Clifford circuits can be utilized to disentangle quantum state with polynomial cost, thanks to the Gottesman-Knill theorem. Based on this idea, Clifford Circuits Augmented Matrix Product States (CAMPS) method, which is a seamless integration of Clifford circuits within the DMRG algorithm, was proposed recently and was shown to be able to reduce entanglement in various quantum systems. In this work, we further explore the power of CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit. We find that the variationally optimized disentangler corresponds to {\it duality} transformations, which significantly reduce the entanglement entropy in the ground state. For critical quantum Ising spin chain governed by the Ising CFT with self-duality, the Clifford circuits found by CAMPS coincide with the duality transformation, e.g., the Kramer-Wannier self-duality in the critical Ising chain. It reduces the entanglement entropy by mapping the free conformal boundary condition to the fixed one. In the more general case of XXZ chain, the CAMPS gives rise to a duality transformation mapping the model to the quantum Ashkin-Teller spin chain. Our results highlight the potential of CAMPS as a versatile tool for uncovering hidden dualities and simplifying the entanglement structure of critical quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12683v1-abstract-full').style.display = 'none'; document.getElementById('2411.12683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08596">arXiv:2411.08596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08596">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.4c01195">10.1021/acs.cgd.4c01195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08596v1-abstract-short" style="display: inline;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08596v1-abstract-full" style="display: none;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order to (1) address the open question whether the room temperature crystal structure is P-3m1, P-3, P21/c or else, (2) to elucidate the nature of phase transitions, and (3) to study direction-dependent physical properties. Single-crystal-to-single-crystal structural transitions at ~305 K and ~127 K were observed in the averievite CsClCu5V2O10 single crystals. The nature of the transition at ~305 K, which was reported as P-3m1-P21/c transition, was found to be a structural transition from high temperature P-3m1 to low temperature P-3 by combining variable temperature synchrotron X-ray single crystal and high-resolution powder diffraction. In-plane and out-of-plane magnetic susceptibility and heat capacity measurements confirm a first-order transition at 305 K, a structural transition at 127 K and an antiferromagnetic transition at 24 K. These averievites are thus ideal model systems for a deeper understanding of structural transitions and magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'none'; document.getElementById('2411.08596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystal Growth &amp; Design (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04321">arXiv:2410.04321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04321">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c01342">10.1021/acs.chemmater.4c01342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascade of phase transitions and large magnetic anisotropy in a triangle-kagome-triangle trilayer antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shilei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04321v1-abstract-short" style="display: inline;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04321v1-abstract-full" style="display: none;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K from high temperature centrosymmetric P-3m1 to low temperature noncentrosymmetric P321, followed by an AFM transition at 13.6 K, another structural transition centering at ~3 K, and another AFM transition at ~2.18 K. Based upon magnetic susceptibility and magnetization data with magnetic fields perpendicular to the ab plane, a phase diagram, consisting of a paramagnetic state, two AFM states and four field-induced states including two magnetization plateaus, has been constructed. Our findings demonstrate that the quasi-2D CsClCu5P2O10 exhibits rich structural and metamagnetic transitions and the averievite family is a fertile platform for exploring novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'none'; document.getElementById('2410.04321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials 36, 9516-9525 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16902">arXiv:2403.16902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16902">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-Convergence-Angle Ptychography with Simultaneous Strong Contrast and High Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+W">Wei Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weiyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liqi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+S">Judy. S. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Si Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yu Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaopeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yiming Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+X">Xudong Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+W">Weina Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoguo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jingdong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chunhai Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Yuefeng Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirkland%2C+A+I">Angus. I. Kirkland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16902v1-abstract-short" style="display: inline;"> Advances in bioimaging methods and hardware facilities have revolutionised the determination of numerous biological structures at atomic or near-atomic resolution. Among these developments, electron ptychography has recently attracted considerable attention because of its superior resolution, remarkable sensitivity to light elements, and high electron dose efficiency. Here, we introduce an innovat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16902v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16902v1-abstract-full" style="display: none;"> Advances in bioimaging methods and hardware facilities have revolutionised the determination of numerous biological structures at atomic or near-atomic resolution. Among these developments, electron ptychography has recently attracted considerable attention because of its superior resolution, remarkable sensitivity to light elements, and high electron dose efficiency. Here, we introduce an innovative approach called multi-convergence-angle (MCA) ptychography, which can simultaneously enhance both contrast and resolution with continuous information transfer across a wide spectrum of spatial frequency. Our work provides feasibility of future applications of MCA-ptychography in providing high-quality two-dimensional images as input to three-dimensional reconstruction methods, thereby facilitating more accurate determination of biological structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16902v1-abstract-full').style.display = 'none'; document.getElementById('2403.16902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00495">arXiv:2403.00495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00495">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MA00058G">10.1039/D4MA00058G <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature aqueous solution growth of the acousto-optic TeO2 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00495v1-abstract-short" style="display: inline;"> $伪$-TeO2 is widely used in acousto-optic devices due to its excellent physical properties. Conventionally, $伪$-TeO2 single crystals were grown using melt methods. Here, we report for the first time the growth of $伪$-TeO2 single crystals using the aqueous solution method below 100 掳C. Solubility curve of $伪$-TeO2 was measured, and then single crystals with dimensions of 3.5x3.5x2.5 mm3 were success&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00495v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00495v1-abstract-full" style="display: none;"> $伪$-TeO2 is widely used in acousto-optic devices due to its excellent physical properties. Conventionally, $伪$-TeO2 single crystals were grown using melt methods. Here, we report for the first time the growth of $伪$-TeO2 single crystals using the aqueous solution method below 100 掳C. Solubility curve of $伪$-TeO2 was measured, and then single crystals with dimensions of 3.5x3.5x2.5 mm3 were successfully grown using seed crystals that were synthesized from spontaneous nucleation. The as-grown single crystals belong to the P41212 space group, evidenced by single crystal X-ray diffraction and Rietveld refinement on powder diffraction. Rocking curve measurements show that the as-grown crystals exhibit high crystallinity with a full-width at half maxima (FWHM) of 57.2&#39;&#39;. Ultraviolet-Visible absorption spectroscopy indicates the absorption edge is 350 nm and the band gap is estimated to be 3.58 eV. The density and Vickers hardness of as-grown single crystals are measured to be 6.042 g/cm3 and 404 kg/mm2, repectively. Our findings provide an easy-to-access and energy-saving method for growing single crystals of inorganic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00495v1-abstract-full').style.display = 'none'; document.getElementById('2403.00495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mater. Adv., 2024, 5, 3022-3028 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00499">arXiv:2401.00499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Sihao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhaoxin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunlong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00499v3-abstract-short" style="display: inline;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00499v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00499v3-abstract-full" style="display: none;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that uses enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limits the use of high-precision potential energy functions for simulations. To address this issue, we present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a Carbonyl insertion reaction catalyzed by Manganese. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'none'; document.getElementById('2401.00499v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14177">arXiv:2310.14177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14177">pdf</a>, <a href="https://arxiv.org/format/2310.14177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.apsusc.2023.158699">10.1016/j.apsusc.2023.158699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Carrier doping of Bi$_2$Se$_3$ surface by chemical adsorption -- a DFT study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakamoto%2C+K">Kazuyuki Sakamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+P">Peter Kr眉ger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14177v1-abstract-short" style="display: inline;"> Bi$_2$Se$_3$ is one of the most promising topological insulators, but it suffers from intrinsic n-doping due to Se-vacancies, which shifts the Fermi level into the bulk conduction band, leading to topologically trivial carriers. Recently it was shown that this Fermi-level shift can be compensated by a locally controlled surface p-doping process, through water adsorption and XUV irradiation. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14177v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14177v1-abstract-full" style="display: none;"> Bi$_2$Se$_3$ is one of the most promising topological insulators, but it suffers from intrinsic n-doping due to Se-vacancies, which shifts the Fermi level into the bulk conduction band, leading to topologically trivial carriers. Recently it was shown that this Fermi-level shift can be compensated by a locally controlled surface p-doping process, through water adsorption and XUV irradiation. Here, the microscopic mechanism of this surface doping is studied by means of density functional theory (DFT) focusing on the adsorption of H$_2$O, OH, O, C and CH on Bi$_2$Se$_3$. We find that water adsorption has a negligible doping effect while hydroxyl groups lead to n-doping. Carbon adsorption on Se vacancies gives rise to p-doping but it also strongly modifies the electronic band structure around the Dirac point. Only if the Se vacancies are filled with atomic oxygen, the experimentally observed p-doping without change of the topological surface bands is reproduced. Based on the DFT results, we propose a reaction path where photon absorption gives rise to water splitting and the produced O atoms fill the Se vacancies. Adsorbed OH groups appear as intermediate states and carbon impurities may have a catalytic effect in agreement with experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14177v1-abstract-full').style.display = 'none'; document.getElementById('2310.14177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Surface Science 643,158699 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05713">arXiv:2306.05713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalized Nucleation Theory for Ice Crystallization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yupeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yijie Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dechin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lijiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05713v3-abstract-short" style="display: inline;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'inline'; document.getElementById('2306.05713v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05713v3-abstract-full" style="display: none;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description of ice nucleation in ideal conditions, we propose a generalized nucleation theory that can better characterize the kinetics of ice crystal nucleation in general conditions. This study provides an explanation on why previous experimental and computational studies have yielded widely varying critical nucleation sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'none'; document.getElementById('2306.05713v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07562">arXiv:2305.07562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07562">pdf</a>, <a href="https://arxiv.org/ps/2305.07562">ps</a>, <a href="https://arxiv.org/format/2305.07562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Changjun Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+M">Mutian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nussinov%2C+Z">Zohar Nussinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yizhou Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang-Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07562v1-abstract-short" style="display: inline;"> We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07562v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07562v1-abstract-full" style="display: none;"> We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of initial spin configurations, our results agree with the asymptotic scaling form assumed by finite-size corrections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07562v1-abstract-full').style.display = 'none'; document.getElementById('2305.07562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13976">arXiv:2210.13976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13976">pdf</a>, <a href="https://arxiv.org/format/2210.13976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.246401">10.1103/PhysRevLett.132.246401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double and Quadruple Flat Bands tuned by Alternative magnetic Fluxes in Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+C">Congcong Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Ching-Kai Chiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13976v2-abstract-short" style="display: inline;"> Twisted bilayer graphene (TBG) can host the moir茅 energy flat bands with two-fold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13976v2-abstract-full').style.display = 'inline'; document.getElementById('2210.13976v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13976v2-abstract-full" style="display: none;"> Twisted bilayer graphene (TBG) can host the moir茅 energy flat bands with two-fold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered generation of four-fold degenerate flat bands. This emergence stems from the band inversion at $螕$ point near the Fermi level with a variation of both twisted angle and magnetic phase. We present the conditions for the emergence of multi-fold degenerate flat bands, which are associated with the eigenvalue degeneracy of a Birman-Schwinger operator. Using holomorphic functions, which explain the origin of the double flat bands in the conventional TBG, we can generate analytical wave functions in the magnetic TBG to show absolute flatness with four-fold degeneracy. Moreover, we identify an orbital-related intervalley coherent state as the many-body ground state at charge neutrality. In contrast, the conventional TBG has only two moir茅 energy flat bands, and the highly degenerate flat bands with additional orbital channels in this magnetic platform might bring richer correlation physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13976v2-abstract-full').style.display = 'none'; document.getElementById('2210.13976v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages and 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Report number: RIKEN-iTHEMS-Report-23 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 246401(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14804">arXiv:2206.14804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14804">pdf</a>, <a href="https://arxiv.org/format/2206.14804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.144301">10.1103/PhysRevB.106.144301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Thouless pumping in time-space crystalline structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Braver%2C+Y">Y. Braver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+-">C. -h. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDlabys%2C+G">G. 沤labys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anisimovas%2C+E">E. Anisimovas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacha%2C+K">K. Sacha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14804v2-abstract-short" style="display: inline;"> Dynamics of particle in a resonantly driven quantum well can be interpreted as that of a particle in a crystal-like structure, with the time playing the role of the coordinate. By introducing an adiabatically varied phase in the driving protocol, we demonstrate a realization of the Thouless pumping in such a time crystalline structure. Next, we extend the analysis beyond a single quantum well by c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14804v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14804v2-abstract-full" style="display: none;"> Dynamics of particle in a resonantly driven quantum well can be interpreted as that of a particle in a crystal-like structure, with the time playing the role of the coordinate. By introducing an adiabatically varied phase in the driving protocol, we demonstrate a realization of the Thouless pumping in such a time crystalline structure. Next, we extend the analysis beyond a single quantum well by considering a driven one-dimensional optical lattice, thereby engineering a 2D time-space crystalline structure. Such a setup allows us to explore adiabatic pumping in the spatial and the temporal dimensions separately, as well as to simulate simultaneous time-space pumping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14804v2-abstract-full').style.display = 'none'; document.getElementById('2206.14804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages; version accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 144301 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14411">arXiv:2109.14411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.14411">pdf</a>, <a href="https://arxiv.org/format/2109.14411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Finding spin glass ground states through deep reinforcement learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Changjun Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+M">Mutian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nussinov%2C+Z">Zohar Nussinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yizhou Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang-Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14411v1-abstract-short" style="display: inline;"> Spin glasses are disordered magnets with random interactions that are, generally, in conflict with each other. Finding the ground states of spin glasses is not only essential for the understanding of the nature of disordered magnetic and other physical systems, but also useful to solve a broad array of hard combinatorial optimization problems across multiple disciplines. Despite decades-long effor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14411v1-abstract-full').style.display = 'inline'; document.getElementById('2109.14411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14411v1-abstract-full" style="display: none;"> Spin glasses are disordered magnets with random interactions that are, generally, in conflict with each other. Finding the ground states of spin glasses is not only essential for the understanding of the nature of disordered magnetic and other physical systems, but also useful to solve a broad array of hard combinatorial optimization problems across multiple disciplines. Despite decades-long efforts, an algorithm with both high accuracy and high efficiency is still lacking. Here we introduce DIRAC - a deep reinforcement learning framework, which can be trained purely on small-scale spin glass instances and then applied to arbitrarily large ones. DIRAC displays better scalability than other methods and can be leveraged to enhance any thermal annealing method. Extensive calculations on 2D, 3D and 4D Edwards-Anderson spin glass instances demonstrate the superior performance of DIRAC over existing methods. As many hard combinatorial optimization problems have Ising spin glass formulations, our results suggest a promising tool in solving these hard problems. Moreover, the presented algorithm will help us better understand the nature of the low-temperature spin-glass phase, which is a fundamental challenge in statistical physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14411v1-abstract-full').style.display = 'none'; document.getElementById('2109.14411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.15016">arXiv:2104.15016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.15016">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43586-020-00009-8">10.1038/s43586-020-00009-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DNA origami </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dey%2C+S">Swarup Dey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chunhai Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gothelf%2C+K+V">Kurt V. Gothelf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chenxiang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Longfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Na Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nijenhuis%2C+M+A+D">Minke A. D. Nijenhuis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacca%2C+B">Barbara Sacca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simmel%2C+F+C">Friedrich C. Simmel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+P">Pengfei Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.15016v1-abstract-short" style="display: inline;"> Biological materials are self-assembled with near-atomic precision in living cells, whereas synthetic 3D structures generally lack such precision and controllability. Recently, DNA nanotechnology, especially DNA origami technology, has been useful in the bottom-up fabrication of well-defined nanostructures ranging from tens of nanometres to sub-micrometres. In this Primer, we summarize the methodo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.15016v1-abstract-full').style.display = 'inline'; document.getElementById('2104.15016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.15016v1-abstract-full" style="display: none;"> Biological materials are self-assembled with near-atomic precision in living cells, whereas synthetic 3D structures generally lack such precision and controllability. Recently, DNA nanotechnology, especially DNA origami technology, has been useful in the bottom-up fabrication of well-defined nanostructures ranging from tens of nanometres to sub-micrometres. In this Primer, we summarize the methodologies of DNA origami technology, including origami design, synthesis, functionalization and characterization. We highlight applications of origami structures in nanofabrication, nanophotonics and nanoelectronics, catalysis, computation, molecular machines, bioimaging, drug delivery and biophysics. We identify challenges for the field, including size limits, stability issues and the scale of production, and discuss their possible solutions. We further provide an outlook on next-generation DNA origami techniques that will allow in vivo synthesis and multiscale manufacturing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.15016v1-abstract-full').style.display = 'none'; document.getElementById('2104.15016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Methods Primers 1, Article number: 13 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02783">arXiv:2012.02783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.02783">pdf</a>, <a href="https://arxiv.org/format/2012.02783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L100301">10.1103/PhysRevB.103.L100301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Six-dimensional time-space crystalline structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDlabys%2C+G">Giedrius 沤labys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chu-hui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anisimovas%2C+E">Egidijus Anisimovas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sacha%2C+K">Krzysztof Sacha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02783v2-abstract-short" style="display: inline;"> Time crystalline structures are characterized by regularity that single-particle or many-body systems manifest in the time domain, closely resembling the spatial regularity of ordinary space crystals. Here we show that time and space crystalline structures can be combined together and even six-dimensional time-space lattices can be realized. As an example, we demonstrate that such time-space cryst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02783v2-abstract-full').style.display = 'inline'; document.getElementById('2012.02783v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02783v2-abstract-full" style="display: none;"> Time crystalline structures are characterized by regularity that single-particle or many-body systems manifest in the time domain, closely resembling the spatial regularity of ordinary space crystals. Here we show that time and space crystalline structures can be combined together and even six-dimensional time-space lattices can be realized. As an example, we demonstrate that such time-space crystalline structures can reveal the six-dimensional quantum Hall effect quantified by the third Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02783v2-abstract-full').style.display = 'none'; document.getElementById('2012.02783v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + extended version of supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 100301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01013">arXiv:1912.01013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01013">pdf</a>, <a href="https://arxiv.org/ps/1912.01013">ps</a>, <a href="https://arxiv.org/format/1912.01013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.126018">10.1103/PhysRevD.104.126018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second-order Lovelock Gravity from Entanglement in Conformal Field Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cunwei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=La+Nave%2C+G">Gabriele La Nave</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+P+W">Philip W. Phillips</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01013v2-abstract-short" style="display: inline;"> Holographic entanglement entropy and the first law of thermodynamics are believed to decode the gravity theory in the bulk. In particular, assuming the Ryu-Takayanagi (RT)\cite{ryu-takayanagi} formula holds for ball-shaped regions on the boundary around CFT vacuum states implies\cite{Nonlinear-Faulkner} a bulk gravity theory equivalent to Einstein gravity through second-order perturbations. