CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 263 results for author: <span class="mathjax">Zhou, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhou, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhou%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhou, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00100">arXiv:2503.00100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00100">pdf</a>, <a href="https://arxiv.org/ps/2503.00100">ps</a>, <a href="https://arxiv.org/format/2503.00100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> FuzzifiED -- Julia package for numerics on the fuzzy sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00100v1-abstract-short" style="display: inline;"> The Julia package FuzzifiED aims at simplifying the numerical calculations on the fuzzy sphere. It supports exact diagonalisation (ED) and density matrix renormalisation group (DMRG) calculations. FuzzifiED can also apply to generic fermionic and bosonic models. This documentation provides a review of the fuzzy sphere regularisation and an instruction for using FuzzifiED for numerical calculations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00100v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00100v1-abstract-full" style="display: none;"> The Julia package FuzzifiED aims at simplifying the numerical calculations on the fuzzy sphere. It supports exact diagonalisation (ED) and density matrix renormalisation group (DMRG) calculations. FuzzifiED can also apply to generic fermionic and bosonic models. This documentation provides a review of the fuzzy sphere regularisation and an instruction for using FuzzifiED for numerical calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00100v1-abstract-full').style.display = 'none'; document.getElementById('2503.00100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages. An up-to-date version at https://docs.fuzzified.world/assets/FuzzifiED_Documentation.pdf ; the online documentation at docs.fuzzified.world ( https://docs.fuzzified.world )</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.20733">arXiv:2502.20733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.20733">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-Broken Kondo Screening and Zero-Energy Mode in the Kagome Superconductor CsV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yubing Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zongyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenjian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Run Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xinyuan Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+N">Ning Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+L">Lei Shan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.20733v1-abstract-short" style="display: inline;"> The quantum states of matter reorganize themselves in response to defects, giving rise to emergent local excitations that imprint unique characteristics of the host states. While magnetic impurities are known to generate Kondo screening in a Fermi liquid and Yu-Shiba-Rusinov (YSR) states in a conventional superconductor, it remains unclear whether they can evoke distinct phenomena in the kagome su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20733v1-abstract-full').style.display = 'inline'; document.getElementById('2502.20733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.20733v1-abstract-full" style="display: none;"> The quantum states of matter reorganize themselves in response to defects, giving rise to emergent local excitations that imprint unique characteristics of the host states. While magnetic impurities are known to generate Kondo screening in a Fermi liquid and Yu-Shiba-Rusinov (YSR) states in a conventional superconductor, it remains unclear whether they can evoke distinct phenomena in the kagome superconductor AV3Sb5 (where A is K, Rb or Cs), which may host an orbital-antiferromagnetic charge density wave (CDW) state and an unconventional superconducting state driven by the convergence of topology, geometric frustration and electron correlations. In this work, we visualize the local density of states induced near various types of impurities in both the CDW and superconducting phases of CsV3-xMxSb5 (M = Ta, Cr) using scanning tunneling microscopy. We observe Kondo resonance states near magnetic Cr dopants. Notably, unlike in any known metal or CDW compound, the spatial pattern of Kondo screening breaks all in-plane mirror symmetries of the kagome lattice, suggesting an electronic chirality due to putative orbital loop currents. While Cooper pairs show relative insensitivity to nonmagnetic impurities, native V vacancies with weak magnetic moments induce a pronounced zero-bias conductance peak (ZBCP). This ZBCP coexists with trivial YSR states within the superconducting gap and does not split in energy with increasing tunneling transmission, tending instead to saturate. This behavior is reminiscent of signature of Majorana zero modes, which could be trapped by a sign-change boundary in the superconducting order parameter near a V vacancy, consistent with a surface topological superconducting state. Our findings provide a new approach to exploring novel quantum states on kagome lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20733v1-abstract-full').style.display = 'none'; document.getElementById('2502.20733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14067">arXiv:2502.14067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14067">pdf</a>, <a href="https://arxiv.org/format/2502.14067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Towards a global phase diagram of Ce-based dipolar-octupolar pyrochlore magnets under magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhengbang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14067v1-abstract-short" style="display: inline;"> Recent experiments have established a strong case for Ce$_2$(Zr, Sn, Hf)$_2$O$_7$ to host $蟺$-flux quantum spin ice (QSI). However, an irrefutable conclusion still requires strong, multifaceted evidence. In dipolar-octupolar (DO) compounds, external magnetic fields only strongly couple with the dipolar component $蟿_z$ along its local z-axis in contrast to octupolar components $蟿^{x,y}$. This gives&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14067v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14067v1-abstract-full" style="display: none;"> Recent experiments have established a strong case for Ce$_2$(Zr, Sn, Hf)$_2$O$_7$ to host $蟺$-flux quantum spin ice (QSI). However, an irrefutable conclusion still requires strong, multifaceted evidence. In dipolar-octupolar (DO) compounds, external magnetic fields only strongly couple with the dipolar component $蟿_z$ along its local z-axis in contrast to octupolar components $蟿^{x,y}$. This gives rise to the unique ways magnetic fields interact with the system and, in turn, provides us with a variety of tuning knobs to generate comprehensive experimental results. In this work, we focus on magnetic fields along the (110), (111), and (001) directions and present a plethora of remarkable experimental signatures to probe the underlying physics of $蟺$-flux QSI using gauge mean field theory (GMFT) and Monte Carlo simulations. In particular, we present unique signatures in magnetic field-dependent phase diagrams, equal-time and dynamical structure factors, and magnetostriction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14067v1-abstract-full').style.display = 'none'; document.getElementById('2502.14067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 4 figures; Supplemental material: 14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13585">arXiv:2502.13585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> DFT+DMFT study on pressure-induced valence instability of CeCoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai-Kang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guojun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junshuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhongpo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Y">Yipeng An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13585v1-abstract-short" style="display: inline;"> Rare-earth compounds RCoSi exhibit unique properties, with distinct structural behaviors depending on whether R is a light, middle or heavy rare-earth element. Among them, CeCoSi undergoes a structural phase transition under high pressure, with the phase transition pressure increasing as temperature rises. Some experimental studies suggest that the transition is closely related to the behavior of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13585v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13585v1-abstract-full" style="display: none;"> Rare-earth compounds RCoSi exhibit unique properties, with distinct structural behaviors depending on whether R is a light, middle or heavy rare-earth element. Among them, CeCoSi undergoes a structural phase transition under high pressure, with the phase transition pressure increasing as temperature rises. Some experimental studies suggest that the transition is closely related to the behavior of Ce-4f electrons. In this work, we systematically studied the evolution of the electronic structure of CeCoSi with temperature and pressure. First, we used the DFT+DMFT to calculate the energy-volume curve of CeCoSi, which was in good agreement with the experimental results and far superior to the DFT method. Next, we studied the electronic structure of CeCoSi under different pressures and temperatures using DFT+DMFT. Our results show that CeCoSi is a Kondo metal with hybridization of Ce-4f and Co-3d. As pressure increases, the renormalization factor Z of Ce-4f5/2 increases, the occupancy number of Ce-4f electrons decreases, and CeCoSi transitions to a mixed-valence state at ~5.5 GPa in 100 K. The pressure of the quantum phase transition PQ is slightly higher than the experimentally observed structural phase transition pressure PS, and the PQ increases with increasing temperature, which is consistent with the behavior of PS in experiment. In addition, the hybridization strength of Ce-4f in the mixed-valence state is significantly greater than in the Kondo metal state. Our results suggest that the valence instability of Ce-4f is the cause of the structural phase transition. As pressure increases, Ce-4f electrons delocalize and CeCoSi transitions to mixed-valence state. This valence instability may cause redistribution of electron density, thus inducing a structural phase transition. Our work reveals the cause of the structural phase transition of CeCoSi under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13585v1-abstract-full').style.display = 'none'; document.getElementById('2502.13585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07283">arXiv:2502.07283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07283">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-025-57111-2">10.1038/s41467-025-57111-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Bloch States at Integer Flux Quanta Induced by Super-moir茅 Potential in Graphene Aligned with Twisted Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yaqi Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Meizhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Weixiong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zishu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+K">Kai Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+C">Chenxuan Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weikang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Haoxi Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xiaodong Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shichao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07283v2-abstract-short" style="display: inline;"> Two-dimensional electron systems in both magnetic fields and periodic potentials are described by Hofstadter butterfly, a fundamental problem of solid-state physics. While moir茅 systems provide a powerful method to realize this spectrum, previous experiments, however, have been limited to fractional flux quanta regime due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07283v2-abstract-full').style.display = 'inline'; document.getElementById('2502.07283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07283v2-abstract-full" style="display: none;"> Two-dimensional electron systems in both magnetic fields and periodic potentials are described by Hofstadter butterfly, a fundamental problem of solid-state physics. While moir茅 systems provide a powerful method to realize this spectrum, previous experiments, however, have been limited to fractional flux quanta regime due to the difficulty of building ~ 50 nm periodic modulations. Here, we demonstrate a super-moir茅 strategy to overcome this challenge. By aligning monolayer graphene (G) with 1.0掳 twisted hexagonal boron nitride (t-hBN), a 63.2 nm bichromatic G/t-hBN super-moir茅 is constructed, made possible by exploiting the electrostatic nature of t-hBN potential. Under magnetic field B, magnetic Bloch states at integer flux quanta (1-9) are achieved and observed as integer Brown-Zak oscillations, expanding the flux quanta from factions to integers. Theoretical analysis reproduces these experimental findings. This work opens new avenues to study unexplored Hofstadter butterfly, explore emergent topological order at integer flux quanta and engineer long-wavelength periodic modulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07283v2-abstract-full').style.display = 'none'; document.getElementById('2502.07283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 16, 1860 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04888">arXiv:2502.04888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.04888">pdf</a>, <a href="https://arxiv.org/format/2502.04888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The non-Abelian geometry, topology, and dynamics of a nonreciprocal Su-Schrieffer-Heeger ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Ziyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhi-Cong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+L">Li-Jun Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04888v1-abstract-short" style="display: inline;"> Non-Hermiticity breaks down the adiabaticity and naturally leads to the non-Abelian behaviors in multi-band systems. Here we consider a multi-band, non-Hermitian ladder model with the two legs being the nonreciprocal Su-Schrieffer-Heeger chains. We thoroughly study how the non-Abelian geometry, topology, and dynamics emerge in this model at the onset of inter-leg coupling. Under periodic boundary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04888v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04888v1-abstract-full" style="display: none;"> Non-Hermiticity breaks down the adiabaticity and naturally leads to the non-Abelian behaviors in multi-band systems. Here we consider a multi-band, non-Hermitian ladder model with the two legs being the nonreciprocal Su-Schrieffer-Heeger chains. We thoroughly study how the non-Abelian geometry, topology, and dynamics emerge in this model at the onset of inter-leg coupling. Under periodic boundary conditions, by defining a gauge-invariant winding number for chiral symmetric systems, we analytically give the exact topological phase diagram. With the aid of underlying symmetries generalized for non-Hermitian systems, we further refine the phase diagram by the geometry of band structure. In the pseudo-Hermitian symmetric regime, we find that the stable non-Abelian dynamics of a Bloch state under an external constant force can be well described in some conditions of the force by the Wilson line constructed for non-Hermitian systems. Under open boundary conditions, we also find that the bulk-boundary correspondence survives in the thermodynamic limit but breaks down for finite-size systems with the leg-dependent non-Hermitian skin effect (NHSE), demonstrating the so-called critical NHSE, of which the decaying length of the bulk skin modes $尉$ varies with the system size $L$ and is numerically verified to satisfy the scale-free power law $尉\propto L$. Our work may stimulate more focuses on the non-Abelian properties of the non-Hermitian/open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04888v1-abstract-full').style.display = 'none'; document.getElementById('2502.04888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01258">arXiv:2502.