CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 153 results for author: <span class="mathjax">Hu, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hu%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04872">arXiv:2412.04872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04872">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching of room temperature two-dimensional van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Heshuang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Jinyu Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+D">Dongdong Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+J">Jinlong Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Junxin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kun Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Z">Zhiyan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04872v1-abstract-short" style="display: inline;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switchi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04872v1-abstract-full" style="display: none;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switching of van der Waals ferromagnet Fe3GaTe2 through the orbital torque generated by the orbital Hall material, Titanium (Ti). The switching current density is estimated to be around 1.6 x 10^6 A/cm^2, comparable to that achieved in Fe3GaTe2 using spin-orbit torque from spin Hall materials. The efficient magnetization switching arises from the combined effects of the large orbital Hall conductivity of Ti and the strong spin-orbit correlation of the Fe3GaTe2, as confirmed through theoretical calculations. Our findings advance the understanding of orbital torque switching and pave the way for exploring material-based orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'none'; document.getElementById('2412.04872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages,4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04379">arXiv:2412.04379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04379">pdf</a>, <a href="https://arxiv.org/format/2412.04379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spinon Singlet in Quantum Colored String: Origin of $d$-Wave Pairing in a Partially-Filled Stripe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia-Long Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Jie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04379v1-abstract-short" style="display: inline;"> Although both experimental observations and numerical simulations have reached a consensus that the stripe phase is intertwined with superconductivity in cuprates, the microscopic mechanism behind $d$-wave pairing in the presence of stripes remains unclear. Using the effective theory of quantum colored strings, we derive the wavefunction in Fock space. Our results show that two spinons with opposi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04379v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04379v1-abstract-full" style="display: none;"> Although both experimental observations and numerical simulations have reached a consensus that the stripe phase is intertwined with superconductivity in cuprates, the microscopic mechanism behind $d$-wave pairing in the presence of stripes remains unclear. Using the effective theory of quantum colored strings, we derive the wavefunction in Fock space. Our results show that two spinons with opposite chiralities tend to pair into a spinon singlet, which in turn facilitates the formation of negative pair-pair correlations between distant $x$-bonds and $y$-bonds, a hallmark of the $d$-wave pairing pattern. The same pair-pair correlation pattern is observed across various models, as confirmed by large-scale density matrix renormalization group calculations. Based on these results, we conclude that the spinon singlet is the origin of $d$-wave superconductivity in a fluctuating, partially-filled stripe, and this mechanism may also extend to multi-stripe configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04379v1-abstract-full').style.display = 'none'; document.getElementById('2412.04379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures, comments are welcome and more information at http://cqutp.org/users/xfzhang/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11561">arXiv:2411.11561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11561">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Intertwined effects of elastic deformation and damage on vortex pinning and Jc degradation in polycrystalline superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing-Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You-He Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Cun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11561v3-abstract-short" style="display: inline;"> The damage and the critical current density (Jc) degradation of polycrystalline superconductors induced by strain dramatically influence their performance in applications. Unfortunately, the state-of-the-art experimental techniques are unable to detect the damage of internal polycrystalline structures and the microscopic superconductivity in the presence of strain. We propose a groundbreaking mult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11561v3-abstract-full').style.display = 'inline'; document.getElementById('2411.11561v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11561v3-abstract-full" style="display: none;"> The damage and the critical current density (Jc) degradation of polycrystalline superconductors induced by strain dramatically influence their performance in applications. Unfortunately, the state-of-the-art experimental techniques are unable to detect the damage of internal polycrystalline structures and the microscopic superconductivity in the presence of strain. We propose a groundbreaking multi-scale theoretical framework aimed at revealing the underlying physical mechanisms of the reversible and irreversible Jc degradation induced by the strain through tackling the complex intertwined effects of elastic deformation and damage on the superconductivity of grain boundaries and the associated vortex pinning. The results are well validated by experimental measurements. Utilizing the benchmarked physical model, we demonstrate that the damage evolutions of polycrystalline superconductors in the presence of strain can be approximately estimated by means of the electromagnetic experiments on Jc. Furthermore, we also discuss the characteristics of damage and Jc degradation of polycrystalline superconductors subjected to biaxial mechanical loads. The findings will pave the way to investigate the tunable vortex pinning and Jc of superconductors by strain, and to develop a brand new electromagnetic method to manifest the damage of polycrystalline superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11561v3-abstract-full').style.display = 'none'; document.getElementById('2411.11561v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10750">arXiv:2411.10750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10750">pdf</a>, <a href="https://arxiv.org/format/2411.10750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-protected Landau-Zener-St眉ckelberg-Majorana interference and non-adiabatic topological transport of edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shihao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meiqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Z">Zhoutao Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10750v1-abstract-short" style="display: inline;"> We systematically investigate Landau-Zener-St眉ckelberg-Majorana (LZSM) interference under chiral-mirror-like symmetry and propose its application to non-adiabatic topological transport of edge states. Protected by this symmetry, complete destructive interference emerges and can be characterized through occupation probability. This symmetry-protected LZSM interference enables state transitions to b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10750v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10750v1-abstract-full" style="display: none;"> We systematically investigate Landau-Zener-St眉ckelberg-Majorana (LZSM) interference under chiral-mirror-like symmetry and propose its application to non-adiabatic topological transport of edge states. Protected by this symmetry, complete destructive interference emerges and can be characterized through occupation probability. This symmetry-protected LZSM interference enables state transitions to be achieved within remarkably short time scales. To demonstrate our mechanism, we provide two distinctive two-level systems as examples and survey them in detail. By tuning evolution speed or increasing holding time, the complete destructive interferences are observed. Furthermore, we make use of this mechanism for topological edge states of Su-Schrieffer-Heeger (SSH) chain by taking them as an isolated two-level system. Through carefully designed time sequences, we construct symmetry-protected LZSM interference of topological edge states, enabling non-adiabatic topological transport. Our work unveils an alternative way to study quantum control, quantum state transfer, and quantum communication via non-adiabatic topological transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10750v1-abstract-full').style.display = 'none'; document.getElementById('2411.10750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Comments are welcomed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17077">arXiv:2410.17077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17077">pdf</a>, <a href="https://arxiv.org/format/2410.17077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Competition between ponderomotive acceleration and attosecond chirps in optimizing attosecond pulse generation in solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shiqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+M">Mengxue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17077v1-abstract-short" style="display: inline;"> A practical approach is proposed for efficiently generating ultrashort attosecond pulses (APs) from realistic solid-state materials, aiming to achieve pulse widths comparable to those generated in gases. This approach focuses on modulating the plateau region of the high harmonic spectrum by adjusting the peak vector potential of laser fields through changing photon energy, while maintaining a cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17077v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17077v1-abstract-full" style="display: none;"> A practical approach is proposed for efficiently generating ultrashort attosecond pulses (APs) from realistic solid-state materials, aiming to achieve pulse widths comparable to those generated in gases. This approach focuses on modulating the plateau region of the high harmonic spectrum by adjusting the peak vector potential of laser fields through changing photon energy, while maintaining a constant peak electric field. It initiates a competition between heightened ponderomotive acceleration and the attosecond chirp effect, leading to a non-monotonic variation in both intensity and duration of the generated APs. Using hexagonal boron nitride as a prototypical material, we demonstrate the generation of optimal ultrashort pulses with a full width at half maximum (FWHM) of 143 attoseconds, marking an updated record for the shortest pulse duration from solid-state sources. This strategy shows promise for application across a broad range of materials, offering new pathways to promote high harmonic performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17077v1-abstract-full').style.display = 'none'; document.getElementById('2410.17077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures and supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00089">arXiv:2410.00089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00089">pdf</a>, <a href="https://arxiv.org/format/2410.00089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Anyonic phase transitions in the 1D extended Hubbard model with fractional statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bonkhoff%2C+M">Martin Bonkhoff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A4gering%2C+K">Kevin J盲gering</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelster%2C+A">Axel Pelster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eggert%2C+S">Sebastian Eggert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+I">Imke Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00089v1-abstract-short" style="display: inline;"> We study one-dimensional (1D) lattice anyons with extended Hubbard interactions at unit filling using bosonization and numerical simulations. The behavior can be continuously tuned from Bosonic to Fermionic behavior by adjusting the topological exchange angle $胃$, which leads to a competition of different instabilities. We present the bosonization theory in presence of dynamic gauge fields, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00089v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00089v1-abstract-full" style="display: none;"> We study one-dimensional (1D) lattice anyons with extended Hubbard interactions at unit filling using bosonization and numerical simulations. The behavior can be continuously tuned from Bosonic to Fermionic behavior by adjusting the topological exchange angle $胃$, which leads to a competition of different instabilities. We present the bosonization theory in presence of dynamic gauge fields, which predicts a phase diagrams of four different gapped phases with distinct dominant correlations. Advanced numerical simulations determine and analyze the exact phase transitions between Mott insulator, charge density wave, dimerized state, and Haldane insulator, all of which meet at a multi-critical line in the parameter space of anyonic angle $胃$, onsite interaction $U$, and nearest neighbor repulsion $V$. Superfluid and pair-superfluid phases are stable in a region of small $V$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00089v1-abstract-full').style.display = 'none'; document.getElementById('2410.00089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, more details and the final version can be found at https://www.physik.uni-kl.de/eggert/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14380">arXiv:2409.14380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14380">pdf</a>, <a href="https://arxiv.org/format/2409.14380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Realization of a period-3 coplanar state in one-dimensional spin-orbit coupled optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yida Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14380v1-abstract-short" style="display: inline;"> In ultracold atoms, achieving a period-$3$ structure poses a significant challenge. In this work, we propose a three-sublattice spin-flop transition mechanism, differing from the