CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 780 results for author: <span class="mathjax">Li, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Li%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01463">arXiv:2502.01463</a> <span> [<a href="https://arxiv.org/pdf/2502.01463">pdf</a>, <a href="https://arxiv.org/format/2502.01463">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantum Geometric Origin of Strain-Induced Ferroelectric Phase Transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiaming Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yubo Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01463v1-abstract-short" style="display: inline;"> Strain-regulated ferroelectric (FE) materials have long attracted significant attention due to their diverse applications. While soft-phonon theory and the (pseudo) Jahn-Teller effect have achieved considerable success in providing phenomenological descriptions and general understanding, the detailed connection between these perspectives and their microscopic dependence on strain regulation remain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01463v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01463v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01463v1-abstract-full" style="display: none;"> Strain-regulated ferroelectric (FE) materials have long attracted significant attention due to their diverse applications. While soft-phonon theory and the (pseudo) Jahn-Teller effect have achieved considerable success in providing phenomenological descriptions and general understanding, the detailed connection between these perspectives and their microscopic dependence on strain regulation remains unclear. Here, under the framework of density-functional perturbation theory (DFPT), we demonstrate that the Berry curvature of electron-phonon coupling (EPC) plays a pivotal role in the interatomic force matrix (IFM). A subsequent model analysis shows that external strain can reverse the polarity of the EPC Berry curvature in (quasi)-degenerate electronic subsystems through band inversion, thereby directly leading to phonon softening. The general theory is then applied to the BiOCl monolayer as a benchmark, which offers an accurate description of the density functional theory (DFT) calculations. This mechanism is further observed across a broad range of materials through ab initio calculations, providing an insightful perspective on EPC quantum geometry in lattice dynamics and FE phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01463v1-abstract-full').style.display = 'none'; document.getElementById('2502.01463v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16741">arXiv:2501.16741</a> <span> [<a href="https://arxiv.org/pdf/2501.16741">pdf</a>, <a href="https://arxiv.org/format/2501.16741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Geometric Origin of Strain-Tunable Giant Second-Harmonic Generation in Bi$_2$O$_2$X (X=S, Se, Te) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lou%2C+Z">Zhefeng Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+Z">Zhihao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16741v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials with giant nonlinear optical (NLO) responses are essential for the development of advanced on-chip NLO devices. Using first-principles calculations, we predict a remarkable strain-induced enhancement of second-harmonic generation (SHG) in the high-performance 2D semiconductors Bi$_2$O$_2$X (X = S, Se, Te). The SHG susceptibilities of Bi$_2$O$_2$X under strain are on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16741v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16741v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials with giant nonlinear optical (NLO) responses are essential for the development of advanced on-chip NLO devices. Using first-principles calculations, we predict a remarkable strain-induced enhancement of second-harmonic generation (SHG) in the high-performance 2D semiconductors Bi$_2$O$_2$X (X = S, Se, Te). The SHG susceptibilities of Bi$_2$O$_2$X under strain are on the order of 1~nm/V, rivalling the highest values reported among 2D materials. This giant SHG response originates from gauge-invariant geometric quantities, including the quantum metric, shift vector, and triple phase product. The strain also induces a bandgap variation in Bi$_2$O$_2$X. Intriguingly, in Bi$_2$O$_2$Te, strain-induced bandgap tuning drives a transition from a semiconductor to a half-metal, and ultimately to a polar metal. Our findings present a unique platform that combines strain-tunable bandgap engineering with exceptional NLO properties, while also highlighting the crucial role of quantum geometry in enhancing SHG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16741v1-abstract-full').style.display = 'none'; document.getElementById('2501.16741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16189">arXiv:2501.16189</a> <span> [<a href="https://arxiv.org/pdf/2501.16189">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.supcon.2024.100127">10.1016/j.supcon.2024.100127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical Current Density and AC Magnetic Susceptibility of High-quality FeTe$_{0.5}$Se$_{0.5}$ Superconducting Tapes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenjie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Q">Qiang Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+W">Wei Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wenhui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+X">Xiangzhuo Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Linfei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Jun-Yi Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Huajun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+L">Li Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Tamegai%2C+T">Tsuyoshi Tamegai</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zhixiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16189v1-abstract-short" style="display: inline;"> Iron telluride-selenium superconducting materials, known for their non-toxicity, ease of preparation, simple structure, and high upper critical fields, have attracted much research interest in practical application. In this work, we conducted electrical transport measurements, magneto-optical imaging, and AC magnetic susceptibility measurements on FeTe$_{0.5}$Se$_{0.5}$ superconducting long tapes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16189v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16189v1-abstract-full" style="display: none;"> Iron telluride-selenium superconducting materials, known for their non-toxicity, ease of preparation, simple structure, and high upper critical fields, have attracted much research interest in practical application. In this work, we conducted electrical transport measurements, magneto-optical imaging, and AC magnetic susceptibility measurements on FeTe$_{0.5}$Se$_{0.5}$ superconducting long tapes fabricated via reel-to-reel pulsed laser deposition. Our transport measurements revealed a high critical current density that remains relatively stable even with increasing external magnetic fields, reaching over $1\times 10^5$ A/cm$^2$ at 8 K and 9 T. The calculated pinning force density indicates that normal point pinning is the primary mechanism in these tapes. The magneto-optical images demonstrated that the tapes show homogeneous superconductivity and uniform distribution of critical current density. The AC magnetic susceptibility measurements also confirmed their strong flux pinning nature of withstanding high magnetic field. Based on these characteristics, FeTe$_{0.5}$Se$_{0.5}$ superconducting tapes show promising prospects for applications under high magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16189v1-abstract-full').style.display = 'none'; document.getElementById('2501.16189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Superconductivity 12 (2024) 100127 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span> [<a href="https://arxiv.org/pdf/2501.14167">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Q">Qi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Han Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+C">Chen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dingwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13495">arXiv:2501.13495</a> <span> [<a href="https://arxiv.org/pdf/2501.13495">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.035439">10.1103/PhysRevB.111.035439 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional multiferroic NbPc COF with strong magnetoelectric coupling and room-temperature ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">Dongyang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jun-Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13495v1-abstract-short" style="display: inline;"> The realization of two-dimensional multiferroics offers significant potential for nanoscale device functionality. However, type-I two-dimensional multiferroics with strong magnetoelectric coupling, enabling electric field control of spin, remain scarce. In this study, using density functional theory and Monte Carlo simulations, we predict that the niobium phthalocyanine covalent organic framework… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13495v1-abstract-full" style="display: none;"> The realization of two-dimensional multiferroics offers significant potential for nanoscale device functionality. However, type-I two-dimensional multiferroics with strong magnetoelectric coupling, enabling electric field control of spin, remain scarce. In this study, using density functional theory and Monte Carlo simulations, we predict that the niobium phthalocyanine covalent organic framework (NbPc COF) monolayer exhibits type-I multiferroic behavior, with a ferroelectric transition occurring above room temperature. Remarkably, the strong magnetoelectric coupling in NbPc COF monolayer arises from the same origin of magnetism and ferroelectricity. Our findings offer flexible pathways for the design and development of organic nanoscale multiferroic devices with broad applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13495v1-abstract-full').style.display = 'none'; document.getElementById('2501.13495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 035439 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13287">arXiv:2501.13287</a> <span> [<a href="https://arxiv.org/pdf/2501.13287">pdf</a>, <a href="https://arxiv.org/ps/2501.13287">ps</a>, <a href="https://arxiv.org/format/2501.13287">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Semiconductor Nanotubes with Room Curie Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J+W">Jia Wen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+B">Bo Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13287v1-abstract-short" style="display: inline;"> Realizing ferromagnetic semiconductors with room Curie temperature $T\rm_C$ remains a challenge in spintronics. Inspired by the recent experimental progress on the nanotubes based on 2D van der Waals non-magnetic transition-metal dichalcogenides, magnetic nanotubes based on monolayer ferromagnetic materials are highly possible. Here, we proposed a way how to obtain high $T\rm_C$ ferromagnetic semi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13287v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13287v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13287v1-abstract-full" style="display: none;"> Realizing ferromagnetic semiconductors with room Curie temperature $T\rm_C$ remains a challenge in spintronics. Inspired by the recent experimental progress on the nanotubes based on 2D van der Waals non-magnetic transition-metal dichalcogenides, magnetic nanotubes based on monolayer ferromagnetic materials are highly possible. Here, we proposed a way how to obtain high $T\rm_C$ ferromagnetic semiconductor nanotubes. Some high $T\rm_C$ ferromagnetic