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Polarizing altermagnets by ultrafast asymmetric spin dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhaobo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">Sangeeta Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dewhurst%2C+J+K">John Kay Dewhurst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junjie He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01258v1-abstract-short" style="display: inline;"> Laser pulses are known to induce symmetric demagnetization; equal loss of magnetic moments in the identical sublattices of antiferromagnets and ferromagnets at ultrashort timescale. This is due to their identical local electronic structures guided by the underlying symmetries. Using time-dependent density functional theory, we demonstrate that laser pulses can drive asymmetric demagnetization dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01258v1-abstract-full" style="display: none;"> Laser pulses are known to induce symmetric demagnetization; equal loss of magnetic moments in the identical sublattices of antiferromagnets and ferromagnets at ultrashort timescale. This is due to their identical local electronic structures guided by the underlying symmetries. Using time-dependent density functional theory, we demonstrate that laser pulses can drive asymmetric demagnetization dynamics of identical sublattices in the d-wave altermagnet RuO2, resulting in a photo-induced ferrimagnetic state with a net moment of ~0.2 渭B per unit cell. This polarization arises from the momentum-dependent spin splitting, which is unique to altermagnets, and which induces a momentum-dependent optical intersite spin transfer effect. Furthermore, the ferrimagnetic polarization is highly controllable; depends on the direction of the linear polarized laser. The excitation along the spin-polarized planes breaks the symmetry of the momentum-space magnetization distribution, leading to inequivalent spin-resolved charge transfer between sublattices across both momentum and real space. These findings uncover novel laser-driven pathways to control magnetic order in altermagnets, enabling a phase transition from AM to ferri-magnetic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01258v1-abstract-full').style.display = 'none'; document.getElementById('2502.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19502">arXiv:2412.19502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19502">pdf</a>, <a href="https://arxiv.org/format/2412.19502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear valley Hall effect in a bilayer transition metal dichalcogenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhichao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+R">Ruijing Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+J">Jiayan Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19502v1-abstract-short" style="display: inline;"> Valley-contrasting Hall transport conventionally relies on the inversion symmetry breaking in two-dimensional systems, which greatly limits the selection range of valley materials. In particular, while monolayer transition metal dichalcogenides have been widely utilized as a well-known class of valley materials in valleytronics, the centrosymmetric nature hinders the realization of valley-contrast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19502v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19502v1-abstract-full" style="display: none;"> Valley-contrasting Hall transport conventionally relies on the inversion symmetry breaking in two-dimensional systems, which greatly limits the selection range of valley materials. In particular, while monolayer transition metal dichalcogenides have been widely utilized as a well-known class of valley materials in valleytronics, the centrosymmetric nature hinders the realization of valley-contrasting properties in the bilayer counterparts. Here, taking MoS$_{2}$ as an example, we discover valley-contrasting transport in bilayer transition metal dichalcogenides by exploring nonlinear transport regime. Using effective models and first-principles calculations, our work demonstrates that nonvanishing nonlinear valley Hall conductivities emerge in a uniaxially strained MoS$_{2}$ bilayer, owing to strain-induced band tilts of Dirac fermions. With the aid of small spin-orbit-coupling induced band splittings, the conduction bands generate much remarkable nonlinear valley Hall conductivity. Moreover, the nonlinear conductivities are highly tunable through modulating the strength and the direction of the strain, chemical potential, and interlayer gap. Our findings not only expands material choices for valleytronic applications, but also provides opportunities for designing advanced electronic devices that leverage nonlinear valley transports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19502v1-abstract-full').style.display = 'none'; document.getElementById('2412.19502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12381">arXiv:2412.12381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12381">pdf</a>, <a href="https://arxiv.org/ps/2412.12381">ps</a>, <a href="https://arxiv.org/format/2412.12381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Universal mesoscale heterogeneity and its spatial correlations in equilibrium amorphous solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Boli Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Ziqi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldbart%2C+P+M">Paul M. Goldbart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12381v1-abstract-short" style="display: inline;"> Candidates for random network media include, e.g., systems consisting of long, flexible macromolecules cross-linked (i.e., permanently bonded) together at random to form the network. Owing to the random architecture, the characteristics of the thermal motion of the elements of these media vary randomly from point to point, provided the medium has been cross-linked sufficiently to exhibit the equil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12381v1-abstract-full" style="display: none;"> Candidates for random network media include, e.g., systems consisting of long, flexible macromolecules cross-linked (i.e., permanently bonded) together at random to form the network. Owing to the random architecture, the characteristics of the thermal motion of the elements of these media vary randomly from point to point, provided the medium has been cross-linked sufficiently to exhibit the equilibrium amorphous solid state. A particular replica field theory has long been known to capture the essential physics of amorphous solids and the transition to them. Encoded in the mean value of the field associated with this theory--i.e., the transition&#39;s order parameter--is statistical information about the thermal motions of the constituents: (i) the fraction of localized constituents, and (ii) the heterogeneity of the strength of this localization. Encoded in the field&#39;s correlations is more refined information about the motions, e.g.: (i) how the localization characteristics of pairs of localized constituents are correlated, (ii) how the correlations between the position fluctuations of the pair are distributed, and (iii) how these descriptors vary with pair separation. This information about amorphous solids is referred to as mesoscale heterogeneity. Increasingly accurate approximations to the order parameter and field correlations are examined, beginning with mean-field theory, moving up to the incorporation of gapless (i.e., elastic-displacement) fluctuations, and finally via the qualitative examination of how the gapped branches of fluctuations would further improve accuracy. Hence, an increasingly accurate set of distributions is obtained, which characterize the mesoscale heterogeneity of amorphous solids. Along the way, attention is paid to the induced measure arising from the transformation from the fluctuating order-parameter field to the fluctuating elastic displacement fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12381v1-abstract-full').style.display = 'none'; document.getElementById('2412.12381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12646">arXiv:2411.12646</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12646">pdf</a>, <a href="https://arxiv.org/format/2411.12646">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.111.034108">10.1103/PhysRevE.111.034108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correction-to-scaling exponent for percolation and the Fortuin--Kasteleyn Potts model in two dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yihao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zongzheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salas%2C+J">Jes煤s Salas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12646v2-abstract-short" style="display: inline;"> The number $n_s$ of clusters (per site) of size $s$, a central quantity in percolation theory, displays at criticality an algebraic scaling behavior of the form $n_s\simeq s^{-蟿}\, A\, (1+B s^{-惟})$. For the Fortuin--Kasteleyn representation of the $Q$-state Potts model in two dimensions, the Fisher exponent $蟿$ is known as a function of the real parameter $0\le Q\le4$, and, for bond percolation (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12646v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12646v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12646v2-abstract-full" style="display: none;"> The number $n_s$ of clusters (per site) of size $s$, a central quantity in percolation theory, displays at criticality an algebraic scaling behavior of the form $n_s\simeq s^{-蟿}\, A\, (1+B s^{-惟})$. For the Fortuin--Kasteleyn representation of the $Q$-state Potts model in two dimensions, the Fisher exponent $蟿$ is known as a function of the real parameter $0\le Q\le4$, and, for bond percolation (the $Q\rightarrow 1$ limit), the correction-to-scaling exponent is derived as $惟=72/91$. We theoretically derive the exact formula for the correction-to-scaling exponent $惟=8/[(2g+1)(2g+3)]$ as a function of the Coulomb-gas coupling strength $g$, which is related to $Q$ by $Q=2+2\cos(2 蟺g)$. Using an efficient Monte Carlo cluster algorithm, we study the O($n$) loop model on the hexagonal lattice, which is in the same universality class as the $Q=n^2$ Potts model, and has significantly suppressed finite-size corrections and critical slowing-down. The predictions of the above formula include the exact value for percolation as a special case and agree well with the numerical estimates of $惟$ for both the critical and tricritical branches of the Potts model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12646v2-abstract-full').style.display = 'none'; document.getElementById('2411.12646v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The document contains the paper (pdflatex, 15 pages), and 6 pdf figures. Minor changes with respect v1. Final version for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 111 (2025) 034108 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06062">arXiv:2411.06062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06062">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Powder Diffraction-AI Solution for Crystalline Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengkun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bochun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Liheng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhengyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sujing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06062v1-abstract-short" style="display: inline;"> Determining the atomic-level structure of crystalline solids is critically important across a wide array of scientific disciplines. The challenges associated with obtaining samples suitable for single-crystal diffraction, coupled with the limitations inherent in classical structure determination methods that primarily utilize powder diffraction for most polycrystalline materials, underscore an urg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06062v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06062v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06062v1-abstract-full" style="display: none;"> Determining the atomic-level structure of crystalline solids is critically important across a wide array of scientific disciplines. The challenges associated with obtaining samples suitable for single-crystal diffraction, coupled with the limitations inherent in classical structure determination methods that primarily utilize powder diffraction for most polycrystalline materials, underscore an urgent need to develop alternative approaches for elucidating the structures of commonly encountered crystalline compounds. In this work, we present an artificial intelligence-directed leapfrog model capable of accurately determining the structures of both organic and inorganic-organic hybrid crystalline solids through direct analysis of powder X-ray diffraction data. This model not only offers a comprehensive solution that effectively circumvents issues related to insoluble challenges in conventional structure solution methodologies but also demonstrates applicability to crystal structures across all conceivable space groups. Furthermore, it exhibits notable compatibility with routine powder diffraction data typically generated by standard instruments, featuring rapid data collection and normal resolution levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06062v1-abstract-full').style.display = 'none'; document.getElementById('2411.06062v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05291">arXiv:2411.05291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05291">pdf</a>, <a href="https://arxiv.org/format/2411.05291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.114421">10.1103/PhysRevMaterials.8.114421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual magnetic and transport properties in the Zintl phase Eu$_{11}$Zn$_6$As$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junchao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiong Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05291v1-abstract-short" style="display: inline;"> Narrow-gap rare-earth Zintl phases frequently exhibit fascinating physical phenomena due to their various crystal structures, complex magnetic properties, and tunable transport behaviors. Here we report the synthesis, magnetic, thermodynamic, and transport properties of a Eu-containing Zintl arsenide, Eu$_{11}$Zn$_6$As$_{12}$, which consists of infinite chains of Eu cations and anionic frameworks&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05291v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05291v1-abstract-full" style="display: none;"> Narrow-gap rare-earth Zintl phases frequently exhibit fascinating physical phenomena due to their various crystal structures, complex magnetic properties, and tunable transport behaviors. Here we report the synthesis, magnetic, thermodynamic, and transport properties of a Eu-containing Zintl arsenide, Eu$_{11}$Zn$_6$As$_{12}$, which consists of infinite chains of Eu cations and anionic frameworks constructed from corner-sharing ZnAs$_4$ tetrahedra. Eu$_{11}$Zn$_6$As$_{12}$ exhibits complicated magnetic behavior owing to intricate exchange interactions mediated by the discrete anionic fragments. Two long-range magnetic transitions at 22 K ($T_\mathrm{N}$) and 9 K ($T^*$), as well as exceptionally strong ferromagnetic fluctuations around 29 K ($T_\mathrm{F}$), are indicated by the susceptibility, heat capacity and resistivity measurements. Besides, Eu$_{11}$Zn$_6$As$_{12}$ displays metallic behavior, attributable to the hole carriers doped by slight Eu vacancies or the mixed valence of Eu$^{2+}$ and Eu$^{3+}$. A prominent resistivity peak occurs around $T_\mathrm{N}$, which is rapidly suppressed by the applied field, leading to a prominent negative magnetoresistance effect. A resistivity hysteresis is observed below 5 K, caused by a small net ferromagnetic component. Our study presents the distinct magnetic and transport properties of Eu$_{11}$Zn$_6$As$_{12}$, and further experiments are required to elucidate the origin of these novel behaviors. Moreover, our findings demonstrate that Eu-based Zintl phases are a fertile ground to study the interplay between magnetism and charge transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05291v1-abstract-full').style.display = 'none'; document.getElementById('2411.05291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 8, 114421 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04353">arXiv:2411.04353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04353">pdf</a>, <a