two-sublattice counterpart used to explain the emergence of ferrimagnetic orders in higher dimensions. Guided by this mechanism, we design a setup of alkaline-earth-metal atoms to create a spin-orbit coupled optical latti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14380v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14380v1-abstract-full" style="display: none;"> In ultracold atoms, achieving a period-$3$ structure poses a significant challenge. In this work, we propose a three-sublattice spin-flop transition mechanism, differing from the two-sublattice counterpart used to explain the emergence of ferrimagnetic orders in higher dimensions. Guided by this mechanism, we design a setup of alkaline-earth-metal atoms to create a spin-orbit coupled optical lattice, where we identify a triplet-fold degenerate $YX\bar{Y}$ state with a period-$3$ coplanar spin ordering within the deep Mott-insulating phase region of the ground-state phase diagram. The $YX\bar{Y}$ state is protected by a finite gap, and its characteristic angle can be finely tuned by specific setup parameters. Moreover, we use the Rabi spectroscopy technique to detect the $YX\bar{Y}$ state. Our work not only shows the feasibility of achieving a period-$3$ structure \textit{via} the new mechanism but also suggests its potential applications for exploring other periodic structures in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14380v1-abstract-full').style.display = 'none'; document.getElementById('2409.14380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02767">arXiv:2409.02767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02767">pdf</a>, <a href="https://arxiv.org/format/2409.02767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.032438">10.1103/PhysRevA.110.032438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hong-Ou-Mandel Interference in a temporal-average-inversion-symmetric chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meiqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shihao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zihui Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Z">Zhoutao Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02767v1-abstract-short" style="display: inline;"> We show how to implement tunable beam splitter and Hong-Ou-Mandel interference in the Su-Schrieffer-Heeger chain by manipulating the topological edge states adiabatically. The boson initially injected in the one end of the chain can be transferred to the two-end with a tunable proportion depends on the dynamical phases accumulated during the adiabatic evolution. We also observe Hong-Ou-Mandel inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02767v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02767v1-abstract-full" style="display: none;"> We show how to implement tunable beam splitter and Hong-Ou-Mandel interference in the Su-Schrieffer-Heeger chain by manipulating the topological edge states adiabatically. The boson initially injected in the one end of the chain can be transferred to the two-end with a tunable proportion depends on the dynamical phases accumulated during the adiabatic evolution. We also observe Hong-Ou-Mandel interference via the tunable beam splitter ($50:50$) and achieve a spatially entangled two-particle NOON state. We demonstrate the robustness of our proposal under chiral- and time-reversal-symmetry-preserving disorder. However, the chiral symmetry is scarce for realist system. Therefore, we demonstrate Hong-Ou-Mandel interference are robust to inversion symmetric disorder breaking the chiral symmetry, highlighting the protection of inversion symmetry. More importantly, the inversion symmetry violated by static disorder can be restored for more common situations where disorder becomes time dependent, giving rise to the temporal-average-inversion-symmetry protected Hong-Ou-Mandel interference. Our approach opens a new way to study quantum effects in topological matter with potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02767v1-abstract-full').style.display = 'none'; document.getElementById('2409.02767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevA.110, 032438 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11394">arXiv:2408.11394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11394">pdf</a>, <a href="https://arxiv.org/format/2408.11394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Competition between dimerization and vector chirality in the spin-$3/2$ $J_1$-$J_2$ Heisenberg chain with uniaxial single-ion anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Ji-Lu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eggert%2C+S">Sebastian Eggert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Jie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11394v1-abstract-short" style="display: inline;"> The spin-$3/2$ chain is a versatile prototypical platform for the study of competition between different kinds of magnetic orders, with the objective of obtaining a deeper understanding of the corresponding quantum phase transitions. In this work, we investigate the spin-$3/2$ chain with nearest-neighbor $J_1$, next-nearest-neighbor $J_2$, and uniaxial single-ion anisotropy $D$ terms in the absenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11394v1-abstract-full" style="display: none;"> The spin-$3/2$ chain is a versatile prototypical platform for the study of competition between different kinds of magnetic orders, with the objective of obtaining a deeper understanding of the corresponding quantum phase transitions. In this work, we investigate the spin-$3/2$ chain with nearest-neighbor $J_1$, next-nearest-neighbor $J_2$, and uniaxial single-ion anisotropy $D$ terms in the absence of a magnetic field. For positive values of $J_2/J_1$ and $D/J_1$, we find seven different phases in a rich phase diagram. Without frustration $J_2=0$, a gapless Luttinger liquid phase remains stable for all $D&gt;0$. As $J_2$ increases, we observe three phases with distinct dimerized valence bond orders, which show an intricate competition with vector chiral order and incommensurate correlations. For large $J_2$, regions of phase coexistence between the dimerized and vector chiral orders emerge. We present large-scale numerical data for the determination of transition lines, order parameters, and the nature of the phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11394v1-abstract-full').style.display = 'none'; document.getElementById('2408.11394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15954">arXiv:2407.15954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15954">pdf</a>, <a href="https://arxiv.org/format/2407.15954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Residue imaginary velocity induces many-body delocalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Xin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Yong-Xu Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15954v1-abstract-short" style="display: inline;"> Localization and delocalization are historic topics central to quantum and condensed matter physics. We discover a new delocalization mechanism attributed to a residue imaginary (part of) velocity $\operatorname{Im}(v)$, feasible for ground states or low-temperature states of non-Hermitian quantum systems under periodic boundary conditions. Interestingly, a disorder field contributing to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15954v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15954v1-abstract-full" style="display: none;"> Localization and delocalization are historic topics central to quantum and condensed matter physics. We discover a new delocalization mechanism attributed to a residue imaginary (part of) velocity $\operatorname{Im}(v)$, feasible for ground states or low-temperature states of non-Hermitian quantum systems under periodic boundary conditions. Interestingly, a disorder field contributing to $\operatorname{Im}(v)$ may allow strong-disorder-limit delocalization when $\operatorname{Im}(v)$ prevails over the Anderson localization. We demonstrate such delocalization with correlation and entanglement behaviors, as well as its many-body nature and generalizability to finite temperatures and interactions. Thus, the nontrivial physics of $\operatorname{Im}(v)$ significantly enriches our understanding of delocalization and breeds useful applications, e.g., in quantum adiabatic processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15954v1-abstract-full').style.display = 'none'; document.getElementById('2407.15954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12180">arXiv:2406.12180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unusual charge density wave introduced by Janus structure in monolayer vanadium dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Ziqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yan Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chun Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Genyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shihao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi-Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+X">Xiaoyu Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Y">Yanhui Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Teng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jin-An Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia-Ou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Jingsi Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yeliang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12180v1-abstract-short" style="display: inline;"> As a fundamental structural feature, the symmetry of materials determines the exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW). Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties. However, limited by the difficulties in atomic-level fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12180v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12180v1-abstract-full" style="display: none;"> As a fundamental structural feature, the symmetry of materials determines the exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW). Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties. However, limited by the difficulties in atomic-level fabrication and material stability, the experimental visualization of the CDW states in 2D TMDs with Janus structure is still rare. Here, using surface selenization of VTe2, we fabricated monolayer Janus VTeSe. With scanning tunneling microscopy, an unusual root13-root13 CDW state with threefold rotational symmetry breaking was observed and characterized. Combined with theoretical calculations, we find this CDW state can be attributed to the charge modulation in the Janus VTeSe, beyond the conventional electron-phonon coupling. Our findings provide a promising platform for studying the CDW states and artificially tuning the electronic properties toward the applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12180v1-abstract-full').style.display = 'none'; document.getElementById('2406.12180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04665">arXiv:2406.04665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48899-6">10.1038/s41467-024-48899-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vortex entropy and superconducting fluctuations in ultrathin underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Jiabin Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Ding Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04665v1-abstract-short" style="display: inline;"> Vortices in superconductors can help identify emergent phenomena but certain fundamental aspects of vortices, such as their entropy, remain poorly understood. Here, we study the vortex entropy in underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ by measuring both magneto-resistivity and Nernst effect on ultrathin flakes ($\le$2 unit-cell). We extract the London penetration depth from the magneto-transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04665v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04665v1-abstract-full" style="display: none;"> Vortices in superconductors can help identify emergent phenomena but certain fundamental aspects of vortices, such as their entropy, remain poorly understood. Here, we study the vortex entropy in underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ by measuring both magneto-resistivity and Nernst effect on ultrathin flakes ($\le$2 unit-cell). We extract the London penetration depth from the magneto-transport measurements on samples with different doping levels. It reveals that the superfluid phase stiffness $蟻_s$ scales linearly with the superconducting transition temperature $T_c$, down to the extremely underdoped case. On the same batch of ultrathin flakes, we measure the Nernst effect via on-chip thermometry. Together, we obtain the vortex entropy and find that it decays exponentially with $T_c$ or $蟻_s$. We further analyze the Nernst signal above $T_c$ in the framework of Gaussian superconducting fluctuations. The combination of electrical and thermoelectric measurements in the two-dimensional limit provides fresh insight into high temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04665v1-abstract-full').style.display = 'none'; document.getElementById('2406.04665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 4818 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01980">arXiv:2406.01980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01980">pdf</a>, <a href="https://arxiv.org/format/2406.01980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum colored strings in the hole-doped $t$-$J_z$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia-Long Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Jie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01980v1-abstract-short" style="display: inline;"> The stripe phase, an intertwined order observed in high-temperature superconductors, is regarded as playing a key role in elucidating the underlying mechanism of superconductivity, especially in cuprates. Following Jan Zaanen&#39;s early scenario, the full-filled charge stripe can be taken as the interactive elastic quantum strings of holes, stabilized by $蟺$-phase shifts between neighboring magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01980v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01980v1-abstract-full" style="display: none;"> The stripe phase, an intertwined order observed in high-temperature superconductors, is regarded as playing a key role in elucidating the underlying mechanism of superconductivity, especially in cuprates. Following Jan Zaanen&#39;s early scenario, the full-filled charge stripe can be taken as the interactive elastic quantum strings of holes, stabilized by $蟺$-phase shifts between neighboring magnetic domains. However, this scenario is challenging to explain, particularly in terms of electron pairing, which necessitates hole pairs. In this