CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 852 results for author: <span class="mathjax">Zhou, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhou%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhou, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhou%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhou, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07496">arXiv:2412.07496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07496">pdf</a>, <a href="https://arxiv.org/format/2412.07496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Collisional scattering of strongly interacting D-band Feshbach molecules in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+F">Fansu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+C">Chi-Kin Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yuying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhengxi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shui%2C+H">Hongmian Shui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07496v1-abstract-short" style="display: inline;"> The excited bands in optical lattices manifest an important tool for studying quantum simulation and many-body physics, making it crucial to measure high-band scattering dynamics under strong interactions. This work investigates both experimentally and theoretically the collisional scattering of $^{6}\rm Li_2$ molecular Bose-Einstein condensate in the $D$ band of a one-dimensional optical lattice,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07496v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07496v1-abstract-full" style="display: none;"> The excited bands in optical lattices manifest an important tool for studying quantum simulation and many-body physics, making it crucial to measure high-band scattering dynamics under strong interactions. This work investigates both experimentally and theoretically the collisional scattering of $^{6}\rm Li_2$ molecular Bose-Einstein condensate in the $D$ band of a one-dimensional optical lattice, with interaction strength directly tunable via magnetic Feshbach resonance. We find a clear dependence of the $D$-band lifetimes on the interaction strength within the strongly interacting regime, which arises from the fact that the scattering cross-section is proportional to the square of the scattering length. The maximum lifetime versus lattice depth is measured to reveal the effects of interactions. We also investigate the scattering channels of $D$-band molecules under different interaction levels and develop a reliable two-body scattering rate equation. This work provides insight into the interplay between interaction and the collisional scattering of high-band bosons in optical lattices, paving the way for research into strong correlation effects in high-band lattice systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07496v1-abstract-full').style.display = 'none'; document.getElementById('2412.07496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04010">arXiv:2412.04010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04010">pdf</a>, <a href="https://arxiv.org/ps/2412.04010">ps</a>, <a href="https://arxiv.org/format/2412.04010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological Aspects of Dirac Fermions in a Kagom茅 Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xinyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04010v2-abstract-short" style="display: inline;"> The Dirac fermion with linear dispersion in the kagom茅 lattice governs the low-energy physics of different valleys at two inequivalent corners of hexagonal Brillouin zone. The effective Hamiltonian based on the cyclic permutation symmetry of sublattices is constructed to show that the topology of Dirac fermions at these two valleys is characterized by opposite winding numbers. For spinless fermion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04010v2-abstract-full').style.display = 'inline'; document.getElementById('2412.04010v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04010v2-abstract-full" style="display: none;"> The Dirac fermion with linear dispersion in the kagom茅 lattice governs the low-energy physics of different valleys at two inequivalent corners of hexagonal Brillouin zone. The effective Hamiltonian based on the cyclic permutation symmetry of sublattices is constructed to show that the topology of Dirac fermions at these two valleys is characterized by opposite winding numbers. For spinless fermions, the many-particle interactions produce intervalley scattering and drive an intervalley coherent state with spontaneous translation symmetry breaking. The Dirac fermions acquire a mass term from the simultaneous charge and bond orderings. In this phase, the developed bond texture underlies a hollow-star-of-David pattern in a tripled Wigner-Seitz cell of kagom茅 lattice. It is further demonstrated that the twisting of Dirac mass with vorticity leads to zero Dirac modes at the vortex core, which are intimately related to fractionalization. The hollow-star-of-David phase is shown to have a distinct $\mathbb{Z}_6$ Berry phase with its sign-change counterpart of Dirac mass, i.e. the hexagonal phase, shedding light on the topological origin of zero Dirac modes around the vortex core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04010v2-abstract-full').style.display = 'none'; document.getElementById('2412.04010v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02992">arXiv:2412.02992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02992">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202314576">10.1002/adfm.202314576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesis of metalloborophene nanoribbons on Cu(110) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+X">Xiao-Ji Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yi Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Ying Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+J">Jie Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhuhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang-Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yongjun Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02992v1-abstract-short" style="display: inline;"> Metalloborophene, characterized by the presence of metal-centered boron wheels denoted as M\c{opyright}Bn, has garnered considerable attention in recent years due to its versatile properties and potential applications in fields such as electronics, spintronics, and catalysis. However, the experimental verification of metalloborophene has been challenging, mainly due to the unconventional two-dimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02992v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02992v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02992v1-abstract-full" style="display: none;"> Metalloborophene, characterized by the presence of metal-centered boron wheels denoted as M\c{opyright}Bn, has garnered considerable attention in recent years due to its versatile properties and potential applications in fields such as electronics, spintronics, and catalysis. However, the experimental verification of metalloborophene has been challenging, mainly due to the unconventional two-dimensional (2D) boron networks. In this study, we employ scanning tunneling microscopy, X-ray photoelectron spectroscopy, low energy electron diffraction, and first-principles calculations to unveil Cu\c{opyright}B8 metalloborophene nanoribbons formed via spontaneous alloying after the deposition of boron on a heated Cu(110) substrate under ultrahigh vacuum condition. The thermodynamically preferred precursor, the anchoring of boron network to metal atoms, and anisotropic lattice mismatch are identified as pivotal factors in the formation of these metalloborophene nanoribbons. This discovery expands the repertoire of 2D materials and offers a potential pathway for the synthesis of other metalloborophenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02992v1-abstract-full').style.display = 'none'; document.getElementById('2412.02992v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 34, 2314576 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01518">arXiv:2412.01518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01518">pdf</a>, <a href="https://arxiv.org/format/2412.01518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic-Transition-Induced Colossal Magnetoresistance in the Ferrimagnetic Semiconductor Mn$_3$Si$_2$Te$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">ZeYu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kunya Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+L">Linlin Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xinrun Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaolong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yisheng Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Mingquan He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01518v1-abstract-short" style="display: inline;"> In the ferrimagnetic semiconductor Mn$_3$Si$_2$Te$_6$, a colossal magnetoresistance (CMR) is observed only when a magnetic field is applied along the magnetic hard axis ($\mathbf{H}\parallel c$). This phenomenon suggests an unconventional CMR mechanism potentially driven by the interplay between magnetism, topological band structure, and/or chiral orbital currents (COC). By comparing electrical re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01518v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01518v1-abstract-full" style="display: none;"> In the ferrimagnetic semiconductor Mn$_3$Si$_2$Te$_6$, a colossal magnetoresistance (CMR) is observed only when a magnetic field is applied along the magnetic hard axis ($\mathbf{H}\parallel c$). This phenomenon suggests an unconventional CMR mechanism potentially driven by the interplay between magnetism, topological band structure, and/or chiral orbital currents (COC). By comparing electrical resistance measurements using continuous direct currents and pulse currents, we found that the current-induced insulator-metal transition, supporting the COC-driven CMR mechanism, is likely a consequence of Joule heating effects. Additionally, multiple magnetic field-induced metamagnetic transitions were identified through AC magnetostriction coefficient experiments, but only when $\mathbf{H}\parallel c$. Importantly, the transition at $\sim$ 5 T marks the boundary between the low-field CMR and high-field weak MR. These findings suggest that field-induced metamagnetic transition combined with partial polarization of magnetic moments are the primary causes of the band gap closure, leading to the observed CMR in Mn$_3$Si$_2$Te$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01518v1-abstract-full').style.display = 'none'; document.getElementById('2412.01518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16357">arXiv:2411.16357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16357">pdf</a>, <a href="https://arxiv.org/format/2411.16357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingtao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaofan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16357v1-abstract-short" style="display: inline;"> As an important effect induced by the particle-lattice interaction, the Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems. We here study a bosonic version of the one-dimensional Ising-Kondo lattice model, which describes itinerant bosons interact with the localized magnetic moments via only longitudinal Kondo exchange&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16357v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16357v1-abstract-full" style="display: none;"> As an important effect induced by the particle-lattice interaction, the Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems. We here study a bosonic version of the one-dimensional Ising-Kondo lattice model, which describes itinerant bosons interact with the localized magnetic moments via only longitudinal Kondo exchange.\ We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes. The Peierls state here is characterized by the formation of a long-range spin-density-wave order, the periodicity of which is set by the density of the itinerant bosons. The ground-state phase diagram is mapped out by extrapolating the finite-size results to thermodynamic limit. Apart from the bosonic Peierls state, we also reveal the presence of some other magnetic orders, including a paramagnetic phase and a ferromagnetic phase. We finally propose a possible experimental scheme with ultracold atoms in optical lattices. Our results broaden the frontiers of the current understanding of the one-dimensional particle-lattice interaction system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16357v1-abstract-full').style.display = 'none'; document.getElementById('2411.16357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10350">arXiv:2411.10350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10350">pdf</a>, <a href="https://arxiv.org/format/2411.10350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Secondary Grain Boundary Dislocations Alter Segregation Energy Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinren Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gon%C3%A7alves%2C+W">William Gon莽alves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yipeng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+P">Patrick Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S+M">Saurabh Mohan Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gault%2C+B">Baptiste Gault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludwig%2C+W">Wolfgang Ludwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rauch%2C+E">Edgar Rauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10350v1-abstract-short" style="display: inline;"> Grain boundaries (GBs) trigger structure-specific chemical segregation of solute atoms. According to the three-dimensional (3D) topology of grains, GBs - although defined as planar defects - cannot be free of curvature. This implies formation of topologically-necessary arrays of secondary GB dislocations. We report here that these pattern-forming secondary GB dislocations can have an additional an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10350v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10350v1-abstract-full" style="display: none;"> Grain boundaries (GBs) trigger structure-specific chemical segregation of solute atoms. According to the three-dimensional (3D) topology of grains, GBs - although defined as planar defects - cannot be free of curvature. This implies formation of topologically-necessary arrays of secondary GB dislocations. We report here that these pattern-forming secondary GB dislocations can have an additional and, in some cases, even a much stronger effect on GB segregation than defect-free GBs. Using nanoscale correlative tomography combining crystallography and chemical analysis, we quantified the relationship between secondary GB dislocations and their segregation energy spectra for a model Fe-W alloy. This discovery unlocks new design opportunities for advanced materials, leveraging the additional degrees of freedom provided by topologically-necessary secondary GB dislocations to modulate segregation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10350v1-abstract-full').style.display = 'none'; document.getElementById('2411.10350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15061">arXiv:2410.15061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15061">pdf</a>, <a href="https://arxiv.org/format/2410.15061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Bohan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Siyu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15061v1-abstract-short" style="display: inline;"> Classification of quantum phases is one of the most important areas of research in condensed matter physics. In this work, we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning. Firstly, we choose two advanced unsupervised learning algorithms, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15061v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15061v1-abstract-full" style="display: none;"> Classification of quantum phases is one of the most important areas of research in condensed matter physics. In this work, we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning. Firstly, we choose two advanced unsupervised learning algorithms, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering Structure (OPTICS), to explore the distinct phases of Aubry-Andr茅-Harper model and quasiperiodic p-wave model. The unsupervised learning results match well with traditional numerical diagonalization. Finally, we compare the similarity of different algorithms and find that the highest similarity between the results of unsupervised learning algorithms and those of traditional algorithms has exceeded 98\%. Our work sheds light on applications of unsupervised learning for phase classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15061v1-abstract-full').style.display = 'none'; document.getElementById('2410.15061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13535">arXiv:2410.13535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13535">pdf</a>, <a href="https://arxiv.org/format/2410.13535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Million-atom heat transport simulations of polycrystalline graphene approaching first-principles accuracy enabled by neuroevolution potential on desktop GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoye Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+B">Benrui Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+X">Xiaoming Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13535v2-abstract-short" style="display: inline;"> First-principles molecular dynamics simulations of heat transport in systems with large-scale structural features are challenging due to their high computational cost. Here, using polycrystalline graphene as a case study, we demonstrate the feasibility of simulating heat transport with near first-principles accuracy in systems containing over 1.4 million atoms, achievable even with consumer deskto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13535v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13535v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13535v2-abstract-full" style="display: none;"> First-principles molecular dynamics simulations of heat transport in systems with large-scale structural features are challenging due to their high computational cost. Here, using polycrystalline graphene as a case study, we demonstrate the feasibility of simulating heat transport with near first-principles accuracy in systems containing over 1.4 million atoms, achievable even with consumer desktop GPUs. This is enabled by the highly efficient neuroevolution potential (NEP) approach, as implemented in the open-source GPUMD package. Leveraging the NEP model&#39;s accuracy and efficiency, we quantify the reduction in thermal conductivity of polycrystalline graphene due to grain boundaries with varying grain sizes, resolving contributions from in-plane and out-of-plane (flexural) phonon modes. Additionally, we find that grain boundaries can lead to finite thermal conductivity even under significant tensile strain, in contrast to the divergent behavior observed in pristine graphene under similar conditions, indicating that grain boundaries may play a crucial role in thermal transport in low-dimensional momentum-conserving systems. These findings could offer insights for interpreting experimental observations, given the widespread presence of both large-scale grain boundaries and external strains in real materials. The demonstrated ability to simulate millions of atoms with near-first-principles accuracy on consumer desktop GPUs using the NEP approach will help make large-scale high-fidelity atomistic simulations more accessible to the broader research community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13535v2-abstract-full').style.display = 'none'; document.getElementById('2410.13535v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, a labeling typo in the previous Fig. 6 has been corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06901">arXiv:2410.06901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06901">pdf</a>, <a href="https://arxiv.org/format/2410.06901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Interaction-induced phase transitions at topological quantum criticality of an extended Su-Schrieffer-Heeger model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaofan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Song Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06901v1-abstract-short" style="display: inline;"> Topological phases at quantum criticality attract much attention recently. Here we numerically study the interaction-induced phase transitions at around the topological quantum critical points of an extended Su-Schrieffer-Heeger (SSH) chain with next-nearest-neighbor hopping. This extended SSH model shows topological phase transitions between the topologically trivial and nontrivial critical phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06901v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06901v1-abstract-full" style="display: none;"> Topological phases at quantum criticality attract much attention recently. Here we numerically study the interaction-induced phase transitions at around the topological quantum critical points of an extended Su-Schrieffer-Heeger (SSH) chain with next-nearest-neighbor hopping. This extended SSH model shows topological phase transitions between the topologically trivial and nontrivial critical phases when interaction is absent. So long as the interaction terms are turned on, the topologically nontrivial (trivial) critical phases are driven into topologically nontrivial (trivial) insulator phases with finite energy gaps. Particularly, we find the trivial insulator phase is further driven to the nontrivial insulator phase, through interaction-induced topological phase transition, although interaction generally is harmful to nontrivial topology. The stability of trivial insulator phase against interaction tends to vanish at the multicritical point that separates the trivial and nontrivial critical phases. Our work provides a concrete example for manifesting the impact of interaction on topological quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06901v1-abstract-full').style.display = 'none'; document.getElementById('2410.06901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06602">arXiv:2410.06602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06602">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Revealing nanoscale structural phase separation in La$_{3}$Ni$_{2}$O$_{7-未}$ single crystal via scanning near-field optical microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoxiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Weihong He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+K">Kaipeng Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Deyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yinghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enkang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuaikang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shiwu Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yajun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06602v1-abstract-short" style="display: inline;"> The discovery of superconductivity in La3Ni2O7-$未$ under high pressure,with an onset critical temperature (Tc) around 80 K, has sparked significant interest in the superconducting phases of Ruddlesden-Popper nickelates, Lan+1NinO3n+1 (n = 2,3). While La4Ni3O10 exhibits nearly 100% superconductivity with Tc~30 K under high pressure, magnetic susceptibility studies on La3Ni2O7-$未$, however, reveal a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06602v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06602v1-abstract-full" style="display: none;"> The discovery of superconductivity in La3Ni2O7-$未$ under high pressure,with an onset critical temperature (Tc) around 80 K, has sparked significant interest in the superconducting phases of Ruddlesden-Popper nickelates, Lan+1NinO3n+1 (n = 2,3). While La4Ni3O10 exhibits nearly 100% superconductivity with Tc~30 K under high pressure, magnetic susceptibility studies on La3Ni2O7-$未$, however, reveal a more complex picture, indicating either filamentary superconductivity or that approximately 50% of crystal phase becomes superconducting in polycrystalline samples. In this study, we employed scattering-type scanning near-field optical microscopy (SNOM) to visualize nanoscale structural phase separation in La3Ni2O7-$未$, identifying enhanced optical conductivity with stripes approximately 183 nm wide. These stripes run diagonally with respect to the Ni-O-Ni bond directions in the a-b plane, ruling out the possibility that they arise from impurity phases, like the &#39;1313&#39;, &#39;214&#39; or &#39;4310&#39; structures. Our findings suggest this phase separation corresponds to coexisting orthorhombic Amam and Fmmm structures,exhibiting optical conductivities ~ 22% and 29% of gold&#39;s, respectively. Additionally, we find that the Fmmm structure constitutes about 38% of the total field of view, while the remainder consists of Amam structure and the transitional region between Fmmm and Amam structures. In contrast, La4Ni3O10 exhibits uniform and higher optical conductivity with no observable evidence of phase separation. Thus, our study represents a pioneering effort to directly image nanoscale phase separation in Lan+1NinO3n+1 (n=2,3) nickelates. This observation could provide crucial insights into the factors that limit the superconducting volume fraction of La3Ni2O7-$未$, highlighting SNOM as a powerful probe for exploring nanoscale low-energy physics in correlated quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06602v1-abstract-full').style.display = 'none'; document.getElementById('2410.06602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18258">arXiv:2409.18258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18258">pdf</a>, <a href="https://arxiv.org/format/2409.18258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206501">10.1103/PhysRevLett.133.206501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capping effects on spin and charge excitations in parent and superconducting Nd1-xSrxNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">H. LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Y. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhartiya%2C+V">V. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">S. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+A">A. Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardini%2C+F">F. Bernardini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18258v1-abstract-short" style="display: inline;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18258v1-abstract-full" style="display: none;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations of Nd1-xSrxNiO2 (x = 0 and 0.2). Spin excitations are observed in parent and 20% doped Nd1-xSrxNiO2 regardless of capping, proving that magnetism is intrinsic to infinite-layer nickelates and appears in a significant fraction of their phase diagram. In parent and superconducting Nd1-xSrxNiO2, the spin excitations are slightly hardened in capped samples compared to the non-capped ones. Additionally, a weaker Ni - Nd charge transfer peak at ~ 0.6 eV suggests that the hybridization between Ni 3d and Nd 5d orbitals is reduced in capped samples. From our data, capping induces only minimal differences in Nd1-xSrxNiO2 and we phenomenologically discuss these differences based on the reconstruction of the SrTiO3 - NdNiO2 interface and other mechanisms such as crystalline disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'none'; document.getElementById('2409.18258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17586">arXiv:2409.17586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17586">pdf</a>, <a href="https://arxiv.org/format/2409.17586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chenyazhi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17586v1-abstract-short" style="display: inline;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17586v1-abstract-full" style="display: none;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe$_2$ under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial to the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal state under an electric field. Our findings highlight a significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors, and demonstrate the potential applications for superconducting integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'none'; document.getElementById('2409.17586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14453">arXiv:2409.14453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14453">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Self-Attention Assistant Classification of non-Hermitian Topological Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hengxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14453v3-abstract-short" style="display: inline;"> Classification of non-Hermitian topological phases becomes challenging due to interplay of the band topology and non-Hermiticity. The significant increase in data dimensions and the number of categories has rendered traditional supervised learning and unsupervised manifold learning failed. Here, we propose the self-attention assistant machine learning for clustering topological phases. By incorpor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14453v3-abstract-full').style.display = 'inline'; document.getElementById('2409.14453v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14453v3-abstract-full" style="display: none;"> Classification of non-Hermitian topological phases becomes challenging due to interplay of the band topology and non-Hermiticity. The significant increase in data dimensions and the number of categories has rendered traditional supervised learning and unsupervised manifold learning failed. Here, we propose the self-attention assistant machine learning for clustering topological phases. By incorporating the self-attention mechanism, the model can effectively capture long-range dependencies and important patterns, resulting in a more compact and information-rich latent space. It can directly classify the eigenvectors and obtains the information of all topological phases. Our results provide a general method for studying non-Hermitian topological phase via machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14453v3-abstract-full').style.display = 'none'; document.getElementById('2409.14453v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13558">arXiv:2409.13558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202406882">10.1002/advs.202406882 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Anomalous Hall Effect in a Kagome Ferromagnetic Weyl Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pate%2C+S+E">Samuel E. Pate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bing Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+I">Ivar Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J+S">J. Samuel Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiuquan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+D+Y">Duck Young Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welp%2C+U">Ulrich Welp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwok%2C+W">Wai-Kwong Kwok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhi-Li Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13558v1-abstract-short" style="display: inline;"> Emerging from the intricate interplay of topology and magnetism, the giant anomalous Hall effect (AHE) is the most known topological property of the recently discovered kagome ferromagnetic Weyl semimetal Co_3Sn_2S_2 with the magnetic Co atoms arranged on a kagome lattice. Here we report that the AHE in Co_3Sn_2S_2 can be fine-tuned by an applied magnetic field orientated within ~2 degrees of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13558v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13558v1-abstract-full" style="display: none;"> Emerging from the intricate interplay of topology and magnetism, the giant anomalous Hall effect (AHE) is the most known topological property of the recently discovered kagome ferromagnetic Weyl semimetal Co_3Sn_2S_2 with the magnetic Co atoms arranged on a kagome lattice. Here we report that the AHE in Co_3Sn_2S_2 can be fine-tuned by an applied magnetic field orientated within ~2 degrees of the kagome plane, while beyond this regime, it stays unchanged. Particularly, it can vanish in magnetic fields parallel to the kagome plane and even decrease in magnetic fields collinear with the spin direction. This tunable AHE can be attributed to local spin switching enabled by the geometrical frustration of the magnetic kagome lattice, revealing that spins in a kagome ferromagnet change their switching behavior as the magnetic field approaches the kagome plane. Our results also suggest a versatile way to tune the properties of a kagome magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13558v1-abstract-full').style.display = 'none'; document.getElementById('2409.13558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Sci. 11, 2406882 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12423">arXiv:2409.12423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12423">pdf</a>, <a href="https://arxiv.org/format/2409.12423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Surface State Evolution in Bi$_2$Se$_3$ via Surface Etching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruohan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jia-Wan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12423v1-abstract-short" style="display: inline;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12423v1-abstract-full" style="display: none;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the quintuple bulk. Our method allows us to track the topological surface state and confirm its robustness throughout the surface modification. Importantly, we report a relocation of the topological Dirac cone in both real space and momentum space, as the top surface layer transitions from quintuple Se-Bi-Se-Bi-Se to bilayer-Bi. Additionally, charge transfer among different surface layers is identified. Our study provides a precise method to manipulate surface configurations, allowing for the fine-tuning of the topological surface states in Bi$_2$Se$_3$, which represents a significant advancement towards nano-engineering of topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'none'; document.getElementById('2409.12423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, accepted for publication in Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09922">arXiv:2409.09922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09922">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Bloch oscillations of Fibonacci anyons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoqi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weixuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Hao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiangdong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09922v1-abstract-short" style="display: inline;"> Non-Abelian anyons, which correspond to collective excitations possessing multiple fusion channels and noncommuting braiding statistics, serve as the fundamental constituents for topological quantum computation. Here, we reveal the exotic Bloch oscillations (BOs) induced by non-Abelian fusion of Fibonacci anyons. It is shown that the interplay between fusion-dependent internal energy levels and ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09922v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09922v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09922v1-abstract-full" style="display: none;"> Non-Abelian anyons, which correspond to collective excitations possessing multiple fusion channels and noncommuting braiding statistics, serve as the fundamental constituents for topological quantum computation. Here, we reveal the exotic Bloch oscillations (BOs) induced by non-Abelian fusion of Fibonacci anyons. It is shown that the interplay between fusion-dependent internal energy levels and external forces can induce BOs and Bloch-Zener oscillations (BZOs) of coupled fusion degrees with varying periods. In this case, the golden ratio of the fusion matrix can be determined by the period of BOs or BZOs in conjunction with external forces, giving rise to an effective way to unravel non-Abelian fusion. Furthermore, we experimentally simulate nonAbelian fusion BOs by mapping Schrodinger equation of two Fibonacci anyons onto dynamical equation of electric circuits. Through the measurement of impedance spectra and voltage evolution, both fusion-dependent BZOs and BOs are simulated. Our findings establish a connection between BOs and non-Abelian fusion, providing a versatile platform for simulating numerous intriguing phenomena associated with non-Abelian physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09922v1-abstract-full').style.display = 'none'; document.getElementById('2409.09922v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRB 110, 094301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04121">arXiv:2409.04121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resolving the Electronic Ground State of La3Ni2O7-未 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04121v1-abstract-short" style="display: inline;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04121v1-abstract-full" style="display: none;"> The recent discovery of a superconductivity signature in La3Ni2O7-未 under a pressure of 14 GPa, with a superconducting transition temperature of around 80 K, has attracted considerable attention. An important aspect of investigating electronic structures is discerning the extent to which the electronic ground state of La3Ni2O7-未 resembles the parent state of the cuprate superconductor, a charge transfer insulator with long-range antiferromagnetism. Through X-ray absorption spectroscopy, we have uncovered the crucial influence of oxygen ligands on the electronic ground states of the Ni ions, displaying a charge transfer nature akin to cuprate but with distinct orbital configurations. Both in-plane and out-of-plane Zhang-Rice singlets associated with Ni d_(x^2-y^2 ) and d_(z^2) orbitals are identified, together with a strong interlayer coupling through inner apical oxygen. Additionally, in La3Ni2O7-未 films, we have detected a superlattice reflection (1/4, 1/4, L) at the Ni L absorption edge using resonant X-ray scattering measurements. Further examination of the resonance profile indicates that the reflection originates from the Ni d orbitals. By evaluating the reflection&#39;s azimuthal angle dependence, we have confirmed the presence of collinear antiferromagnetic spin ordering and charge-like anisotropy ordered with the same periodicity. Notably, our findings reveal a microscopic relationship between these two components in the temperature dependence of the scattering intensity of the reflection. This investigation enriches our understanding of high-temperature superconductivity in La3Ni2O7-未 under high pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04121v1-abstract-full').style.display = 'none'; document.getElementById('2409.04121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04093">arXiv:2409.04093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04093">pdf</a>, <a href="https://arxiv.org/ps/2409.04093">ps</a>, <a href="https://arxiv.org/format/2409.04093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of superconducting diode effect in antiferromagnetic Mott insulator $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kecheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Kejing Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04093v1-abstract-short" style="display: inline;"> Nonreciprocal superconductivity, also called as superconducting diode effect that spontaneously breaks time-reversal symmetry, is characterized by asymmetric critical currents under opposite applied current directions. This distinct state unveils a rich ore of intriguing physical properties, particularly in the realm of nanoscience application of superconductors. Towards the experimental realizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04093v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04093v1-abstract-full" style="display: none;"> Nonreciprocal superconductivity, also called as superconducting diode effect that spontaneously breaks time-reversal symmetry, is characterized by asymmetric critical currents under opposite applied current directions. This distinct state unveils a rich ore of intriguing physical properties, particularly in the realm of nanoscience application of superconductors. Towards the experimental realization of superconducting diode effect, the construction of two-dimensional heterostructures of magnets and $s$-wave superconductors is considered to be a promising pathway. In this study, we present our findings of superconducting diode effect manifested in the magnetic Mott insulator $伪$-RuCl$_3$. This phenomenon is induced by the proximity effect within a van der Waals heterostructure, consisting of thin $伪$-RuCl$_3$/NbSe$_2$ flakes. Through transport property measurements, we have confirmed a weak superconducting gap of 0.2 meV, which is significantly lower than the intrinsic gap of NbSe$_2$(1.2 meV). Upon the application of a weak magnetic field below 70 mT, we observed an asymmetry in the critical currents under positive and negative applied currents. This observation demonstrates a typical superconducting diode effect in the superconducting $伪$-RuCl$_3$. The superconducting diode effect and nonreciprocal resistance are observed exclusively when the magnetic field is aligned out-of-plane. This suggests that an Ising-type spin-orbit coupling in the superconducting $伪$-RuCl$_3$ may be responsible for the mechanism. Our findings furnish a platform for the exploration of superconducting diode effect via the artificial construction of heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04093v1-abstract-full').style.display = 'none'; document.getElementById('2409.04093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01753">arXiv:2409.01753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Correlating grain boundary character and composition in 3-dimensions using 4D-scanning precession electron diffraction and atom probe tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S+M">Saurabh M. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+P">Patrick Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiranbabu%2C+S">Srikakulapu Kiranbabu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludwig%2C+W">Wolfgang Ludwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rauch%2C+E+F">Edgar F. Rauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herbig%2C+M">Michael Herbig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebscher%2C+C+H">Christian H. Liebscher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01753v1-abstract-short" style="display: inline;"> Grain boundaries are dominant imperfections in nanocrystalline materials that form a complex 3-dimensional (3D) network. Solute segregation to grain boundaries is strongly coupled to the grain boundary character, which governs the stability and macroscopic properties of nanostructured materials. Here, we develop a 3-dimensional transmission electron microscopy and atom probe tomography correlation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01753v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01753v1-abstract-full" style="display: none;"> Grain boundaries are dominant imperfections in nanocrystalline materials that form a complex 3-dimensional (3D) network. Solute segregation to grain boundaries is strongly coupled to the grain boundary character, which governs the stability and macroscopic properties of nanostructured materials. Here, we develop a 3-dimensional transmission electron microscopy and atom probe tomography correlation framework to retrieve the grain boundary character and composition at the highest spatial resolution and chemical sensitivity by correlating four-dimensional scanning precession electron diffraction tomography (4D-SPED) and atom probe tomography (APT) on the same sample. We obtain the 3D grain boundary habit plane network and explore the preferential segregation of Cu and Si in a nanocrystalline Ni-W alloy. The correlation of structural and compositional information reveals that Cu segregates predominantly along high angle grain boundaries and incoherent twin boundaries, whereas Si segregation to low angle and incommensurate grain boundaries is observed. The novel full 3D correlative approach employed in this work opens up new possibilities to explore the 3D crystallographic and compositional nature of nanomaterials. This lays the foundation for both probing the true 3D structure-chemistry at the sub-nanometer scale and, consequentially, tailoring the macroscopic properties of advanced nanomaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01753v1-abstract-full').style.display = 'none'; document.getElementById('2409.01753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09213">arXiv:2408.09213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09213">pdf</a>, <a href="https://arxiv.org/format/2408.09213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Complexions at the Iron-Magnetite Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bienvenu%2C+B">Baptiste Bienvenu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=da+Silva%2C+A+K">Alisson Kwiatkowski da Silva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09213v1-abstract-short" style="display: inline;"> Synthesizing distinct phases and controlling the crystalline defects in them are key concepts in materials and process design. These approaches are usually described by decoupled theories, with the former resting on equilibrium thermodynamics and the latter on nonequilibrium kinetics. By combining them into a holistic form of defect phase diagrams, we can apply phase equilibrium models to the ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09213v1-abstract-full" style="display: none;"> Synthesizing distinct phases and controlling the crystalline defects in them are key concepts in materials and process design. These approaches are usually described by decoupled theories, with the former resting on equilibrium thermodynamics and the latter on nonequilibrium kinetics. By combining them into a holistic form of defect phase diagrams, we can apply phase equilibrium models to the thermodynamic evaluation of defects such as vacancies, dislocations, surfaces, grain boundaries, and phase boundaries, placing the understanding of material imperfections and their role on properties on solid thermodynamic and theoretical grounds. In this study, we characterize an interface-stabilized phase between Fe and Fe3O4 (magnetite) with differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). This method uniquely enables the simultaneous imaging of both heavy Fe atoms and light O atoms, providing precise mapping of the atomic structure and chemical composition at this heterogeneous metal-oxide interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/Fe3O4[001] interface. Using density-functional theory (DFT), we not only explain the observed complexion but also map out various interface-stabilized phases as a function of the O chemical potential. We show that the formation of complexions influences the properties of the interface, increasing its adhesion by 20 % and changing the charge transfer between adjacent materials, also leveraging impact on the transport properties across such interfaces. Our findings highlight the potential of tunable phase states at defects as a new asset in advanced materials design, paving the way for knowledge-based and optimized corrosion protection, catalysis, magnetism, and redox-driven phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09213v1-abstract-full').style.display = 'none'; document.getElementById('2408.09213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08394">arXiv:2408.08394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51255-3">10.1038/s41467-024-51255-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A topological Hund nodal line antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Che-Min Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaohu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Tong Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shengwei Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08394v1-abstract-short" style="display: inline;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08394v1-abstract-full" style="display: none;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'none'; document.getElementById('2408.08394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 7052 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01957">arXiv:2408.01957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01957">pdf</a>, <a href="https://arxiv.org/format/2408.01957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent quantum disordered phase in Na$_2$Co$_2$TeO$_6$ under intermediate magnetic field along $c$ axis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xu-Guang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuo%2C+A">Akira Matsuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehlawat%2C+K">Kavita Mehlawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsui%2C+K">Kazuki Matsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhuo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyata%2C+A">Atsuhiko Miyata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kindo%2C+K">Koichi Kindo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohama%2C+Y">Yoshimitsu Kohama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y+H">Yasuhiro H. Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01957v1-abstract-short" style="display: inline;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01957v1-abstract-full" style="display: none;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagnetic phase after suppressing the AFM order. Recently, Na$_2$Co$_2$TeO$_6$ has been proposed as one of the prime candidates, where the Kitaev interaction is realized by the high-spin $t^{5}_{2g}e^2_g$ configuration, and spin-orbit entangled $J_{\rm eff} = 1/2$ state in a bond-edge shared honeycomb lattice. In this study, we identify an emergent intermediate disordered phase induced by an external field along the $c$-axis of the honeycomb plane. This phase is characterized through magnetization and magnetocaloric effect experiments in high magnetic fields. To explain the experimental results, we propose an effective spin model with large AFM Kitaev interaction, which yields results in good agreement with both our findings and previously reported data. We determine that the effective $K$-$J$-$螕$-$螕&#39;$ model for Na$_2$Co$_2$TeO$_6$ is nearly dual to that of $伪$-RuCl$_3$ under an unitary transformation. Given the insignificant fragility of Na$_2$Co$_2$TeO$_6$ sample, further high-field experiments can be conducted to explore this intermediate-field quantum spin disordered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'none'; document.getElementById('2408.01957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21597">arXiv:2407.21597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21597">pdf</a>, <a href="https://arxiv.org/format/2407.21597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Persistent nodal magnon-photon polariton in ferromagnetic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z">Zhuolun Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xi-Han Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21597v2-abstract-short" style="display: inline;"> Exceptional points with coalescence of eigenvalues and eigenvectors are spectral singularities in the parameter space, achieving which often needs fine-tuning of parameters in quantum systems. We predict a \textit{persistent} realization of nodal magnon-photon polariton, i.e., a polariton of long wavelength without any gap splitting in a thin ferromagnetic insulator film sandwiched by two normal m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21597v2-abstract-full').style.display = 'inline'; document.getElementById('2407.21597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21597v2-abstract-full" style="display: none;"> Exceptional points with coalescence of eigenvalues and eigenvectors are spectral singularities in the parameter space, achieving which often needs fine-tuning of parameters in quantum systems. We predict a \textit{persistent} realization of nodal magnon-photon polariton, i.e., a polariton of long wavelength without any gap splitting in a thin ferromagnetic insulator film sandwiched by two normal metals, which persistently exists when the ferromagnet is sufficiently thick $\sim 100$~nm due to the joint effect of dissipation and dissipative coupling. We perform the model calculation \textit{beyond the perturbation theory} using a classical approach, develop a quantum scheme able to account for the Ohmic dissipation, and find ultrastrong coupling with coupling strength comparable to the bare magnon frequency. Via revealing a simple conversion relation we extend this formalism to superconductors and predict the gap opened by the ultrastrong coupling strongly depends on the direction of polariton propagation. Our findings may help search for robust non-Hermitian topological phases in magnonic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21597v2-abstract-full').style.display = 'none'; document.getElementById('2407.21597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20771">arXiv:2407.20771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20771">pdf</a>, <a href="https://arxiv.org/format/2407.20771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Absence of BCS-BEC Crossover in FeSe0.45Te0 55 Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yadong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+Y">Yingjie Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jumin Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenpei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+N">Neng Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20771v1-abstract-short" style="display: inline;"> In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS-BEC crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe0&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20771v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20771v1-abstract-full" style="display: none;"> In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS-BEC crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe0.45Te0.55 superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20771v1-abstract-full').style.display = 'none'; document.getElementById('2407.20771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18460">arXiv:2407.18460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18460">pdf</a>, <a href="https://arxiv.org/format/2407.18460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0230915">10.1063/5.0230915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Nernst Effect in a layered metallic antiferromagnet EuAl$_2$Si$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kunya Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xinrun Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=zhang%2C+Y">Yiyue zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=zhang%2C+L">Long zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yisheng Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Mingquan He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18460v1-abstract-short" style="display: inline;"> The large Nernst effect is advantageous for developing transverse Nernst thermoelectric generators or Ettingshausen coolers within a single component, avoiding the complexity of electron- and hole-modules in longitudinal Seebeck thermoelectric devices. We report a large Nernst signal reaching 130 uV/K at 8 K and 13 T in the layered metallic antiferromagnet EuAl$_2$Si$_2$. Notably, this large trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18460v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18460v1-abstract-full" style="display: none;"> The large Nernst effect is advantageous for developing transverse Nernst thermoelectric generators or Ettingshausen coolers within a single component, avoiding the complexity of electron- and hole-modules in longitudinal Seebeck thermoelectric devices. We report a large Nernst signal reaching 130 uV/K at 8 K and 13 T in the layered metallic antiferromagnet EuAl$_2$Si$_2$. Notably, this large transverse Nernst thermopower is two orders of magnitude greater than its longitudinal counterpart. The Nernst coefficient peaks around 4 K and 8 K at 3 T and 13 T, respectively. At similar temperatures, both the Hall coefficient and the