semiconductors are predicted in the MX$_2$ nanotubes (M = V, Cr, Mn, Fe, Co, Ni; X = S, Se, Te), including CrS$_2$ and CrTe$_2$ zigzag nanotubes with the diameter of 18 unit cells showing $T\rm_C$ above 300 K. In addition, due to the strain gradient in walls of nanotubes, an electrical polarization at level of $0.1$ eV/脜~inward of the radial direction is obtained. Our results not only present novel ferromagnetic semiconductor nanotubes with room Curie temperature but also be indicative of how to obtain such nanotubes based on experimentally obtained 2D high $T\rm_C$ ferromagnetic metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13287v1-abstract-full').style.display = 'none'; document.getElementById('2501.13287v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13095">arXiv:2501.13095</a> <span> [<a href="https://arxiv.org/pdf/2501.13095">pdf</a>, <a href="https://arxiv.org/format/2501.13095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Sunny.jl: A Julia Package for Spin Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dahlbom%2C+D">David Dahlbom</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Miles%2C+C">Cole Miles</a>, <a href="/search/cond-mat?searchtype=author&query=Quinn%2C+S">Sam Quinn</a>, <a href="/search/cond-mat?searchtype=author&query=Niraula%2C+A">Alin Niraula</a>, <a href="/search/cond-mat?searchtype=author&query=Thipe%2C+B">Bhushan Thipe</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M">Matthew Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Matin%2C+S">Sakib Matin</a>, <a href="/search/cond-mat?searchtype=author&query=Mankad%2C+H">Het Mankad</a>, <a href="/search/cond-mat?searchtype=author&query=Hahn%2C+S">Steven Hahn</a>, <a href="/search/cond-mat?searchtype=author&query=Pajerowski%2C+D">Daniel Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&query=Johnston%2C+S">Steve Johnston</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhentao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lane%2C+H">Harry Lane</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+W">Ying Wai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+X">Xiaojian Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Mourigal%2C+M">Martin Mourigal</a>, <a href="/search/cond-mat?searchtype=author&query=Batista%2C+C+D">Cristian D. Batista</a>, <a href="/search/cond-mat?searchtype=author&query=Barros%2C+K">Kipton Barros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13095v2-abstract-short" style="display: inline;"> Sunny is a Julia package designed to serve the needs of the quantum magnetism community. It supports the specification of a very broad class of spin models and a diverse suite of numerical solvers. These include powerful methods for simulating spin dynamics both in and out of equilibrium. Uniquely, it features a broad generalization of classical and semiclassical approaches to SU(N) coherent state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13095v2-abstract-full').style.display = 'inline'; document.getElementById('2501.13095v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13095v2-abstract-full" style="display: none;"> Sunny is a Julia package designed to serve the needs of the quantum magnetism community. It supports the specification of a very broad class of spin models and a diverse suite of numerical solvers. These include powerful methods for simulating spin dynamics both in and out of equilibrium. Uniquely, it features a broad generalization of classical and semiclassical approaches to SU(N) coherent states, which is useful for studying systems exhibiting strong spin-orbit coupling or local entanglement effects. Sunny also offers a well-developed framework for calculating the dynamical spin structure factor, enabling direct comparison with scattering experiments. Ease of use is a priority, with tools for symmetry-guided modeling and interactive visualization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13095v2-abstract-full').style.display = 'none'; document.getElementById('2501.13095v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08784">arXiv:2501.08784</a> <span> [<a href="https://arxiv.org/pdf/2501.08784">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unconventional bias-dependent tunneling magnetoresistance in van der Waals ferromagnetic/semiconductor heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenkai Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">Hui Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+S">Shouguo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+S">Shihong Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Gaojie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaomin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weihao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lixia Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Patan%C3%A8%2C+A">Amalia Patan猫</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+H">Haixin Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Wang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08784v1-abstract-short" style="display: inline;"> Two-dimensional van der Waals (vdW) ferromagnetic/semiconductor heterojunctions represent an ideal platform for studying and exploiting tunneling magnetoresistance (TMR) effects due to the versatile band structure of semiconductors and their high-quality interfaces. In the all-vdW magnetic tunnel junction (MTJ) devices, both the magnitude and sign of the TMR can be tuned by an applied voltage. Typ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08784v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08784v1-abstract-full" style="display: none;"> Two-dimensional van der Waals (vdW) ferromagnetic/semiconductor heterojunctions represent an ideal platform for studying and exploiting tunneling magnetoresistance (TMR) effects due to the versatile band structure of semiconductors and their high-quality interfaces. In the all-vdW magnetic tunnel junction (MTJ) devices, both the magnitude and sign of the TMR can be tuned by an applied voltage. Typically, as the bias voltage increases, first the amplitude of the TMR decreases, then the sign of the TMR reverses and/or oscillates. Here, we report on an unconventional bias-dependent TMR in the all-vdW Fe3GaTe2/GaSe/Fe3GaTe2 MTJs, where the TMR first increases, then decreases, and finally undergoes a sign reversal as the bias voltage increases. This dependence cannot be explained by traditional models of MTJs. We propose an in-plane electron momentum (k//) resolved tunneling model that considers both the coherent degree of k// and the decay of the electron wave function through the semiconductor spacer layer. This can explain well the conventional and unconventional bias-dependent TMR. Our results thus provide a deeper understanding of the bias-dependent spin-transport in semiconductor-based MTJs and offer new insights into semiconductor spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08784v1-abstract-full').style.display = 'none'; document.getElementById('2501.08784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07193">arXiv:2501.07193</a> <span> [<a href="https://arxiv.org/pdf/2501.07193">pdf</a>, <a href="https://arxiv.org/ps/2501.07193">ps</a>, <a href="https://arxiv.org/format/2501.07193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-072X/ada844">10.1088/2632-072X/ada844 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined effect of incentives and coupling in multigames in two-layer networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+L">Luo-Luo Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yi-Ming Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wen-Jing Li</a>, <a href="/search/cond-mat?searchtype=author&query=Szolnoki%2C+A">Attila Szolnoki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07193v1-abstract-short" style="display: inline;"> The lack of cooperation can easily result in inequality among members of a society, which provides an increasing gap between individual incomes. To tackle this issue, we introduce an incentive mechanism based on individual strategies and incomes, wherein a portion of the income from defectors is allocated to reward low-income cooperators, aiming to enhance cooperation by improving the equitable di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07193v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07193v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07193v1-abstract-full" style="display: none;"> The lack of cooperation can easily result in inequality among members of a society, which provides an increasing gap between individual incomes. To tackle this issue, we introduce an incentive mechanism based on individual strategies and incomes, wherein a portion of the income from defectors is allocated to reward low-income cooperators, aiming to enhance cooperation by improving the equitable distribution of wealth across the entire population. Moreover, previous research has typically employed network structures or game mechanisms characterized by homogeneity. In this study, we present a network framework that more accurately reflects real-world conditions, where agents are engaged in multiple games, including prisoner's dilemma games in the top-layer and public good games in the down-layer networks. Within this framework, we introduce the concept of ``external coupling'' which connects agents across different networks as acquaintances, thereby facilitating access to shared datasets. Our results indicate that the combined positive effects of external coupling and incentive mechanism lead to optimal cooperation rates and lower Gini coefficients, demonstrating a negative correlation between cooperation and inequality. From a micro-level perspective, this phenomenon primarily arises from the regular network, whereas suboptimal outcomes are observed within the scale-free network. These observations help to give a deeper insight into the interplay between cooperation and wealth disparity in evolutionary games in large populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07193v1-abstract-full').style.display = 'none'; document.getElementById('2501.07193v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, accepted for publication in Journal of Physics: Complexity</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Complex. 