work, we propose a new effective model for describing the stripe phase in the hole-doped $t$-$J_z$ model. With respect to the antiferromagnetic background, the model comprises three types of color-labeled point-defects coupling to {an effective} spin field. Comparing with numerical results from large-scale density matrix renormalization group (DMRG) simulations, we find semi-quantitative agreement in local hole density, magnetic moment, and the newly proposed spectrum features of the {effective} spin field. By systematically analyzing the hole-density distribution and the scaling of groundstate energy at different system sizes, we determine the effective core radius and the effective hopping amplitude of the quantum string. Furthermore, the local pinning field can be finely adjusted to drag the quantum string, offering a potential method for detecting it in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01980v1-abstract-full').style.display = 'none'; document.getElementById('2406.01980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, comments are welcome, and more information at http://cqutp.org/users/xfzhang/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03163">arXiv:2405.03163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03163">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.9b07620">10.1021/acs.jpcc.9b07620 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Ordering of Ammonium Cations in NH$_4$I, NH$_4$Br and NH$_4$Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yen%2C+F">Fei Yen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+L">Lei Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+T">Tian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Sixia Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03163v1-abstract-short" style="display: inline;"> The different types of magnetism arise mainly from how electrons move and interact with each other. In this work, we show how protons (H$^+$) also exhibit magnetic behavior. We measured the magnetic susceptibility of the ammonium halides and identified pronounced increases at 232 K, 233 K and 243 K for NH$_4$I, NH$_4$Br and NH$_4$Cl, respectively, which all coincide to the geometric ordering of it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03163v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03163v1-abstract-full" style="display: none;"> The different types of magnetism arise mainly from how electrons move and interact with each other. In this work, we show how protons (H$^+$) also exhibit magnetic behavior. We measured the magnetic susceptibility of the ammonium halides and identified pronounced increases at 232 K, 233 K and 243 K for NH$_4$I, NH$_4$Br and NH$_4$Cl, respectively, which all coincide to the geometric ordering of its ammonium cations. With extensive literature establishing the fact that the ammonium cations exhibit rotational motion even towards the lowest temperatures, we take into account that the orbital motion of the protons carries a magnetic moment and find it to be larger than that of the paired electrons. Consequently, the structural phase transitions are magnetically-driven as the system attempts to lift 8-fold energy degeneracies of the proton orbitals via Jahn-Teller distortions. Our findings identify that NH$_4$$^+$ cations are capable of comprising magnetism which appears to be ubiquitous in ammonia-based molecular solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03163v1-abstract-full').style.display = 'none'; document.getElementById('2405.03163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript + Supporting Information file (19 + 4 pages, 5 + 3 figures). Sorry for not uploading this back in 2020!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 123, 23655-23660 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15738">arXiv:2404.15738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15738">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+F">Fengwen Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yingzhou Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+R">Rulei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shiqian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiomi%2C+J">Junichiro Shiomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15738v1-abstract-short" style="display: inline;"> Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiOx-Ar ion source was applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiOx binder layer enabled preci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15738v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15738v1-abstract-full" style="display: none;"> Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiOx-Ar ion source was applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiOx binder layer enabled precise control over layer thickness (2.5-5.3 nm) and formation of an amorphous heterogeneous nanostructure comprising a SiOx region between two inter-diffusion regions. Crucially, the 2.5-nm-thick interfacial layer achieved a TBR of 8.3 m2-W/GW, a record low for direct-bonded GaN/diamond interface. A remarkable feature is that the TBR is extremely sensitive to the interfacial thickness; rapidly increasing to 34 m2-K/GW on doubling the thickness to 5.3 nm. Theoretical analysis revealed the origin of this increase: a diamond/SiOx interdiffusion layer extend the vibrational frequency, far-exceeding that of crystalline diamond, which increases the lattice vibrational mismatch and suppresses phonon transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15738v1-abstract-full').style.display = 'none'; document.getElementById('2404.15738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18477">arXiv:2403.18477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18477">pdf</a>, <a href="https://arxiv.org/ps/2403.18477">ps</a>, <a href="https://arxiv.org/format/2403.18477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/7/070301">10.1088/0256-307X/41/7/070301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diagnosing thermalization dynamics of non-Hermitian quantum systems via GKSL master equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Y">Yiting Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+P">Peigeng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18477v2-abstract-short" style="display: inline;"> The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18477v2-abstract-full').style.display = 'inline'; document.getElementById('2403.18477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18477v2-abstract-full" style="display: none;"> The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density matrices adopted in the biorthogonal and right-state time evolutions, we have derived two versions of the Gorini-Kossakowski-Sudarshan-Lindblad master equations describing the non-Hermitian systems coupled to a bosonic heat bath in thermal equilibrium. By solving the equations, we have identified a sufficient condition for thermalization under both time evolutions, resulting in Boltzmann biorthogonal and right-eigenstate statistics, respectively. This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision. Moreover, we have exemplified the precise dynamics of thermalization and thermodynamic properties with test models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18477v2-abstract-full').style.display = 'none'; document.getElementById('2403.18477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures (main text), 3 pages (supplementary material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 41, 070301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03043">arXiv:2403.03043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching in perpendicularly magnetized materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wensi Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lujun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03043v1-abstract-short" style="display: inline;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03043v1-abstract-full" style="display: none;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpendicularly magnetized [Co/Pt]3 sample, which significantly surpasses that of the perpendicularly magnetized CoFeB/Gd/CoFeB sample (approximately 0.04). Such notable difference is attributed to the different spin-orbit correlation strength between the [Co/Pt]3 sample and the CoFeB/Gd/CoFeB sample, which has been confirmed through the theoretical calculations. Furthermore, the full magnetization switching of the [Co/Pt]3 sample with a switching current density of approximately 2.6x106 A/cm2 has been realized through Zr, which even outperforms that of the W spin Hall material. Our finding provides a guideline to understand orbital torque efficiency and paves the way to develop energy-efficient orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'none'; document.getElementById('2403.03043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18887">arXiv:2402.18887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18887">pdf</a>, <a href="https://arxiv.org/format/2402.18887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exchange bias induced by spin-glass-like state in Te-rich FeGeTe van der Waals ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xiaomin Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pangpang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohnishi%2C+K">Kohei Ohnishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shu-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Sheng-qun Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+O">Osamu Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+S">Sunao Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+T">Takashi Kimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18887v1-abstract-short" style="display: inline;"> We have experimentally investigated the mechanism of the exchange bias in the 2D van der Waals (vdW) ferromagnets by means of the anomalous Hall effect (AHE) together with the dynamical magnetization property. The temperature dependence of the AC susceptibility with its frequency response indicates a glassy transition of the magnetic property for the Te-rich FeGeTe vdW ferromagnet. We also found t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18887v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18887v1-abstract-full" style="display: none;"> We have experimentally investigated the mechanism of the exchange bias in the 2D van der Waals (vdW) ferromagnets by means of the anomalous Hall effect (AHE) together with the dynamical magnetization property. The temperature dependence of the AC susceptibility with its frequency response indicates a glassy transition of the magnetic property for the Te-rich FeGeTe vdW ferromagnet. We also found that the irreversible temperature dependence in the anomalous Hall voltage follows the Almeida-Thouless line. Moreover, the freezing temperature of the spin-glass-like phase is found to correlate with the disappearance temperature of the exchange bias. These important signatures suggest that the emergence of magnetic exchange bias in the 2D van der Waals ferromagnets is induced by the presence of the spin-glass-like state in FeGeTe. The unprecedented insights gained from these findings shed light on the underlying principles governing exchange bias in vdW ferromagnets, contributing to the advancement of our understanding in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18887v1-abstract-full').style.display = 'none'; document.getElementById('2402.18887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15000">arXiv:2401.15000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15000">pdf</a>, <a href="https://arxiv.org/format/2401.15000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Density-matrix renormalization group algorithm for non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+P">Peigeng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+W">Wei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15000v2-abstract-short" style="display: inline;"> A biorthonormal-block density-matrix renormalization group algorithm is proposed to compute properties of non-Hermitian many-body systems, in which a renormalized-space partition to the non-Hermitian reduced density matrix is implemented to fulfill the prerequisite for the biorthonormality of the renormalization group (RG) transformation and to optimize the construction of saved Hilbert spaces. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15000v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15000v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15000v2-abstract-full" style="display: none;"> A biorthonormal-block density-matrix renormalization group algorithm is proposed to compute properties of non-Hermitian many-body systems, in which a renormalized-space partition to the non-Hermitian reduced density matrix is implemented to fulfill the prerequisite for the biorthonormality of the renormalization group (RG) transformation and to optimize the construction of saved Hilbert spaces. A redundancy in saved spaces of the reduced density matrix is exploited to reduce a condition number resulting from the non-unitarity of the left and right transformation matrices, in order to ensure the numerical stability of the RG procedure. The algorithm is successfully applied to an interacting fermionic Su-Schrieffer-Heeger model with nonreciprocal hoppings and staggered complex chemical potential, exhibiting novel many-body phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15000v2-abstract-full').style.display = 'none'; document.getElementById('2401.15000v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+4 pages, 4+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06216">arXiv:2312.06216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06216">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent giant ferroelectric properties in cost-effective raw zirconia dioxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xianglong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zengxu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Songbai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M">Mingqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuanmin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06216v3-abstract-short" style="display: inline;"> Ferroelectric fluorite dioxides like hafnium (HfO2)-based materials are considered to be one of the most potential candidates for nowadays large-scale integrated-circuits (ICs). While zirconia (ZrO2)-based fluorites materials, which has the same structure as HfO2 and more abundant resources and lower cost of raw materials, is usually thought to be anti- or ferroelectric-like. Here we reported a gi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06216v3-abstract-full').style.display = 'inline'; document.getElementById('2312.06216v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06216v3-abstract-full" style="display: none;"> Ferroelectric fluorite dioxides like hafnium (HfO2)-based materials are considered to be one of the most potential candidates for nowadays large-scale integrated-circuits (ICs). While zirconia (ZrO2)-based fluorites materials, which has the same structure as HfO2 and more abundant resources and lower cost of raw materials, is usually thought to be anti- or ferroelectric-like. Here we reported a giant ferroelectric remnant polarization (Pr) amounted to 53 渭C/cm2 in orthorhombic ZrO2 thin film at room temperature. This ferroelectricity arises from an electric field induced anti-ferroelectric to ferroelectric phase transition which is particularly noticeable at 77 K. Our work reveals the intrinsic ferroelectricity in ZrO2 thin films and offers a new pathway to understand the ferroelectricity origin in fluorite oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06216v3-abstract-full').style.display = 'none'; document.getElementById('2312.06216v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06157">arXiv:2312.06157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202310811">10.1002/adfm.202310811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approaching the robust linearity in dual-floating van der Waals photodiode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jinpeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiaoguang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yuting Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Siqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+N">Nannan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yingchun Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06157v1-abstract-short" style="display: inline;"> Two-dimensional (2D) material photodetectors have gained great attention as potential elements for optoelectronic applications. However, the linearity of the photoresponse is often compromised by the carrier interaction, even in 2D photodiodes. In this study, we present a new device concept of dual-floating van der Waals heterostructures (vdWHs) photodiode by employing ambipolar MoTe2 and n-type M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06157v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06157v1-abstract-full" style="display: none;"> Two-dimensional (2D) material photodetectors have gained great attention as potential elements for optoelectronic applications. However, the linearity of the photoresponse is often compromised by the carrier interaction, even in 2D photodiodes. In this study, we present a new device concept of dual-floating van der Waals heterostructures (vdWHs) photodiode by employing ambipolar MoTe2 and n-type MoS2 2D semiconductors. The presence of type II heterojunctions on both sides of channel layers effectively deplete carriers and restrict the photocarrier trapping within the channel layers. As a result, the device exhibits robust linear photoresponse under photovoltaic mode from the visible (405 nm) to near-infrared (1600 nm) band. With the built-in electric field of the vdWHs, we achieve a linear dynamic range of ~ 100 dB, responsivity of ~ 1.57 A/W, detectivity of ~ 4.28 * 10^11 Jones, and response speed of ~ 30 渭s. Our results showcase a promising device concept with excellent linearity towards fast and low-loss detection, high-resolution imaging, and logic optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06157v1-abstract-full').style.display = 'none'; document.getElementById('2312.06157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures in the main text, 12 figures and 2 tables in the supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15183">arXiv:2311.15183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15183">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Switching of Magnon Spin Current in a Compensated Ferrimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kaili Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yuanjun Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+S">Shuping Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yuewei He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Weiwei Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+T">Tai Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+D">Dezhen Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+A">Aqun Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiangdong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15183v1-abstract-short" style="display: inline;"> Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic memory and logic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation caused by Joule heating. Electric-fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15183v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15183v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15183v1-abstract-full" style="display: none;"> Manipulation of directional magnon propagation, known as magnon spin current, is essential for developing magnonic memory and logic devices featuring nonvolatile functionalities and ultralow power consumption. Magnon spin current can usually be modulated by magnetic field or current-induced spin torques. However, these approaches may lead to energy dissipation caused by Joule heating. Electric-field switching of magnon spin current without charge current is highly desired but very challenging to realize. By integrating magnonic and piezoelectric materials, we demonstrate manipulation of the magnon spin current generated by the spin Seebeck effect in the ferrimagnetic insulator Gd3Fe5O12 (GdIG) film on a piezoelectric substrate. We observe reversible electric-field switching of magnon polarization without applied charge current. Through strain-mediated magnetoelectric coupling, the electric field induces the magnetic compensation transition between two magnetic states of the GdIG, resulting in its magnetization reversal and the simultaneous switching of magnon spin current. Our work establishes a prototype material platform that pave the way for developing magnon logic devices characterized by all electric field reading and writing and reveals the underlying physics principles of their functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15183v1-abstract-full').style.display = 'none'; document.getElementById('2311.15183v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11540">arXiv:2311.11540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40525-1">10.1038/s41467-023-40525-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prominent Josephson tunneling between twisted single copper oxide planes of Bi$_2$Sr$_{2-x}$LaxCuO$_{6+y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuying Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Z">Zhonghua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zechao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Hong-Yi Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaopeng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Miaoling Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Ying Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11540v1-abstract-short" style="display: inline;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11540v1-abstract-full" style="display: none;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi-2212) with double CuO$_2$ planes but show controversial results. Here, we investigate junctions made of Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+y}$ (Bi-2201) with single CuO$_2$ planes. Our on-site cold stacking technique ensures uncompromised crystalline quality and stoichiometry at the interface. Junctions with carefully calibrated twist angles around 45掳 show strong Josephson tunneling and conventional temperature dependence. Furthermore, we observe standard Fraunhofer diffraction patterns and integer Fiske steps in a junction with a twist angle of 45.0$\pm$0.2掳. Together, these results pose strong constraints on the d or d+id-wave pairing and suggest an indispensable isotropic pairing component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'none'; document.getElementById('2311.11540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08099">arXiv:2311.08099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08099">pdf</a>, <a href="https://arxiv.org/ps/2311.08099">ps</a>, <a href="https://arxiv.org/format/2311.08099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonuniform quadrupolar orders in the spin-3/2 generalized Heisenberg chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lihui Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08099v1-abstract-short" style="display: inline;"> The generation of nonuniform quadrupole states plays a crucial role in understanding various fascinating phenomena observed in the advancement of several research areas, e.g., multiferroic compounds, nonmagnetic superconductors, etc. In this work, we investigate the ground-state phase diagram of a generalized spin-3/2 bilinear-biquadratic-bicubic Heisenberg chain in the representation of multipola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08099v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08099v1-abstract-full" style="display: none;"> The generation of nonuniform quadrupole states plays a crucial role in understanding various fascinating phenomena observed in the advancement of several research areas, e.g., multiferroic compounds, nonmagnetic superconductors, etc. In this work, we investigate the ground-state phase diagram of a generalized spin-3/2 bilinear-biquadratic-bicubic Heisenberg chain in the representation of multipolar operators. By numerical simulations with the large-scale density-matrix renormalization group (DMRG) method, we successfully identify a tetramerization phase and a stripe-Q phase. These phases are characterized by the emergence of nonuniform quadrupole orders resulting from the spontaneous breaking of translation symmetry. In particular, tetramerization phase refers to the quadrupole operators take a four-cycle, while the stripe-Q phase represents a striped pattern in quadrupole operators. Additionally, we demonstrate the presence of a Wess-Zumino-Witten (WZW) model with level k = 1 at the transition point between the dimerized (DM) phase and the Luttinger liquid (LL) phase, based on strong numerical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08099v1-abstract-full').style.display = 'none'; document.getElementById('2311.08099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01821">arXiv:2311.01821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01821">pdf</a>, <a href="https://arxiv.org/format/2311.01821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.035126">10.1103/PhysRevB.109.035126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transitions in the Haldane-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wan-Xiu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondaini%2C+R">Rubem Mondaini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hong-Gang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01821v1-abstract-short" style="display: inline;"> The Haldane-Hubbard model is a prime example of the combined effects of band topology and electronic interaction. We revisit its spinful phase diagram at half-filling as a consensus on the presence of SU($2$) symmetry is currently lacking. To start, we utilize the Hartree-Fock mean-field method, which offers a direct understanding of symmetry breaking through the effective mass term that can acqui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01821v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01821v1-abstract-full" style="display: none;"> The Haldane-Hubbard model is a prime example of the combined effects of band topology and electronic interaction. We revisit its spinful phase diagram at half-filling as a consensus on the presence of SU($2$) symmetry is currently lacking. To start, we utilize the Hartree-Fock mean-field method, which offers a direct understanding of symmetry breaking through the effective mass term that can acquire spin dependence. Our results, in agreement with previous studies, provide an instructive insight into the regime where the Chern number $C=1$, with only one spin species remaining topological. Besides that, we numerically study the phase diagram of the Haldane-Hubbard model via a large-scale infinite-density matrix renormalization group (iDMRG) method. The phase boundaries are determined by the Chern number and the correlation lengths obtained from the transfer-matrix spectrum. Unlike previous studies, the iDMRG method investigates the Haldane-Hubbard model on a thin and infinitely long cylinder and examines scenarios consistent with the two-dimensional thermodynamic limit. Here, the phase diagram we obtained qualitatively goes beyond the Hartree-Fock scope, particularly in the $C=1$ region, and serves as a quantitative benchmark for further theoretical and experimental investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01821v1-abstract-full').style.display = 'none'; document.getElementById('2311.01821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 035126 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16591">arXiv:2310.16591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Piezoelectric Anisotropy of Tetragonal ABO3 Perovskites: A High-Throughput Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+F">Fanhao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shaowen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shunbo Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianguo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinrong Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16591v1-abstract-short" style="display: inline;"> A comprehensive understand of the intrinsic piezoelectric anisotropy stemming from diverse chemical and physical factors is a key step for the rational design of highly anisotropic materials. We performed high-throughput calculations on tetragonal ABO3 perovskites to investigate the piezoelectricity and the interplay between lattice, displacement, polarization and elasticity. Among the 123 types o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16591v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16591v1-abstract-full" style="display: none;"> A comprehensive understand of the intrinsic piezoelectric anisotropy stemming from diverse chemical and physical factors is a key step for the rational design of highly anisotropic materials. We performed high-throughput calculations on tetragonal ABO3 perovskites to investigate the piezoelectricity and the interplay between lattice, displacement, polarization and elasticity. Among the 123 types of perovskites, the structural tetragonality is naturally divided into two categories: normal tetragonal (c/a ratio &lt; 1.1) and super-tetragonal (c/a ratio &gt; 1.17), exhibiting distinct ferroelectric, elastic, and piezoelectric properties. Charge analysis revealed the mechanisms underlying polarization saturation and piezoelectricity suppression in the super-tetragonal region, which also produces an inherent contradiction between high d33 and large piezoelectric anisotropy ratio |d33/d31|. The polarization axis and elastic softness direction jointly determine the maximum longitudinal piezoelectric response d33 direction. The validity and deficiencies of the widely utilized |d33/d31| ratio for representing piezoelectric anisotropy were reevaluated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16591v1-abstract-full').style.display = 'none'; document.getElementById('2310.16591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15212">arXiv:2310.15212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15212">pdf</a>, <a href="https://arxiv.org/format/2310.15212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Photoemission study and band alignment of GaN passivation layers on GaInP heterointerface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shekarabi%2C+S">S. Shekarabi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pour%2C+M+A+Z">M. A. Zare Pour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">H. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">C. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romanyuk%2C+O">O. Romanyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paszuk%2C+A">A. Paszuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">S. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hannappel%2C+T">T. Hannappel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15212v1-abstract-short" style="display: inline;"> III-V semiconductor-based photoelectrochemical (PEC) devices show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. GaInP is a relevant top photoabsorber layer or a charge-selective contact in PEC for integrated and direct solar fuel production, due to its tunable lattice constant, electronic band structure, and favorable optical properties. To enhance the stability of its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15212v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15212v1-abstract-full" style="display: none;"> III-V semiconductor-based photoelectrochemical (PEC) devices show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. GaInP is a relevant top photoabsorber layer or a charge-selective contact in PEC for integrated and direct solar fuel production, due to its tunable lattice constant, electronic band structure, and favorable optical properties. To enhance the stability of its surface against chemical corrosion which leads to decomposition, we deposit a GaN protection and passivation layer. The n-doped GaInP(100) epitaxial layers were grown by metalorganic chemical vapor deposition on top of GaAs(100) substrate. Subsequently, thin 1-20 nm GaN films were grown on top of the oxidized GaInP surfaces by atomic layer deposition. We studied the band alignment of these multi-junction heterostructures by X-ray and ultraviolet photoelectron spectroscopy. Due to the limited emission depth of photoelectrons, we determined the band alignment by a series of separate measurements in which we either modified the GaInP(100) surface termination or the film thickness of the grown GaN on GaInP(100) buffer layers. On n-GaInP(100) surfaces prepared with the well-known phosphorus-rich (2x2)/c(4x2) reconstruction we found up-ward surface band bending (BB) of 0.34 eV, and Fermi level pinning due to the present surface states. Upon oxidation, the surface states are partially passivated resulting in a reduction of BB to 0.12 eV and a valence band offset (VBO) between GaInP and oxide bands of 2.0 eV. Between the GaInP(100) buffer layer and the GaN passivation layer, we identified a VBO of 1.8 eV. The corresponding conduction band offset of -0.2 eV is found to be rather small. Therefore, we evaluate the application of the GaN passivation layer as a promising technological step not only to reduce surface states but also to increase the stability of the surfaces of photoelectrochemical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15212v1-abstract-full').style.display = 'none'; document.getElementById('2310.15212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10189">arXiv:2310.10189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10189">pdf</a>, <a href="https://arxiv.org/format/2310.10189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Multiflagellate Swimming Controlled by Interflagella Hydrodynamic Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shiyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanlong Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10189v1-abstract-short" style="display: inline;"> Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimming strategy, resembling the microalgae, and investigate the effects of interflagella hydrodynamic interactions (iHIs) on the swimming performance. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or red&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10189v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10189v1-abstract-full" style="display: none;"> Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimming strategy, resembling the microalgae, and investigate the effects of interflagella hydrodynamic interactions (iHIs) on the swimming performance. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by iHIs, determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella is found to be important by both utilizing the iHIs and reducing the oscillatory motion via the basal mechanical coupling. We further demonstrate that an optimal number of flagella could arise when the microswimmer is loaded with a swimmer body. Apart from understanding the role of iHIs in the multiflagellate swimming, this work could also guide laboratory fabrications of novel microswimmers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10189v1-abstract-full').style.display = 'none'; document.getElementById('2310.10189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14977">arXiv:2308.14977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14977">pdf</a>, <a href="https://arxiv.org/format/2308.14977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient thermo-spin conversion in van der Waals ferromagnet FeGaTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuhan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xiaomin Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+T">Takashi Kimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14977v1-abstract-short" style="display: inline;"> Recent discovery of 2D van der Waals (vdW) magnetic materials has spurred progress in developing advanced spintronic devices. A central challenge lies in enhancing the spin-conversion efficiency for building spin-logic or spin-memory devices. We systematically investigated the anomalous Hall effect and anomalous Nernst effect in above-room-temperature van der Waals ferromagnet FeGaTe with perpendi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14977v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14977v1-abstract-full" style="display: none;"> Recent discovery of 2D van der Waals (vdW) magnetic materials has spurred progress in developing advanced spintronic devices. A central challenge lies in enhancing the spin-conversion efficiency for building spin-logic or spin-memory devices. We systematically investigated the anomalous Hall effect and anomalous Nernst effect in above-room-temperature van der Waals ferromagnet FeGaTe with perpendicular anisotropy, uncovering significant spin-conversion effects. The anomalous Hall effect demonstrated an efficient electric spin-charge conversion, with a notable spin Hall angle of 6 $\%$ - 10.38 $\%$. The temperature-dependent behavior of the anomalous Nernst voltage primarily results from the thermo-spin conversion. Uniquely, we have experimentally achieved thermo-spin polarization values of over 690 $\%$ at room temperature and extremely large of 4690 $\%$ at about 93 K. This study illuminates the potential of vdW ferromagnets in advancing efficient spin conversion devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14977v1-abstract-full').style.display = 'none'; document.getElementById('2308.14977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14046">arXiv:2308.14046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14046">pdf</a>, <a href="https://arxiv.org/ps/2308.14046">ps</a>, <a href="https://arxiv.org/format/2308.14046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Quantum Algebra of Chern-Simons Matrix Model and Large $N$ Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Sen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Si Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+D">Dongheng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yehao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14046v3-abstract-short" style="display: inline;"> In this paper we study the algebra of quantum observables of the Chern-Simons matrix model which was originally proposed by Susskind and Polychronakos to describe electrons in fractional quantum Hall effects. We establish the commutation relations for its generators and study the large $N$ limit of its representation. We show that the large $N$ limit algebra is isomorphic to the uniform in $N$ alg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14046v3-abstract-full').style.display = 'inline'; document.getElementById('2308.14046v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14046v3-abstract-full" style="display: none;"> In this paper we study the algebra of quantum observables of the Chern-Simons matrix model which was originally proposed by Susskind and Polychronakos to describe electrons in fractional quantum Hall effects. We establish the commutation relations for its generators and study the large $N$ limit of its representation. We show that the large $N$ limit algebra is isomorphic to the uniform in $N$ algebra studied by Costello, which is isomorphic to the deformed double current algebra studied by Guay. Under appropriate scaling limit, we show that the large $N$ limit algebra degenerates to a Lie algebra which admits a surjective map to the affine Lie algebra of $\mathfrak{u}(p)$. This leads to a complete proof of the large $N$ emergence of the $\mathfrak{u}(p)$ current algebra as proposed by Dorey, Tong and Turner. This also suggests a rigorous derivation of edge excitation of a fractional quantum Hall droplet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14046v3-abstract-full').style.display = 'none'; document.getElementById('2308.14046v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+15 pages. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81T32; 81S08; 81V70; 81R60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10400">arXiv:2308.10400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10400">pdf</a>, <a href="https://arxiv.org/format/2308.10400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Effect of viscoelastic fluid on the lift force in lubricated contacts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shiyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanlong Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doi%2C+M">Masao Doi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10400v1-abstract-short" style="display: inline;"> We consider a cylinder immersed in viscous fluid moving near a flat substrate covered by an incompressible viscoelastic fluid layer, and study the effect of the fluid viscoelasticity on the lift force exerted on the cylinder. The lift force is zero when the viscoelastic layer is not deformed, but becomes non-zero when it is deformed. We calculate the lift force by considering both the tangential s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10400v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10400v1-abstract-full" style="display: none;"> We consider a cylinder immersed in viscous fluid moving near a flat substrate covered by an incompressible viscoelastic fluid layer, and study the effect of the fluid viscoelasticity on the lift force exerted on the cylinder. The lift force is zero when the viscoelastic layer is not deformed, but becomes non-zero when it is deformed. We calculate the lift force by considering both the tangential stress and the normal stress applied at the surface of the viscoelastic layer. Our analysis indicates that as the layer changes from the elastic limit to the viscous limit, the lift force decreases with the decrease of the Deborah number (De). For small De, the effect of the layer elasticity is taken over by the surface tension and the lift force can become negative. We also show that the tangential stress and the interface slip velocity (the surface velocity relative to the substrate), which have been ignored in the previous analysis, give important contributions to the lift force. Especially for thin elastic layer, they give dominant contributions to the lift force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10400v1-abstract-full').style.display = 'none'; document.getElementById('2308.10400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02342">arXiv:2308.02342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02342">pdf</a>, <a href="https://arxiv.org/format/2308.02342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adm6761">10.1126/sciadv.adm6761 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shaydulin%2C+R">Ruslan Shaydulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakrabarti%2C+S">Shouvanik Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeCross%2C+M">Matthew DeCross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herman%2C+D">Dylan Herman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Niraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larson%2C+J">Jeffrey Larson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lykov%2C+D">Danylo Lykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minssen%2C+P">Pierre Minssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dreiling%2C+J+M">Joan M. Dreiling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaebler%2C+J+P">John P. Gaebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatterman%2C+T+M">Thomas M. Gatterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+J+A">Justin A. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">Kevin Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gresh%2C+D">Dan Gresh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hewitt%2C+N">Nathan Hewitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horst%2C+C+V">Chandler V. Horst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaohan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansen%2C+J">Jacob Johansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matheny%2C+M">Mitchell Matheny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mengle%2C+T">Tanner Mengle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+M">Michael Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moses%2C+S+A">Steven A. Moses</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02342v2-abstract-short" style="display: inline;"> The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02342v2-abstract-full').style.display = 'inline'; document.getElementById('2308.02342v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02342v2-abstract-full" style="display: none;"> The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02342v2-abstract-full').style.display = 'none'; document.getElementById('2308.02342v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal-accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 10 (22), eadm6761 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01359">arXiv:2307.01359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01359">pdf</a>, <a href="https://arxiv.org/format/2307.01359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.224109">10.1103/PhysRevB.107.224109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward an accurate equation of state and B1-B2 phase boundary for magnesium oxide to TPa pressures and eV temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paul%2C+R">Reetam Paul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S+X">S. X. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+M+A">Miguel A. Morales</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01359v1-abstract-short" style="display: inline;"> By applying auxiliary-field quantum Monte Carlo, we calculate the equation of state (EOS) and B1-B2 phase transition of magnesium oxide (MgO) up to 1 TPa. The results agree with available experimental data at low pressures and are used to benchmark the performance of various exchange-correlation functionals in density functional theory calculations. We determine PBEsol is an optimal choice for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01359v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01359v1-abstract-full" style="display: none;"> By applying auxiliary-field quantum Monte Carlo, we calculate the equation of state (EOS) and B1-B2 phase transition of magnesium oxide (MgO) up to 1 TPa. The results agree with available experimental data at low pressures and are used to benchmark the performance of various exchange-correlation functionals in density functional theory calculations. We determine PBEsol is an optimal choice for the exchange-correlation functional and perform extensive phonon and quantum molecular-dynamics calculations to obtain the thermal EOS. Our results provide a preliminary reference for the EOS and B1-B2 phase boundary of MgO from zero up to 10,500 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01359v1-abstract-full').style.display = 'none'; document.getElementById('2307.01359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages (single column), 16 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 224109 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01260">arXiv:2307.01260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01260">pdf</a>, <a href="https://arxiv.org/format/2307.01260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245114">10.1103/PhysRevB.108.245114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nontrivial worldline winding in non-Hermitian quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Xin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Yongxu Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01260v2-abstract-short" style="display: inline;"> Amid the growing interest in non-Hermitian quantum systems, non-interacting models have received the most attention. Here, through the stochastic series expansion quantum Monte Carlo method, we investigate non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains. While calculations yield consistent numerical results under open boundary conditions, non-H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01260v2-abstract-full').style.display = 'inline'; document.getElementById('2307.01260v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01260v2-abstract-full" style="display: none;"> Amid the growing interest in non-Hermitian quantum systems, non-interacting models have received the most attention. Here, through the stochastic series expansion quantum Monte Carlo method, we investigate non-Hermitian physics in interacting quantum systems, e.g., various non-Hermitian quantum spin chains. While calculations yield consistent numerical results under open boundary conditions, non-Hermitian quantum systems under periodic boundary conditions observe an unusual concentration of imaginary-time worldlines over nontrivial winding and require enhanced ergodicity between winding-number sectors for proper convergences. Such nontrivial worldline winding is an emergent physical phenomenon that also exists in other non-Hermitian models and analytical approaches. Alongside the non-Hermitian skin effect and the point-gap spectroscopy, it largely extends the identification and analysis of non-Hermitian topological phenomena to quantum systems with interactions, finite temperatures, biorthogonal basis, and periodic boundary conditions in a novel and controlled fashion. Finally, we study the direct physical implications of such nontrivial worldline winding, which bring additional, potentially quasi-long-range contributions to the entanglement entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01260v2-abstract-full').style.display = 'none'; document.getElementById('2307.01260v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B, 108, 245114(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09143">arXiv:2306.09143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09143">pdf</a>, <a href="https://arxiv.org/format/2306.09143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245131">10.1103/PhysRevB.107.245131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous dimerization, spin-nematic order, and deconfined quantum critical point in a spin-1 Kitaev chain with tunable single-ion anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jinbin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jize Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kee%2C+H">Hae-Young Kee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09143v1-abstract-short" style="display: inline;"> The Kitaev-type spin chains have been demonstrated to be fertile playgrounds in which exotic phases and unconventional phase transitions are ready to appear. In this work, we use the density-matrix renormalization group method to study the quantum phase diagram of a spin-1 Kitaev chain with a tunable negative single-ion anisotropy (SIA). When the strength of the SIA is small, the ground state is r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09143v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09143v1-abstract-full" style="display: none;"> The Kitaev-type spin chains have been demonstrated to be fertile playgrounds in which exotic phases and unconventional phase transitions are ready to appear. In this work, we use the density-matrix renormalization group method to study the quantum phase diagram of a spin-1 Kitaev chain with a tunable negative single-ion anisotropy (SIA). When the strength of the SIA is small, the ground state is revealed to be a spin-nematic phase which escapes conventional magnetic order but is characterized by a finite spin-nematic correlation because of the breaking spin-rotational symmetry. As the SIA increases, the spin-nematic phase is taken over by either a dimerized phase or an antiferromagnetic phase through an Ising-type phase transition, depending on the direction of the easy axis. For large enough SIA, the dimerized phase and the antiferromagnetic phase undergo a ``Landau-forbidden&#34; continuous phase transition, suggesting new platform of deconfined quantum critical point in spin-1 Kitaev chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09143v1-abstract-full').style.display = 'none'; document.getElementById('2306.09143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11+$蔚$ pages, 9 figures. Phys. Rev. B to appear</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 245131 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11376">arXiv:2305.11376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022WR034024">10.1029/2022WR034024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Size distributions reveal regime transition of lake systems under different dominant driving forces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shengjie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhenlei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torres%2C+S">Sergio Torres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zipeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Ling Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11376v1-abstract-short" style="display: inline;"> Power law size distribution is found to associate with fractal, self-organized behaviors and patterns of complex systems. Such distribution also emerges from natural lakes, with potentially important links to the dynamics of lake systems. But the driving mechanism that generates and shapes this feature in lake systems remains unclear. Moreover, the power law itself was found inadequate for fully d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11376v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11376v1-abstract-full" style="display: none;"> Power law size distribution is found to associate with fractal, self-organized behaviors and patterns of complex systems. Such distribution also emerges from natural lakes, with potentially important links to the dynamics of lake systems. But the driving mechanism that generates and shapes this feature in lake systems remains unclear. Moreover, the power law itself was found inadequate for fully describing the size distribution of lakes, due to deviations at the two ends of size range. Based on observed and simulated lakes in 11 hydro-climatic zones of China, we established a conceptual model for lake systems, which covers the whole size range of lake size distribution and reveals the underlying driving mechanism. The full lake size distribution is composed of three components, with three phases featured by exponential, stretched-exponential and power law distribution. The three phases represent system states with successively increasing degrees of heterogeneity and orderliness, and more importantly, indicate the dominance of exogenic and endogenic forces, respectively. As the dominant driving force changes from endogenic to exogenic, a phase transition occurs with lake size distribution shifted from power law to stretched-exponential and further to exponential distribution. Apart from compressing the power law phase, exogenic force also increases its scaling exponent, driving the corresponding lake size power spectrum into the regime of blue noise. During this process, the autocorrelation function of the lake system diverges with a possibility of going to infinity, indicating the loss of system resilience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11376v1-abstract-full').style.display = 'none'; document.getElementById('2305.11376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14254">arXiv:2304.14254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14254">pdf</a>, <a href="https://arxiv.org/format/2304.14254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53841-x">10.1038/s41467-024-53841-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Stripe Manipulation of Superconducting Pairing Symmetry Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+P">Peigeng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">Xuelei Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+R">Runyu Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Ying Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+T">Tianxing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hai-Qing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14254v4-abstract-short" style="display: inline;"> Charge stripes have been widely observed in many different types of unconventional superconductors, holding varying periods ($\mathcal{P}$) and intensities. However, a general understanding on the interplay between charge stripes and superconducting properties is still incomplete. Here, using large-scale unbiased numerical simulations on a general inhomogeneous Hubbard model, we discover that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14254v4-abstract-full').style.display = 'inline'; document.getElementById('2304.14254v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14254v4-abstract-full" style="display: none;"> Charge stripes have been widely observed in many different types of unconventional superconductors, holding varying periods ($\mathcal{P}$) and intensities. However, a general understanding on the interplay between charge stripes and superconducting properties is still incomplete. Here, using large-scale unbiased numerical simulations on a general inhomogeneous Hubbard model, we discover that the charge-stripe period $\mathcal{P}$, which is variable in different real material systems, could dictate the pairing symmetries -- $d$ wave for $\mathcal{P} \ge 4$, $s$ and $d$ waves for $\mathcal{P} \le 3$. In the latter, tuning hole doping and charge-stripe amplitude can trigger a $d$-$s$ wave transition and magnetic-correlation shift, where the $d$-wave state converts to a pairing-density wave state, competing with the $s$ wave. These interesting phenomena arise from an unusual stripe-induced selection rule of pairing symmetries around on-stripe region and within inter-stripe region, giving rise to a critical point of $\mathcal{P}=3$ for the phase transition. In general, our findings offer new insights into the differences in the superconducting pairing mechanisms across many $\mathcal{P}$-dependent superconducting systems, highlighting the decisive role of charge stripe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14254v4-abstract-full').style.display = 'none'; document.getElementById('2304.14254v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures and 8 pages in main text, with a Supplemental Material which include 22 figures. Much more data by DQMC, DMRG and CPQMC are added. Awaiting resubmission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, 9502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10368">arXiv:2304.10368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10368">pdf</a>, <a href="https://arxiv.org/format/2304.10368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Negative superinflating bipartite fluctuations near exceptional points in $\mathcal{PT}$-symmetric models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+W">Wei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10368v2-abstract-short" style="display: inline;"> We investigate bipartite particle number fluctuations near the rank-$2$ exceptional points (EPs) of $\mathcal{PT}$-symmetric Su-Schrieffer-Heeger models. Beyond a conformal field theory of massless fermions, fluctuations or equivalently compressibility