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01013v2-abstract-full').style.display = 'inline'; document.getElementById('1912.01013v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01013v2-abstract-full" style="display: none;"> Holographic entanglement entropy and the first law of thermodynamics are believed to decode the gravity theory in the bulk. In particular, assuming the Ryu-Takayanagi (RT)\cite{ryu-takayanagi} formula holds for ball-shaped regions on the boundary around CFT vacuum states implies\cite{Nonlinear-Faulkner} a bulk gravity theory equivalent to Einstein gravity through second-order perturbations. In this paper, we show that the same assumptions can also give rise to second-order Lovelock gravity. Specifically, we generalize the procedure in \cite{Nonlinear-Faulkner} to show that the arguments there also hold for Lovelock gravity by proving through second-order perturbation theory, the entropy calculated using the Wald formula\cite{Wald_noether} in Lovelock also obeys an area law (at least up to second order). Since the equations for second-order perturbations of Lovelock gravity are different in general from the second-order perturbation of the Einstein-Hilbert action, our work shows that the holographic area law cannot determine a unique bulk theory even for second-order perturbations assuming only RT on ball-shaped regions. It is anticipated that RT on all subregions is expected to encode the full non-linear Einstein equations on asymptotically AdS spacetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01013v2-abstract-full').style.display = 'none'; document.getElementById('1912.01013v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">extensive revision on second-order calculation, appendix added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev D, 104, 126018 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02455">arXiv:1905.02455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02455">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aelm.201900250">10.1002/aelm.201900250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">W. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">B. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Q">C. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Delft%2C+M+R">M. R. van Delft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+G">Y. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X+C">X. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+B">B. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">N. E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02455v1-abstract-short" style="display: inline;"> Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodynamic and transport properties of a theoretically predicted Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low temperatures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02455v1-abstract-full').style.display = 'inline'; document.getElementById('1905.02455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02455v1-abstract-full" style="display: none;"> Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodynamic and transport properties of a theoretically predicted Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low temperatures down to 0.4 K. Remarkably, NbIrTe4 exhibits a nonsaturating transverse magnetoresistance which follows a power-law dependence in B. Low-field Hall measurements reveal that hole-like carriers dominate the transport for T $&gt;$ 80 K, while the significant enhancement of electron mobilities with lowering T results in a non-negligible contribution from electron-like carriers which is responsible for the observed non-linear Hall resistivity at low T. The Shubnikov-de Haas oscillations of the Hall resistivity under high B give the light effective masses of charge carriers and the nontrivial Berry phase associated with Weyl fermions. Further first-principles calculations confirm the existence of 16 Weyl points located at kz = 0, $\pm$0.02 and $\pm$0.2 planes in the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02455v1-abstract-full').style.display = 'none'; document.getElementById('1905.02455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Electron. Mater. 5, 1900250 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03562">arXiv:1711.03562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.03562">pdf</a>, <a href="https://arxiv.org/ps/1711.03562">ps</a>, <a href="https://arxiv.org/format/1711.03562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.174425">10.1103/PhysRevB.96.174425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization, specific heat, and thermal conductivity of hexagonal ErMnO$_3$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J+D+S+C">J. D. Song. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+Y">J. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y+J">Y. J. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03562v1-abstract-short" style="display: inline;"> We report a study of magnetism and magnetic transitions of hexagonal ErMnO$_3$ single crystals by magnetization, specific heat and heat transport measurements. Magnetization data show that the $c$-axis magnetic field induces three magnetic transitions at 0.8, 12 and 28 T. The specific heat shows a peak at 2.2 K, which is due to a magnetic transition of Er$^{3+}$ moments. For low-$T$ thermal conduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03562v1-abstract-full').style.display = 'inline'; document.getElementById('1711.03562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03562v1-abstract-full" style="display: none;"> We report a study of magnetism and magnetic transitions of hexagonal ErMnO$_3$ single crystals by magnetization, specific heat and heat transport measurements. Magnetization data show that the $c$-axis magnetic field induces three magnetic transitions at 0.8, 12 and 28 T. The specific heat shows a peak at 2.2 K, which is due to a magnetic transition of Er$^{3+}$ moments. For low-$T$ thermal conductivity ($魏$), a clear dip-like feature appears in $魏(H)$ isotherm at 1--1.25 T for $H \parallel ab$; while in the case of $H \parallel c$, a step-like increase is observed at 0.5--0.8 T. The transition fields in $魏(H)$ are in good agreement with those obtained from magnetization, and the anomaly of $魏$ can be understood by a spin-phonon scattering scenario. The natures of magnetic structures and corresponding field-induced transitions at low temperatures are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03562v1-abstract-full').style.display = 'none'; document.getElementById('1711.03562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 174425 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.10054">arXiv:1706.10054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.10054">pdf</a>, <a href="https://arxiv.org/format/1706.10054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-02566-1">10.1038/s41467-017-02566-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Defects controlled hole doping and multi-valley transport in SnSe single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Congcong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhixuan Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chenqiang Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yifeng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+F">Feng Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yunhao Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+H">Hanyan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z">Zhizhan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu-An Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.10054v1-abstract-short" style="display: inline;"> SnSe is a promising thermoelectric material with record-breaking figure of merit, \textit{i.e., ZT}. As a semiconductor, optimal electrical dosage is the key challenge to maximize \textit{ZT} in SnSe. However, to date a comprehensive understanding of the electronic structure and most critically, the self-hole doping mechanism in SnSe is still absent. Here, we report the highly anisotropic electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.10054v1-abstract-full').style.display = 'inline'; document.getElementById('1706.10054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.10054v1-abstract-full" style="display: none;"> SnSe is a promising thermoelectric material with record-breaking figure of merit, \textit{i.e., ZT}. As a semiconductor, optimal electrical dosage is the key challenge to maximize \textit{ZT} in SnSe. However, to date a comprehensive understanding of the electronic structure and most critically, the self-hole doping mechanism in SnSe is still absent. Here, we report the highly anisotropic electronic structure of SnSe investigated by both angle-resolved photoemission spectroscopy and quantum transport, in which a unique &#34;\textit{pudding-mold}&#34; shaped valence band with quasi-linear energy dispersion is revealed. We prove that the electrical doping in SnSe is extrinsically controlled by the formation of SnSe$_{2}$ micro-domains induced by local phase segregation. Using different growth methods and conditions, we have achieved wide tuning of hole doping in SnSe, ranging from intrinsic semiconducting behaviour to typical metal with carrier density of $1.23\times 10^{18}$ cm$^{-3}$ at room temperature. The resulting multi-valley transport in $p$-SnSe is characterized by non-saturating weak localization along the armchair axis, due to strong intervalley scattering enhanced by in-plane ferroelectric dipole field of the puckering lattice. Strikingly, quantum oscillations of magnetoresistance reveal three-dimensional electronic structure with unusual interlayer coupling strength in $p$-SnSe, which is correlated to the interweaving of SnSe individual layers by unique point dislocation defects. Our results suggest that defect engineering may provide versatile routes in improving the thermoelectric performance of the SnSe family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.10054v1-abstract-full').style.display = 'none'; document.getElementById('1706.10054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 9, 47 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00072">arXiv:1608.00072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00072">pdf</a>, <a href="https://arxiv.org/ps/1608.00072">ps</a>, <a href="https://arxiv.org/format/1608.00072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4960164">10.1063/1.4960164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+T">Z. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+X+Z">X. Z. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Y">M. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">W. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+C">C. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+S">J. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z+X">Z. X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00072v1-abstract-short" style="display: inline;"> CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principle calculation study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00072v1-abstract-full').style.display = 'inline'; document.getElementById('1608.00072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00072v1-abstract-full" style="display: none;"> CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principle calculation study of the slightly electron-doped CaFeAs2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exists around the X but not Y points in the Brillouin zone, breaking the S4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs2 would provide us a unique opportunity to realize and explore Majorana fermion physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00072v1-abstract-full').style.display = 'none'; document.getElementById('1608.00072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters 109, 042602 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03066">arXiv:1603.03066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03066">pdf</a>, <a href="https://arxiv.org/format/1603.03066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.121102">10.1103/PhysRevB.93.121102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the kink in the band dispersion of the ferromagnetic perovskite SrRuO3: Electron-phonon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+T">Z. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+C">C. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+P">P. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K+L">K. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Y">M. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+S">J. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M+H">M. H. Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03066v1-abstract-short" style="display: inline;"> Perovskite SrRuO3, a prototypical conductive ferromagnetic oxide, exhibits a kink in its band dispersion signalling the unusual electron dynamics therein. However, the origin of this kink remains elusive. By taking advantage of the combo of reactive molecular beam epitaxy and in situ angle-resolved photoemission spectroscopy, we systematically studied the evolution of the low-energy electronic str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03066v1-abstract-full').style.display = 'inline'; document.getElementById('1603.03066v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03066v1-abstract-full" style="display: none;"> Perovskite SrRuO3, a prototypical conductive ferromagnetic oxide, exhibits a kink in its band dispersion signalling the unusual electron dynamics therein. However, the origin of this kink remains elusive. By taking advantage of the combo of reactive molecular beam epitaxy and in situ angle-resolved photoemission spectroscopy, we systematically studied the evolution of the low-energy electronic structure of SrRuO3 films with thickness thinning down to nearly two-dimensional limit in a well-controlled way. The kink structure persists even in the 4-unit-cell-thick film. Moreover, through quantitative self-energy analysis, we observed the negligible thickness dependence of the binding energy of the kink, which is in sharp contrast to the downward trend of the Curie temperature with reducing the film thickness. Together with previously reported transport and Raman studies, this finding suggests that the kink of perovskite SrRuO3 should originate from the electron-phonon coupling rather than magnetic collective modes, and the in-plane phonons may play a dominant role. Considering such a kink structure of SrRuO3 is similar to these of many other correlated oxides, we suggest the possible ubiquity of the coupling of electrons to oxygen-related phonons in correlated oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03066v1-abstract-full').style.display = 'none'; document.getElementById('1603.03066v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 93, 121102(R) (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04376">arXiv:1510.04376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.035430">10.1103/PhysRevB.92.035430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-resolved magnetophotoluminescence studies of magnetic polaron dynamics in type-II quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barman%2C+B">B. Barman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schweidenback%2C+L">L. Schweidenback</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russ%2C+A+H">A. H. Russ</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pientka%2C+J+M">J. M. Pientka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+Y">Y. Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+W">W-C. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W+C">W. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+J+R">J. R. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cartwright%2C+A+N">A. N. Cartwright</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sellers%2C+I+R">I. R. Sellers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDuti%C4%87%2C+I">I. 沤uti膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCombe%2C+B+D">B. D. McCombe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrou%2C+A">A. Petrou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04376v1-abstract-short" style="display: inline;"> We used continuous wave photoluminescence (cw-PL) and time resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe/(Zn,Mn)Se system the holes are confined in the non-magnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04376v1-abstract-full').style.display = 'inline'; document.getElementById('1510.04376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04376v1-abstract-full" style="display: none;"> We used continuous wave photoluminescence (cw-PL) and time resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe/(Zn,Mn)Se system the holes are confined in the non-magnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the other hand, in the (Zn,Mn)Te/ZnSe system, the holes are confined in the magnetic (Zn,Mn)Te QDs, while the electrons remain in the surrounding non-magnetic ZnSe matrix. The magnetic polaron formation energies in both systems were measured from the temporal red-shift of the band-edge emission. The magnetic polaron exhibits distinct characteristics depending on the location of the Mn ions. In the ZnTe/(Zn,Mn)Se system the magnetic polaron shows conventional behavior with decreasing with increasing temperature T and increasing magnetic field B. In contrast, in the (Zn,Mn)Te/ZnSe system has unconventional dependence on temperature T and magnetic field B; is weakly dependent on T as well as on B. We discuss a possible origin for such a striking difference in the MP properties in two closely related QD systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04376v1-abstract-full').style.display = 'none'; document.getElementById('1510.04376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.92.035430(2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06481">arXiv:1508.06481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.06481">pdf</a>, <a href="https://arxiv.org/ps/1508.06481">ps</a>, <a href="https://arxiv.org/format/1508.06481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.094408">10.1103/PhysRevB.92.094408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature thermal conductivity of Dy_2Ti_2O_7 and Yb_2Ti_2O_7 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+J">S. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+B">B. Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">J. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+C">J. C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+G">X. G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06481v1-abstract-short" style="display: inline;"> We study the low-temperature thermal conductivity (魏) of Dy_2Ti_2O_7 and Yb_2Ti_2O_7 single crystals in magnetic fields up to 14 T along the [111], [100] and [110] directions. The main experimental findings for Dy_2Ti_2O_7 are: (i) the low-T 魏(H) isotherms exhibit not only the step-like decreases at the low-field (&lt; 2 T) magnetic transitions but also obvious field dependencies in high fields (&gt; 7&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06481v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06481v1-abstract-full" style="display: none;"> We study the low-temperature thermal conductivity (魏) of Dy_2Ti_2O_7 and Yb_2Ti_2O_7 single crystals in magnetic fields up to 14 T along the [111], [100] and [110] directions. The main experimental findings for Dy_2Ti_2O_7 are: (i) the low-T 魏(H) isotherms exhibit not only the step-like decreases at the low-field (&lt; 2 T) magnetic transitions but also obvious field dependencies in high fields (&gt; 7 T); (ii) at T \le 0.5 K, the 魏(H) curves show anisotropic irreversibility in low fields, that is, the 魏(H) hysteresis locates at the first-order transition with H \parallel [100] and [110], while it locates between two successive transitions with H \parallel [111]; (iii) the 魏in the hysteresis loops for H \parallel [100] and [110] show an extremely slow relaxation with the time constant of \sim 1000 min. The main experimental findings for Yb_2Ti_2O_7 are: (i) the zero-field 魏(T) show a kink-like decrease at the first-order transition (\sim 200 mK) with decreasing temperature; (ii) the low-T 魏(H) isotherms show a decrease in low field and a large enhancement in high fields; (iii) the low-T 魏(H) curves show a sharp minimum at 0.5 T for H \parallel [110] and [111]. The roles of monopole excitations, field-induced transitions, spin fluctuations and magnetoelastic coupling are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06481v1-abstract-full').style.display = 'none'; document.getElementById('1508.06481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 094408 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.06393">arXiv:1504.06393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.06393">pdf</a>, <a href="https://arxiv.org/format/1504.06393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/32/5/057402">10.1088/0256-307X/32/5/057402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the electronic structure of Sr2IrO4 thin films by bulk electronic doping using molecular beam epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Y">M. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+T">Z. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+L">J. L. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+C">C. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+S">J. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">B. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+M">X. M. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.06393v1-abstract-short" style="display: inline;"> By means of oxide molecular beam epitaxy with shutter-growth mode, we have fabricated a series of electron-doped (Sr1-xLax)2IrO4(001)(x = 0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigated the doping dependence of electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. We find that with increasing doping proportion, the Fermi levels of samples prog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06393v1-abstract-full').style.display = 'inline'; document.getElementById('1504.06393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.06393v1-abstract-full" style="display: none;"> By means of oxide molecular beam epitaxy with shutter-growth mode, we have fabricated a series of electron-doped (Sr1-xLax)2IrO4(001)(x = 0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigated the doping dependence of electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. We find that with increasing doping proportion, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point has been evidently observed in 15 % nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2IrO4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06393v1-abstract-full').style.display = 'none'; document.getElementById('1504.06393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.00654">arXiv:1501.00654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.00654">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep30309">10.1038/srep30309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the Dirac nodes lifting in semimetallic perovskite SrIrO3 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+T">Z. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Y">M. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+F">Q. F. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+S">J. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+C">C. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X+G">X. G. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.00654v2-abstract-short" style="display: inline;"> Perovskite SrIrO3 has long been proposed as an exotic semimetal induced by the interplay between the spin-orbit coupling and electron correlations. However, its low-lying electronic structure is still lacking. We synthesize high-quality perovskite SrIrO3 (100) films by means of oxide molecular beam epitaxy, and then systemically investigate their low energy electronic structure using in-situ angle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00654v2-abstract-full').style.display = 'inline'; document.getElementById('1501.00654v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.00654v2-abstract-full" style="display: none;"> Perovskite SrIrO3 has long been proposed as an exotic semimetal induced by the interplay between the spin-orbit coupling and electron correlations. However, its low-lying electronic structure is still lacking. We synthesize high-quality perovskite SrIrO3 (100) films by means of oxide molecular beam epitaxy, and then systemically investigate their low energy electronic structure using in-situ angle-resolved photoemission spectroscopy. We find that the hole-like bands around R and the electron-like bands around U(T) intersect the Fermi level simultaneously, providing the direct evidence of the semimetallic ground state in this compound. Comparing with the density functional theory, we discover that the bandwidth of states near Fermi level is extremely small, and there exists a pronounced mixing between the Jeff = 1/2 and Jeff = 3/2 states. Moreover, our data reveal that the predicted Dirac degeneracy protected by the mirror-symmetry, which was theoretically suggested to be the key to realize the non-trivial topological properties, is actually lifted in perovskite SrIrO3 thin films. Our findings pose strong constraints on the current theoretical models for the 5d iridates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00654v2-abstract-full').style.display = 'none'; document.getElementById('1501.00654v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 6, 30309 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.5525">arXiv:1411.5525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.5525">pdf</a>, <a href="https://arxiv.org/format/1411.5525">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.045112">10.1103/PhysRevB.91.045112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Significant contribution of As 4p orbitals to the low-lying electronic structure of 112-type iron-based superconductor Ca0.9La0.1FeAs2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Y">M. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+T">Z. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">W. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D+W">D. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">J. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+X+H">X. H. Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+B+P">B. P. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C+C">C. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+S">J. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z+X">Z. X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+M">X. M. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.5525v1-abstract-short" style="display: inline;"> We report a systematic polarization-dependent angle-resolved photoemission spectroscopy study of the three-dimensional electronic structure of the recently discovered 112-type iron-based superconductor Ca1-xLaxFeAs2 (x = 0.1). Besides the commonly reported three hole-like and two electron-like bands in iron-based superconductors, we resolve one additional hole-like band around the zone center and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5525v1-abstract-full').style.display = 'inline'; document.getElementById('1411.5525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.5525v1-abstract-full" style="display: none;"> We report a systematic polarization-dependent angle-resolved photoemission spectroscopy study of the three-dimensional electronic structure of the recently discovered 112-type iron-based superconductor Ca1-xLaxFeAs2 (x = 0.1). Besides the commonly reported three hole-like and two electron-like bands in iron-based superconductors, we resolve one additional hole-like band around the zone center and one more fast-dispersing band near the X point in the vicinity of Fermi level. By tuning the polarization and the energy of incident photons,we are able to identify the specific orbital characters and the kz dependence of all bands. Combining with band calculations, we find As 4pz and 4px (4py) orbitals contribute significantly to the additional three-dimensional hole-like band and the narrow band, respectively. Also, there are considerable hybridization between the As 4p zand Fe 3d orbitals in the additional hole-like band, which suggests the strong coupling between the unique arsenic zigzag bond layers and the FeAs layers therein. Our findings provide a comprehensive picture of the orbital characters of the low-lying band structure of 112-type iron-based superconductors, which can be a starting point for the further understanding of their unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.5525v1-abstract-full').style.display = 'none'; document.getElementById('1411.5525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 045112 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.2194">arXiv:1406.2194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.2194">pdf</a>, <a href="https://arxiv.org/ps/1406.2194">ps</a>, <a href="https://arxiv.org/format/1406.2194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.224405">10.1103/PhysRevB.89.224405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground state and magnetic phase transitions of orthoferrite DyFeO_3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+G">X. G. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.2194v1-abstract-short" style="display: inline;"> Low-temperature thermal conductivity (魏), as well as magnetization (M) and electric polarization (P), of multiferroic orthoferrite DyFeO_3 single crystals are studied with H \parallel c. When the crystal is cooled in zero field, M, P, and 魏all consistently exhibit irreversible magnetic-field dependencies. In particular, with 500 mK &lt; T \le 2 K, all these properties show two transitions at the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2194v1-abstract-full').style.display = 'inline'; document.getElementById('1406.2194v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.2194v1-abstract-full" style="display: none;"> Low-temperature thermal conductivity (魏), as well as magnetization (M) and electric polarization (P), of multiferroic orthoferrite DyFeO_3 single crystals are studied with H \parallel c. When the crystal is cooled in zero field, M, P, and 魏all consistently exhibit irreversible magnetic-field dependencies. In particular, with 500 mK &lt; T \le 2 K, all these properties show two transitions at the first run of increasing field but only the higher-field transition is present in the subsequent field sweepings. Moreover, the ultra-low-T (T &lt; 500 mK) 魏(H) shows a different irreversibility and there is only one transition when the field is swept both up and down. All the results indicate a complex low-T H-T phase diagram involving successive magnetic phase transitions of the Fe^{3+} spins. In particular, the ground state, obtained with cooling to subKelvin temperatures in zero field, is found to be an unexplored phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2194v1-abstract-full').style.display = 'none'; document.getElementById('1406.2194v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 224405 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.5846">arXiv:1402.5846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.5846">pdf</a>, <a href="https://arxiv.org/ps/1402.5846">ps</a>, <a href="https://arxiv.org/format/1402.5846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.094403">10.1103/PhysRevB.89.094403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature heat transport of the geometrically frustrated antiferromagnets R_2Ti_2O_7 (R = Gd and Er) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+J">S. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.5846v1-abstract-short" style="display: inline;"> We report a systematic study on the low-temperature thermal conductivity (魏) of R_2Ti_2O_7 (R = Gd and Er) single crystals with different directions of magnetic field and heat current. It is found that the magnetic excitations mainly act as phonon scatterers rather than heat carriers, although these two materials have long-range magnetic orders at low temperatures. The low-T 魏(H) isotherms of both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5846v1-abstract-full').style.display = 'inline'; document.getElementById('1402.5846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.5846v1-abstract-full" style="display: none;"> We report a systematic study on the low-temperature thermal conductivity (魏) of R_2Ti_2O_7 (R = Gd and Er) single crystals with different directions of magnetic field and heat current. It is found that the magnetic excitations mainly act as phonon scatterers rather than heat carriers, although these two materials have long-range magnetic orders at low temperatures. The low-T 魏(H) isotherms of both compounds show rather complicated behaviors and have good correspondences with the magnetic transitions, where the 魏(H) curves show drastic dip- or step-like changes. In comparison, the field dependencies of 魏are more complicated in Gd_2Ti_2O_7, due to the complexity of its low-T phase diagram and field-induced magnetic transitions. These results demonstrate the significant coupling between spins and phonons in these materials and the ability of heat-transport properties probing the magnetic transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5846v1-abstract-full').style.display = 'none'; document.getElementById('1402.5846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 094403 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2703">arXiv:1311.2703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2703">pdf</a>, <a href="https://arxiv.org/ps/1311.2703">ps</a>, <a href="https://arxiv.org/format/1311.2703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcrysgro.2013.11.028">10.1016/j.jcrysgro.2013.11.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single crystal growth of the hexagonal manganites $R$MnO$_3$ ($R$ = rare earth) by the optical floating-zone method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+D">J. D. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+C">J. C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2703v1-abstract-short" style="display: inline;"> We report a study on the crystal growth of the hexagonal manganites $R$MnO$_3$ ($R$ = Y, Lu, Ho, Er, and Tm) by using an optical floating-zone method. It was found that high-quality single crystals of $R$ = Y, Lu, and Ho could be easily grown with essentially the same conditions as those reported in literature, that is, with an atmosphere of normal pressure Ar and oxygen mixture and a growth rate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2703v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2703v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2703v1-abstract-full" style="display: none;"> We report a study on the crystal growth of the hexagonal manganites $R$MnO$_3$ ($R$ = Y, Lu, Ho, Er, and Tm) by using an optical floating-zone method. It was found that high-quality single crystals of $R$ = Y, Lu, and Ho could be easily grown with essentially the same conditions as those reported in literature, that is, with an atmosphere of normal pressure Ar and oxygen mixture and a growth rate of 2--4 mm/h. However, these conditions were not feasible for growing good crystals of $R$ = Er and Tm. The chemical analysis indicated that it was due to an off-stoichiometric phenomenon in the formed single crystals. We used an effective and simple way to resolve this problem by adjusting the nominal compositions of the polycrystal feed rods to be 1--$2\%$ rare-earth excess. The structures and physical properties were characterized by X-ray diffraction, magnetic susceptibility, specific heat, resistivity, and dielectric constant measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2703v1-abstract-full').style.display = 'none'; document.getElementById('1311.2703v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures, accepted for publication in Journal of Crystal Growth</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2691">arXiv:1311.2691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2691">pdf</a>, <a href="https://arxiv.org/ps/1311.2691">ps</a>, <a href="https://arxiv.org/format/1311.2691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcrysgro.2013.04.048">10.1016/j.jcrysgro.2013.04.048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single crystal growth of the pyrochlores $R_2$Ti$_2$O$_7$ ($R$ = rare earth) by the optical floating-zone method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L+M">L. M. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+B">B. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2691v1-abstract-short" style="display: inline;"> We report a systematic study on the crystal growth of the rare-earth titanates $R_2$Ti$_2$O$_7$ ($R$ = Gd, Tb, Dy, Ho, Y, Er, Yb and Lu) and Y-doped Tb$_{2-x}$Y$_x$Ti$_2$O$_7$ ($x$ = 0.2 and 1) using an optical floating-zone method. High-quality single crystals were successfully obtained and the growth conditions were carefully optimized. The oxygen pressure was found to be the most important para&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2691v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2691v1-abstract-full" style="display: none;"> We report a systematic study on the crystal growth of the rare-earth titanates $R_2$Ti$_2$O$_7$ ($R$ = Gd, Tb, Dy, Ho, Y, Er, Yb and Lu) and Y-doped Tb$_{2-x}$Y$_x$Ti$_2$O$_7$ ($x$ = 0.2 and 1) using an optical floating-zone method. High-quality single crystals were successfully obtained and the growth conditions were carefully optimized. The oxygen pressure was found to be the most important parameter and the appropriate ones are 0.1--0.4 MPa, depending on the radius of rare-earth ions. The growth rate is another parameter and was found to be 2.5--4 mm/h for different rare-earth ions. X-ray diffraction data demonstrated the good crystallinity of these crystals. The basic physical properties of these crystals were characterized by the magnetic susceptibility and specific heat measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2691v1-abstract-full').style.display = 'none'; document.getElementById('1311.2691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, 1 table, published in Journal Crystal Growth</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal Crystal Growth 377, 96 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2682">arXiv:1311.2682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2682">pdf</a>, <a href="https://arxiv.org/ps/1311.2682">ps</a>, <a href="https://arxiv.org/format/1311.2682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcrysgro.2011.05.013">10.1016/j.jcrysgro.2011.05.