6 (2025) 015003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span> [<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free "cluster" Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02689">arXiv:2501.02689</a> <span> [<a href="https://arxiv.org/pdf/2501.02689">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interacting topological magnons in the Kitaev-Heisenberg honeycomb ferromagnet with the Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J+W">Jin Wen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+P">Pei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+B">Bing Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02689v1-abstract-short" style="display: inline;"> The study of the Heisenberg-Kitaev honeycomb ferromagnets has recently drawn attention because of their rich topological properties. Topological phase transitions may arise when there exist two or more distinct topological phases, and they are often revealed by a gap-closing phenomenon. In this work, we investigate the magnonic properties of honeycomb ferromagnets exhibiting Kitaev and DMI interac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02689v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02689v1-abstract-full" style="display: none;"> The study of the Heisenberg-Kitaev honeycomb ferromagnets has recently drawn attention because of their rich topological properties. Topological phase transitions may arise when there exist two or more distinct topological phases, and they are often revealed by a gap-closing phenomenon. In this work, we investigate the magnonic properties of honeycomb ferromagnets exhibiting Kitaev and DMI interactions in the presence of a Heisenberg exchange and magnetocrystalline anisotropy exposed to a magnetic field. We employ the Self-Consistent Renormalization (SCR) spin wave theory to investigate the effects of magnon-magnon interactions (MMIs) and thermal fluctuations on the properties of magnons. Our findings demonstrate that the magnon system undergoes topological phase transitions driven by temperature and magnetic fields, which are attributed to MMIs. Specifically, as the temperature rises, the magnon band gap at the Dirac points closes and reopens at the critical temperature Tc , which is below the Curie temperature. By showing that the Chern numbers of the magnonic bands are distinct above and below Tc , we confirm that the gap-closing phenomenon is indeed a signature for the topological phase transitions. Furthermore, our analysis indicates that the thermal Hall conductivity in the magnonic system exhibits a sign reversal at Tc , which can serve as an experimental probe of its topological nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02689v1-abstract-full').style.display = 'none'; document.getElementById('2501.02689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00075">arXiv:2501.00075</a> <span> [<a href="https://arxiv.org/pdf/2501.00075">pdf</a>, <a href="https://arxiv.org/format/2501.00075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Risk Management">q-fin.RM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Community detection by simulated bifurcation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yi-Lun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+N">Nan Su</a>, <a href="/search/cond-mat?searchtype=author&query=Tywoniuk%2C+K">Konrad Tywoniuk</a>, <a href="/search/cond-mat?searchtype=author&query=Godbey%2C+K">Kyle Godbey</a>, <a href="/search/cond-mat?searchtype=author&query=St%C3%B6cker%2C+H">Horst St枚cker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00075v1-abstract-short" style="display: inline;"> Community detection, also known as graph partitioning, is a well-known NP-hard combinatorial optimization problem with applications in diverse fields such as complex network theory, transportation, and smart power grids. The problem's solution space grows drastically with the number of vertices and subgroups, making efficient algorithms crucial. In recent years, quantum computing has emerged as a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00075v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00075v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00075v1-abstract-full" style="display: none;"> Community detection, also known as graph partitioning, is a well-known NP-hard combinatorial optimization problem with applications in diverse fields such as complex network theory, transportation, and smart power grids. The problem's solution space grows drastically with the number of vertices and subgroups, making efficient algorithms crucial. In recent years, quantum computing has emerged as a promising approach to tackling NP-hard problems. This study explores the use of a quantum-inspired algorithm, Simulated Bifurcation (SB), for community detection. Modularity is employed as both the objective function and a metric to evaluate the solutions. The community detection problem is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem, enabling seamless integration with the SB algorithm. Experimental results demonstrate that SB effectively identifies community structures in benchmark networks such as Zachary's Karate Club and the IEEE 33-bus system. Remarkably, SB achieved the highest modularity, matching the performance of Fujitsu's Digital Annealer, while surpassing results obtained from two quantum machines, D-Wave and IBM. These findings highlight the potential of Simulated Bifurcation as a powerful tool for solving community detection problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00075v1-abstract-full').style.display = 'none'; document.getElementById('2501.00075v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20887">arXiv:2412.20887</a> <span> [<a href="https://arxiv.org/pdf/2412.20887">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Hidden Quantum Paraelectric Phase in SrTiO3 Induced by Terahertz Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hanbyul Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xinbo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Latini%2C+S">Simone Latini</a>, <a href="/search/cond-mat?searchtype=author&query=Shin%2C+D">Dongbin Shin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jun-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jing-Feng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&query=Nan%2C+C">Ce-Wen Nan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20887v1-abstract-short" style="display: inline;"> Coherent manipulation of lattice vibrations using ultrafast light pulses enables access to nonequilibrium 'hidden' phases with designed functionalities in quantum materials. However, expanding the understanding of nonlinear light-phonon interaction mechanisms remains crucial for developing new strategies. Here, we report re-entrant ultrafast phase transitions in SrTiO3 driven by intense terahertz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20887v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20887v1-abstract-full" style="display: none;"> Coherent manipulation of lattice vibrations using ultrafast light pulses enables access to nonequilibrium 'hidden' phases with designed functionalities in quantum materials. However, expanding the understanding of nonlinear light-phonon interaction mechanisms remains crucial for developing new strategies. Here, we report re-entrant ultrafast phase transitions in SrTiO3 driven by intense terahertz excitation. As the terahertz field increases, the system transitions from the quantum paraelectric (QPE) ground state to an intermediate ferroelectric phase, and then unexpectedly reverts to a QPE state above ~500 kV/cm. The latter hidden QPE phase exhibits distinct lattice dynamics compared to the initial phases, highlighting activated antiferrodistortive phonon modes. Aided by first-principles dynamical calculations, we identify the mechanism for these complex behaviors as a superposition of multiple coherently excited eigenstates of the polar soft mode. Our results reveal a previously uncharted quantum facet of SrTiO3 and open pathways for harnessing high-order excitations to engineer quantum materials in the ultrafast regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20887v1-abstract-full').style.display = 'none'; document.getElementById('2412.20887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11577">arXiv:2412.11577</a> <span> [<a href="https://arxiv.org/pdf/2412.11577">pdf</a>, <a href="https://arxiv.org/format/2412.11577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Highly Polarizable Semiconductors and Universal Origin of Ferroelectricity in Materials with a Litharge-Type Structural Unit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiaming Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Yubo Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenbin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11577v1-abstract-short" style="display: inline;"> We discover that a large family of [Pb$_2$F$_2$]- and [Bi$_2$O$_2$]-based mixed-anion materials with a litharge-type structural unit are highly polarizable layered semiconductors on the edge of ferroelectricity. First-principles calculations demonstrate that in this family of materials, compounds as diverse as PbFBr, BiOCl, BiCuOSe, Bi$_2$OS$_2$, and Bi$_5$O$_4$S$_3$Cl exhibit static dielectric co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11577v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11577v1-abstract-full" style="display: none;"> We discover that a large family of [Pb$_2$F$_2$]- and [Bi$_2$O$_2$]-based mixed-anion materials with a litharge-type structural unit are highly polarizable layered semiconductors on the edge of ferroelectricity. First-principles calculations demonstrate that in this family of materials, compounds as diverse as PbFBr, BiOCl, BiCuOSe, Bi$_2$OS$_2$, and Bi$_5$O$_4$S$_3$Cl exhibit static dielectric constants an order of magnitude higher than typical semiconductors. Additionally, they undergo a ferroelectric transition when subjected to a few percent of tensile strain. The ferroelectric transitions of these materials are found to have a universal origin in the strong cross-bandgap hybridization of the cation $p$ orbitals, enabled by the cation 6s$^2$ lone-pair electrons and the litharge-type structure of the [Pb$_2$F$_2$] and [Bi$_2$O$_2$] layers, as demonstrated by the strain-induced ferroelectric transition in the archetypal litharge $伪$-PbO. These results establish materials with a litharge-type structural unit as a large and versatile family of highly polarizable layered semiconductors in proximity to ferroelectricity, offering vast opportunities for multifunctional materials design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11577v1-abstract-full').style.display = 'none'; document.getElementById('2412.11577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03149">arXiv:2412.03149</a> <span> [<a href="https://arxiv.org/pdf/2412.03149">pdf</a>, <a href="https://arxiv.org/format/2412.03149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.214405">10.1103/PhysRevB.110.214405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Successive magnetic transitions in the spin-5/2 easy-axis triangular-lattice antiferromagnet Na$_2$BaMn(PO$_4$)$_2$: A neutron diffraction study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuandi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+J">Junsen Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+C">Cheng Su</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+P">Peijie Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+W">Wentao Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03149v1-abstract-short" style="display: inline;"> Motivated by the recent observations of various exotic quantum states in the equilateral triangular-lattice phosphates Na$_2$BaCo(PO$_4$)$_2$ with $J\rm_{eff}$ = 1/2 and Na$_2$BaNi(PO$_4$)$_2$ with $S$ = 1, the magnetic properties of spin-5/2 antiferromagnet Na$_2$BaMn(PO$_4$)$_2$, their classical counterpart, are comprehensively investigated experimentally. DC magnetization and specific heat meas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03149v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03149v1-abstract-full" style="display: none;"> Motivated by the recent observations of various exotic quantum states in the equilateral triangular-lattice phosphates Na$_2$BaCo(PO$_4$)$_2$ with $J\rm_{eff}$ = 1/2 and Na$_2$BaNi(PO$_4$)$_2$ with $S$ = 1, the magnetic properties of spin-5/2 antiferromagnet Na$_2$BaMn(PO$_4$)$_2$, their classical counterpart, are comprehensively investigated experimentally. DC magnetization and specific heat measurements on polycrystalline samples indicate two successive magnetic transitions at $T\rm_{N1}$ $\approx$ 1.13 K and $T\rm_{N2}$ $\approx$ 1.28 K, respectively. Zero-field neutron powder diffraction measurement at 67 mK reveals a Y-like spin configuration as its ground-state magnetic structure, with both the $ab$-plane and $c$-axis components of the Mn$^{2+}$ moments long-range ordered. The incommensurate magnetic propagation vector $k$ shows a dramatic change for the intermediate phase between $T\rm_{N1}$ and $T\rm_{N2}$, in which the spin state is speculated to change into a collinear structure with only the $c$-axis moments ordered, as stabilized by thermal fluctuations. The successive magnetic transitions observed in Na$_2$BaMn(PO$_4$)$_2$ are in line with the expectation for a triangle-lattice antiferromagnet with an easy-axis magnetic anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03149v1-abstract-full').style.display = 'none'; document.getElementById('2412.03149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 