is negative definite and exhibits superinflation in leading order at EPs, due to the defectiveness in the biorthogonal Hilbert space. Associated wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10368v2-abstract-full').style.display = 'inline'; document.getElementById('2304.10368v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10368v2-abstract-full" style="display: none;"> We investigate bipartite particle number fluctuations near the rank-$2$ exceptional points (EPs) of $\mathcal{PT}$-symmetric Su-Schrieffer-Heeger models. Beyond a conformal field theory of massless fermions, fluctuations or equivalently compressibility is negative definite and exhibits superinflation in leading order at EPs, due to the defectiveness in the biorthogonal Hilbert space. Associated with the bipartite von Neumann entanglement entropy, a parameter in an anomalous correspondence referencing from a purely non-Hermitian limit helps characterize two inequivalent EP sets. Our work paves the way for understanding the singularity of fluctuations relevant to EPs, more promisingly detectable in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10368v2-abstract-full').style.display = 'none'; document.getElementById('2304.10368v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 + 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09459">arXiv:2304.09459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09459">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing Phonon dynamics and Electron-Phonon Coupling by High Harmonic Generation in Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi-Qi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin-Bao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Da-Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09459v1-abstract-short" style="display: inline;"> Acting as a highly nonlinear response to the strong laser field, high harmonic generation (HHG) naturally contains the fingerprints of atomic and electronic properties of materials. Electronic properties of a solid such as band structure and topology can thus be probed, while the phonon dynamics during HHG are often neglected. Here we show that by exploiting the effects of phonon deformation on HH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09459v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09459v1-abstract-full" style="display: none;"> Acting as a highly nonlinear response to the strong laser field, high harmonic generation (HHG) naturally contains the fingerprints of atomic and electronic properties of materials. Electronic properties of a solid such as band structure and topology can thus be probed, while the phonon dynamics during HHG are often neglected. Here we show that by exploiting the effects of phonon deformation on HHG, the intrinsic phonon information can be deciphered and direct probing of band- and mode-resolved electron-phonon couplings (EPC) of photoexcited materials is possible. Considering HHG spectroscopy can be vacuum free and unrestricted to electron occupation, this work suggests HHG is promising for all-optical characterization of EPC in solids, especially for gapped quantum states or materials under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09459v1-abstract-full').style.display = 'none'; document.getElementById('2304.09459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.18179">arXiv:2303.18179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.18179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Anti-Stokes Photoluminescence in Monolayer WSe$_2$ Activated by Plasmonic Cavities through Resonant Excitation of Dark Excitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mueller%2C+N+S">Niclas S. Mueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arul%2C+R">Rakesh Arul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saunders%2C+A+P">Ashley P. Saunders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+C">Amalya C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Iglesias%2C+A">Ana S谩nchez-Iglesias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+L+A">Lukas A. Jakob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bar-David%2C+J">Jonathan Bar-David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Nijs%2C+B">Bart de Nijs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liz-Marz%C3%A1n%2C+L+M">Luis M. Liz-Marz谩n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberg%2C+J+J">Jeremy J. Baumberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.18179v1-abstract-short" style="display: inline;"> Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe$_2$ monolayers through resonant excitation of a dark exciton. The tightly confined plasmonic fields excite the out-of-plane transition dipole of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18179v1-abstract-full').style.display = 'inline'; document.getElementById('2303.18179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.18179v1-abstract-full" style="display: none;"> Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe$_2$ monolayers through resonant excitation of a dark exciton. The tightly confined plasmonic fields excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy. Through statistical measurements on hundreds of plasmonic cavities, we show that coupling to the dark exciton is key to achieving a near hundred-fold enhancement of the upconverted PL intensity. This is further corroborated by experiments in which the laser excitation wavelength is tuned across the dark exciton. Finally, we show that an asymmetric nanoparticle shape and precise geometry are key for consistent activation of the dark exciton and efficient PL upconversion. Our work introduces a new excitation channel for anti-Stokes PL in WSe$_2$ and paves the way for large-area substrates providing optical cooling, anti-Stokes lasing, and radiative engineering of excitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18179v1-abstract-full').style.display = 'none'; document.getElementById('2303.18179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02523">arXiv:2302.02523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02523">pdf</a>, <a href="https://arxiv.org/ps/2302.02523">ps</a>, <a href="https://arxiv.org/format/2302.02523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.195127">10.1103/PhysRevB.108.195127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Principle of learning sign rules by neural networks in qubit lattice models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">Ke Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02523v3-abstract-short" style="display: inline;"> A neural network is a powerful tool that can uncover hidden laws beyond human intuition. However, it often appears as a black box due to its complicated nonlinear structures. By drawing upon the Gutzwiller mean-field theory, we can showcase a principle of sign rules for ordered states in qubit lattice models. We introduce a shallow feed-forward neural network with a single hidden neuron to present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02523v3-abstract-full').style.display = 'inline'; document.getElementById('2302.02523v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02523v3-abstract-full" style="display: none;"> A neural network is a powerful tool that can uncover hidden laws beyond human intuition. However, it often appears as a black box due to its complicated nonlinear structures. By drawing upon the Gutzwiller mean-field theory, we can showcase a principle of sign rules for ordered states in qubit lattice models. We introduce a shallow feed-forward neural network with a single hidden neuron to present these sign rules. We conduct systematical benchmarks in various models, including the generalized Ising, spin-$1/2$ XY, (frustrated) Heisenberg rings, triangular XY antiferromagnet on a torus, and the Fermi-Hubbard ring at an arbitrary filling. These benchmarks show that all the leading-order sign rule characteristics can be visualized in classical forms, such as pitch angles. Besides, quantum fluctuations can result in an imperfect accuracy rate quantitatively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02523v3-abstract-full').style.display = 'none'; document.getElementById('2302.02523v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 195127 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03838">arXiv:2301.03838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03838">pdf</a>, <a href="https://arxiv.org/ps/2301.03838">ps</a>, <a href="https://arxiv.org/format/2301.03838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.174508">10.1103/PhysRevB.108.174508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent Josephson tunneling between Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ flakes twisted by 45$^\circ$ across the superconducting dome </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuying Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zechao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03838v1-abstract-short" style="display: inline;"> There is a heated debate on the Josephson effect in twisted Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ flakes. Recent experimental results suggest the presence of either anomalously isotropic pairing or exotic $d$+i$d$-wave pairing, in addition to the commonly believed $d$-wave one. Here, we address this controversy by fabricating ultraclean junctions with uncompromised crystalline quality and stoichiometry at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03838v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03838v1-abstract-full" style="display: none;"> There is a heated debate on the Josephson effect in twisted Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ flakes. Recent experimental results suggest the presence of either anomalously isotropic pairing or exotic $d$+i$d$-wave pairing, in addition to the commonly believed $d$-wave one. Here, we address this controversy by fabricating ultraclean junctions with uncompromised crystalline quality and stoichiometry at the junction interfaces. In the optimally doped regime, we obtain prominent Josephson coupling (2-4 mV) in multiple junctions with the twist angle of 45$^\circ$, in sharp contrast to a recent report that shows two orders of magnitude suppression around 45$^\circ$ from the value at 0$^\circ$. We further extend this study to the previously unexplored overdoped regime and observe pronounced Josephson tunneling at 45$^\circ$ together with Josephson diode effect up to 50 K. Our work helps establish the persistent presence of an isotropic pairing component across the entire superconducting phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03838v1-abstract-full').style.display = 'none'; document.getElementById('2301.03838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 174508 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16420">arXiv:2211.16420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16420">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06264-5">10.1038/s41586-023-06264-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixing of surface and bulk electronic states at a graphite-hexagonal boron nitride interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mullan%2C+C">Ciaran Mullan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slizovskiy%2C+S">Sergey Slizovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jun Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuigang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yaping Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B+A">Benjamin A. Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Sheng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">Kostya S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fal%27ko%2C+V+I">Vladimir I. Fal&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishchenko%2C+A">Artem Mishchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16420v1-abstract-short" style="display: inline;"> Van der Waals assembly enables exquisite design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moir茅 superlattices. Here we show that electronic states in three-dimensional (3D) crystals such as graphite can also be tuned by the superlattice potential arising at the interface with another crystal, namel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16420v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16420v1-abstract-full" style="display: none;"> Van der Waals assembly enables exquisite design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moir茅 superlattices. Here we show that electronic states in three-dimensional (3D) crystals such as graphite can also be tuned by the superlattice potential arising at the interface with another crystal, namely, crystallographically aligned hexagonal boron nitride. Such alignment is found to result in a multitude of Lifshitz transitions and Brown-Zak oscillations for near-surface 2D states whereas, in high magnetic fields, fractal states of Hofstadter&#39;s butterfly extend deep into graphite&#39;s bulk. Our work shows a venue to control 3D spectra by using the approach of 2D twistronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16420v1-abstract-full').style.display = 'none'; document.getElementById('2211.16420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08060">arXiv:2208.08060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08060">pdf</a>, <a href="https://arxiv.org/ps/2208.08060">ps</a>, <a href="https://arxiv.org/format/2208.08060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Correlated topological pumping of interacting bosons assisted by Bloch oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+Y">Yongguan Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chaohong Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08060v1-abstract-short" style="display: inline;"> Thouless pumping, not only achieving quantized transport but also immune to moderate disorder, has attracted growing attention in both experiments and theories. Here, we explore how particle-particle interactions affect topological transport in a periodically-modulated and tilted optical lattice. Not limited to wannier states, our scheme ensures a dispersionless quantized transport even for initia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08060v1-abstract-full').style.display = 'inline'; document.getElementById('2208.08060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08060v1-abstract-full" style="display: none;"> Thouless pumping, not only achieving quantized transport but also immune to moderate disorder, has attracted growing attention in both experiments and theories. Here, we explore how particle-particle interactions affect topological transport in a periodically-modulated and tilted optical lattice. Not limited to wannier states, our scheme ensures a dispersionless quantized transport even for initial Gaussian-like wave packets of interacting bosons which do not uniformly occupy a given band. This is