Seebeck signal change sign. Additionally, nearly compensated electron- and hole-like carriers with high mobility ($\sim$ 4000 cm$^2$/Vs at 4 K) are revealed from the magnetoconductivity. These findings suggest that the large Nernst effect and vanishing Seebeck thermopower in EuAl$_2$Si$_2$ are due to the compensated electron- and hole-like bands, along with the high mobility of the Weyl band near the Fermi level. Our results underscore the importance of band compensation and topological fermiology in achieving large Nernst thermopower and exploring potential Nernst thermoelectric applications at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18460v1-abstract-full').style.display = 'none'; document.getElementById('2407.18460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 171901 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17375">arXiv:2407.17375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17375">pdf</a>, <a href="https://arxiv.org/format/2407.17375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting phase interference effect in momentum space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+B">Bo Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+R">Runze Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17375v1-abstract-short" style="display: inline;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17375v1-abstract-full" style="display: none;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentum points. By incorporating the hybridization effect between a primary band and its replica bands generated by density wave orders or other interactions, we introduce a superconducting phase interference effect at the intersection points on the Fermi surfaces of these two bands. This effect clarifies the extraordinary behavior observed in the single-particle spectral function in recent angle-resolved photoemission spectroscopy (ARPES) measurements in the $Bi_2Sr_2CaCu_2O_{8+未}$ (Bi2212) superconductor. It also offers a new insight into the non-zero Josephson current observed in a $45^\circ$-twisted Josephson junction of cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'none'; document.getElementById('2407.17375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16255">arXiv:2407.16255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16255">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Self-Reasoning Assistant Learning for non-Abelian Gauge Fields Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jinyang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Dandan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16255v1-abstract-short" style="display: inline;"> Non-Abelian braiding has attracted substantial attention because of its pivotal role in describing the exchange behaviour of anyons, in which the input and outcome of non-Abelian braiding are connected by a unitary matrix. Implementing braiding in a classical system can assist the experimental investigation of non-Abelian physics. However, the design of non-Abelian gauge fields faces numerous chal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16255v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16255v1-abstract-full" style="display: none;"> Non-Abelian braiding has attracted substantial attention because of its pivotal role in describing the exchange behaviour of anyons, in which the input and outcome of non-Abelian braiding are connected by a unitary matrix. Implementing braiding in a classical system can assist the experimental investigation of non-Abelian physics. However, the design of non-Abelian gauge fields faces numerous challenges stemmed from the intricate interplay of group structures, Lie algebra properties, representation theory, topology, and symmetry breaking. The extreme diversity makes it a powerful tool for the study of condensed matter physics. Whereas the widely used artificial intelligence with data-driven approaches has greatly promoted the development of physics, most works are limited on the data-to-data design. Here we propose a self-reasoning assistant learning framework capable of directly generating non-Abelian gauge fields. This framework utilizes the forward diffusion process to capture and reproduce the complex patterns and details inherent in the target distribution through continuous transformation. Then the reverse diffusion process is used to make the generated data closer to the distribution of the original situation. Thus, it owns strong self-reasoning capabilities, allowing to automatically discover the feature representation and capture more subtle relationships from the dataset. Moreover, the self-reasoning eliminates the need for manual feature engineering and simplifies the process of model building. Our framework offers a disruptive paradigm shift to parse complex physical processes, automatically uncovering patterns from massive datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16255v1-abstract-full').style.display = 'none'; document.getElementById('2407.16255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13152">arXiv:2407.13152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13152">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Composable Generation Strategy Framework Enabled Bidirectional Design on Topological Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jinyang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Maoxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Q">Qingyuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+M">Minggang Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13152v1-abstract-short" style="display: inline;"> Topological insulators show important properties, such as topological phase transitions and topological edge states. Although these properties and phenomena can be simulated by well-designed circuits, it is undoubtedly difficult to design such topological circuits due to the complex physical principles and calculations involved. Therefore, achieving a framework that can automatically to complete b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13152v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13152v1-abstract-full" style="display: none;"> Topological insulators show important properties, such as topological phase transitions and topological edge states. Although these properties and phenomena can be simulated by well-designed circuits, it is undoubtedly difficult to design such topological circuits due to the complex physical principles and calculations involved. Therefore, achieving a framework that can automatically to complete bidirectional design of topology circuits is very significant. Here, we propose an effective bidirectional collaborative design framework with strong task adaptability, which can automatically generate specific results according to our requirements. In the framework, a composable generation strategy is employed, which involves building a shared multimodal space by bridging alignment in the diffusion process. For simplicity, a series of two-dimensional (2D) Su-Schrieffer-Heeger (SSH) circuits are constructed with different structural parameters. The framework at first is applied to find the relationship between the structural information and topological features. Then, the correctness of the results through experimental measurements can be verified by the automatically generated circuit diagram following the manufacture of Printed Circuit Board (PCB). The framework is demonstrated by achieving good results in the reverse design of circuit structures and forward prediction of topological edge states, reaching an accuracy of 94%. Overall, our research demonstrates the enormous potential of the proposed bidirectional deep learning framework in complex tasks and provides insights for collaborative design tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13152v1-abstract-full').style.display = 'none'; document.getElementById('2407.13152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12744">arXiv:2407.12744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12744">pdf</a>, <a href="https://arxiv.org/format/2407.12744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad51f8">10.1088/1674-1056/ad51f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negligible Normal Fluid in Superconducting State of Heavily Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Detected by Ultra-Low Temperature Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qinghong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiangang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+W">Wenkai Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+N">Nan Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rukang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xintong Li</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12744v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a he&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12744v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a $T_{\mathrm{c}}$ of 48 K. We find that this heavily overdoped Bi2212 remains in the strong coupling regime with $2 \mathit螖_0 / k_{\mathrm{B}} T_{\mathrm{c}}=5.8$. The single-particle scattering rate is very small along the nodal direction ($\sim$5 meV) and increases as the momentum moves from the nodal to the antinodal regions. A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero. The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212. These results provide key information to understand the high $T_\mathrm{c}$ mechanism in the cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'none'; document.getElementById('2407.12744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08251">arXiv:2407.08251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08251">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Determination of five-parameter grain boundary characteristics in nanocrystalline Ni-W by Scanning Precession Electron Diffraction Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rauch%2C+E+F">E. F. Rauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+P">Patrick Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S+M">Saurabh Mohan Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goncalves%2C+W">William Goncalves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Silva%2C+A">Alessandra Da Silva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinren Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vigan%C3%B2%2C+N">Nicola Vigan貌</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebscher%2C+C+H">Christian H. Liebscher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludwig%2C+W">Wolfgang Ludwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08251v1-abstract-short" style="display: inline;"> Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08251v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08251v1-abstract-full" style="display: none;"> Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of an annealed nickel-tungsten alloy (NiW) nanocrystalline needle-shaped specimen (tip) containing twins using Scanning Precession Electron Diffraction (SPED) Tomography. The presence of annealing twins in this face-centered cubic (fcc) material gives rise to common reflections in the SPED diffraction patterns, which challenges the reconstruction of orientation-specific virtual dark field (VDF) images required for tomographic reconstruction of the 3D grain shapes. To address this, an automated post-processing step identifies and deselects these shared reflections prior to the reconstruction of the VDF images. Combined with appropriate intensity normalization and projection alignment procedures, this approach enables high-fidelity 3D reconstruction of the individual grains contained in the needle-shaped sample volume. To probe the accuracy of the resulting boundary characteristics, the twin boundary surface normal directions were extracted from the 3D voxelated grain boundary map using a 3D Hough transform. For the sub-set of coherent Sigma 3 boundaries, the expected {111} grain boundary plane normals were obtained with an angular error of less than 3{\textdegree} for boundary sizes down to 400 nm${}^2$. This work advances our ability to precisely characterize and understand the complex grain boundaries that govern material properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08251v1-abstract-full').style.display = 'none'; document.getElementById('2407.08251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07470">arXiv:2407.07470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07470">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Observation of Klein bottle quadrupole topological insulators in electric circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xizhou Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+K">Keyu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07470v2-abstract-short" style="display: inline;"> The Klein bottle Benalcazar-Bernevig-Hughes (BBH) insulator phase plays a pivotal role in understanding higher-order topological phases. The insulator phase is characterized by a unique feature: a nonsymmorphic glide symmetry that exists within momentum space, rather than real space. This characteristic transforms the Brillouin zone&#39;s fundamental domain into a structure of Klein bottle. Here, we r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07470v2-abstract-full').style.display = 'inline'; document.getElementById('2407.07470v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07470v2-abstract-full" style="display: none;"> The Klein bottle Benalcazar-Bernevig-Hughes (BBH) insulator phase plays a pivotal role in understanding higher-order topological phases. The insulator phase is characterized by a unique feature: a nonsymmorphic glide symmetry that exists within momentum space, rather than real space. This characteristic transforms the Brillouin zone&#39;s fundamental domain into a structure of Klein bottle. Here, we report an observation of a Klein bottle topoelectrical model under gauge fields. To provide a comprehensive understanding of the different corner distributions of odd and even unit cells, we present theoretical calculations and demonstrate that the symmetry properties significantly affect the topological nature. These theoretical predictions are confirmed by experimental results, which demonstrate the practical feasibility of such topological