href="https://arxiv.org/format/2411.04353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> </div> </div> <p class="title is-5 mathjax"> On the hardness of learning ground state entanglement of geometrically local Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bouland%2C+A">Adam Bouland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zixin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04353v1-abstract-short" style="display: inline;"> Characterizing the entanglement structure of ground states of local Hamiltonians is a fundamental problem in quantum information. In this work we study the computational complexity of this problem, given the Hamiltonian as input. Our main result is that to show it is cryptographically hard to determine if the ground state of a geometrically local, polynomially gapped Hamiltonian on qudits (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04353v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04353v1-abstract-full" style="display: none;"> Characterizing the entanglement structure of ground states of local Hamiltonians is a fundamental problem in quantum information. In this work we study the computational complexity of this problem, given the Hamiltonian as input. Our main result is that to show it is cryptographically hard to determine if the ground state of a geometrically local, polynomially gapped Hamiltonian on qudits ($d=O(1)$) has near-area law vs near-volume law entanglement. This improves prior work of Bouland et al. (arXiv:2311.12017) showing this for non-geometrically local Hamiltonians. In particular we show this problem is roughly factoring-hard in 1D, and LWE-hard in 2D. Our proof works by constructing a novel form of public-key pseudo-entanglement which is highly space-efficient, and combining this with a modification of Gottesman and Irani&#39;s quantum Turing machine to Hamiltonian construction. Our work suggests that the problem of learning so-called &#34;gapless&#34; quantum phases of matter might be intractable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04353v1-abstract-full').style.display = 'none'; document.getElementById('2411.04353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01733">arXiv:2411.01733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01733">pdf</a>, <a href="https://arxiv.org/ps/2411.01733">ps</a>, <a href="https://arxiv.org/format/2411.01733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.122007">10.1103/PhysRevD.110.122007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dependence of Electrostatic Patch Force Evaluation on the Lateral Resolution of Kelvin Probe Force Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+P">Pengshun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinquan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+H">Hang Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zebing Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01733v1-abstract-short" style="display: inline;"> Kelvin Probe Force Microscopy (KPFM) is widely used to measure the surface potential on samples, from which electrostatic patch force can be calculated. However, since the KPFM measurements represent a weighted average of local potentials on the sample, the accuracy of the evaluation critically depends on the precision and lateral resolution of the method. In this paper, we investigate the influen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01733v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01733v1-abstract-full" style="display: none;"> Kelvin Probe Force Microscopy (KPFM) is widely used to measure the surface potential on samples, from which electrostatic patch force can be calculated. However, since the KPFM measurements represent a weighted average of local potentials on the sample, the accuracy of the evaluation critically depends on the precision and lateral resolution of the method. In this paper, we investigate the influence of this averaging effect on patch force estimations using both analytic and numerical methods. First, we derive the correlation functions of patch potential and establish the formulas for calculating the electrostatic patch forces in the parallel-plate geometry, with and without consideration of the KPFM measurement effect. Thus, an analytic method is established to determine the accuracy of patch force evaluation when the statistical parameters of the patch potential and the lateral resolution of the KPFM are given. Second, numerical simulations are employed to explore the dependence of estimated patch forces on the KPFM&#39;s lateral resolution under more realistic conditions. Both analytic and numerical results show a similar dependence of the patch force estimation on the patch characteristic size, potential fluctuation and the lateral resolution of the KPFM. It is also found that the underestimation of the patch force becomes less sensitive to the KPFM&#39;s resolution as the separation between plates increases. The results of this study could provide useful guidance for the accurate evaluation of electrostatic patch forces using KPFM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01733v1-abstract-full').style.display = 'none'; document.getElementById('2411.01733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 122007 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19539">arXiv:2410.19539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19539">pdf</a>, <a href="https://arxiv.org/format/2410.19539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/ad8aab">10.1088/1751-8121/ad8aab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proof of bulk-edge correspondence for band topology by Toeplitz algebra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zixian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+L">Liang-Liang Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19539v2-abstract-short" style="display: inline;"> We rigorously yet concisely prove the bulk-edge correspondence for general $d$-dimensional ($d$D) topological insulators in complex Altland-Zirnbauer classes, which states that the bulk topological number equals to the edge-mode index. Specifically, an essential formula is discovered that links the quantity expressed by Toeplitz algebra, i.e., hopping terms on the lattice with an edge, to the Four&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19539v2-abstract-full').style.display = 'inline'; document.getElementById('2410.19539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19539v2-abstract-full" style="display: none;"> We rigorously yet concisely prove the bulk-edge correspondence for general $d$-dimensional ($d$D) topological insulators in complex Altland-Zirnbauer classes, which states that the bulk topological number equals to the edge-mode index. Specifically, an essential formula is discovered that links the quantity expressed by Toeplitz algebra, i.e., hopping terms on the lattice with an edge, to the Fourier series on the bulk Brillouin zone. We then apply it to chiral models and utilize exterior differential calculations, instead of the sophisticated \emph{K}-theory, to show that the winding number of bulk system equals to the Fredholm index of 1D edge Hamiltonian, or to the sum of edge winding numbers for higher odd dimensions. Moreover, this result is inherited to the even-dimensional Chern insulators as each of them can be mapped to an odd-dimensional chiral model. It is revealed that the Chern number of bulk system is identical to the spectral flow of 2D edge Hamiltonian, or to the negative sum of edge Chern numbers for higher even dimensions. Our methods and conclusions are friendly to physicists and could be easily extended to other physical scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19539v2-abstract-full').style.display = 'none'; document.getElementById('2410.19539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 57, 465203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12022">arXiv:2410.12022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12022">pdf</a>, <a href="https://arxiv.org/format/2410.12022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of Ti-doping on the dimer transition in Lithium Ruthenate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+S">Sheetal Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhengbang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horsley%2C+E">Ezekiel Horsley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heath%2C+C+J+S">Christopher J. S. Heath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shakouri%2C+M">Mohsen Shakouri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qunfeng Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+N">Ning Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weifeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+G">Graham King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12022v1-abstract-short" style="display: inline;"> We carried out a comprehensive crystal structure characterization of Ti-doped lithium ruthenate (Li$_2$Ti$_x$Ru$_{1-x}$O$_3$), to investigate the effect of Ti-doping on the structural phase transition. Experimental tools sensitive to the average structure (X-ray diffraction), as well as those sensitive to local structure (Extended X-ray Absorption Fine Structure, EXAFS; pair distribution function,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12022v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12022v1-abstract-full" style="display: none;"> We carried out a comprehensive crystal structure characterization of Ti-doped lithium ruthenate (Li$_2$Ti$_x$Ru$_{1-x}$O$_3$), to investigate the effect of Ti-doping on the structural phase transition. Experimental tools sensitive to the average structure (X-ray diffraction), as well as those sensitive to local structure (Extended X-ray Absorption Fine Structure, EXAFS; pair distribution function, PDF) are used. We observed non-monotonic dependence of the structural transition temperature on the Ti-doping level. At low doping, the transition temperature slightly increases with doping, while at high doping, the temperature decreases significantly with doping. We note two important observations from our studies. First, Ti K-edge EXAFS data shows persistent Ti-Ru dimerization even with substantial Ti doping. Second, we were able to use the PDF data to estimate the dimer correlation length above the transition temperature, which would correspond to the size of the proposed local `dimer clusters&#39; formed by Ru-Ru and Ti-Ru neighbours. The dimer correlation length is found to be around 10~脜, which remains robust regardless of doping. Our study therefore suggests that Ti$^{4+}$ with its $d^0$ electronic configuration is a special type of dopant when replacing Ru. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12022v1-abstract-full').style.display = 'none'; document.getElementById('2410.12022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09956">arXiv:2410.09956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09956">pdf</a>, <a href="https://arxiv.org/format/2410.09956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Drag and torque coefficients of a translating particle with slip at a gas-liquid interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlahovska%2C+P+M">Petia M. Vlahovska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miksis%2C+M+J">Michael J. Miksis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09956v1-abstract-short" style="display: inline;"> The dynamics of colloid-size particles trapped at a liquid interface is an extensively studied problem owing to its relevance to a wide range of engineering applications. Here we investigate the impact of interfacial deformations on the hydrodynamic force and torque exerted on a spherical particle with surface slip moving along a gas-liquid interface. Following a two-parameter asymptotic modeling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09956v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09956v1-abstract-full" style="display: none;"> The dynamics of colloid-size particles trapped at a liquid interface is an extensively studied problem owing to its relevance to a wide range of engineering applications. Here we investigate the impact of interfacial deformations on the hydrodynamic force and torque exerted on a spherical particle with surface slip moving along a gas-liquid interface. Following a two-parameter asymptotic modeling approach, we perturb the interface from its planar state and apply the Lorentz reciprocal theorem to the zeroth and first-order approximations to analytically calculate the drag and torque on the particle. This allows us to explicitly account for the effect of physical parameters like the three-phase contact angle, the Bond number, and the slip coefficient on the particle motion. In addition, we study the interactions between two translating and rotating particles at a large separation. The interaction forces and torques exerted by the flow-induced deformations are calculated via the linear superposition approximation, where the interaction forces are identified as dipolar in terms of the azimuthal angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09956v1-abstract-full').style.display = 'none'; document.getElementById('2410.09956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06602">arXiv:2410.06602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06602">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Revealing nanoscale structural phase separation in La$_{3}$Ni$_{2}$O$_{7-未}$ single crystal via scanning near-field optical microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoxiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Weihong He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+K">Kaipeng Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Deyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yinghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enkang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuaikang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shiwu Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yajun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06602v1-abstract-short" style="display: inline;"> The discovery of superconductivity in La3Ni2O7-$未$ under high pressure,with an onset critical temperature (Tc) around 80 K, has sparked significant interest in the superconducting phases of Ruddlesden-Popper nickelates, Lan+1NinO3n+1 (n = 2,3). While La4Ni3O10 exhibits nearly 100% superconductivity with Tc~30 K under high pressure, magnetic susceptibility studies on La3Ni2O7-$未$, however, reveal a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06602v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06602v1-abstract-full" style="display: none;"> The discovery of superconductivity in La3Ni2O7-$未$ under high pressure,with an onset critical temperature (Tc) around 80 K, has sparked significant interest in the superconducting phases of Ruddlesden-Popper nickelates, Lan+1NinO3n+1 (n = 2,3). While La4Ni3O10 exhibits nearly 100% superconductivity with Tc~30 K under high pressure, magnetic susceptibility studies on La3Ni2O7-$未$, however, reveal a more complex picture, indicating either filamentary superconductivity or that approximately 50% of crystal phase becomes superconducting in polycrystalline samples. In this study, we employed scattering-type scanning near-field optical microscopy (SNOM) to visualize nanoscale structural phase separation in La3Ni2O7-$未$, identifying enhanced optical conductivity with stripes approximately 183 nm wide. These stripes run diagonally with respect to the Ni-O-Ni bond directions in the a-b plane, ruling out the possibility that they arise from impurity phases, like the &#39;1313&#39;, &#39;214&#39; or &#39;4310&#39; structures. Our findings suggest this phase separation corresponds to coexisting orthorhombic Amam and Fmmm structures,exhibiting optical conductivities ~ 22% and 29% of gold&#39;s, respectively. Additionally, we find that the Fmmm structure constitutes about 38% of the total field of view, while the remainder consists of Amam structure and the transitional region between Fmmm and Amam structures. In contrast, La4Ni3O10 exhibits uniform and higher optical conductivity with no observable evidence of phase separation. Thus, our study represents a pioneering effort to directly image nanoscale phase separation in Lan+1NinO3n+1 (n=2,3) nickelates. This observation could provide crucial insights into the factors that limit the superconducting volume fraction of La3Ni2O7-$未$, highlighting SNOM as a powerful probe for exploring nanoscale low-energy physics in correlated quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06602v1-abstract-full').style.display = 'none'; document.getElementById('2410.06602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06489">arXiv:2410.06489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06489">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54544-z">10.1038/s41467-024-54544-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High proton conductivity through angstrom-porous titania </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Y. Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+G+-">G. -P. Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Y+-">Y. -T. Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+W+Q">W. Q. Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W+Z">W. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+D+-">D. -M. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+R+Z">R. Z. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S+J">S. J. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+T">T. Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozada-Hidalgo%2C+M">M. Lozada-Hidalgo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Pengzhan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06489v1-abstract-short" style="display: inline;"> Two dimensional (2D) crystals have attracted strong interest as a new class of proton conducting materials that can block atoms, molecules and ions while allowing proton transport through the atomically thin basal planes. Although 2D materials exhibit this perfect selectivity, the reported proton conductivities have been relatively low. Here we show that vacancy-rich titania monolayers are highly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06489v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06489v1-abstract-full" style="display: none;"> Two dimensional (2D) crystals have attracted strong interest as a new class of proton conducting materials that can block atoms, molecules and ions while allowing proton transport through the atomically thin basal planes. Although 2D materials exhibit this perfect selectivity, the reported proton conductivities have been relatively low. Here we show that vacancy-rich titania monolayers are highly permeable to protons while remaining impermeable to helium with proton conductivity exceeding 100 S cm-2 at 200 C and surpassing targets set by industry roadmaps. The fast and selective proton transport is attributed to an extremely high density of titanium-atom vacancies (one per square nm), which effectively turns titania monolayers into angstrom-scale sieves. Our findings highlight the potential of 2D oxides as membrane materials for hydrogen-based technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06489v1-abstract-full').style.display = 'none'; document.getElementById('2410.06489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 10546 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02471">arXiv:2410.02471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02471">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the material genome of wurtzite ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+K">Kan-Hao Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jinhai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Heng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shengxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shujuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+X">Xiangshui Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02471v2-abstract-short" style="display: inline;"> As the dielectric film thickness shrinks to ~10 nm, some traditional wurtzite piezoelectric materials demonstrate ferroelectricity through element doping. Among them, Sc doped AlN and Mg doped ZnO are the most famous examples. While it is widely acknowledged that the dopant atoms effectively reduce the coercive field, enabling ferroelectric polarization switching, the material genome of these wurt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02471v2-abstract-full').style.display = 'inline'; document.getElementById('2410.02471v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02471v2-abstract-full" style="display: none;"> As the dielectric film thickness shrinks to ~10 nm, some traditional wurtzite piezoelectric materials demonstrate ferroelectricity through element doping. Among them, Sc doped AlN and Mg doped ZnO are the most famous examples. While it is widely acknowledged that the dopant atoms effectively reduce the coercive field, enabling ferroelectric polarization switching, the material genome of these wurtzite (WZ) ferroelectrics is still less understood. In this work, we analyze the features of WZ ferroelectrics, ascribing them to five-coordination (5C) ferroelectrics, which may be compared with 6C ferroelectrics (perovskite-type) and 7C ferroelectrics (hafnia-like). In particular, the exact reason for their adopting the hexagonal WZ structure instead of the zinc blende structure is studied. Emphasis is paid to the degree of ionicity in promoting the hexagonal arrangement, and the phenomenon of layer distance compression is discovered and explained in WZ ferroelectrics. The role of element doping in coercive field reduction is understood within this context. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02471v2-abstract-full').style.display = 'none'; document.getElementById('2410.02471v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00087">arXiv:2410.00087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00087">pdf</a>, <a href="https://arxiv.org/format/2410.00087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A new series of 3D CFTs with $\mathrm{Sp}(N)$ global symmetry on fuzzy sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yin-Chen He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00087v1-abstract-short" style="display: inline;"> The quest to discover new 3D CFTs has been intriguing for physicists. For this purpose, fuzzy sphere reguarlisation that studies interacting quantum systems defined on the lowest Landau level on a sphere has emerged as a powerful tool. In this paper, we discover a series of new CFTs with global symmetry $\mathrm{Sp}(N)$ in the fuzzy sphere models that are closely related to the $\mathrm{SO}(5)$ de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00087v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00087v1-abstract-full" style="display: none;"> The quest to discover new 3D CFTs has been intriguing for physicists. For this purpose, fuzzy sphere reguarlisation that studies interacting quantum systems defined on the lowest Landau level on a sphere has emerged as a powerful tool. In this paper, we discover a series of new CFTs with global symmetry $\mathrm{Sp}(N)$ in the fuzzy sphere models that are closely related to the $\mathrm{SO}(5)$ deconfined phase transition, and are described by a $\mathrm{Sp}(N)/(\mathrm{Sp}(M)\times \mathrm{Sp}(N-M))$ non-linear sigma model with a Wess-Zumino-Witten term. We numerically verify the emergent conformal symmetry by observing the integer-spaced conformal multiplets and studying the finite-size scaling of the conformality. We discuss possible candidates for these newly discovered CFTs, the most plausible ones being Chern-Simons-matter theories which have $N$ flavour of gapless bosons or fermions coupled to a non-Abelian (viz. $\mathrm{Sp}(1)$, $\mathrm{Sp}(2)$, etc.) Chern-Simons gauge field. Our work provides new avenues for studying interacting CFTs in 3D, possibly facilitating the non-perturbative study of critical gauge theories and previously undiscovered CFTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00087v1-abstract-full').style.display = 'none'; document.getElementById('2410.00087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13+15 pages, 4+3 figures, 1+5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09782">arXiv:2409.09782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09782">pdf</a>, <a href="https://arxiv.org/format/2409.09782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Selective Excitation of Bloch Modes in Canalized Polaritonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yanzhen Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhichen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Junbo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zerui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Lei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+G">Gang Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+X">Xiang Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xinbin Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jingyuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+Q">Qingdong Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+T">Tao Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09782v1-abstract-short" style="display: inline;"> Polaritonic crystals (PoCs) have experienced significant advancements through involving hyperbolic polaritons in anisotropic materials such as $伪$-MoO$_{\rm 3}$, offering a promising approach for nanoscale light control and improved light-matter interactions. Notably, twisted bilayer $伪$-MoO$_{\rm 3}$ enables tunable iso-frequency contours (IFCs), especially generating flat IFCs at certain twist a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09782v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09782v1-abstract-full" style="display: none;"> Polaritonic crystals (PoCs) have experienced significant advancements through involving hyperbolic polaritons in anisotropic materials such as $伪$-MoO$_{\rm 3}$, offering a promising approach for nanoscale light control and improved light-matter interactions. Notably, twisted bilayer $伪$-MoO$_{\rm 3}$ enables tunable iso-frequency contours (IFCs), especially generating flat IFCs at certain twist angles, which could enhance mode selectivity in their PoCs through the highly collimated and canalized polaritons. This study unveils the selective excitation of Bloch modes in PoCs with square-lattice structures on twisted bilayer $伪$-MoO$_{\rm 3}$ with canalized phonon polaritons. Through the optimization of the square lattice design, there is an effective redistribution of canalized polaritons into the reciprocal lattices of PoCs. Fine-tuning the periodicity and orientation of the hole lattice enables momentum matching between flat IFCs and co-linear reciprocal points, allowing precise and directional control over desired Bragg resonances and Bloch modes. This research establishes a versatile platform for tunable polaritonic devices and paves the way for advanced photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09782v1-abstract-full').style.display = 'none'; document.getElementById('2409.09782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures or other essential info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04000">arXiv:2409.04000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04000">pdf</a>, <a href="https://arxiv.org/format/2409.04000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiple types of spin textures and robust valley physics in MP$_2$X$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+L">Li Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhichao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04000v1-abstract-short" style="display: inline;"> Both spin textures and multiple valleys in the momentum space have attracted great attentions due to their versatile applications in spintronics and valleytronics. It is highly desirable to realize multiple types of spin textures in a single material and further couple the spin textures to valley degree of freedom. Here, we study electronic properties of SnP$_{2}$Se$_{6}$ monolayer by first-princi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04000v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04000v1-abstract-full" style="display: none;"> Both spin textures and multiple valleys in the momentum space have attracted great attentions due to their versatile applications in spintronics and valleytronics. It is highly desirable to realize multiple types of spin textures in a single material and further couple the spin textures to valley degree of freedom. Here, we study electronic properties of SnP$_{2}$Se$_{6}$ monolayer by first-principles calculations. The monolayer exhibits rare Weyl-type and Ising-type spin textures at different valleys, which can be conveniently expressed by electron and hole dopings, respectively. Besides valley-contrasting spin textures, Berry-curvature-driven anomalous Hall currents and optical selectivity are found to be valley dependent as well. These valley-related properties also have generalizations to SnP$_{2}$Se$_{6}$ few-layers and other MP$_{2}$X$_{6}$. Our findings open new avenue for exploring appealing interplay between spin textures and multiple valleys, and designing advanced device paradigms based on spin and valley degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04000v1-abstract-full').style.display = 'none'; document.getElementById('2409.04000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15230">arXiv:2408.15230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15230">pdf</a>, <a href="https://arxiv.org/format/2408.15230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.110.064139">10.1103/PhysRevE.110.064139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Logarithmic Finite-Size Scaling of the Four-Dimensional Ising Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+T">Tianning Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zongzheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Sheng Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15230v2-abstract-short" style="display: inline;"> Field-theoretical calculations predict that, at the upper critical dimension $d_c=4$, the finite-size scaling (FSS) behaviors of the Ising model would be modified by multiplicative logarithmic corrections with thermal and magnetic correction exponents $(\hat{y}_t, \hat{y}_h)=(1/6,1/4)$. Using high-efficient cluster algorithms and the lifted worm algorithm, we present a systematic study of the FSS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15230v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15230v2-abstract-full" style="display: none;"> Field-theoretical calculations predict that, at the upper critical dimension $d_c=4$, the finite-size scaling (FSS) behaviors of the Ising model would be modified by multiplicative logarithmic corrections with thermal and magnetic correction exponents $(\hat{y}_t, \hat{y}_h)=(1/6,1/4)$. Using high-efficient cluster algorithms and the lifted worm algorithm, we present a systematic study of the FSS of the four-dimensional Ising model in the Fortuin-Kasteleyn (FK) bond and loop representations. Our numerical results reveal the FSS behaviors of various geometric and physical quantities in the three representations, offering robust evidence for the logarithmic correction form conjectured by the field theory. In particular, clear evidence is obtained for the existence of $\hat{y}_t=1/6$ in the loop representation, while it is difficult to extract in the spin representations, because of mixing with the Gaussian-fixed-point asymptotics. In the FK-bond representation, the multiplicative logarithmic correction for the second-largest cluster is also numerically observed to be governed by an exponent $\hat{y}_{h2} = -1/4$ with its exact value unknown yet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15230v2-abstract-full').style.display = 'none'; document.getElementById('2408.15230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E110,064139(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06209">arXiv:2408.06209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06209">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of vortex stripes in UTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H+X">H. X. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winyard%2C+T">T. Winyard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broyles%2C+C">Christopher Broyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gould%2C+S">Shannon Gould</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+S">Q. S. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P+H">P. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+K+Z">K. Z. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J+J">J. J. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+B+K">B. K. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+K+Y">K. Y. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+J">Z. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B+R">B. R. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Q+Z">Q. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agterberg%2C+D+F">D. F. Agterberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babaev%2C+E">E. Babaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">S. Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+H">Y. H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06209v2-abstract-short" style="display: inline;"> Quantum vortices are fundamentally important for properties of superconductors. In conventional type-II superconductor they determine the magnetic response of the system and tend to form regular lattices. UTe$_2$ is a recently discovered heavy fermion superconductor exhibiting many anomalous macroscopic behaviors. However, the question whether it has a multicomponent order parameter remains open.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06209v2-abstract-full').style.display = 'inline'; document.getElementById('2408.06209v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06209v2-abstract-full" style="display: none;"> Quantum vortices are fundamentally important for properties of superconductors. In conventional type-II superconductor they determine the magnetic response of the system and tend to form regular lattices. UTe$_2$ is a recently discovered heavy fermion superconductor exhibiting many anomalous macroscopic behaviors. However, the question whether it has a multicomponent order parameter remains open. Here, we study magnetic properties of UTe$_2$ by employing scanning superconducting quantum interference device microscopy. We find vortex behavior which is very different from that in ordinary superconductors. We imaged vortices generated by cooling in magnetic field applied along different crystalline directions. While a small out-of-plane magnetic field produces typical isolated vortices, higher field generates vortex stripe patterns which evolve with vortex density. The stripes form at different locations and along different directions in the surface plane when the vortices are crystalized along the crystalline b or c axes. The behavior is reproduced by our simulation based on an anisotropic two-component order parameter. This study shows that UTe$_2$ has a nontrivial disparity of multiple length scales, placing constraints on multicomponent superconductivity. The tendency of vortex stripe formation and their control by external field may be useful in fluxonics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06209v2-abstract-full').style.display = 'none'; document.getElementById('2408.06209v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05902">arXiv:2408.05902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05902">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of single-quantum vortex splitting in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Q+Z">Q. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B+R">B. R. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+B+K">B. K. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timoshuk%2C+I">I. Timoshuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garaud%2C+J">J. Garaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+K+Y">K. Y. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+S">Q. S. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+J">Z. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P+H">P. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+K+Z">K. Z. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H+X">H. X. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babaev%2C+E">E. Babaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grinenko%2C+V">V. Grinenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+H">Y. H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05902v2-abstract-short" style="display: inline;"> Since their theoretical discovery more than a half-century ago, vortices observed in bulk superconductors have carried a quantized value of magnetic flux determined only by fundamental constants. A recent experiment reported &#39;unquantized&#39; quantum vortices carrying the same fraction of flux quantum in Ba$_{0.23}$K$_{0.77}$Fe$_2$As$_2$ in a small temperature range below its superconducting critical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05902v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05902v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05902v2-abstract-full" style="display: none;"> Since their theoretical discovery more than a half-century ago, vortices observed in bulk superconductors have carried a quantized value of magnetic flux determined only by fundamental constants. A recent experiment reported &#39;unquantized&#39; quantum vortices carrying the same fraction of flux quantum in Ba$_{0.23}$K$_{0.77}$Fe$_2$As$_2$ in a small temperature range below its superconducting critical temperature ($T_C$). Here, we use scanning superconducting quantum interference device (sSQUID) microscopy with improved sensitivity to investigate the genesis of fractional vortices in Ba$_{0.23}$K$_{0.77}$Fe$_2$As$_2$. We report the direct observation of a single-flux quantum vortex splitting into two different fractions with increasing temperature. The flux of the two fractions has opposite dependence on temperature, while the total flux sums up to one flux quantum despite their spatial separation. Overall, our study shows the existence of different fractional vortices and their stability in temperature ranging from 0.1 to 0.99 $T_C$. Besides the implications of this observation for the fundamental question of quantum vorticity, the discovery of these objects paves the way for the new platform for anyon quasiparticles and applications for fractional fluxonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05902v2-abstract-full').style.display = 'none'; document.getElementById('2408.05902v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00868">arXiv:2408.00868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00868">pdf</a>, <a href="https://arxiv.org/format/2408.00868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strongly correlated Hofstadter subbands in minimally twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Cheng Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+Y">Yifei Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pizzirani%2C+D">Davide Pizzirani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barman%2C+P">Punam Barman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">Steffen Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">Oleg V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00868v1-abstract-short" style="display: inline;"> Moir茅 superlattice in twisted bilayer graphene has been proven to be a versatile platform for exploring exotic quantum phases. Extensive investigations have been invoked focusing on the zero-magnetic-field phase diagram at the magic twist angle around $胃=1.1\degree$, which has been indicated to be an exclusive regime for exhibiting flat band with the interplay of strong electronic correlation and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00868v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00868v1-abstract-full" style="display: none;"> Moir茅 superlattice in twisted bilayer graphene has been proven to be a versatile platform for exploring exotic quantum phases. Extensive investigations have been invoked focusing on the zero-magnetic-field phase diagram at the magic twist angle around $胃=1.1\degree$, which has been indicated to be an exclusive regime for exhibiting flat band with the interplay of strong electronic correlation and untrivial topology in the experiment so far. In contrast, electronic bands in non-magic-angle twisted bilayer graphene host dominant electronic kinetic energy compared to Coulomb interaction. By quenching the kinetic energy and enhancing Coulomb exchange interactions by means of an applied perpendicular magnetic field, here we unveil gapped flat Hofstadter subbands at large magnetic flux that yield correlated insulating states in minimally twisted bilayer graphene at $胃=0.41\degree$. These states appear with isospin symmetry breaking due to strong Coulomb interactions. Our work provides a platform for studying the phase transition of the strongly correlated Hofstadter spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00868v1-abstract-full').style.display = 'none'; document.getElementById('2408.00868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15914">arXiv:2407.15914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15914">pdf</a>, <a href="https://arxiv.org/format/2407.15914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.18.1.031">10.21468/SciPostPhys.18.1.031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Studying the 3d Ising surface CFTs on the fuzzy sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yijian Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15914v5-abstract-short" style="display: inline;"> Boundaries not only are fundamental elements in nearly all realistic physical systems, but also greatly enrich the structure of quantum field theories. In this paper, we demonstrate that conformal field theory (CFT) with a boundary, known as surface CFT in three dimensions, can be studied with the setup of fuzzy sphere. We consider the example of surface criticality of the 3D Ising CFT. We propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15914v5-abstract-full').style.display = 'inline'; document.getElementById('2407.15914v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15914v5-abstract-full" style="display: none;"> Boundaries not only are fundamental elements in nearly all realistic physical systems, but also greatly enrich the structure of quantum field theories. In this paper, we demonstrate that conformal field theory (CFT) with a boundary, known as surface CFT in three dimensions, can be studied with the setup of fuzzy sphere. We consider the example of surface criticality of the 3D Ising CFT. We propose two schemes by cutting a boundary in the orbital space or the real space to realise the ordinary and the normal surface CFTs on the fuzzy sphere. We obtain the operator spectra through state-operator correspondence. We observe integer spacing of the conformal multiplets, and thus provide direct evidence of conformal symmetry. We identify the ordinary surface primary $o$, the displacement operator $\mathrm{D}$ and their conformal descendants and extract their scaling dimensions. We also study the one-point and two-point correlation functions and extract the bulk-to-surface OPE coefficients, some of which are reported for the first time. In addition, using the overlap of the bulk CFT state and the polarised state, we calculate the boundary central charges of the 3D Ising surface CFTs non-perturbatively. Other conformal data obtained in this way also agrees with prior methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15914v5-abstract-full').style.display = 'none'; document.getElementById('2407.15914v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 14+7 figures and 2+2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 18, 031 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11809">arXiv:2407.11809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11809">pdf</a>, <a href="https://arxiv.org/ps/2407.11809">ps</a>, <a href="https://arxiv.org/format/2407.11809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134319">10.1103/PhysRevB.110.134319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uhlmann quench and geometric dynamic quantum phase transition of mixed states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jia-Chen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xu-Yang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hao Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C">Chih-Chun Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11809v2-abstract-short" style="display: inline;"> Dynamic quantum phase transitions (DQPT) following quantum quenches exhibit singular behavior of the overlap between the initial and evolved states. Here we present a formalism to incorporate a geometric phase into quench dynamics of mixed quantum states, a process named the Uhlmann quench, based on the Uhlmann parallel transport. To overcome the incompatibility between the Uhlmann parallel-transp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11809v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11809v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11809v2-abstract-full" style="display: none;"> Dynamic quantum phase transitions (DQPT) following quantum quenches exhibit singular behavior of the overlap between the initial and evolved states. Here we present a formalism to incorporate a geometric phase into quench dynamics of mixed quantum states, a process named the Uhlmann quench, based on the Uhlmann parallel transport. To overcome the incompatibility between the Uhlmann parallel-transport condition and Hamiltonian dynamics, we formulate the evolution of purification of the density matrix in a form which not only respects the dynamics according to the density matrix but also follows the Uhlmann parallel-transport condition to generate a geometric phase after a quantum quench. For cyclic processes exemplified by a spin-1/2 system, geometric DQPTs (GDQPTs) can emerge with both singular behavior in the dynamic analogue of the free energy and jumps of the geometric phase. Moreover, the Uhlmann phase reflecting the holonomy is generated at the end of each cycle. The Uhlmann quench thus paves the way for investigating the interplay between quantum dynamics and geometric processes in mixed states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11809v2-abstract-full').style.display = 'none'; document.getElementById('2407.11809v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134319(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06975">arXiv:2407.06975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06975">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216021">10.1063/5.0216021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of noncollinear magnetic ordering temperature in Y-type hexaferrite by machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yonghong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Linfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yugang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xueliang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yisheng Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zizhen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06975v1-abstract-short" style="display: inline;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06975v1-abstract-full" style="display: none;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Based on the chosen efficient and physically interpretable descriptor, a series of Y-type hexaferrite compositions are predicted to hold high TNC, among which the BaSrMg0.28Co1.72Fe10Al2O22 is then experimentally validated. Test results indicate that, under appropriate external magnetic field conditions, the TNC of this composition reaches up to reaches up to 568 K, and its magnetic transition temperature is also elevated to 735 K. This work offers a machine learning-based route to develop room temperature single phase multiferroics for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'none'; document.getElementById('2407.06975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Applied Physics Letters in 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 032903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18650">arXiv:2406.18650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18650">pdf</a>, <a href="https://arxiv.org/format/2406.18650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174441">10.1103/PhysRevB.110.174441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Field Response of Dipolar-Octupolar Quantum Spin Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhengbang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Desrochers%2C+F">F茅lix Desrochers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18650v2-abstract-short" style="display: inline;"> Dipolar-octupolar (DO) pyrochlore systems Ce$_2$(Zr,Sn,Hf)$_2$O$_7$ have garnered much attention as recent investigations suggest that they may stabilize a novel quantum spin ice (QSI), a quantum spin liquid (QSL) with an emergent $U(1)$ gauge field. In particular, the experimentally estimated microscopic