because the tilting potential leads to Bloch oscillations uniformly sampling the Berry curvatures over the entire Brillouin zone. The interplay among on-site potential difference, tunneling rate and interactions contributes to the topological transport of bound and scattering states and the topologically resonant tunnelings. Our study deepens the understanding of correlation effects on topological states, and provides a feasible way for detecting topological properties in interacting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08060v1-abstract-full').style.display = 'none'; document.getElementById('2208.08060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00731">arXiv:2207.00731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00731">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-31779-2">10.1038/s41467-022-31779-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gas permeation through graphdiyne-based nanoporous membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhihua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Y">Yongtao Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bera%2C+A">Achintya Bera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Z">Zecheng Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yagmurcukardes%2C+M">Mehmet Yagmurcukardes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yichao Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guanghua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishchenko%2C+A">Artem Mishchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timokhin%2C+I">Ivan Timokhin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Canbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yizhen Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boya%2C+R">Radha Boya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Honggang Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haigh%2C+S">Sarah Haigh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huibiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">Francois M. Peeters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">Andre K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Sheng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00731v1-abstract-short" style="display: inline;"> Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeability. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00731v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00731v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00731v1-abstract-full" style="display: none;"> Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeability. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of ~0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00731v1-abstract-full').style.display = 'none'; document.getElementById('2207.00731v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05559">arXiv:2206.05559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202008080">10.1002/adma.202008080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable linearity of high-performance vertical dual-gate vdW phototransistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jinpeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiaoguang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Siqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+D">Dong Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+N">Nannan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Dan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yingchun Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05559v1-abstract-short" style="display: inline;"> Layered two-dimensional (2D) semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05559v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05559v1-abstract-full" style="display: none;"> Layered two-dimensional (2D) semiconductors have been widely exploited in photodetectors due to their excellent electronic and optoelectronic properties. To improve their performance, photogating, photoconductive, photovoltaic, photothermoelectric, and other effects have been used in phototransistors and photodiodes made with 2D semiconductors or hybrid structures. However, it is difficult to achieve the desired high responsivity and linear photoresponse simultaneously in a monopolar conduction channel or a p-n junction. Here we present dual-channel conduction with ambipolar multilayer WSe2 by employing the device concept of dual-gate phototransistor, where p-type and n-type channels are produced in the same semiconductor using opposite dual-gating. It is possible to tune the photoconductive gain using a vertical electric field, so that the gain is constant with respect to the light intensity-a linear photoresponse, with a high responsivity of ~2.5*10^4 A/W. Additionally, the 1/f noise of the device is kept at a low level under the opposite dual-gating due to the reduction of current and carrier fluctuation, resulting in a high detectivity of ~2*10^13 Jones in the linear photoresponse regime. The linear photoresponse and high performance of our dual-gate WSe2 phototransistor offer the possibility of achieving high-resolution and quantitative light detection with layered 2D semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05559v1-abstract-full').style.display = 'none'; document.getElementById('2206.05559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 33(15), 2008080, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09641">arXiv:2204.09641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09641">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38124-1">10.1038/s41467-023-38124-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+L+A">Lukas A. Jakob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deacon%2C+W+M">William M. Deacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Nijs%2C+B">Bart de Nijs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pavlenko%2C+E">Elena Pavlenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carnegie%2C+C">Cloudy Carnegie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neuman%2C+T">Tomas Neuman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esteban%2C+R">Ruben Esteban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aizpurua%2C+J">Javier Aizpurua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberg%2C+J+J">Jeremy J. Baumberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09641v2-abstract-short" style="display: inline;"> Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Here we show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling so that intense laser illumination drastically softens the molecular bonds. This optomechanical pumping regime produces strong&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09641v2-abstract-full').style.display = 'inline'; document.getElementById('2204.09641v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09641v2-abstract-full" style="display: none;"> Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Here we show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling so that intense laser illumination drastically softens the molecular bonds. This optomechanical pumping regime produces strong distortions of the Raman vibrational spectrum related to giant vibrational frequency shifts from an optical spring effect which is hundred-fold larger than in traditional cavities. The theoretical simulations accounting for the multimodal nanocavity response and near-field-induced collective phonon interactions are consistent with the experimentally-observed non-linear behavior exhibited in the Raman spectra of nanoparticle-on-mirror constructs illuminated by ultrafast laser pulses. Further, we show indications that plasmonic picocavities allow us to access the optical spring effect in single molecules with continuous illumination. Driving the collective phonon in the nanocavity paves the way to control reversible bond softening, as well as irreversible chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09641v2-abstract-full').style.display = 'none'; document.getElementById('2204.09641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14:3291 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07739">arXiv:2204.07739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07739">pdf</a>, <a href="https://arxiv.org/format/2204.07739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045130">10.1103/PhysRevB.106.045130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum phase diagram for two species hardcore bosons in one-dimensional optical lattices with the resonantly driven Rabi frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+P">Peigeng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haiqing Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07739v2-abstract-short" style="display: inline;"> We propose an experimental realization of the time-periodically modulated Rabi frequency and suggest density-dependent hoppings of two species hardcore bosons in a one-dimensional optical lattice. Distinct from the previous work [Phys. Rev. Research {\bf 2}, 013275 (2020)], we study effects in the first resonance region. In the effective Hamiltonian, the intra-species hopping occurs only if the de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07739v2-abstract-full').style.display = 'inline'; document.getElementById('2204.07739v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07739v2-abstract-full" style="display: none;"> We propose an experimental realization of the time-periodically modulated Rabi frequency and suggest density-dependent hoppings of two species hardcore bosons in a one-dimensional optical lattice. Distinct from the previous work [Phys. Rev. Research {\bf 2}, 013275 (2020)], we study effects in the first resonance region. In the effective Hamiltonian, the intra-species hopping occurs only if the density discrepancy of the other species on these sites is zero, while the inter-species one is allowed once the relevant density discrepancy becomes nonzero. At integer-$1$ filling, the quantum phase diagram of the effective Hamiltonian is determined by the perturbation analysis together with numerical calculations. We find that in the limit of dominant $J_{1}$, the system becomes a double-degenerate dimerized state, with spontaneously breaking the translation symmetry. The interplay of $J_{0}$, $J_{1}$ and the fixed ${\bar U}=1$ leads to three BKT transition lines and a tricritical BKT point. Exact transition lines are obtained by the level spectroscopic technique. Besides, general physical properties, including the charge gap, neutral gap, superfluid density and dimerization strength, are investigated as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07739v2-abstract-full').style.display = 'none'; document.getElementById('2204.07739v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06971">arXiv:2203.06971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28954-w">10.1038/s41467-022-28954-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Little-Parks like oscillations in lightly doped cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+M">Menghan Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuying Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">John Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06971v1-abstract-short" style="display: inline;"> Understanding the rich and competing electronic orders in cuprate superconductors may provide important insight into the mechanism of high-temperature superconductivity. Here, by measuring Bi2Sr2CaCu2O8+x in the extremely underdoped regime, we obtain evidence for a distinct type of ordering, which manifests itself as resistance oscillations at low magnetic fields (&lt;10 T) and at temperatures around&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06971v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06971v1-abstract-full" style="display: none;"> Understanding the rich and competing electronic orders in cuprate superconductors may provide important insight into the mechanism of high-temperature superconductivity. Here, by measuring Bi2Sr2CaCu2O8+x in the extremely underdoped regime, we obtain evidence for a distinct type of ordering, which manifests itself as resistance oscillations at low magnetic fields (&lt;10 T) and at temperatures around the superconducting transition. By tuning the doping level p continuously, we reveal that these low-field oscillations occur only when p&lt;0.1. The oscillation amplitude increases with decreasing p but the oscillation period stays almost constant. We show that these low-field oscillations can be well described by assuming a periodic superconducting structure with a mesh size of about 50 nm. Such a charge order, which is distinctly different from the well-established charge density wave and pair density wave, seems to be an unexpected piece of the puzzle on the correlated physics in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06971v1-abstract-full').style.display = 'none'; document.getElementById('2203.06971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 1316 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13258">arXiv:2202.13258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13258">pdf</a>, <a href="https://arxiv.org/format/2202.13258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0089890">10.1063/5.0089890 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual function spin-wave logic gates based on electric field control magnetic anisotropy boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Fupeng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Miaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dawei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13258v1-abstract-short" style="display: inline;"> Spin waves (SWs) have been considered a promising candidate for encoding information with lower power consumption. Here, we propose the dual function SW logic gates based on the electric field controlling the SW propagation in the Fe film of Fe/BaTiO3 heterostructure with the motion of magnetic anisotropy boundary (MAB). We show micromagnetic simulations to validate the AND-OR and NAND-NOR logic g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13258v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13258v1-abstract-full" style="display: none;"> Spin waves (SWs) have been considered a promising candidate for encoding information with lower power consumption. Here, we propose the dual function SW logic gates based on the electric field controlling the SW propagation in the Fe film of Fe/BaTiO3 heterostructure with the motion of magnetic anisotropy boundary (MAB). We show micromagnetic simulations to validate the AND-OR and NAND-NOR logic gates. Our research may find a path for simplifying integrated logic circuits using such dual function SW logic gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13258v1-abstract-full').style.display = 'none'; document.getElementById('2202.13258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10