214405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00859">arXiv:2412.00859</a> <span> [<a href="https://arxiv.org/pdf/2412.00859">pdf</a>, <a href="https://arxiv.org/format/2412.00859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetically tuned topological phase in graphene nanoribbon heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Jian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+D">Da-Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+S">Sheng Ju</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+A">Ai-Lei He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yuan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00859v1-abstract-short" style="display: inline;"> The interplay between topology and magnetism often triggers the exotic quantum phases. Here, we report an accessible scheme to engineer the robust $\mathbb{Z}_{2}$ topology by intrinsic magnetism, originating from the zigzag segment connecting two armchair segments with different width, in one-dimensional graphene nanoribbon heterojunctions. Our first-principle and model simulations reveal that th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00859v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00859v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00859v1-abstract-full" style="display: none;"> The interplay between topology and magnetism often triggers the exotic quantum phases. Here, we report an accessible scheme to engineer the robust $\mathbb{Z}_{2}$ topology by intrinsic magnetism, originating from the zigzag segment connecting two armchair segments with different width, in one-dimensional graphene nanoribbon heterojunctions. Our first-principle and model simulations reveal that the emergent spin polarization substantially modifies the dimerization between junction states, forming the special SSH mechanism depending on the magnetic configurations. Interestingly, the topological phase in magnetic state is only determined by the width of the narrow armchair segment, in sharp contrast with that in the normal state. In addition, the emergent magnetism increases the bulk energy band gap by an order of magnitude than that in the nonmagnetic state. We also discuss the $\mathbb{Z}$ topology of the junction states and the termination-dependent of topological end states. Our results bring new way to tune the topology in graphene nanoribbon heterostructure, providing a new platform for future one-dimensional topological devices and molecular-scale spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00859v1-abstract-full').style.display = 'none'; document.getElementById('2412.00859v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08287">arXiv:2411.08287</a> <span> [<a href="https://arxiv.org/pdf/2411.08287">pdf</a>, <a href="https://arxiv.org/format/2411.08287">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tuning the Quasi-bound States of Double-barrier Structures: Insights from Resonant Tunneling Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08287v1-abstract-short" style="display: inline;"> In this work, we study the resonant tunneling (RT) of electrons and H atoms in double-barrier (DB) systems. Our numerical calculations directly verify the correspondence between the resonant tunneling energies and the energy levels of quasi-bound states (QBS) within the double barriers. Based on this, in-depth analyses are carried out on the modulation of QBS energy levels and numbers which show s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08287v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08287v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08287v1-abstract-full" style="display: none;"> In this work, we study the resonant tunneling (RT) of electrons and H atoms in double-barrier (DB) systems. Our numerical calculations directly verify the correspondence between the resonant tunneling energies and the energy levels of quasi-bound states (QBS) within the double barriers. Based on this, in-depth analyses are carried out on the modulation of QBS energy levels and numbers which show step variation with the inter-barrier spacing. The mathematical criterion for the existence of QBS is derived, and the impacts of the barrier width and barrier height on QBS levels are investigated. Taking the rectangular double-barrier as an example, we have studied the manipulation of electronic structures and optical properties of the inter-barrier region (quasi-potential well) by tuning the inter-barrier spacing (width of quasi-potential well). Atom-like optical absorption features are found in the range of infrared to visible spectrum, which can be continuously tuned by the variation of quasi-potential well width. The potential application of double-barrier nanostructures in ultrahigh-precision detection of electromagnetic radiations is demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08287v1-abstract-full').style.display = 'none'; document.getElementById('2411.08287v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06931">arXiv:2411.06931</a> <span> [<a href="https://arxiv.org/pdf/2411.06931">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dongxiao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuxuan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xingjian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xingxiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zhengqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+B">Boxi Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Nong%2C+S">Shutong Nong</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jiyang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+T">Tingrui Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weihua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shiwu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Mujun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06931v2-abstract-short" style="display: inline;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v2-abstract-full').style.display = 'inline'; document.getElementById('2411.06931v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06931v2-abstract-full" style="display: none;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free UV cross-linking. This method achieves a nematic order 3000% higher than NAT-LCEs fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method may open new possibilities for soft robotics, biomedical devices, and wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v2-abstract-full').style.display = 'none'; document.getElementById('2411.06931v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04537">arXiv:2411.04537</a> <span> [<a href="https://arxiv.org/pdf/2411.04537">pdf</a>, <a href="https://arxiv.org/format/2411.04537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> The tricritical point of tricritical directed percolation is determined based on neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+F">Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jianmin Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Dian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04537v1-abstract-short" style="display: inline;"> In recent years, neural networks have increasingly been employed to identify critical points of phase transitions. For the tricritical directed percolation model, its steady-state configurations encompass both first-order and second-order phase transitions. Due to the presence of crossover effects, identifying the critical points of phase transitions becomes challenging. This study utilizes Monte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04537v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04537v1-abstract-full" style="display: none;"> In recent years, neural networks have increasingly been employed to identify critical points of phase transitions. For the tricritical directed percolation model, its steady-state configurations encompass both first-order and second-order phase transitions. Due to the presence of crossover effects, identifying the critical points of phase transitions becomes challenging. This study utilizes Monte Carlo simulations to obtain steady-state configurations under different probabilities $p$ and $q$, and by calculating the increments in average particle density, we observe first-order transitions, second-order transitions, and regions where both types of transitions interact.These Monte Carlo-generated steady-state configurations are used as input to construct and train a convolutional neural network, from which we determine the critical points $p_{c}$ for different probabilities $q$. Furthermore, by learning the steady-state configurations associated with the superheated point $p=p_u$, we locate the tricritical point at $q_{t}=0.893$. Simultaneously, we employed a three-output CNN model to obtain the phase transition boundaries and the range of the crossover regions. Our method offers a neural network-based approach to capture critical points and distinguish phase transition boundaries, providing a novel solution to this problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04537v1-abstract-full').style.display = 'none'; document.getElementById('2411.04537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03953">arXiv:2411.03953</a> <span> [<a href="https://arxiv.org/pdf/2411.03953">pdf</a>, <a href="https://arxiv.org/format/2411.03953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent dynamical quantum phase transition in a $Z_3$ symmetric chiral clock model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+L">Ling-Feng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Lin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+X">Xue-Jia Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03953v1-abstract-short" style="display: inline;"> We study the quench dynamics in a $Z_3$ symmetric chiral clock model (CCM). The results reveal that chiral phases can lead to the emergence of dynamical quantum phase transition (DQPT). By analyzing Lee-Yang-Fisher zeros' distribution in the complex plane, we uncover the relation between the chiral phase and the emergence of DQPT. In concrete terms, only by taking some special angles can DQPT be i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03953v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03953v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03953v1-abstract-full" style="display: none;"> We study the quench dynamics in a $Z_3$ symmetric chiral clock model (CCM). The results reveal that chiral phases can lead to the emergence of dynamical quantum phase transition (DQPT). By analyzing Lee-Yang-Fisher zeros' distribution in the complex plane, we uncover the relation between the chiral phase and the emergence of DQPT. In concrete terms, only by taking some special angles can DQPT be induced. We confirm the above relation by computing the non-analytic points in Loschmidt echo return rate function. Furthermore, through the analysis of the corresponding dynamical partition function, we reveal the mechanism of the emergent DQPT and deduce the analytical expression of dynamical partition function's zero points' coordinates. Based on the analytic expression, one can obtain all the angles that induce DQPT's emergence and predict more possible DQPT in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03953v1-abstract-full').style.display = 'none'; document.getElementById('2411.03953v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01160">arXiv:2411.01160</a> <span> [<a href="https://arxiv.org/pdf/2411.01160">pdf</a>, <a href="https://arxiv.org/ps/2411.01160">ps</a>, <a href="https://arxiv.org/format/2411.01160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195418">10.1103/PhysRevB.109.195418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Longitudinal and transverse mobilities of $n$-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">W. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y+M">Y. M. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+L">L. Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+W">H. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Duppen%2C+B">B. Van Duppen</a>, <a href="/search/cond-mat?searchtype=author&query=Milo%C5%A1evi%C4%87%2C+M+V">M. V. Milo拧evi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Peeters%2C+F+M">F. M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01160v1-abstract-short" style="display: inline;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01160v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01160v1-abstract-full" style="display: none;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a $\mathbf{k}\cdot\mathbf{p}$ Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semi-classical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the $K'$-valley to one in the $K$-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'none'; document.getElementById('2411.01160v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 195418 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23633">arXiv:2410.23633</a> <span> [<a href="https://arxiv.org/pdf/2410.23633">pdf</a>, <a href="https://arxiv.org/format/2410.23633">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Restoring Kibble-Zurek Scaling and Defect Freezing in Non-Hermitian Systems under Biorthogonal Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+M">Menghua Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+K">Kangyi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Fuxiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23633v1-abstract-short" style="display: inline;"> Non-Hermitian physics provides an effective description of open and nonequilibrium systems and hosts many novel and intriguing phenomena such as exceptional points and non-Hermitian skin effect. Despite extensive theoretical and experimental studies, however, how to properly deal with the nonadiabatic dynamics in driven non-Hermitian quantum system is still under debate. Here, we develop a theoret… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23633v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23633v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23633v1-abstract-full" style="display: none;"> Non-Hermitian physics provides an effective description of open and nonequilibrium systems and hosts many novel and intriguing phenomena such as exceptional points and non-Hermitian skin effect. Despite extensive theoretical and experimental studies, however, how to properly deal with the nonadiabatic dynamics in driven non-Hermitian quantum system is still under debate. Here, we develop a theoretical framework based on time-dependent biorthogonal quantum formalism by redefining the associated state to obtain the gauge-independent transition probability, and study the nonadiabatic dynamics of a linearly driven non-Hermitian system. In contrast to the normalization method that leads to a modified Kibble-Zurek scaling behavior, our approach predicts that the defect production at exceptional points exhibits power-law scaling behaviors conforming to the Kibble-Zurek mechanism. In the fast quench regime, universal scaling behaviors are also found with respect to the initial quenching parameter, which can be explained by the impulse-adiabatic approximation. Moreover, as trespassing the PT -broken region, the phenomenon of defect freezing, i.e., violation of adiabaticity, is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23633v1-abstract-full').style.display = 'none'; document.getElementById('2410.23633v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22236">arXiv:2410.22236</a> <span> [<a href="https://arxiv.org/pdf/2410.22236">pdf</a>, <a href="https://arxiv.org/format/2410.22236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum Supercritical Regime with the Universally Boosted Magnetocaloric Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lv%2C+E">Enze Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Yuliang Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22236v2-abstract-short" style="display: inline;"> Across finite temperatures and fields, a quantum critical point (QCP) can extend to a quantum critical regime (QCR), characterized by prominent quantum fluctuations and universal scalings. The QCR is essential for comprehending many-body systems and correlated quantum materials, attracting intensive research interest over the past decades. In this study, we identify a distinct quantum supercritica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22236v2-abstract-full').style.display = 'inline'; document.getElementById('2410.22236v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22236v2-abstract-full" style="display: none;"> Across finite temperatures and fields, a quantum critical point (QCP) can extend to a quantum critical regime (QCR), characterized by prominent quantum fluctuations and universal scalings. The QCR is essential for comprehending many-body systems and correlated quantum materials, attracting intensive research interest over the past decades. In this study, we identify a distinct quantum supercritical regime (QSR) that also originates from the QCP but is driven by a symmetry-breaking field $h$, which couples to the order parameter. The QSR has crossover lines following $T \propto h^{\frac{z谓}{尾+纬}}$, where $尾, 纬, z, 谓$ are the critical exponents. Amongst other intriguing phenomena in QSR, the magnetocaloric effect (MCE) exhibits a universally diverging magnetic Gr眉neisen ratio as $螕_h \equiv \frac{1}{T} (\frac{\partial T}{\partial h})_{S} \propto T^{-\frac{尾+纬}{z谓}}$. This constitutes a boost in the universal MCE, when compared to that of QCR, as even a small field $h$ can induce a dramatic temperature variation. Experimental realizations involving quantum Ising and Heisenberg magnets are discussed. These systems offer an ideal platform for investigating quantum supercriticality and also hold significant potential as advanced refrigerants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22236v2-abstract-full').style.display = 'none'; document.getElementById('2410.22236v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16987">arXiv:2410.16987</a> <span> [<a href="https://arxiv.org/pdf/2410.16987">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A single-phase epitaxially grown ferroelectric perovskite nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Songhee Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zi%2C+X">Xian Zi</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+J">Jie Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shuai Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Ting%2C+C">Cui Ting</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qianying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+G">Gang Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhiguo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16987v1-abstract-short" style="display: inline;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16987v1-abstract-full" style="display: none;"> The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics and potential applications. Here we report the synthesis and characterizations of epitaxial single-phase ferroelectric cerium tantalum nitride (CeTaN3) on both oxides and semiconductors. The polar symmetry of CeTaN3 was confirmed by observing the atomic displacement of central ions relative to the center of the TaN6 octahedra, as well as through optical second harmonic generation. We observed switchable ferroelectric domains in CeTaN3 films using piezo-response force microscopy, complemented by the characterization of square-like polarization-electric field hysteresis loops. The remanent polarization of CeTaN3 reaches approximately 20 uC/cm2 at room temperature, consistent with theoretical calculations. This work establishes a vital link between ferroelectric nitride perovskites and their practical applications, paving the way for next-generation information and energy-storage devices with enhanced performance, scalability, and manufacturability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16987v1-abstract-full').style.display = 'none'; document.getElementById('2410.16987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14530">arXiv:2410.14530</a> <span> [<a href="https://arxiv.org/pdf/2410.14530">pdf</a>, <a href="https://arxiv.org/format/2410.14530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Multistable Synaptic Plasticity induces Memory Effects and Cohabitation of Chimera and Bump States in Leaky Integrate-and-Fire Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Provata%2C+A">Astero Provata</a>, <a href="/search/cond-mat?searchtype=author&query=Almirantis%2C+Y">Yannis Almirantis</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wentian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14530v1-abstract-short" style="display: inline;"> Chimera states and bump states are collective synchronization phenomena observed independently (at different parameter regions) in networks of coupled nonlinear oscillators. And while chimera states are characterized by coexistence of coherent and incoherent domains, bump states consist of active domains operating on a silent background. Multistable plasticity in the network connections originates… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14530v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14530v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14530v1-abstract-full" style="display: none;"> Chimera states and bump states are collective synchronization phenomena observed independently (at different parameter regions) in networks of coupled nonlinear oscillators. And while chimera states are characterized by coexistence of coherent and incoherent domains, bump states consist of active domains operating on a silent background. Multistable plasticity in the network connections originates from brain dynamics and is based on the idea that neural cells may transmit inhibitory or excitatory signals depending on various factors, such as local connectivity, influence of neighboring cells etc. During the system/network integration, the link weights adapt and, in the case of multistability, they may organize in coexisting excitatory and/or inhibitory domains. Here, we explore the influence of bistable plasticity on collective synchronization states and we numerically demonstrate that the dynamics of the linking may give rise to co-existence of bump-like and chimera-like states simultaneously in the network. In the case of bump and chimera co-existence, confinement effects are developed: the different domains stay localized and do not travel around the network. Memory effects are also reported in the sense that the final spatial arrangement of the coupling strengths reflects some of the local properties of the initial link distribution. For the quantification of the system's spatial and temporal features, the global and local entropy functions are employed as measures of the network organization, while the average firing rates account for the network evolution and dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14530v1-abstract-full').style.display = 'none'; document.getElementById('2410.14530v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12291">arXiv:2410.12291</a> <span> [<a href="https://arxiv.org/pdf/2410.12291">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.202400599">10.1002/lpor.202400599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly anisotropic Drude-weight-reduction and enhanced linear-dichroism in van der Waals Weyl semimetal Td-MoTe2 with coherent interlayer electronic transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weikang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jianzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+X">Xiutong Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12291v1-abstract-short" style="display: inline;"> Weyl semimetal (WSM) states can be achieved by breaking spatial-inversion symmetry or time reversal symmetry. However, the anisotropy of the energy reduction contributing to the