exchange parameters place Ce$_2$Zr$_2$O$_7$ in the $蟺$-flux QSI regime, and recent neutron sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18650v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18650v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18650v2-abstract-full" style="display: none;"> Dipolar-octupolar (DO) pyrochlore systems Ce$_2$(Zr,Sn,Hf)$_2$O$_7$ have garnered much attention as recent investigations suggest that they may stabilize a novel quantum spin ice (QSI), a quantum spin liquid (QSL) with an emergent $U(1)$ gauge field. In particular, the experimentally estimated microscopic exchange parameters place Ce$_2$Zr$_2$O$_7$ in the $蟺$-flux QSI regime, and recent neutron scattering experiments have corroborated some key theoretical predictions. On the other hand, to make a definitive conclusion, more multifaceted experimental signatures are desirable. In this regard, recent neutron scattering investigation of the magnetic field dependence of the spin correlations in Ce$_2$Zr$_2$O$_7$ may provide valuable information. However, there have not been any comprehensive theoretical studies for comparison. In this work, we provide such information using gauge mean-field theory (GMFT), allowing for theoretical investigation beyond the perturbative regime. In particular, we construct the phase diagrams for the [110], [111], and [001] field directions. Furthermore, we demonstrate the distinctive evolution of the equal-time and dynamical spin structure factors as a function of the magnetic field for each field direction. These predictions will help future experiments confirm the true nature of the DO-QSI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18650v2-abstract-full').style.display = 'none'; document.getElementById('2406.18650v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+11 pages, 11+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15660">arXiv:2406.15660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15660">pdf</a>, <a href="https://arxiv.org/format/2406.15660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c03288">10.1021/acs.nanolett.4c03288 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitonic Bose-polarons in electron-hole bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Szwed%2C+E+A">E. A. Szwed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vermilyea%2C+B">B. Vermilyea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choksy%2C+D+J">D. J. Choksy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiwen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fogler%2C+M+M">M. M. Fogler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butov%2C+L+V">L. V. Butov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efimkin%2C+D+K">D. K. Efimkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldwin%2C+K+W">K. W. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfeiffer%2C+L+N">L. N. Pfeiffer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15660v1-abstract-short" style="display: inline;"> Bose polarons are mobile impurities dressed by density fluctuations of a surrounding degenerate Bose gas. These many-body objects have been realized in ultracold atomic gasses and become a subject of intensive studies. In this work, we show that excitons in electron-hole bilayers offer new opportunities for exploring polarons in strongly interacting, highly tunable bosonic systems. We found that B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15660v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15660v1-abstract-full" style="display: none;"> Bose polarons are mobile impurities dressed by density fluctuations of a surrounding degenerate Bose gas. These many-body objects have been realized in ultracold atomic gasses and become a subject of intensive studies. In this work, we show that excitons in electron-hole bilayers offer new opportunities for exploring polarons in strongly interacting, highly tunable bosonic systems. We found that Bose polarons are formed by spatially direct excitons immersed in degenerate Bose gases of spatially indirect excitons (IXs). We detected both attractive and repulsive Bose polarons by measuring photoluminescence excitation spectra. We controlled the density of IX Bose gas by optical excitation and observed an enhancement of the energy splitting between attractive and repulsive Bose polarons with increasing IX density, in agreement with our theoretical calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15660v1-abstract-full').style.display = 'none'; document.getElementById('2406.15660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13324">arXiv:2406.13324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13324">pdf</a>, <a href="https://arxiv.org/format/2406.13324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Metric-induced Oscillations in Flat Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H">Hui Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Huaqing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13324v1-abstract-short" style="display: inline;"> The transport of Bloch electrons under strong fields is traditionally understood through two mechanisms: intraband Bloch oscillations and interband Zener tunneling. Here we propose a new oscillation mechanism induced by the interband quantum metric, which would significantly affect the electron dynamics under strong fields. By considering the multiband dynamics to the second order of the density m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13324v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13324v1-abstract-full" style="display: none;"> The transport of Bloch electrons under strong fields is traditionally understood through two mechanisms: intraband Bloch oscillations and interband Zener tunneling. Here we propose a new oscillation mechanism induced by the interband quantum metric, which would significantly affect the electron dynamics under strong fields. By considering the multiband dynamics to the second order of the density matrix, we reveal that quantum metric-induced oscillations (QMO) persist regardless of band dispersion, even in exactly flat bands. The resultant drift current can reach a magnitude comparable to the Bloch oscillations-induced drift current in systems where interband tunneling is negligible. Notably, the {QMO}-induced drift current increases linearly with electric field strength under the constraints of time-reversal or spatial-inversion symmetry, emerging as the primary delocalized current. We further show that both one-dimensional and two-dimensional superlattices are potential platforms for investigating QMO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13324v1-abstract-full').style.display = 'none'; document.getElementById('2406.13324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09944">arXiv:2406.09944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09944">pdf</a>, <a href="https://arxiv.org/format/2406.09944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal scaling behavior of resistivity under two-dimensional superconducting phase fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zongsheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Hai-Jun Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09944v1-abstract-short" style="display: inline;"> In superconductors with relatively low superfluid density, such as cuprate high-$T_c$ superconductors, the phase fluctuations of the superconducting order parameter are remarkable, presumably playing a nonnegligible role in shaping many distinctive physical properties. This work systematically investigates the electrical transport properties arising from thermal superconducting phase fluctuations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09944v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09944v1-abstract-full" style="display: none;"> In superconductors with relatively low superfluid density, such as cuprate high-$T_c$ superconductors, the phase fluctuations of the superconducting order parameter are remarkable, presumably playing a nonnegligible role in shaping many distinctive physical properties. This work systematically investigates the electrical transport properties arising from thermal superconducting phase fluctuations in two-dimensional superconductors. Employing the Monte Carlo procedure, we access the numerically exact properties of a microscopic model of superconductivity, in which the classical XY model governs the thermal phase fluctuations of the superconducting order parameter. For both $s$-wave and $d_{x^2-y^2}$-wave pairings, the electrical resistivity exhibits a universal scaling behavior in the temperature range above $T_c$. Our numerical results demonstrate that the scaling behavior of the quasiparticle lifetime is associated with the correlation length of the superconducting order parameter, yielding the universal scaling behavior of electrical resistivity determined by the Berezinskii-Kosterlitz-Thouless critical scaling of the correlation length. Furthermore, we discuss the dependence of the electrical resistivity coefficient on the pairing amplitude and the possible implication on recent transport experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09944v1-abstract-full').style.display = 'none'; document.getElementById('2406.09944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09274">arXiv:2406.09274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09274">pdf</a>, <a href="https://arxiv.org/format/2406.09274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Doubled Shapiro steps in a dynamic axion insulator Josephson junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu-Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Ziqian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+R">Ran Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09274v1-abstract-short" style="display: inline;"> Dynamic axion insulators feature a time-dependent axion field that can be induced by antiferromagnetic resonance. Here, we show that a Josephson junction incorporating this dynamic axion insulator between two superconductors exhibits a striking doubled Shapiro steps wherein all odd steps are completely suppressed in the jointly presence of a DC bias and a static magnetic field. The resistively shu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09274v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09274v1-abstract-full" style="display: none;"> Dynamic axion insulators feature a time-dependent axion field that can be induced by antiferromagnetic resonance. Here, we show that a Josephson junction incorporating this dynamic axion insulator between two superconductors exhibits a striking doubled Shapiro steps wherein all odd steps are completely suppressed in the jointly presence of a DC bias and a static magnetic field. The resistively shunted junction simulation confirms that these doubled Shapiro steps originate from the distinctive axion electrodynamics driven by the antiferromagnetic resonance, which thus not only furnishes a hallmark to identify the dynamic axion insulator but also provides a method to evaluate its mass term. Furthermore, the experimentally feasible differential conductance is also determined. Our work holds significant importance in condensed matter physics and materials science for understanding the dynamic axion insulator, paving the way for its further exploration and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09274v1-abstract-full').style.display = 'none'; document.getElementById('2406.09274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05823">arXiv:2406.05823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224428">10.1103/PhysRevB.109.224428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating magnetism and transport properties of EuCd$_2$P$_2$ with a low carrier concentration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05823v1-abstract-short" style="display: inline;"> Materials that exhibit strongly coupled magnetic order and electronic properties are crucial for both fundamental research and technological applications. However, finding a material that not only shows remarkable magnetoresistive responses but also has an easily tunable ground state remains a challenge. Here, we report successful manipulation of the magnetic and transport properties of EuCd$_2$P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05823v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05823v1-abstract-full" style="display: none;"> Materials that exhibit strongly coupled magnetic order and electronic properties are crucial for both fundamental research and technological applications. However, finding a material that not only shows remarkable magnetoresistive responses but also has an easily tunable ground state remains a challenge. Here, we report successful manipulation of the magnetic and transport properties of EuCd$_2$P$_2$, which is transformed from an A-type antiferromagnet ($T_\mathrm{N}$ = 11 K) exhibiting colossal magnetoresistance into a ferromagnet ($T_\mathrm{C}$ = 47 K) with metallic behavior. The dramatic alteration results from a low hole concentration of $10^{19}$ cm$^{-3}$ induced by changing the growth conditions. Electronic structure and total energy calculations confirm the tunability of magnetism with a small carrier concentration for EuCd$_2$P$_2$. It is feasible to switch between the magnetic states by using field-effect to control the carrier density, thereby changing the magneto-electronic response. The controllable magnetism and electrical transport of EuCd$_2$P$_2$ make it a potential candidate for spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05823v1-abstract-full').style.display = 'none'; document.getElementById('2406.05823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 224428 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05819">arXiv:2406.05819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05819">pdf</a>, <a href="https://arxiv.org/format/2406.05819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L180410">10.1103/PhysRevB.109.L180410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Carrier-induced transition from antiferromagnetic insulator to ferromagnetic metal in the layered phosphide EuZn$_2$P$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jia-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05819v1-abstract-short" style="display: inline;"> EuZn$_2$P$_2$ was reported to be an insulating antiferromagnet with $T_\mathrm{N}$ of 23.5 K. In this study, single crystals of EuZn$_2$P$_2$ exhibiting metallic behavior and a ferromagnetic order of 72 K ($T_\mathrm{C}$) are successfully synthesized via a salt flux method. The presence of hole carriers induced by the Eu vacancies in the lattice is found to be crucial for the drastic changes in ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05819v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05819v1-abstract-full" style="display: none;"> EuZn$_2$P$_2$ was reported to be an insulating antiferromagnet with $T_\mathrm{N}$ of 23.5 K. In this study, single crystals of EuZn$_2$P$_2$ exhibiting metallic behavior and a ferromagnetic order of 72 K ($T_\mathrm{C}$) are successfully synthesized via a salt flux method. The presence of hole carriers induced by the Eu vacancies in the lattice is found to be crucial for the drastic changes in magnetism and electrical transport. The carriers mediate the interlayer ferromagnetic interaction, and the coupling strength is directly related to $T_\mathrm{C}$, as evidenced by the linear dependence of $T_\mathrm{C}$ and the fitted Curie-Weiss temperatures on the Eu-layer distances for ferromagnetic Eu$M_2X_2$ ($M$ = Zn, Cd; $X$ = P, As). The ferromagnetic EuZn$_2$P$_2$ shows conspicuous negative magnetoresistance (MR) near $T_\mathrm{C}$, owing to strong magnetic scattering. The MR behavior is consistent with the Majumdar-Littlewood model, indicating that the MR can be enhanced by decreasing the carrier density. Our findings suggest that Eu$M_2X_2$ has highly tunable magnetism and charge transport, making it a promising material family for potential applications in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05819v1-abstract-full').style.display = 'none'; document.getElementById('2406.05819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, L180410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04440">arXiv:2406.04440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04440">pdf</a>, <a