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal growth and characterization of Haldane chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2682v1-abstract-short" style="display: inline;"> The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large crystals is via slow evaporation at 25 $^\circ$C using 0.015 mol Ni(ClO$_4$)$_2$$\cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2682v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2682v1-abstract-full" style="display: none;"> The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large crystals is via slow evaporation at 25 $^\circ$C using 0.015 mol Ni(ClO$_4$)$_2$$\cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid dissolved into 30 ml aqueous solvent. High-quality crystals with size up to $18 \times 7.5 \times 5$ mm$^3$ are obtained. The single crystals are characterized by measurements of x-ray diffraction, magnetic susceptibility, specific heat and thermal conductivity. The susceptibilities along three crystallographic axes are found to exhibit broad peaks at $\sim 55$ K, and then decrease abruptly to zero at lower temperatures, which is characteristic of a Haldane chain system. The specific heat and the thermal conductivity along the $c$ axis can be attributed to the simple phononic contribution and are analyzed using the Debye approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2682v1-abstract-full').style.display = 'none'; document.getElementById('1311.2682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 2 tables, published in Journal of Crystal Growth</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Crystal Growth 327, 215 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2680">arXiv:1311.2680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2680">pdf</a>, <a href="https://arxiv.org/ps/1311.2680">ps</a>, <a href="https://arxiv.org/format/1311.2680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcrysgro.2010.07.05">10.1016/j.jcrysgro.2010.07.05 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth of (CH$_3$)$_2$NH$_2$CuCl$_3$ single crystals using evaporation method with different temperatures and solvents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2680v1-abstract-short" style="display: inline;"> The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2680v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2680v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2680v1-abstract-full" style="display: none;"> The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The best growth temperature is in the vicinity of 35 $^{\circ}$C. The problem of the crystals deliquescing in air has been solved through recrystallization process. The crystals are characterized by means of x-ray diffraction, specific heat and magnetic susceptibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2680v1-abstract-full').style.display = 'none'; document.getElementById('1311.2680v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 3 tables, published in Journal of Crystal Growth</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Crystal Growth 312, 3243 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.6853">arXiv:1305.6853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.6853">pdf</a>, <a href="https://arxiv.org/ps/1305.6853">ps</a>, <a href="https://arxiv.org/format/1305.6853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.214408">10.1103/PhysRevB.87.214408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically originated phonon-glass-like behavior in Tb_2Ti_2O_7 single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.6853v1-abstract-short" style="display: inline;"> We report a study on the thermal conductivity (魏) of Tb_2Ti_2O_7 single crystals at low temperatures. It is found that in zero field this material has an extremely low phonon thermal conductivity in a broad temperature range. The mean free path of phonons is even smaller than that of amorphous materials and is 3--4 orders of magnitude smaller than the sample size at 0.3 K. The strong spin fluctuat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.6853v1-abstract-full').style.display = 'inline'; document.getElementById('1305.6853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.6853v1-abstract-full" style="display: none;"> We report a study on the thermal conductivity (魏) of Tb_2Ti_2O_7 single crystals at low temperatures. It is found that in zero field this material has an extremely low phonon thermal conductivity in a broad temperature range. The mean free path of phonons is even smaller than that of amorphous materials and is 3--4 orders of magnitude smaller than the sample size at 0.3 K. The strong spin fluctuation of the spin-liquid state is discussed to be the reason of the strong phonon scattering. The magnetic-field dependence of 魏and comparison with Y_2Ti_2O_7 and TbYTi_2O_7 confirm the magnetic origin of this phonon-glass-like behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.6853v1-abstract-full').style.display = 'none'; document.getElementById('1305.6853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 214408 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.6353">arXiv:1302.6353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.6353">pdf</a>, <a href="https://arxiv.org/ps/1302.6353">ps</a>, <a href="https://arxiv.org/format/1302.6353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.144404">10.1103/PhysRevB.87.144404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An irreversible magnetic-field dependence of low-temperature heat transport of spin-ice compound Dy_2Ti_2O_7 in a [111] field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.6353v1-abstract-short" style="display: inline;"> We study the low-temperature thermal conductivity (魏) of Dy_2Ti_2O_7 along and perpendicular to the (111) plane and under the magnetic field along the [111] direction. Besides the step-like decreases of 魏at the field-induced transitions from the spin-ice state to the kagom茅-ice state and then to the polarized state, an abnormal phenomenon is that the 魏(H) isotherms show a clear irreversibility at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.6353v1-abstract-full').style.display = 'inline'; document.getElementById('1302.6353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.6353v1-abstract-full" style="display: none;"> We study the low-temperature thermal conductivity (魏) of Dy_2Ti_2O_7 along and perpendicular to the (111) plane and under the magnetic field along the [111] direction. Besides the step-like decreases of 魏at the field-induced transitions from the spin-ice state to the kagom茅-ice state and then to the polarized state, an abnormal phenomenon is that the 魏(H) isotherms show a clear irreversibility at very low temperatures upon sweeping magnetic field up and down. This phenomenon surprisingly has no correspondence with the well-known magnetization hysteresis. Possible origins for this irreversibility are discussed; in particular, a pinning effect of magnetic monopoles in spin ice compound by the weak disorders is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.6353v1-abstract-full').style.display = 'none'; document.getElementById('1302.6353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, Submitted at 02Jul2012; resubmitted to Phys. Rev. B at 11Sep2012</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 144404 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.1261">arXiv:1211.1261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.1261">pdf</a>, <a href="https://arxiv.org/ps/1211.1261">ps</a>, <a href="https://arxiv.org/format/1211.1261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.174413">10.1103/PhysRevB.86.174413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature heat transport and magnetic-structure transition of the hexagonal TmMnO_3 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.1261v1-abstract-short" style="display: inline;"> We study the low-temperature heat transport, as well as the magnetization and the specific heat, of TmMnO_3 single crystals to probe the transitions of magnetic structure induced by magnetic field. It is found that the low-T thermal conductivity (魏) shows strong magnetic-field dependence and the overall behaviors can be understood in the scenario of magnetic scattering on phonons. In addition, a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1261v1-abstract-full').style.display = 'inline'; document.getElementById('1211.1261v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.1261v1-abstract-full" style="display: none;"> We study the low-temperature heat transport, as well as the magnetization and the specific heat, of TmMnO_3 single crystals to probe the transitions of magnetic structure induced by magnetic field. It is found that the low-T thermal conductivity (魏) shows strong magnetic-field dependence and the overall behaviors can be understood in the scenario of magnetic scattering on phonons. In addition, a strong &#34;dip&#34;-like feature shows up in 魏(H) isotherms at 3.5--4 T for H \parallel c, which is related to a known spin re-orientation of Mn^{3+} moments. The absence of this phenomenon for H \parallel a indicates that the magnetic-structure transition of TmMnO_3 cannot be driven by the in-plane field. In comparison, the magnetothermal conductivity of TmMnO_3 is much larger than that of YMnO_3 but smaller than that of HoMnO_3, indicating that the magnetisms of rare-earth ions are playing the key role in the spin-phonon coupling of the hexagonal manganites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1261v1-abstract-full').style.display = 'none'; document.getElementById('1211.1261v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 174413 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.3961">arXiv:1205.3961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.3961">pdf</a>, <a href="https://arxiv.org/ps/1205.3961">ps</a>, <a href="https://arxiv.org/format/1205.3961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.174438">10.1103/PhysRevB.85.174438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paramagnetic ground state with field-induced partial order in Nd_3Ga_5SiO_{14} probed by low-temperature heat transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.3961v1-abstract-short" style="display: inline;"> We study the low-temperature heat transport of Nd_3Ga_5SiO_{14}, which is a spin-liquid candidate, to probe the nature of ground state and the effect of magnetic field on the magnetic properties. The thermal conductivity (魏) shows a purely phononic transport in zero field. The external magnetic field along the c axis induces a dip-like behavior of 魏(H), which can be attributed to a simple paramagn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.3961v1-abstract-full').style.display = 'inline'; document.getElementById('1205.3961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.3961v1-abstract-full" style="display: none;"> We study the low-temperature heat transport of Nd_3Ga_5SiO_{14}, which is a spin-liquid candidate, to probe the nature of ground state and the effect of magnetic field on the magnetic properties. The thermal conductivity (魏) shows a purely phononic transport in zero field. The external magnetic field along the c axis induces a dip-like behavior of 魏(H), which can be attributed to a simple paramagnetic scattering on phonons. However, the magnetic field along the ab plane induces another step-like decrease of 魏. This kind of 魏(H) behavior is discussed to be related to a field-induced partial order, which yields low-energy magnetic excitations that significantly scatter phonons. These results point to a paramagnetic ground state that partial magnetic order can be induced by magnetic field along the ab plane, which is also signified by the low-T specific heat data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.3961v1-abstract-full').style.display = 'none'; document.getElementById('1205.3961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 174438 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.6144">arXiv:1203.6144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.6144">pdf</a>, <a href="https://arxiv.org/ps/1203.6144">ps</a>, <a href="https://arxiv.org/format/1203.6144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.134412">10.1103/PhysRevB.85.134412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat transport of quasi-one-dimensional Ising-like antiferromagnet BaCo_2V_2O_8 in the longitudinal and transverse fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z+Z">Z. Z. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.6144v1-abstract-short" style="display: inline;"> The very-low-temperature thermal conductivity (魏) is studied for BaCo_2V_2O_8, a quasi-one-dimensional Ising-like antiferromagnet exhibiting an unusual magnetic-field-induced order-to-disorder transition. The nearly isotropic transport in the longitudinal field indicates that the magnetic excitations scatter phonons rather than conduct heat. The field dependence of 魏shows a sudden drop at \sim 4 T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.6144v1-abstract-full').style.display = 'inline'; document.getElementById('1203.6144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.6144v1-abstract-full" style="display: none;"> The very-low-temperature thermal conductivity (魏) is studied for BaCo_2V_2O_8, a quasi-one-dimensional Ising-like antiferromagnet exhibiting an unusual magnetic-field-induced order-to-disorder transition. The nearly isotropic transport in the longitudinal field indicates that the magnetic excitations scatter phonons rather than conduct heat. The field dependence of 魏shows a sudden drop at \sim 4 T, where the system unndergoes the transition from the N茅el order to the incommensurate state. Another dip at lower field of \sim 3 T indicates an unknown magnetic transition, which is likely due to the spin-flop transition. Moreover, the 魏(H) in the transverse field shows a very deep valley-like feature, which moves slightly to higher field and becomes sharper upon lowering the temperature. This indicates a magnetic transition induced by the transverse field, which however is not predicted by the present theories for this low-dimensional spin system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.6144v1-abstract-full').style.display = 'none'; document.getElementById('1203.6144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 134412 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.1009">arXiv:1110.1009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.1009">pdf</a>, <a href="https://arxiv.org/ps/1110.1009">ps</a>, <a href="https://arxiv.org/format/1110.1009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.134429">10.1103/PhysRevB.84.134429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat transport of the quasi-one-dimensional alternating spin chain material (CH_{3})_{2}NH_{2}CuCl_{3} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.1009v1-abstract-short" style="display: inline;"> We report a study of the low-temperature heat transport in the quasi-one-dimensional S = 1/2 alternating antiferromagnetic-ferromagnetic chain compound (CH_{3})_{2}NH_{2}CuCl_{3}. Both the temperature and magnetic-field dependencies of thermal conductivity are very complicated, pointing to the important role of spin excitations. It is found that magnetic excitations act mainly as the phonon scatte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1009v1-abstract-full').style.display = 'inline'; document.getElementById('1110.1009v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.1009v1-abstract-full" style="display: none;"> We report a study of the low-temperature heat transport in the quasi-one-dimensional S = 1/2 alternating antiferromagnetic-ferromagnetic chain compound (CH_{3})_{2}NH_{2}CuCl_{3}. Both the temperature and magnetic-field dependencies of thermal conductivity are very complicated, pointing to the important role of spin excitations. It is found that magnetic excitations act mainly as the phonon scatterers in a broad temperature region from 0.3 to 30 K. In magnetic fields, the thermal conductivity show drastic changes, particularly at the field-induced transitions from the low-field N茅el state to the spin-gapped state, the field-induced magnetic ordered state, and the spin polarized state. In high fields, the phonon conductivity is significantly enhanced because of the weakening of spin fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1009v1-abstract-full').style.display = 'none'; document.getElementById('1110.1009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 134429 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.0587">arXiv:1109.0587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.0587">pdf</a>, <a href="https://arxiv.org/ps/1109.0587">ps</a>, <a href="https://arxiv.org/format/1109.0587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.094440">10.1103/PhysRevB.84.094440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature heat transport of the layered spin-dimer compound Ba_3Mn_2O_8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.0587v1-abstract-short" style="display: inline;"> We report the study on the low-temperature heat transport of Ba_3Mn_2O_8 single crystal, a layered spin-dimer compound exhibiting the magnetic-field-induced magnetic order or the magnon Bose-Einstein condensation. The thermal conductivities (魏) along both the ab plane and the c axis show nearly isotropic dependence on magnetic field, that is, 魏is strongly suppressed with increasing field, particul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.0587v1-abstract-full').style.display = 'inline'; document.getElementById('1109.0587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.0587v1-abstract-full" style="display: none;"> We report the study on the low-temperature heat transport of Ba_3Mn_2O_8 single crystal, a layered spin-dimer compound exhibiting the magnetic-field-induced magnetic order or the magnon Bose-Einstein condensation. The thermal conductivities (魏) along both the ab plane and the c axis show nearly isotropic dependence on magnetic field, that is, 魏is strongly suppressed with increasing field, particularly at the critical fields of magnetic phase transitions. These results indicate that the magnetic excitations play a role of scattering phonons and the scattering effect is enhanced when the magnetic field closes the gap in the spin spectrum. In addition, the magnons in the BEC state of this materials do not show notable ability of carrying heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.0587v1-abstract-full').style.display = 'none'; document.getElementById('1109.0587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 094440 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.1514">arXiv:1104.1514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.1514">pdf</a>, <a href="https://arxiv.org/ps/1104.1514">ps</a>, <a href="https://arxiv.org/format/1104.1514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.174518">10.1103/PhysRevB.83.174518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature heat transport of Nd_2CuO_4: Roles of Nd magnons and spin-structure transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+B">B. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L+M">L. M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.1514v1-abstract-short" style="display: inline;"> We report the magnetic-field dependence of thermal conductivity (魏) of an insulating cuprate Nd_2CuO_4 at very low temperatures down to 0.3 K. It is found that apart from the paramagnetic moments scattering on phonons, the Nd^{3+} magnons can act as either heat carriers or phonon scatterers, which strongly depends on the long-range antiferromagnetic transition and the field-induced transitions of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.1514v1-abstract-full').style.display = 'inline'; document.getElementById('1104.1514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.1514v1-abstract-full" style="display: none;"> We report the magnetic-field dependence of thermal conductivity (魏) of an insulating cuprate Nd_2CuO_4 at very low temperatures down to 0.3 K. It is found that apart from the paramagnetic moments scattering on phonons, the Nd^{3+} magnons can act as either heat carriers or phonon scatterers, which strongly depends on the long-range antiferromagnetic transition and the field-induced transitions of spin structure. In particular, the Nd^{3+} magnons can effectively transport heat in the spin-flopped state of the Nd^{3+} sublattice. However, both the magnon transport and the magnetic scattering are quenched at very high fields. The spin re-orientations under the in-plane field can be conjectured from the detailed field dependence of 魏. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.1514v1-abstract-full').style.display = 'none'; document.getElementById('1104.1514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 174518 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.3314">arXiv:1012.3314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.3314">pdf</a>, <a href="https://arxiv.org/ps/1012.3314">ps</a>, <a href="https://arxiv.org/format/1012.3314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.014414">10.1103/PhysRevB.83.014414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic phase transitions and magnetoelectric coupling of GdFeO_3 single crystals probed by low-temperature heat transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F+B">F. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.3314v1-abstract-short" style="display: inline;"> The low-temperature thermal conductivity (魏) of GdFeO_3 single crystals is found to be strongly dependent on magnetic field. The low-field 魏(H) curves show two &#34;dips&#34; for H \parallel a and only one &#34;dip&#34; for H \parallel c, with the characteristic fields having good correspondence with the spin-flop and the spin-polarization transitions. A remarkable phenomenon is that the subKelvin thermal conduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3314v1-abstract-full').style.display = 'inline'; document.getElementById('1012.3314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.3314v1-abstract-full" style="display: none;"> The low-temperature thermal conductivity (魏) of GdFeO_3 single crystals is found to be strongly dependent on magnetic field. The low-field 魏(H) curves show two &#34;dips&#34; for H \parallel a and only one &#34;dip&#34; for H \parallel c, with the characteristic fields having good correspondence with the spin-flop and the spin-polarization transitions. A remarkable phenomenon is that the subKelvin thermal conductivity shows hysteretic behaviors on the history of applying magnetic field, that is, the 魏(H) isotherms measured with field increasing are larger than those with field decreasing. Intriguingly, the broad region of magnetic field (\sim 0--3 T) showing the irreversibility of heat transport coincides with that presenting the ferroelectricity. It is discussed that the irreversible 魏(H) behaviors are due to the phonon scattering by ferroelectric domain walls. This result shows an experimental feature that points to the capability of controlling the ferroelectric domain structures by magnetic field in multiferroic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3314v1-abstract-full').style.display = 'none'; document.getElementById('1012.3314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures; accepted for publication in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 014414 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.3102">arXiv:1008.3102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.3102">pdf</a>, <a href="https://arxiv.org/ps/1008.3102">ps</a>, <a href="https://arxiv.org/format/1008.3102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.094405">10.1103/PhysRevB.82.094405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large magnetothermal conductivity of HoMnO_3 single crystals and its relation to the magnetic-field induced transitions of magnetic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z+Y">Z. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+G">X. G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+W+P">W. P. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.3102v1-abstract-short" style="display: inline;"> We study the low-temperature heat transport of HoMnO_3 single crystals to probe the magnetic structures and their transitions induced by magnetic field. It is found that the low-T thermal conductivity (魏) shows very strong magnetic-field dependence, with the strongest suppression of nearly 90% and the biggest increase of 20 times of 魏compared to its zero-field value. In particular, some ``dip&#34;-lik&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.3102v1-abstract-full').style.display = 'inline'; document.getElementById('1008.3102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.3102v1-abstract-full" style="display: none;"> We study the low-temperature heat transport of HoMnO_3 single crystals to probe the magnetic structures and their transitions induced by magnetic field. It is found that the low-T thermal conductivity (魏) shows very strong magnetic-field dependence, with the strongest suppression of nearly 90% and the biggest increase of 20 times of 魏compared to its zero-field value. In particular, some ``dip&#34;-like features show up in 魏(H) isotherms for field along both the ab plane and the c axis. These behaviors are found to shed new light on the complex H-T phase diagram and the field-induced re-orientations of Mn^{3+} and Ho^{3+} spin structures. The results also demonstrate a significant spin-phonon coupling in this multiferroic compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.3102v1-abstract-full').style.display = 'none'; document.getElementById('1008.3102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 82, 094405 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.5524">arXiv:1005.5524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.5524">pdf</a>, <a href="https://arxiv.org/format/1005.5524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/1.3054200">10.1116/1.3054200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain distributions in lattice-mismatched semiconductor core-shell nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%B8ndergaard%2C+N">Niels S酶ndergaard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yuhui He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chun Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+R">Ruqi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guhr%2C+T">Thomas Guhr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+Q">H. Q. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.5524v1-abstract-short" style="display: inline;"> The authors study the elastic deformation field in lattice-mismatched core-shell nanowires with single and multiple shells. The authors consider infinite wires with a hexagonal cross section under the assumption of translational symmetry. The strain distributions are found by minimizing the elastic energy per unit cell using the finite element method. The authors find that the trace of the strain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5524v1-abstract-full').style.display = 'inline'; document.getElementById('1005.5524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.5524v1-abstract-full" style="display: none;"> The authors study the elastic deformation field in lattice-mismatched core-shell nanowires with single and multiple shells. The authors consider infinite wires with a hexagonal cross section under the assumption of translational symmetry. The strain distributions are found by minimizing the elastic energy per unit cell using the finite element method. The authors find that the trace of the strain is discontinuous with a simple, almost piecewise variation between core and shell, whereas the individual components of the strain can exhibit complex variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5524v1-abstract-full').style.display = 'none'; document.getElementById('1005.5524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Vac. Sci. Technol. B 27(2) 827 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.0138">arXiv:0912.0138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.0138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.195320">10.1103/PhysRevB.82.195320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust Magnetic Polarons in Type-II (Zn,Mn)Te Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sellers%2C+I+R">I. R. Sellers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oszwaldowski%2C+R">R. Oszwaldowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whiteside%2C+V+R">V. R. Whiteside</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eginligil%2C+M">M. Eginligil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrou%2C+A">A. Petrou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zutic%2C+I">I. Zutic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+W">W-C. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W+C">W. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCombe%2C+B+D">B. D. McCombe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.0138v1-abstract-short" style="display: inline;"> We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.0138v1-abstract-full').style.display = 'inline'; document.getElementById('0912.0138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.0138v1-abstract-full" style="display: none;"> We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, these dots display an unusually small Zeeman shift with applied field (2 meV at 10 T). This behavior is explained by a small and weakly temperature-dependent magnetic susceptibility due to anti-ferromagnetic coupling of the Mn spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.0138v1-abstract-full').style.display = 'none'; document.getElementById('0912.0138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.0567">arXiv:0910.0567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.0567">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for in vivo Cancer Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhuang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+A+C">Alice C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rakhra%2C+K">Kavya Rakhra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherlock%2C+S">Sarah Sherlock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodwin%2C+A">Andrew Goodwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaoyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qiwei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felsher%2C+D+W">Dean W. Felsher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+H">Hongjie Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.0567v1-abstract-short" style="display: inline;"> Many therapeutic advantages such as prolonged circulation in the blood, increased tumor drug uptake, enhanced therapeutic efficacy, and markedly reduced toxic side effects are provided by a carbon nanotube based chemotherapeutic formulation. In this system, doxorubicin (DOX) is loaded onto the sidewalls of functionalized single-walled carbon nanotubes by supramolecular pi-pi stacking. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.0567v1-abstract-full" style="display: none;"> Many therapeutic advantages such as prolonged circulation in the blood, increased tumor drug uptake, enhanced therapeutic efficacy, and markedly reduced toxic side effects are provided by a carbon nanotube based chemotherapeutic formulation. In this system, doxorubicin (DOX) is loaded onto the sidewalls of functionalized single-walled carbon nanotubes by supramolecular pi-pi stacking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.0567v1-abstract-full').style.display = 'none'; document.getElementById('0910.0567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Angew. Chem. Int. Ed. 48, 7668-7672 (2009)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.1912">arXiv:0903.1912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.1912">pdf</a>, <a href="https://arxiv.org/ps/0903.1912">ps</a>, <a href="https://arxiv.org/format/0903.1912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.167202">10.1103/PhysRevLett.102.167202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Temperature Heat Transport in the Low-Dimensional Quantum Magnet NiCl_{2}-4SC(NH_{2})_{2} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+W">W. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+M">X. M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">C. Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.1912v2-abstract-short" style="display: inline;"> We report a study of the low-temperature thermal conductivity of NiCl_{2}-4SC(NH_{2})_{2}, which is a spin-1 chain system exhibiting the magnon Bose-Einstein condensation (BEC) in magnetic field. It is found that the low-T thermal conductivity along the spin-chain direction shows strong anomalies at the lower and upper critical fields of the magnon BEC state. In this state, magnons act mainly as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1912v2-abstract-full').style.display = 'inline'; document.getElementById('0903.1912v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.1912v2-abstract-full" style="display: none;"> We report a study of the low-temperature thermal conductivity of NiCl_{2}-4SC(NH_{2})_{2}, which is a spin-1 chain system exhibiting the magnon Bose-Einstein condensation (BEC) in magnetic field. It is found that the low-T thermal conductivity along the spin-chain direction shows strong anomalies at the lower and upper critical fields of the magnon BEC state. In this state, magnons act mainly as phonon scatterers at relatively high temperature, but change their role to heat carriers upon temperature approaching zero. The result demonstrates a large thermal conductivity in the magnon BEC state and points to a direct analog between the magnon BEC and the conventional one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1912v2-abstract-full').style.display = 'none'; document.getElementById('0903.1912v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; the title changed, one reference added; accepted for publication in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 167202 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.2537">arXiv:0803.2537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0803.2537">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.241302">10.1103/PhysRevB.77.241302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent Aharonov Bohm oscillations in type-II (ZnMn)Te quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sellers%2C+I+R">I. R. Sellers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whiteside%2C+V+R">V. R. Whiteside</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Govorov%2C+A+O">A. O. Govorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W+C">W. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+W">W-C. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+I">I. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrou%2C+A">A. Petrou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCombe%2C+B+D">B. D. McCombe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.2537v1-abstract-short" style="display: inline;"> The magneto-photoluminescence of type-II (ZnMn)Te quantum dots is presented. As a result of the type-II band alignment Aharonov-Bohm (AB) oscillations in the photoluminescence intensity are evident, confirming previous predictions for the suitability of this geometry to control the optical Aharonov-Bohm effect in semiconductor systems. Moreover, the system demonstrates an interesting interplay b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.2537v1-abstract-full').style.display = 'inline'; document.getElementById('0803.2537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.2537v1-abstract-full" style="display: none;"> The magneto-photoluminescence of type-II (ZnMn)Te quantum dots is presented. As a result of the type-II band alignment Aharonov-Bohm (AB) oscillations in the photoluminescence intensity are evident, confirming previous predictions for the suitability of this geometry to control the optical Aharonov-Bohm effect in semiconductor systems. Moreover, the system demonstrates an interesting interplay between the AB effect and the spin polarization in diluted magnetic semiconductor quantum dots. The intensity of the AB oscillations increases with both magnetic field and the degree of optical polarization, indicating the suppression of spin fluctuations improves the coherence of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.2537v1-abstract-full').style.display = 'none'; document.getElementById('0803.2537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0610729">arXiv:cond-mat/0610729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0610729">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0610729">ps</a>, <a href="https://arxiv.org/format/cond-mat/0610729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.74.125118">10.1103/PhysRevB.74.125118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chang-Zeng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+S">Song-Yan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Li-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ri-Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wen-Kui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yu-Gui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0610729v1-abstract-short" style="display: inline;"> We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN$_{2}$, OsN$_{2}$ and OsO$_{2}$ are mechanically stable. In particular OsN$_{2}$ has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN$_{2}$ is metallic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610729v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0610729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0610729v1-abstract-full" style="display: none;"> We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN$_{2}$, OsN$_{2}$ and OsO$_{2}$ are mechanically stable. In particular OsN$_{2}$ has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN$_{2}$ is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610729v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0610729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. B 74,125118 (2006)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0610728">arXiv:cond-mat/0610728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0610728">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0610728">ps</a>, <a href="https://arxiv.org/format/cond-mat/0610728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2335571">10.1063/1.2335571 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low compressible noble metal carbides with rock-salt structure: ab initio total energy calculations of the elastic stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chang-Zeng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+S">Song-Yan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Z">Zai-Ji Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ri-Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wen-Kui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yu-Gui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0610728v1-abstract-short" style="display: inline;"> We have systematically studied the mechanical stability of all noble metal carbides with the rock-salt structure by calculating their elastic constants within the density function theory scheme. It was found that only four carbides (RuC, PdC, AgC and PtC) are mechanically stable. In particular, we have shown that RuC, PdC, and PtC have very high bulk modulus, which has been remarkably observed b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610728v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0610728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0610728v1-abstract-full" style="display: none;"> We have systematically studied the mechanical stability of all noble metal carbides with the rock-salt structure by calculating their elastic constants within the density function theory scheme. It was found that only four carbides (RuC, PdC, AgC and PtC) are mechanically stable. In particular, we have shown that RuC, PdC, and PtC have very high bulk modulus, which has been remarkably observed by the most recent experiment for the case of PtC. From the calculated density of states, we can conclude that these compounds are metallic, like the conventional group IV and group V transition metal carbides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610728v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0610728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appl. Phys. Lett. 89, 071913 (2006)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10