emergence of WSM states has seldom been investigated by experiments. A van der Waals metal MoTe2 exhibits a type-II WSM phase below the monoclinic-to-orthorhombic-phase-transition temperature Tc ~ 250 K. Here, we report a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12291v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12291v1-abstract-full" style="display: none;"> Weyl semimetal (WSM) states can be achieved by breaking spatial-inversion symmetry or time reversal symmetry. However, the anisotropy of the energy reduction contributing to the emergence of WSM states has seldom been investigated by experiments. A van der Waals metal MoTe2 exhibits a type-II WSM phase below the monoclinic-to-orthorhombic-phase-transition temperature Tc ~ 250 K. Here, we report a combined linearly-polarized optical-spectroscopy and electrical-transport study of MoTe2 at different temperatures. The Drude components in the a-axis, b-axis and c-axis optical conductivity spectra, together with the metallic out-of-plane and in-plane electrical resistivities, indicate the coherent inter-layer and in-plane charge transports. Moreover, the Drude weight in 蟽1a(蠅), rather than the Drude weights in 蟽1b(蠅) and 蟽1c(蠅), decreases dramatically below Tc, which exhibits a highly anisotropic decrease in its Drude weight and thus suggests a strongly anisotropic reduction of the electronic kinetic energy in the WSM phase. Furthermore, below Tc, due to the in-plane anisotropic spectral-weight transfer from Drude component to high-energy region, the in-plane inter-band-absorption anisotropy increases remarkably around 770 meV, and has the largest value (~ 0.68) of normalized linear dichroism among the reported type-II WSMs. Our work sheds light on seeking new WSMs and developing novel photonic devices based on WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12291v1-abstract-full').style.display = 'none'; document.getElementById('2410.12291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Laser & Photonics Reviews</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser & Photonics Reviews, 2400599 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09677">arXiv:2410.09677</a> <span> [<a href="https://arxiv.org/pdf/2410.09677">pdf</a>, <a href="https://arxiv.org/format/2410.09677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Phonon-Mediated Nonlinear Optical Responses and Quantum Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiaming Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09677v1-abstract-short" style="display: inline;"> Unraveling the complexities of nonlinear optical (NLO) responses, particularly the intricate many-body interactions among photons, electrons, and phonons, remains a significant challenge in condensed matter physics. Here, we present a diagrammatic approach to explore NLO responses with electron-phonon coupling (EPC), focusing on the phonon-mediated nonlinear optical (Ph-NLO) responses up to the se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09677v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09677v1-abstract-full" style="display: none;"> Unraveling the complexities of nonlinear optical (NLO) responses, particularly the intricate many-body interactions among photons, electrons, and phonons, remains a significant challenge in condensed matter physics. Here, we present a diagrammatic approach to explore NLO responses with electron-phonon coupling (EPC), focusing on the phonon-mediated nonlinear optical (Ph-NLO) responses up to the second order in photon perturbation. We systematically analyze the shift and ballistic mechanisms responsible for phonon-mediated electron-photon interactions. By incorporating EPC effects, we elucidate phenomena such as phonon-mediated shift current (Ph-SC) and second-harmonic generation (Ph-SHG) in a comprehensive Ph-NLO framework. This approach enables below-gap resonant responses at terahertz photon frequencies, offering a promising mechanism for terahertz optical applications that surpasses the constraints of conventional pure-electronic NLO theories. Additionally, we explore the geometric and topological consequences of Ph-NLO responses by introducing the EPC Berry curvature, EPC quantum metric, and EPC shift vector. These concepts unveil a unique quantum geometric structure within the Hilbert space, parameterized by both the electronic wavevector and phonon-displacement, thereby extending the established pure-electronic quantum geometry. Using a general Rice-Mele model, we demonstrate the connection between Ph-NLO responses and EPC geometry, discussing the implications and predicting observable effects for future experimental validation. This framework also provides a foundation for advancing first-principles calculations aimed at the discovery and engineering of NLO materials. The insights gained from this study contribute to a more profound understanding of NLO responses and EPC quantum geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09677v1-abstract-full').style.display = 'none'; document.getElementById('2410.09677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06894">arXiv:2410.06894</a> <span> [<a href="https://arxiv.org/pdf/2410.06894">pdf</a>, <a href="https://arxiv.org/format/2410.06894">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.111.013316">10.1103/PhysRevA.111.013316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The global phase diagram of the cluster-XY spin chain with dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Lin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Ying-Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zheng-Xin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+X">Xue-Jia Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06894v1-abstract-short" style="display: inline;"> We study the ground-state phase diagram of a non-Hermitian cluster-XY spin chain in the language of free fermions. By calculating the second derivative of ground-state energy density and various types of order parameters, we establish the global ground-state phase diagram of the model, exhibiting rich quantum phases and corresponding phase transitions. Specially, the results reveal that the non-He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06894v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06894v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06894v1-abstract-full" style="display: none;"> We study the ground-state phase diagram of a non-Hermitian cluster-XY spin chain in the language of free fermions. By calculating the second derivative of ground-state energy density and various types of order parameters, we establish the global ground-state phase diagram of the model, exhibiting rich quantum phases and corresponding phase transitions. Specially, the results reveal that the non-Hermitian cluster-XY model contains five different phases and two critical regions, i.e., ferromagnetic (FM), antiferromagnetic (AFM), symmetry-protected topological (SPT), paramagnetic (PM), Luttinger liquid-like phase, as well as critical region I and II. The order parameters and critical behaviors are investigated and the correctness of the theory is confirmed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06894v1-abstract-full').style.display = 'none'; document.getElementById('2410.06894v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A.111.013316 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span> [<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17586">arXiv:2409.17586</a> <span> [<a href="https://arxiv.org/pdf/2409.17586">pdf</a>, <a href="https://arxiv.org/format/2409.17586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chenyazhi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiadian He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+P">Peng Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17586v1-abstract-short" style="display: inline;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17586v1-abstract-full" style="display: none;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe$_2$ under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial to the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal state under an electric field. Our findings highlight a significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors, and demonstrate the potential applications for superconducting integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'none'; document.getElementById('2409.17586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12284">arXiv:2409.12284</a> <span> [<a href="https://arxiv.org/pdf/2409.12284">pdf</a>, <a href="https://arxiv.org/format/2409.12284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Best of Both Worlds: Enforcing Detailed Balance in Machine Learning Models of Transition Rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Talapatra%2C+A+A">Anjana Anu Talapatra</a>, <a href="/search/cond-mat?searchtype=author&query=Pandey%2C+A">Anup Pandey</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+S">Matthew S. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+W">Ying Wai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Pilania%2C+G">Ghanshyam Pilania</a>, <a href="/search/cond-mat?searchtype=author&query=Uberuaga%2C+B+P">Blas Pedro Uberuaga</a>, <a href="/search/cond-mat?searchtype=author&query=Perez%2C+D">Danny Perez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12284v1-abstract-short" style="display: inline;"> The slow microstructural evolution of materials often plays a key role in determining material properties. When the unit steps of the evolution process are slow, direct simulation approaches such as molecular dynamics become prohibitive and Kinetic Monte-Carlo (kMC) algorithms, where the state-to-state evolution of the system is represented in terms of a continuous-time Markov chain, are instead f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12284v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12284v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12284v1-abstract-full" style="display: none;"> The slow microstructural evolution of materials often plays a key role in determining material properties. When the unit steps of the evolution process are slow, direct simulation approaches such as molecular dynamics become prohibitive and Kinetic Monte-Carlo (kMC) algorithms, where the state-to-state evolution of the system is represented in terms of a continuous-time Markov chain, are instead frequently relied upon to efficiently predict long-time evolution. The accuracy of kMC simulations however relies on the complete and accurate knowledge of reaction pathways and corresponding kinetics. This requirement becomes extremely stringent in complex systems such as concentrated alloys where the astronomical number of local atomic configurations makes the a priori tabulation of all possible transitions impractical. Machine learning models of transition kinetics have been used to mitigate this problem by enabling the efficient on-the-fly prediction of kinetic parameters. In this study, we show how physics-informed ML architectures can exactly enforce the detailed balance condition, by construction. Using the diffusion of a vacancy in a concentrated alloy as an example, we show that such ML architectures also exhibit superior performance in terms of prediction accuracy, demonstrating that the imposition of physical constraints can facilitate the accurate learning of barriers at no increase in computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12284v1-abstract-full').style.display = 'none'; document.getElementById('2409.12284v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11715">arXiv:2409.11715</a> <span> [<a href="https://arxiv.org/pdf/2409.11715">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional topological valley photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenhao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qiaolu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+N">Ning