href="https://arxiv.org/format/2406.04440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53445-5">10.1038/s41467-024-53445-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiwen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szwed%2C+E+A">E. A. Szwed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choksy%2C+D+J">D. J. Choksy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowler-Gerace%2C+L+H">L. H. Fowler-Gerace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butov%2C+L+V">L. V. Butov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04440v1-abstract-short" style="display: inline;"> In addition to its fundamental interest, the long-distance spin transport with suppressed spin losses is essential for spintronic devices. However, the spin relaxation caused by scattering of the particles carrying the spin, limits the spin transport. We explored spatially indirect excitons (IXs), also known as interlayer excitons, in van der Waals heterostructures (HS) composed of atomically thin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04440v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04440v1-abstract-full" style="display: none;"> In addition to its fundamental interest, the long-distance spin transport with suppressed spin losses is essential for spintronic devices. However, the spin relaxation caused by scattering of the particles carrying the spin, limits the spin transport. We explored spatially indirect excitons (IXs), also known as interlayer excitons, in van der Waals heterostructures (HS) composed of atomically thin layers of transition-metal dichalcogenides (TMD) as spin carries. TMD HS also offer coupling of spin and valley transport. We observed the long-distance spin transport with the decay distances exceeding 100~$渭$m and diverging so spin currents show no decay in the HS. With increasing IX density, we observed spin localization, then long-distance spin transport, and then reentrant spin localization, in agreement with the Bose-Hubbard theory prediction for superfluid and insulating phases in periodic potentials due to moir茅 superlattices. The suppression of scattering in exciton superfluid suppresses the spin relaxation and enables the long-distance spin transport. This mechanism of protection against the spin relaxation makes IXs a platform for the realization of long-distance decay-less spin transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04440v1-abstract-full').style.display = 'none'; document.getElementById('2406.04440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2307.00702</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15297">arXiv:2405.15297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184112">10.1103/PhysRevB.109.184112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field magnetoelectric coupling and successive magnetic transitions in Mn-doped polar antiferromagnet Ni3TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">C. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P+Z">P. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+W+J">W. J. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15297v2-abstract-short" style="display: inline;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'inline'; document.getElementById('2405.15297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15297v2-abstract-full" style="display: none;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 single crystals in high magnetic field (H) up to 52 T. We present a previously unreported weak ferromagnetic behavior appeared in the ab plane below 9.5 K in addition to the incommensurate helical and commensurate collinear antiferromagnetic states. In the low-field region, a spin-flop type metamagnetic transition without any hysteresis occurs at Hc1 for H // c, while another metamagnetic transition accompanied with a change in electric polarization is observed at Hc2 in the high-field region both for H // c and H // ab above 30 K, which can be attributed to the sudden rotation of magnetic moments at Ni2 sites. The ME measurements reveal that a first-order ME effect is observed in the low-T and low-H regions, while a second-order ME coupling term appears above 30 K in the magnetic field range of Hc1 &lt; H &lt; Hc2 for H // c and H &lt; Hc2 for H // ab, both becoming significant with increasing temperature. Eventually, they are dominated by the second-order ME effect near the antiferromagnetic transition temperature. The present work demonstrates that Ni3-xMnxTeO6 is an exotic magnetoelectric material compared with Ni3TeO6 and its derivatives, thereby providing insights to better understand the magnetism and ME coupling in Ni3TeO6 and its derivatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'none'; document.getElementById('2405.15297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184112 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12885">arXiv:2405.12885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12885">pdf</a>, <a href="https://arxiv.org/format/2405.12885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Featuring nuanced electronic band structure in gapped multilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Cheng Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Luca%2C+M">Mario Di Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hajigeorgiou%2C+E">Emily Hajigeorgiou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12885v3-abstract-short" style="display: inline;"> Moir茅 systems featuring flat electronic bands exhibit a vast landscape of emergent exotic quantum states, making them one of the resourceful platforms in condensed matter physics in recent times. Tuning these systems via twist angle and the electric field greatly enhances our comprehension of their strongly correlated ground states. Here, we report a technique to investigate the nuanced intricacie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12885v3-abstract-full').style.display = 'inline'; document.getElementById('2405.12885v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12885v3-abstract-full" style="display: none;"> Moir茅 systems featuring flat electronic bands exhibit a vast landscape of emergent exotic quantum states, making them one of the resourceful platforms in condensed matter physics in recent times. Tuning these systems via twist angle and the electric field greatly enhances our comprehension of their strongly correlated ground states. Here, we report a technique to investigate the nuanced intricacies of band structures in dual-gated multilayer graphene systems. We utilize the Landau levels of a decoupled monolayer graphene to extract the electric field-dependent bilayer graphene charge neutrality point gap. Then, we extend this method to analyze the evolution of the band gap and the flat bandwidth in twisted mono-bilayer graphene. The band gap maximizes at the same displacement field where the flat bandwidth minimizes, indicating the strongest electron-electron correlation, which is supported by directly observing the emergence of a strongly correlated phase. Moreover, we extract integer and fractional gaps to further demonstrate the strength of this method. Our technique gives a new perspective and paves the way for improving the understanding of electronic band structure in versatile flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12885v3-abstract-full').style.display = 'none'; document.getElementById('2405.12885v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09776">arXiv:2405.09776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09776">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184106">10.1103/PhysRevB.109.184106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic structure and magnetoelectric coupling in antiferromagnet Co5(TeO3)4Cl2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">B. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J+S">J. S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garlea%2C+V+O">V. Ovidiu Garlea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+T">T. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+C">J. C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+J">J. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">S. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+J+G">J. G. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09776v1-abstract-short" style="display: inline;"> The van der Waals (vdW) layered multiferroics, which host simultaneous ferroelectric and magnetic orders, have attracted attention not only for their potentials to be utilized in nanoelectric devices and spintronics, but also offer alternative opportunities for emergent physical phenomena. To date, the vdW layered multiferroic materials are still very rare. In this work, we have investigated the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09776v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09776v1-abstract-full" style="display: none;"> The van der Waals (vdW) layered multiferroics, which host simultaneous ferroelectric and magnetic orders, have attracted attention not only for their potentials to be utilized in nanoelectric devices and spintronics, but also offer alternative opportunities for emergent physical phenomena. To date, the vdW layered multiferroic materials are still very rare. In this work, we have investigated the magnetic structure and magnetoelectric effects in Co5(TeO3)4Cl2, a promising new multiferroic compound with antiferromagnetic (AFM) Neel point TN = 18 K. The neutron powder diffraction reveals the non-coplanar AFM state with preferred Neel vector along the c-axis, while a spin re-orientation occurring between 8 K and 15 K is identified, which results from the distinct temperature dependence of the non-equivalent Co sites moment in Co5(TeO3)4Cl2. What is more, it is found that Co5(TeO3)4Cl2 is one of the best vdW multiferroics studied so far in terms of the multiferroic performance. The measured linear ME coefficient exhibits the emergent oscillation dependence of the angle between magnetic field and electric field, and the maximal value is as big as 45 ps/m. It is suggested that Co5(TeO3)4Cl2 is an appreciated platform for exploring the emergent multiferroicity in vdW layered compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09776v1-abstract-full').style.display = 'none'; document.getElementById('2405.09776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184106(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09909">arXiv:2404.09909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09909">pdf</a>, <a href="https://arxiv.org/format/2404.09909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Double-dome Unconventional Superconductivity in Twisted Trilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnatak%2C+P">Paritosh Karnatak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6nenberger%2C+C">Christian Sch枚nenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parameswaran%2C+S+A">S. A. Parameswaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+S+H">Steven H. Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09909v1-abstract-short" style="display: inline;"> Graphene moir茅 systems are ideal environments for investigating complex phase diagrams and gaining fundamental insights into the mechanisms underlying exotic states of matter, as they permit controlled manipulation of electronic properties. Magic-angle twisted trilayer graphene (MATTG) has emerged as a key platform to explore moir茅 superconductivity, owing to the robustness of its superconducting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09909v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09909v1-abstract-full" style="display: none;"> Graphene moir茅 systems are ideal environments for investigating complex phase diagrams and gaining fundamental insights into the mechanisms underlying exotic states of matter, as they permit controlled manipulation of electronic properties. Magic-angle twisted trilayer graphene (MATTG) has emerged as a key platform to explore moir茅 superconductivity, owing to the robustness of its superconducting order and the displacement-field tunability of its energy bands. Recent measurements strongly suggest that superconductivity in MATTG is unconventional. Here, we report the first direct observation of double-dome superconductivity in MATTG. The temperature, magnetic field, and bias current dependence of the superconductivity of doped holes collectively show that it is significantly suppressed near moir茅 filling $谓^* = -2.6$, leading to a double dome in the phase diagram within a finite window of the displacement field. The temperature dependence of the normal-state resistance and the $I-V$ curves straddling $谓^*$ are suggestive of a phase transition and the potentially distinct nature of superconductivity in the two domes. Hartree-Fock calculations incorporating mild strain yield an incommensurate Kekul茅 spiral state whose effective spin polarization peaks in the regime where superconductivity is suppressed in experiments. This allows us to draw conclusions about the normal state as well as the unconventional nature of the superconducting order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09909v1-abstract-full').style.display = 'none'; document.getElementById('2404.09909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15204">arXiv:2403.15204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15204">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherent Phonon Control of Ultrafast Magnetization Dynamics in Fe$_\text{3}$GeTe$_\text{2}$ from Time-Dependent Ab Initio Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhaobo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frauenheim%2C+T">Thomas Frauenheim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junjie He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15204v1-abstract-short" style="display: inline;"> Exploring ultrafast magnetization control in two-dimensional (2D) magnets through optically driven coherent phonons has been well-established. Yet, the microscopic interplay between spin dynamics and lattice degrees of freedom remains less explored. Employing real-time time-dependent density functional theory (rt-TDDFT) coupled with Ehrenfest dynamics, we systematically investigate laser-induced s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15204v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15204v1-abstract-full" style="display: none;"> Exploring ultrafast magnetization control in two-dimensional (2D) magnets through optically driven coherent phonons has been well-established. Yet, the microscopic interplay between spin dynamics and lattice degrees of freedom remains less explored. Employing real-time time-dependent density functional theory (rt-TDDFT) coupled with Ehrenfest dynamics, we systematically investigate laser-induced spin-nuclei dynamics with coherent phonon excitation in the 2D ferromagnet Fe3GeTe2. We found that selectively pre-exciting three typical coherent phonon modes results in up to a 53% additional spin moment loss in an out-of-plane A2 1g mode within ~50 fs. Coherent phonon control of spin dynamics is closely linked to laser pulse parameters. The underlying microscopic mechanism of this phenomenon is primarily governed by coherent phonon-induced asymmetric spin-resolved charge transfer following the disappearance of the laser pulse, thereby enabling effective control of the spin moment loss. Our findings offer a novel insight into the coupling of coherent phonons with spin systems in 2D limits on femtosecond timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15204v1-abstract-full').style.display = 'none'; document.getElementById('2403.15204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07396">arXiv:2403.07396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystal design of altermagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xingkai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07396v1-abstract-short" style="display: inline;"> Symmetry plays a fundamental role in condensed matter. The unique entanglement between magnetic sublattices and alternating crystal environment in altermagnets provides a unique opportunity for designing magnetic space symmetry. There have been extensive experimental efforts concentrated on tuning the Neel vector to reconstruct altermagnetic symmetry. However, it remains challenging to modulate th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07396v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07396v1-abstract-full" style="display: none;"> Symmetry plays a fundamental role in condensed matter. The unique entanglement between magnetic sublattices and alternating crystal environment in altermagnets provides a unique opportunity for designing magnetic space symmetry. There