configurations in electronic circuits. Our work establishes a vital connection between the realms of condensed matter physics and circuit systems, thereby paving a pathway for investigating exotic condensed matter physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07470v2-abstract-full').style.display = 'none'; document.getElementById('2407.07470v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06975">arXiv:2407.06975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06975">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216021">10.1063/5.0216021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of noncollinear magnetic ordering temperature in Y-type hexaferrite by machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yonghong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Linfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yugang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xueliang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yisheng Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zizhen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06975v1-abstract-short" style="display: inline;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06975v1-abstract-full" style="display: none;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Based on the chosen efficient and physically interpretable descriptor, a series of Y-type hexaferrite compositions are predicted to hold high TNC, among which the BaSrMg0.28Co1.72Fe10Al2O22 is then experimentally validated. Test results indicate that, under appropriate external magnetic field conditions, the TNC of this composition reaches up to reaches up to 568 K, and its magnetic transition temperature is also elevated to 735 K. This work offers a machine learning-based route to develop room temperature single phase multiferroics for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'none'; document.getElementById('2407.06975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Applied Physics Letters in 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 032903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16847">arXiv:2406.16847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16847">pdf</a>, <a href="https://arxiv.org/format/2406.16847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realizing a spatially correlated lattice interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+P">Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+D">Dekai Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yi Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+G">Guoling Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shui%2C+H">Hongmian Shui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Bo Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16847v1-abstract-short" style="display: inline;"> Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision. Conventional atom interferometry focuses on the phase difference between two paths and utilizes matter waves with fixed coherence. Here, we report on realizing a Ramsey-Bord茅 interferometer of coherent matter waves dressed by a moving optical lattice in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16847v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16847v1-abstract-full" style="display: none;"> Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision. Conventional atom interferometry focuses on the phase difference between two paths and utilizes matter waves with fixed coherence. Here, we report on realizing a Ramsey-Bord茅 interferometer of coherent matter waves dressed by a moving optical lattice in the gravity direction, and explore the resulting interference along multiple paths with tunable coherence. We investigate spatial correlations of atoms both within the lattice and between two arms by interferometry, and observe the emerging multiple interference peaks owing to the long-range coherence nature of the Bose-Einstein condensate. Our findings agree well with theoretical simulations, paving the way for high-precision interferometry with ultracold atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16847v1-abstract-full').style.display = 'none'; document.getElementById('2406.16847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16663">arXiv:2406.16663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16663">pdf</a>, <a href="https://arxiv.org/format/2406.16663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light-induced percolative topological phase transition in type-II Weyl semimetal WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+F">Fu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yifan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shulei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16663v2-abstract-short" style="display: inline;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16663v2-abstract-full" style="display: none;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density of states near the Fermi level. Furthermore, the emergence of an unconventional temporal isosbestic point marks a dynamic universality, strongly suggesting a percolative interaction between the two topologically distinct phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'none'; document.getElementById('2406.16663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16750">arXiv:2405.16750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16750">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of 2/3-layer transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Ya-Xin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zi-Yi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Ya-Ning Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruo-Han Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiao-Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lin He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16750v1-abstract-short" style="display: inline;"> Layered van der Waals transition metal dichalcogenides (TMDCs), generally composed of three atomic X-M-X planes in each layer (M = transition metal, X = chalcogen), provide versatile platforms for exploring diverse quantum phenomena. In each MX2 layer, the M-X bonds are predominantly covalent in nature, as a result, the cleavage of TMDC crystals always occurring between the layers. Here we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16750v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16750v1-abstract-full" style="display: none;"> Layered van der Waals transition metal dichalcogenides (TMDCs), generally composed of three atomic X-M-X planes in each layer (M = transition metal, X = chalcogen), provide versatile platforms for exploring diverse quantum phenomena. In each MX2 layer, the M-X bonds are predominantly covalent in nature, as a result, the cleavage of TMDC crystals always occurring between the layers. Here we report the controllable realization of fractional-layer WTe2 via an in-situ scanning tunnelling microscopy (STM) tip manipulation technique. By applying STM tip pulses, hundreds of the topmost Te atoms are removed to form a nanoscale monolayer Te pit in the 1T&#39;-WTe2, thus realizing a brand-new 2/3-layer WTe2. Such a unique configuration undergoes a spontaneous atomic reconstruction, yielding an energy-dependent unidirectional charge-density-wave state with the wavevector and geometry quite distinct from that of pristine 1T&#39;-WTe2. Our results expand the conventional understanding of the TMDCs and are expected to stimulate the research on extraordinary structures and properties based on fractional-layer TMDCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16750v1-abstract-full').style.display = 'none'; document.getElementById('2405.16750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures in main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15297">arXiv:2405.15297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15297">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184112">10.1103/PhysRevB.109.184112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-field magnetoelectric coupling and successive magnetic transitions in Mn-doped polar antiferromagnet Ni3TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">C. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+T">Y. T. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+F">J. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C+L">C. L. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P+Z">P. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+W+J">W. J. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15297v2-abstract-short" style="display: inline;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'inline'; document.getElementById('2405.15297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15297v2-abstract-full" style="display: none;"> Among the 3d transition metal ions doped polar Ni3TeO6, Mn-doped Ni3TeO6 has stimulated great interest due to its high magnetic ordering temperature and complex magnetic phases, but the mechanism of magnetoelectric (ME) coupling is far from understood. Herein we report our systematic investigation of the chemical control of magnetism, metamagnetic transition, and ME properties of Ni3-xMnxTeO6 single crystals in high magnetic field (H) up to 52 T. We present a previously unreported weak ferromagnetic behavior appeared in the ab plane below 9.5 K in addition to the incommensurate helical and commensurate collinear antiferromagnetic states. In the low-field region, a spin-flop type metamagnetic transition without any hysteresis occurs at Hc1 for H // c, while another metamagnetic transition accompanied with a change in electric polarization is observed at Hc2 in the high-field region both for H // c and H // ab above 30 K, which can be attributed to the sudden rotation of magnetic moments at Ni2 sites. The ME measurements reveal that a first-order ME effect is observed in the low-T and low-H regions, while a second-order ME coupling term appears above 30 K in the magnetic field range of Hc1 &lt; H &lt; Hc2 for H // c and H &lt; Hc2 for H // ab, both becoming significant with increasing temperature. Eventually, they are dominated by the second-order ME effect near the antiferromagnetic transition temperature. The present work demonstrates that Ni3-xMnxTeO6 is an exotic magnetoelectric material compared with Ni3TeO6 and its derivatives, thereby providing insights to better understand the magnetism and ME coupling in Ni3TeO6 and its derivatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15297v2-abstract-full').style.display = 'none'; document.getElementById('2405.15297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184112 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10326">arXiv:2405.10326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10326">pdf</a>, <a href="https://arxiv.org/format/2405.10326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Giant Linear Dichroism Controlled by Magnetic Field in FePS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xu-Guang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhuo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Youjin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jaena Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohama%2C+Y">Yoshimitsu Kohama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kindo%2C+K">Koichi Kindo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y+H">Yasuhiro H. Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyata%2C+A">Atsuhiko Miyata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10326v1-abstract-short" style="display: inline;"> Magnetic-field control of fundamental optical properties is a crucial challenge in the engineering of multifunctional microdevices. Van der Waals (vdW) magnets retaining a magnetic order even in atomically thin layers, offer a promising platform for hosting exotic magneto-optical functionalities owing to their strong spin-charge coupling. Here, we demonstrate that a giant optical anisotropy can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10326v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10326v1-abstract-full" style="display: none;"> Magnetic-field control of fundamental optical properties is a crucial challenge in the engineering of multifunctional microdevices. Van der Waals (vdW) magnets retaining a magnetic order even in atomically thin layers, offer a promising platform for hosting exotic magneto-optical functionalities owing to their strong spin-charge coupling. Here, we demonstrate that a giant optical anisotropy can be controlled by magnetic fields in the vdW magnet FePS$_3$. The giant linear dichroism ($\sim$11%), observed below $T_{\text{N}}\!\sim\!120$ K, is nearly fully suppressed in a wide energy range from 1.6 to 2.0 eV, following the collapse of the zigzag magnetic order above 40 T. This remarkable phenomenon can be explained as a result of symmetry changes due to the spin order, enabling minority electrons of Fe$^{2+}$ to hop in a honeycomb lattice. The modification of spin-order symmetry by external fields provides a novel route for controllable anisotropic optical micro-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10326v1-abstract-full').style.display = 'none'; document.getElementById('2405.10326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09776">arXiv:2405.09776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09776">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.184106">10.1103/PhysRevB.109.184106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic structure and magnetoelectric coupling in antiferromagnet Co5(TeO3)4Cl2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">B. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">L. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J+S">J. S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garlea%2C+V+O">V. Ovidiu Garlea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+T">T. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+C">J. C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+J">J. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y+S">Y. S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G+Z">G. Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S+H">S. H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M+F">M. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z+B">Z. B. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+H">X. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">S. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+J+G">J. G. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+-">J. -M. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09776v1-abstract-short" style="display: inline;"> The van der Waals (vdW) layered multiferroics, which host simultaneous ferroelectric and magnetic orders, have attracted attention not only for their potentials to be utilized in nanoelectric devices and spintronics, but also offer alternative opportunities for emergent physical phenomena. To date, the vdW layered multiferroic materials are still very rare. In this work, we have investigated the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09776v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09776v1-abstract-full" style="display: none;"> The van der Waals (vdW) layered multiferroics, which host simultaneous ferroelectric and magnetic orders, have attracted attention not only for their potentials to be utilized in nanoelectric devices and spintronics, but also offer alternative opportunities for emergent physical phenomena. To date, the vdW layered multiferroic materials are still very rare. In this work, we have investigated the magnetic structure and magnetoelectric effects in Co5(TeO3)4Cl2, a promising new multiferroic compound with antiferromagnetic (AFM) Neel point TN = 18 K. The neutron powder diffraction reveals the non-coplanar AFM state with preferred Neel vector along the c-axis, while a spin re-orientation occurring between 8 K and 15 K is identified, which results from the distinct temperature dependence of the non-equivalent Co sites moment in Co5(TeO3)4Cl2. What is more, it is found that Co5(TeO3)4Cl2 is one of the best vdW multiferroics studied so far in terms of the multiferroic performance. The measured linear ME coefficient exhibits the emergent oscillation dependence of the angle between magnetic field and electric field, and the maximal value is as big as 45 ps/m. It is suggested that Co5(TeO3)4Cl2 is an appreciated platform for exploring the emergent multiferroicity in vdW layered compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09776v1-abstract-full').style.display = 'none'; document.getElementById('2405.09776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 184106(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01640">arXiv:2405.01640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01640">pdf</a>, <a href="https://arxiv.org/format/2405.01640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal non-Hermitian flow in one-dimensional PT-symmetric quantum criticalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xin-Chi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01640v1-abstract-short" style="display: inline;"> The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01640v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01640v1-abstract-full" style="display: none;"> The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundary condition (OBC), the energy scaling $E(L)\sim c/L$ reveals a negative central charge $c=-2$ at the non-Hermitian critical point, indicative of a non-unitary CFT. Furthermore, we discover a universal scaling function capturing the flow of a system from Dirac CFT with $c=1$ to a non-unitary CFT with $c=-2$. The scaling function demonstrates distinct behaviors at topologically non-trivial and trivial sides of critical points. Notably, within the realm of topological criticality, the scaling function exhibits an universal rise-dip-rise pattern, manifesting a characteristic singularity inherent in the non-Hermitian topological critical points. The analytic expression of the scaling function has been derived and is in good agreement with the numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01640v1-abstract-full').style.display = 'none'; document.getElementById('2405.01640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00759">arXiv:2405.00759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00759">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202300783">10.1002/lpor.202300783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Corner Modes by Composite Wannier States in Glide-Symmetric Photonic Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhenzhen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoxi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+G">Guochao Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=hou%2C+B">Bo hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jun-Jun Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00759v2-abstract-short" style="display: inline;"> Second-order topological insulators can be characterized by their bulk polarization, which is believed to be intrinsically connected to the center of the Wannier function. In this study, we demonstrate the existence of second-order topological insulators that feature a pair of partially degenerate photonic bands. These arise from the nonsymmorphic glide symmetry in an all-dielectric photonic cryst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00759v2-abstract-full').style.display = 'inline'; document.getElementById('2405.00759v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00759v2-abstract-full" style="display: none;"> Second-order topological insulators can be characterized by their bulk polarization, which is believed to be intrinsically connected to the center of the Wannier function. In this study, we demonstrate the existence of second-order topological insulators that feature a pair of partially degenerate photonic bands. These arise from the nonsymmorphic glide symmetry in an all-dielectric photonic crystal. The center of the maximally localized Wannier function (MLWF) is consistently located at the origin but is not equivalent with respect to the sum of constituent polarizations. As a result, topological corner modes can be identified by the distinctly hybridized MLWFs that truncate at the sample boundary. Through full-wave numerical simulations paired with microwave experiments, the second-order topology is clearly confirmed and characterized. These topological corner states exhibit notably unique modal symmetries, which are made possible by the inversion of the Wannier bands. Our results provide an alternative approach to explore higher-order topological physics with significant potential for applications in integrated and quantum photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00759v2-abstract-full').style.display = 'none'; document.getElementById('2405.00759v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17795">arXiv:2404.17795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17795">pdf</a>, <a href="https://arxiv.org/format/2404.17795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Giant Unit-Cell Super-Structure in the Infinite-Layer Nickelate PrNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oppliger%2C+J">J. Oppliger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dippel%2C+A+-">A. -C. Dippel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutowski%2C+O">O. Gutowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">X. Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frison%2C+R">R. Frison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17795v1-abstract-short" style="display: inline;"> Spectacular quantum phenomena such as superconductivity often emerge in flat-band systems where Coulomb interactions overpower electron kinetics. Engineering strategies for flat-band physics is therefore of great importance. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO$_2$ induces a giant superla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17795v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17795v1-abstract-full" style="display: none;"> Spectacular quantum phenomena such as superconductivity often emerge in flat-band systems where Coulomb interactions overpower electron kinetics. Engineering strategies for flat-band physics is therefore of great importance. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO$_2$ induces a giant superlattice structure. The annealing effect has a maximum well above room temperature. By covering a large scattering volume, we show a rare period-six in-plane (bi-axial) symmetry and a period-four symmetry in the out-of-plane direction. This giant unit-cell superstructure likely stems from ordering of diffusive oxygen. The stability of this superlattice structure suggests a connection to an energetically favorable electronic state of matter. As such, our study provides a new pathway - different from Moir茅 structures - to ultra-small Brillouin zone electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17795v1-abstract-full').style.display = 'none'; document.getElementById('2404.17795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 7 pages, 4 figures. Supplementary: 2 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13396">arXiv:2404.13396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13396">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Angle-Resolved Magneto-Chiral Anisotropy in a Non-Centrosymmetric Atomic Layer Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">Long Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+M">Mingrui Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingxian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Hui Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+D">Dawei Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fei Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+G">Genhao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guanglei Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+S">Sai Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+X">Xiaofang Zhai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13396v1-abstract-short" style="display: inline;"> Chirality in solid-state materials has sparked significant interest due to potential applications of topologically-protected chiral states in next-generation information technology. The electrical magneto-chiral effect (eMChE), arising from relativistic spin-orbit interactions, shows great promise for developing chiral materials and devices for electronic integration. Here we demonstrate an angle-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13396v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13396v1-abstract-full" style="display: none;"> Chirality in solid-state materials has sparked significant interest due to potential applications of topologically-protected chiral states in next-generation information technology. The electrical magneto-chiral effect (eMChE), arising from relativistic spin-orbit interactions, shows great promise for developing chiral materials and devices for electronic integration. Here we demonstrate an angle-resolved eMChE in an A-B-C-C type atomic-layer superlattice lacking time and space inversion symmetry. We observe non-superimposable enantiomers of left-handed and right-handed tilted uniaxial magnetic anisotropy as the sample rotates under static fields, with the tilting angle reaching a striking 45 degree. Magnetic force microscopy and atomistic simulations correlate the tilt to the emergence and evolution of chiral spin textures. The Dzyaloshinskii-Moriya interaction lock effect in competition with Zeeman effect is demonstrated to be responsible for the angle-resolved eMChE. Our findings open up a new horizon for engineering angle-resolved magneto-chiral anisotropy, shedding light on the development of novel angle-resolved sensing or writing techniques in chiral spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13396v1-abstract-full').style.display = 'none'; document.getElementById('2404.13396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12374">arXiv:2404.12374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of Kagome Kondo lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei-Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jian-gang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12374v2-abstract-short" style="display: inline;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12374v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12374v2-abstract-full" style="display: none;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waals-like Kagome Kondo lattice featuring extremely flat, isolated bands at the Fermi level (EF) that composed entirely of Cr-3d electrons. We observe heavy fermions with the effective mass over 100 times greater than those of its vanadium counterpart. We also observe Kondo insulating behavior in an ultra-low carrier density of 1019 cm-3 and dimensionality-induced Kondo breakdown. More interestingly, the frustrated magnetism observed in the bulk give way to a hidden A-type antiferromagnetic ordering in few layers, in sharp contrast to the common sense of weakened magnetism with thinning. The realization of Kondo physics in Kagome lattice opens avenues for exploring diverse quantum criticalities in a strongly-correlated frustrated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'none'; document.getElementById('2404.12374v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11084">arXiv:2404.11084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Observation of Young&#39;s double-slit phenomenon in anti-PT-symmetric electrical circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+K">Keyu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiumei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xizhou Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haoyi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingping Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11084v3-abstract-short" style="display: inline;"> In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su-Schrieffer-Heeger (SSH) circuit model with an anti-PT (APT) symme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11084v3-abstract-full').style.display = 'inline'; document.getElementById('2404.11084v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11084v3-abstract-full" style="display: none;"> In the last few decades, interference has been extensively studied in both the quantum and classical fields, which reveals light volatility and is widely used for high-precision measurements. We have put forward the phenomenon in which the discrete diffraction and interference phenomena, presented by the time-varying voltage of a Su-Schrieffer-Heeger (SSH) circuit model with an anti-PT (APT) symmetry. To demonstrate Young&#39;s double-slit phenomenon in an APT circuit, we initially explore the coupled mode theory (CMT) of voltage in the broken phase, observe discrete diffraction under single excitation and interference under double excitations. Furthermore, we design a phase-shifting circuit to observe the effects of phase difference and distance on discrete interference. Our work combines the effects in optics with condensed matter physics, show the Young&#39;s double-slit phenomenon in electrical circuits theoretically and experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11084v3-abstract-full').style.display = 'none'; document.getElementById('2404.11084v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09185">arXiv:2404.09185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09185">pdf</a>, <a href="https://arxiv.org/format/2404.09185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Robust spin order and fragile charge order in Na0.5CoO2 as revealed by time-resolved terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+Y">X. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B+H">B. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S+F">S. F. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q+M">Q. M. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T+C">T. C. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R+S">R. S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J+Y">J. Y. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S+X">S. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Q. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">L. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09185v1-abstract-short" style="display: inline;"> Near-infrared (NIR) pump-terahertz (THz) probe spectroscopy is used to investigate the charge and spin exciations in a strongly correlated electron compound Na0.5CoO2. This compound exhibits a coexistence of various charge and spin orders arising from intricate interactions among charge, spin, and orbital degrees of freedom. NIR pulses create significantly diverse effects on the charge and spin or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09185v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09185v1-abstract-full" style="display: none;"> Near-infrared (NIR) pump-terahertz (THz) probe spectroscopy is used to investigate the charge and spin exciations in a strongly correlated electron compound Na0.5CoO2. This compound exhibits a coexistence of various charge and spin orders arising from intricate interactions among charge, spin, and orbital degrees of freedom. NIR pulses create significantly diverse effects on the charge and spin orders; while the charge order is easily melted,coherent magnon excitations are present in all fluences examined. Furthermore, a novel 蟺 phase shift of the coherent magnon oscillations is observed in the pump-induced change of the terahertz electric field between regions of increasing and decreasing field change. These results unequivocally illustrate that ultrashort laser pulses enable the disentanglement of different interactions within complex systems characterized by multiple orders, providing a fresh perspective on the interplay between itinerant and localized electrons within the Co 3d t2g multiplets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09185v1-abstract-full').style.display = 'none'; document.getElementById('2404.09185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05175">arXiv:2404.05175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05175">pdf</a>, <a href="https://arxiv.org/format/2404.05175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Solute strengthening and softening from screw dislocation in BCC tantalum: A first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiajun Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kangzhi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaowei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiuting Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziran Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05175v1-abstract-short" style="display: inline;"> Improving the high-temperature performance and low-temperature plasticity of tantalum (Ta) alloys is a significant scientific challenge. We employed first-principles calculations to study the interaction between screw dislocations and solute atoms in the body centered cubic (BCC) structure of Ta, with a particular focus on solid solution softening and strengthening. We analyzed the impact of vario&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05175v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05175v1-abstract-full" style="display: none;"> Improving the high-temperature performance and low-temperature plasticity of tantalum (Ta) alloys is a significant scientific challenge. We employed first-principles calculations to study the interaction between screw dislocations and solute atoms in the body centered cubic (BCC) structure of Ta, with a particular focus on solid solution softening and strengthening. We analyzed the impact of various solute elements on the generalized stacking fault energy (GSFE), energy barriers within the single-atom column displacement model, and their interaction with screw dislocations. The results indicate that Hf and Zr, either individually or in combination, exhibit notable solute softening effects in BCC Ta, significantly reducing GSFE, energy barriers, and interaction energies. In contrast, Nb shows relative insensitivity to solute effects, while Mo, W, and Ir demonstrate solute strengthening effects. The calculations suggest that the interaction energy between screw dislocations and solute atoms is a reliable indicator for predicting strengthening and softening effects. Additionally, we extend these predictions to ternary alloys, demonstrating that the strengthening and softening phenomena in these materials can be explained through the electronic work function at the electronic level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05175v1-abstract-full').style.display = 'none'; document.getElementById('2404.05175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02598">arXiv:2404.02598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02598">pdf</a>, <a href="https://arxiv.org/format/2404.02598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of Magnon Transport by Superconductor Meissner Screening </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xi-Han Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+X">Xiyin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+L">Lihui Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02598v2-abstract-short" style="display: inline;"> Recent experiments observe the spin-wave-Meissner-current modes in ferromagnetic insulator-superconductor heterostructures, in which the coherently excited spin waves seemingly do not decay as usual beneath the superconductor strip [Borst et al., Science 382, 430 (2023)]. We interpret this phenomenon by demonstrating that the stray magnetic field emitted by the magnetization dynamics is reflected,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02598v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02598v2-abstract-full" style="display: none;"> Recent experiments observe the spin-wave-Meissner-current modes in ferromagnetic insulator-superconductor heterostructures, in which the coherently excited spin waves seemingly do not decay as usual beneath the superconductor strip [Borst et al., Science 382, 430 (2023)]. We interpret this phenomenon by demonstrating that the stray magnetic field emitted by the magnetization dynamics is reflected, focused, and enhanced inside the ferromagnet by the supercurrent induced in the superconductor, such that the group velocity of spin waves is strongly enhanced. Analytical and numerical calculations based on this model predict that the coherent transport of magnons is enhanced by close to 500% for yttrium iron garnet capped by superconducting NbN with a decay length exceeding millimeters. Our finding may augment the performance of magnons in quantum information and quantum transport processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02598v2-abstract-full').style.display = 'none'; document.getElementById('2404.02598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00695">arXiv:2404.00695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00695">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01732-z">10.1038/s41565-024-01732-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Even-integer Quantum Hall Effect in an Oxide Caused by Hidden Rashba Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingyue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaplan%2C+D">Daniel Kaplan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuehan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Congwei Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+G">Gangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+X">Xuzhong Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yongchao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xiaoyin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+R">Ruixue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+A">Ady Stern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongtao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Hongtao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H">Hailin Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00695v2-abstract-short" style="display: inline;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00695v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00695v2-abstract-full" style="display: none;"> In the presence of high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here, we study the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on ab initio band structures of Bi2O2Se thin films, we can ascribe the absence of odd-integer states in thicker films to the hidden Rasbha effect, where the local inversion symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one unit cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00695v2-abstract-full').style.display = 'none'; document.getElementById('2404.00695v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures, 23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 19, 1452 -- 1459 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19767">arXiv:2403.19767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19767">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Visualizing orbital angular momentum induced single wavefront dislocation in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi-Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Y">Yu-Chen Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Ya-Ning Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiao-Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qing-Feng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lin He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19767v1-abstract-short" style="display: inline;"> Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the na&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19767v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19767v1-abstract-full" style="display: none;"> Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains a challenge and has yet to be achieved. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularity, and result in robust single wavefront dislocation in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19767v1-abstract-full').style.display = 'none'; document.getElementById('2403.19767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 3 figures, 10 extended figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16701">arXiv:2403.16701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16701">pdf</a>, <a href="https://arxiv.org/format/2403.16701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c05052">10.1021/acs.nanolett.3c05052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer Control of Magneto-Optical Effects and Their Quantization in Spin-Valley Splitting Antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiaqi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaodong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Meiling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jingming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinwei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16701v1-abstract-short" style="display: inline;"> Magneto-optical effects (MOE), interfacing the fundamental interplay between magnetism and light, have served as a powerful probe for magnetic order, band topology, and valley index. Here, based on multiferroic and topological bilayer antiferromagnets (AFMs), we propose a layer control of MOE (L-MOE), which is created and annihilated by layer-stacking or an electric field effect. The key character&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16701v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16701v1-abstract-full" style="display: none;"> Magneto-optical effects (MOE), interfacing the fundamental interplay between magnetism and light, have served as a powerful probe for magnetic order, band topology, and valley index. Here, based on multiferroic and topological bilayer antiferromagnets (AFMs), we propose a layer control of MOE (L-MOE), which is created and annihilated by layer-stacking or an electric field effect. The key character of L-MOE is the sign-reversible response controlled by ferroelectric polarization, the Neel vector, or the electric field direction. Moreover, the sign-reversible L-MOE can be quantized in topologically insulating AFMs. We reveal that the switchable L-MOE originates from the combined contributions of spin-conserving and spin-flip interband transitions in spin-valley splitting AFMs, a phenomenon not observed in conventional AFMs. Our findings bridge the ancient MOE to the emergent realms of layertronics, valleytronics, and multiferroics and may hold immense potential in these fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16701v1-abstract-full').style.display = 'none'; document.getElementById('2403.16701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10