have been extensive experimental efforts concentrated on tuning the Neel vector to reconstruct altermagnetic symmetry. However, it remains challenging to modulate the altermagnetic symmetry through the crystal aspect. Here, the crystal design of altermagnetism is successfully realized, by breaking glide mirrors and magnetic mirrors of the (0001) crystallographic plane in CrSb films via crystal distortion. We establish a locking relationship between altermagnetic symmetry and the emergent Dzyaloshinskii-Moriya (DM) vectors in different CrSb films, realizing unprecedentedly room-temperature spontaneous anomalous Hall effect in an altermagnetic metal. The concept of exchange-coupling torques is broadened to include both antiferromagnetic exchange-coupling torque and DM torque. Their relationship is designable, determining electrical manipulation modes, e.g., field-assisted switching for CrSb(1-100)/Pt and field-free switching for W/CrSb(11-20). Particularly, the unprecedentedly field-free 100-percent switching of Neel vectors is realized by making these two torques parallel or antiparallel, dependent on Neel vector orientation. Besides unravelling the rich mechanisms for electrical manipulation of altermagnetism rooted in broadened concept of exchange-coupling torques, we list other material candidates and propose that crystal design of altermagnetism would bring rich designability to magnonics, topology, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07396v1-abstract-full').style.display = 'none'; document.getElementById('2403.07396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06944">arXiv:2403.06944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06944">pdf</a>, <a href="https://arxiv.org/ps/2403.06944">ps</a>, <a href="https://arxiv.org/format/2403.06944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.035404">10.1103/PhysRevB.110.035404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sj$\ddot{\text{o}}$qvist quantum geometric tensor of finite-temperature mixed states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xu-Yang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jia-Chen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hao Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C">Chih-Chun Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06944v2-abstract-short" style="display: inline;"> The quantum geometric tensor (QGT) reveals local geometric properties and associated topological information of quantum states. Here a generalization of the QGT to mixed quantum states at finite temperatures based on the Sj$\ddot{\text{o}}$qvist distance is developed. The resulting Sj$\ddot{\text{o}}$qvist QGT is invariant under gauge transformations of individual spectrum levels of the density ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06944v2-abstract-full').style.display = 'inline'; document.getElementById('2403.06944v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06944v2-abstract-full" style="display: none;"> The quantum geometric tensor (QGT) reveals local geometric properties and associated topological information of quantum states. Here a generalization of the QGT to mixed quantum states at finite temperatures based on the Sj$\ddot{\text{o}}$qvist distance is developed. The resulting Sj$\ddot{\text{o}}$qvist QGT is invariant under gauge transformations of individual spectrum levels of the density matrix. A Pythagorean-like relation connects the distances and gauge transformations, which clarifies the role of the parallel-transport condition. The real part of the QGT naturally decomposes into a sum of the Fisher-Rao metric and Fubini-Study metric, allowing a distinction between different contributions to the quantum distance. The imaginary part of the QGT is proportional to a weighted summation of the Berry curvatures, which leads to a geometric phase for mixed states under certain conditions. We present three examples of different dimensions to illustrate the temperature dependence of the QGT and a discussion on possible implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06944v2-abstract-full').style.display = 'none'; document.getElementById('2403.06944v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 035404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05015">arXiv:2403.05015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05015">pdf</a>, <a href="https://arxiv.org/ps/2403.05015">ps</a>, <a href="https://arxiv.org/format/2403.05015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum Many-body Scar Models in One Dimensional Spin Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang-Fa Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05015v1-abstract-short" style="display: inline;"> The phenomenon of quantum many-body scars has received widespread attention both in theoretical and experimental physics in recent years due to its unique physical properties. In this paper, based on the $su(2)$ algebraic relations, we propose a general method for constructing scar models by combining simple modules.This allows us to investigate many-body scar phenomena in high-spin systems. We nu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05015v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05015v1-abstract-full" style="display: none;"> The phenomenon of quantum many-body scars has received widespread attention both in theoretical and experimental physics in recent years due to its unique physical properties. In this paper, based on the $su(2)$ algebraic relations, we propose a general method for constructing scar models by combining simple modules.This allows us to investigate many-body scar phenomena in high-spin systems. We numerically verify the thermalization and non-integrability of this model and demonstrate the dynamical properties of the scar states. We also provide a theoretical analysis of the properties of these scar states. For spin-$1$ case, we find that our 1D chain model reduces to the famous PXP model[C. J. Turner et al. Phys. Rev. B 98, 155134(2018)] under special parameter condition. In addition, due to the continuous tunability of the parameters, our model also enables us to investigate the transitions of QMBS from non-integrable to integrable system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05015v1-abstract-full').style.display = 'none'; document.getElementById('2403.05015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 125102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14705">arXiv:2402.14705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14705">pdf</a>, <a href="https://arxiv.org/format/2402.14705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Engineering and Revealing Dirac Strings in Spinor Condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gui-Sheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+M">Mudit Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang-Fa Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+H">Han Pu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14705v2-abstract-short" style="display: inline;"> Artificial monopoles have been engineered in various systems, yet there has been no systematic study of the singular vector potentials associated with the monopole field. We show that the Dirac string, the line singularity of the vector potential, can be engineered, manipulated, and made manifest in a spinor atomic condensate. We elucidate the connection among spin, orbital degrees of freedom, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14705v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14705v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14705v2-abstract-full" style="display: none;"> Artificial monopoles have been engineered in various systems, yet there has been no systematic study of the singular vector potentials associated with the monopole field. We show that the Dirac string, the line singularity of the vector potential, can be engineered, manipulated, and made manifest in a spinor atomic condensate. We elucidate the connection among spin, orbital degrees of freedom, and the artificial gauge, and show that there exists a mapping between the vortex filament and the Dirac string. We also devise a proposal where preparing initial spin states with relevant symmetries can result in different vortex patterns, revealing an underlying correspondence between the internal spin states and the spherical vortex structures. Such a mapping also leads to a new way of constructing spherical Landau levels, and monopole harmonics. Our observation provides insights into the behavior of quantum matter possessing internal symmetries in curved spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14705v2-abstract-full').style.display = 'none'; document.getElementById('2402.14705v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 5 figures + 5 appendices. In comparison with the previous version, we have (1) added supplementary material as appendices, and (2) made some minor revisions in the main text. Also, a simulation video for creating two artificial Dirac Strings with a mixed spin-1 state, is available at https://youtu.be/PCQGMqd-DfQ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13639">arXiv:2402.13639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13639">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0177451">10.1063/5.0177451 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sliding-mediated ferroelectric phase transition in CuInP2S6 under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun-Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+G+F">Gemma F. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moggach%2C+S+A">Stephen A. Moggach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lekina%2C+Y">Yulia Lekina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morris%2C+S">Samuel Morris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yiqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiankun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+J">Jinshuo Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhijian Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Q">Qingyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+Y">Yuyan Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Ze Xiang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+L">Liang Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+L">Lu You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13639v1-abstract-short" style="display: inline;"> Interlayer stacking order has recently emerged as a unique degree of freedom to control crystal symmetry and physical properties in two-dimensional van der Waals (vdW) materials and heterostructures. By tuning the layer stacking pattern, symmetry-breaking and electric polarization can be created in otherwise non-polar crystals, whose polarization reversal depends on the interlayer sliding motion.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13639v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13639v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13639v1-abstract-full" style="display: none;"> Interlayer stacking order has recently emerged as a unique degree of freedom to control crystal symmetry and physical properties in two-dimensional van der Waals (vdW) materials and heterostructures. By tuning the layer stacking pattern, symmetry-breaking and electric polarization can be created in otherwise non-polar crystals, whose polarization reversal depends on the interlayer sliding motion. Herein, we demonstrate that in a vdW layered ferroelectric, its existing polarization is closely coupled to the interlayer sliding driven by hydrostatic pressure. Through combined structural, electrical, vibrational characterizations, and theoretical calculations, we clearly map out the structural evolution of CuInP2S6 under pressure. A tendency towards a high polarization state is observed in the low-pressure region, followed by an interlayer-sliding-mediated phase transition from a monoclinic to a trigonal phase. Along the transformation pathway, the displacive-instable Cu ion serves as a pivot point that regulates the interlayer interaction in response to external pressure. The rich phase diagram of CuInP2S6, which is enabled by stacking orders, sheds light on the physics of vdW ferroelectricity and opens an alternative route to tailoring long-range order in vdW layered crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13639v1-abstract-full').style.display = 'none'; document.getElementById('2402.13639v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Reviews 11, 011414 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04864">arXiv:2402.04864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04864">pdf</a>, <a href="https://arxiv.org/format/2402.04864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Equivariant Neural Network Force Fields for Magnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zilong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xinle Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+H">Honggeng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zechen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhiyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04864v1-abstract-short" style="display: inline;"> Neural network force fields have significantly advanced ab initio atomistic simulations across diverse fields. However, their application in the realm of magnetic materials is still in its early stage due to challenges posed by the subtle magnetic energy landscape and the difficulty of obtaining training data. Here we introduce a data-efficient neural network architecture to represent density func&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04864v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04864v1-abstract-full" style="display: none;"> Neural network force fields have significantly advanced ab initio atomistic simulations across diverse fields. However, their application in the realm of magnetic materials is still in its early stage due to challenges posed by the subtle magnetic energy landscape and the difficulty of obtaining training data. Here we introduce a data-efficient neural network architecture to represent density functional theory total energy, atomic forces, and magnetic forces as functions of atomic and magnetic structures. Our approach incorporates the principle of equivariance under the three-dimensional Euclidean group into the neural network model. Through systematic experiments on various systems, including monolayer magnets, curved nanotube magnets, and moir茅-twisted bilayer magnets of $\text{CrI}_{3}$, we showcase the method&#39;s high efficiency and accuracy, as well as exceptional generalization ability. The work creates opportunities for exploring magnetic phenomena in large-scale materials systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04864v1-abstract-full').style.display = 'none'; document.getElementById('2402.04864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17153">arXiv:2401.17153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17153">pdf</a>, <a href="https://arxiv.org/format/2401.17153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Flocking by Turning Away </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Suchismita Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciarchi%2C+M">Matteo Ciarchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Ziqi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jing Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alert%2C+R">Ricard Alert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17153v2-abstract-short" style="display: inline;"> Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17153v2-abstract-full').style.display = 'inline'; document.getElementById('2401.17153v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17153v2-abstract-full" style="display: none;"> Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-induced phase separation of active particles, here it combines with turn-away torques to produce flocking. Therefore, our findings bridge the classes of aligning and non-aligning active matter. Our results could help to reconcile the observations that cells can flock despite turning away from each other via contact inhibition of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when the orientational interactions would seem to prevent it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17153v2-abstract-full').style.display = 'none'; document.getElementById('2401.17153v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 031008 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10