Han</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xinrui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Fujia Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Junyao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Y">Yuang Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yudong Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+H">Haoran Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yihao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11715v1-abstract-short" style="display: inline;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in plan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11715v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11715v1-abstract-full" style="display: none;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in planar geometries. Here, we have theoretically and experimentally developed a framework of three-dimensional (3D) topological valley photonics with a complete photonic bandgap and vectorial valley contrasting physics. Unlike the two-dimensional counterparts with a pair of valleys characterized by scalar valley Chern numbers, the 3D valley systems exhibit triple pairs of valleys characterized by valley Chern vectors, enabling the creation of vectorial bulk valley vortices and canalized chiral valley surface states. Notably, the valley Chern vectors and the circulating propagation direction of the valley surface states are intrinsically governed by the right-hand-thumb rule. Our findings reveal the vectorial nature of the 3D valley states and highlight their potential applications in 3D waveguiding, directional radiation, and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'none'; document.getElementById('2409.11715v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04632">arXiv:2409.04632</a> <span> [<a href="https://arxiv.org/pdf/2409.04632">pdf</a>, <a href="https://arxiv.org/format/2409.04632">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High-Throughput Search and Prediction of Layered 4f-Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hou%2C+L">Lin Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+W">Ying Wai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lane%2C+C">Christopher Lane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04632v2-abstract-short" style="display: inline;"> The development of multifunctional devices calls for the discovery of new layered materials with novel electronic properties. f-electron systems naturally host a rich set of competing and intertwining phases owning to the presence of strong spin-orbit coupling, electron-electron interactions, and hybridization between itinerant and local electrons. However, very little attention has been devoted t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04632v2-abstract-full').style.display = 'inline'; document.getElementById('2409.04632v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04632v2-abstract-full" style="display: none;"> The development of multifunctional devices calls for the discovery of new layered materials with novel electronic properties. f-electron systems naturally host a rich set of competing and intertwining phases owning to the presence of strong spin-orbit coupling, electron-electron interactions, and hybridization between itinerant and local electrons. However, very little attention has been devoted to exploring the f-electron family of compounds for new promising layered material candidates. Here, we identify 295 rare earth compounds from across the lanthanide series of elements that exhibit a spectrum of lattice symmetries and electronic properties. In particular, we find metallic compounds and insulating systems with band gaps covering a 0.1 eV to 5.3 eV range which opens new possibilities in infrared quantum sensors, designer photocatalysts, and tunable transistors. The inclusion of 4f-states in a layered system also suggests the possibility of 2D confined heavy-fermion superconductivity and topological semimetals. Our study serves as a springboard to further systematic theoretical investigation of correlation-driven properties of the 4f and other 2D materials composed of heavy elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04632v2-abstract-full').style.display = 'none'; document.getElementById('2409.04632v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text, 3 figures, 7 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-29633 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12344">arXiv:2408.12344</a> <span> [<a href="https://arxiv.org/pdf/2408.12344">pdf</a>, <a href="https://arxiv.org/format/2408.12344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Anomalous dimensions from conformal field theory: generalized $蠁^{2n+1}$ theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yongwei Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12344v2-abstract-short" style="display: inline;"> We investigate $蠁^{2n+1}$ deformations of the generalized free theory in the $蔚$ expansion, where the canonical kinetic term is generalized to a higher-derivative version. For $n=1$, we use the conformal multiplet recombination method to determine the leading anomalous dimensions of the fundamental scalar operator $蠁$ and the bilinear composite operators $\mathcal J$. Then we extend the $n=1$ anal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12344v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12344v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12344v2-abstract-full" style="display: none;"> We investigate $蠁^{2n+1}$ deformations of the generalized free theory in the $蔚$ expansion, where the canonical kinetic term is generalized to a higher-derivative version. For $n=1$, we use the conformal multiplet recombination method to determine the leading anomalous dimensions of the fundamental scalar operator $蠁$ and the bilinear composite operators $\mathcal J$. Then we extend the $n=1$ analysis to the Potts model with $S_{N+1}$ symmetry and its higher-derivative generalization, in which $蠁$ is promoted to an $N$-component field. We further examine the Chew-Frautschi plots and their $N$ dependence. However, for each integer $n>1$, the leading anomalous dimensions of $蠁$ and $ \mathcal{J}$ are not fully determined and contain one unconstrained constant, which in the canonical cases can be fixed by the results from the traditional diagrammatic method. In all cases, we verify that the multiplet-recombination results are consistent with crossing symmetry using the analytic bootstrap methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12344v2-abstract-full').style.display = 'none'; document.getElementById('2408.12344v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: 46 pages, 14 figures, discussions improved, references added, new appendix about log CFTs added, special limits for the O(N) models extended</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05726">arXiv:2408.05726</a> <span> [<a href="https://arxiv.org/pdf/2408.05726">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2023.101298">10.1016/j.mtphys.2023.101298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity Discovered in Niobium Polyhydride at High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+K">K. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+J">S. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Min%2C+B+S">B. S. Min</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+L+C">L. C. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+S+M">S. M. Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q+Q">Q. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+J">J. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L+H">L. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Prakapenka%2C+V+B">V. B. Prakapenka</a>, <a href="/search/cond-mat?searchtype=author&query=Chariton%2C+S">S. Chariton</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H+Z">H. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+C+Q">C. Q. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05726v3-abstract-short" style="display: inline;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05726v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05726v3-abstract-full" style="display: none;"> Niobium polyhydride was synthesized at high pressure and high temperature conditions by using diamond anvil cell combined with in situ high pressure laser heating techniques. High pressure electric transport experiments demonstrate that superconducting transition occurs with critical temperature(Tc) 42 K at 187 GPa. The shift of Tc as function of external applied magnetic field is in consistent to the nature of superconductivity while the upper critical field at zero temperature Hc2(0) is estimated to~16.8 Tesla while the GL coherent length ~57 angstrom is estimated. The structure investigation using synchrotron radiation implies that the observed superconductivity may come from Fm-3m phase of NbH3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05726v3-abstract-full').style.display = 'none'; document.getElementById('2408.05726v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 40, 101298 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02566">arXiv:2408.02566</a> <span> [<a href="https://arxiv.org/pdf/2408.02566">pdf</a>, <a href="https://arxiv.org/format/2408.02566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Magnetocaloric Effect of Topological Excitations in Kitaev Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+E">Enze Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02566v1-abstract-short" style="display: inline;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02566v1-abstract-full" style="display: none;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effect. With state-of-the-art tensor-network approach, we compute low-temperature properties of Kitaev honeycomb model. For the ferromagnetic case, strong demagnetization cooling effect is observed due to the nearly free $Z_2$ vortices via spin fractionalization, described by a paramagnetic equation of state with a renormalized Curie constant. For the antiferromagnetic Kitaev case, we uncover an intermediate-field gapless QSL phase with very large spin entropy, possibly due to the emergence of spinon Fermi surface. Potential realization of topological excitation cooling in Kitaev materials is also discussed, which may offer a promising pathway to circumvent existing limitations in the paramagnetic hydrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'none'; document.getElementById('2408.02566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; supplementary materials; to appear in Nat. Commun. (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01957">arXiv:2408.01957</a> <span> [<a href="https://arxiv.org/pdf/2408.01957">pdf</a>, <a href="https://arxiv.org/format/2408.01957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent quantum disordered phase in Na$_2$Co$_2$TeO$_6$ under intermediate magnetic field along $c$ axis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xu-Guang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuo%2C+A">Akira Matsuo</a>, <a href="/search/cond-mat?searchtype=author&query=Mehlawat%2C+K">Kavita Mehlawat</a>, <a href="/search/cond-mat?searchtype=author&query=Matsui%2C+K">Kazuki Matsui</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Miyata%2C+A">Atsuhiko Miyata</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&query=Kindo%2C+K">Koichi Kindo</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Kohama%2C+Y">Yoshimitsu Kohama</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuda%2C+Y+H">Yasuhiro H. Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01957v1-abstract-short" style="display: inline;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01957v1-abstract-full" style="display: none;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagnetic phase after suppressing the AFM order. Recently, Na$_2$Co$_2$TeO$_6$ has been proposed as one of the prime candidates, where the Kitaev interaction is realized by the high-spin $t^{5}_{2g}e^2_g$ configuration, and spin-orbit entangled $J_{\rm eff} = 1/2$ state in a bond-edge shared honeycomb lattice. In this study, we identify an emergent intermediate disordered phase induced by an external field along the $c$-axis of the honeycomb plane. This phase is characterized through magnetization and magnetocaloric effect experiments in high magnetic fields. To explain the experimental results, we propose an effective spin model with large AFM Kitaev interaction, which yields results in good agreement with both our findings and previously reported data. We determine that the effective $K$-$J$-$螕$-$螕'$ model for Na$_2$Co$_2$TeO$_6$ is nearly dual to that of $伪$-RuCl$_3$ under an unitary transformation. Given the insignificant fragility of Na$_2$Co$_2$TeO$_6$ sample, further high-field experiments can be conducted to explore this intermediate-field quantum spin disordered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'none'; document.getElementById('2408.01957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00320">arXiv:2408.00320</a> <span> [<a href="https://arxiv.org/pdf/2408.00320">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+J">Jianli Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+C">Chao Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenliang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zheng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tian Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00320v2-abstract-short" style="display: inline;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00320v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00320v2-abstract-full" style="display: none;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter physics research and practical device applications. Spin-polarized band structures have been recently observed in semiconductors MnTe and MnTe2 with vanishing net magnetization, confirming the existence of this unconventional magnetic order. Metallic altermagnets have unique advantages for exploring novel physical phenomena related to low-energy quasiparticle excitations and for applications in spintronics as electrical conductivity in metals allows the direct manipulation of spin current through electric field. Here, through comprehensive characterization and analysis of the magnetic and electronic structures of KV2Se2O, we have unambiguously demonstrated a metallic room-temperature altermaget with d-wave spin-momentum locking. The highly anisotropic spin-polarized Fermi surfaces and the spin-density-wave order emerging in the altermagnetic phase make it an extraordinary platform for designing high-performance spintronic devices and studying many-body effects coupled with the unconventional magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'none'; document.getElementById('2408.00320v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20107">arXiv:2407.20107</a> <span> [<a href="https://arxiv.org/pdf/2407.20107">pdf</a>, <a href="https://arxiv.org/format/2407.20107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Commensurate supersolids and re-entrant transitions in an extended Bose-Hubbard ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Madhusudan%2C+A+N">Ashwath N Madhusudan</a>, <a href="/search/cond-mat?searchtype=author&query=Santra%2C+G+C">Gopal Chandra Santra</a>, <a href="/search/cond-mat?searchtype=author&query=Kaur%2C+I">Inderpreet Kaur</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weibin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Nath%2C+R">Rejish Nath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20107v2-abstract-short" style="display: inline;"> We investigate the ground state phases of an extended Bose-Hubbard ladder of unit filling via the density-matrix-renormalization-group method and, in particular, the effect of rung-hoppings. In contrast to a single-chain, a commensurate supersolid emerges, and based on the Luttinger parameter, we classify them into two types. The latter leads to a reentrant gapless behavior as the onsite interacti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20107v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20107v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20107v2-abstract-full" style="display: none;"> We investigate the ground state phases of an extended Bose-Hubbard ladder of unit filling via the density-matrix-renormalization-group method and, in particular, the effect of rung-hoppings. In contrast to a single-chain, a commensurate supersolid emerges, and based on the Luttinger parameter, we classify them into two types. The latter leads to a reentrant gapless behavior as the onsite interaction is increased while keeping all other parameters intact. A reentrant gapped transition is also found as a function of nearest-neighbor interactions. Further, we show that the string order characterizing the Haldane phase vanishes for a finite inter-chain hopping amplitude, however small it is. Finally, we propose two experimental platforms to observe our findings, using either dipolar atoms or polar molecules and Rydberg admixed atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20107v2-abstract-full').style.display = 'none'; document.getElementById('2407.20107v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18458">arXiv:2407.18458</a> <span> [<a href="https://arxiv.org/pdf/2407.18458">pdf</a>, <a href="https://arxiv.org/format/2407.18458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phase engineering of giant second harmonic generation in Bi$_2$O$_2$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lou%2C+Z">Zhefeng Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yingjie Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+Z">Zhihao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Mengqi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jialu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+H">Haoyu Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zhuokai Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shuigang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+W">Wei Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xiaorui Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+X">Xiao Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18458v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18458v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18458v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in strained 20 nm-BOS films exceed those of NbOI$_2$ and NbOCl$_2$ of similar thickness by a factor of 10, and are four orders of magnitude higher than monolayer-MoS$_2$, resulting in a significant second-order nonlinear susceptibility on the order of 1 nm V$^{-1}$. Intriguingly, the strain enables continuous adjustment of the ferroelectric phase transition across room temperature. Consequently, an exceptionally large tunability of SHG, approximately six orders of magnitude, is achieved through strain or thermal modulation. This colossal SHG, originating from the geometric phase of Bloch wave functions and coupled with sensitive tunability through multiple approaches in this air-stable 2D semiconductor, opens new possibilities for designing chip-scale, switchable nonlinear optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'none'; document.getElementById('2407.18458v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17917">arXiv:2407.17917</a> <span> [<a href="https://arxiv.org/pdf/2407.17917">pdf</a>, <a href="https://arxiv.org/format/2407.17917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Lightwave-driven electrons in a Floquet topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Weitz%2C+T">Tobias Weitz</a>, <a href="/search/cond-mat?searchtype=author&query=Lesko%2C+D+M+B">Daniel M. B. Lesko</a>, <a href="/search/cond-mat?searchtype=author&query=Wittigschlager%2C+S">Simon Wittigschlager</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weizhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Heide%2C+C">Christian Heide</a>, <a href="/search/cond-mat?searchtype=author&query=Neufeld%2C+O">Ofer Neufeld</a>, <a href="/search/cond-mat?searchtype=author&query=Hommelhoff%2C+P">Peter Hommelhoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17917v1-abstract-short" style="display: inline;"> Topological insulators offer unique opportunities for novel electronics and quantum phenomena. However, intrinsic material limitations often restrict their applications and practical implementation. Over a decade ago it was predicted that a time-periodic perturbation can generate out-of-equilibrium states known as Floquet topological insulators (FTIs), hosting topologically protected transport and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17917v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17917v1-abstract-full" style="display: none;"> Topological insulators offer unique opportunities for novel electronics and quantum phenomena. However, intrinsic material limitations often restrict their applications and practical implementation. Over a decade ago it was predicted that a time-periodic perturbation can generate out-of-equilibrium states known as Floquet topological insulators (FTIs), hosting topologically protected transport and anomalous Hall physics, and opening routes to optically tunable bandstructures and devices compatible with petahertz electronics. Although such states have not yet been directly observed, indirect signatures such as the light-induced anomalous Hall effect were recently measured. Thus far, much remained experimentally unclear and fundamentally unknown about solid-state FTI and whether they can be employed for electronics. Here we demonstrate coherent control of photocurrents in light-dressed graphene. Circularly-polarized laser pulses dress the graphene band structure to obtain an FTI, and phase-locked second harmonic pulses drive electrons in the FTI. This approach allows us to measure resulting all-optical anomalous Hall photocurrents, FTI-valley-polarized currents, and photocurrent circular dichroism, all phenomena that put FTIs on equal footing with equilibrium topological insulators. We further present an intuitive description for the sub-optical-cycle light-matter interaction, revealing dynamical symmetry selection rules for photocurrents. All measurements are supported by strong agreement with ab-initio and analytic theory. Remarkably, the photocurrents show a strong sub-cycle phase-sensitivity that can be employed for ultrafast control in topotronics and spectroscopy. Our work connects Floquet and topological physics with attoscience and valleytronics, and goes beyond band structure engineering by initiating lightwave-driven dynamics in FTI states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17917v1-abstract-full').style.display = 'none'; document.getElementById('2407.17917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15534">arXiv:2407.15534</a> <span> [<a href="https://arxiv.org/pdf/2407.15534">pdf</a>, <a href="https://arxiv.org/format/2407.15534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> One-dimensional quantum dot array integrated with charge sensors in an InAs nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Y">Yi Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiao-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhi-Hai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weijie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shili Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Han Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+H">Haitian Su</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+D">Dong Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jianhua Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Ji-Yin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H+Q">H. Q. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15534v1-abstract-short" style="display: inline;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-do… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15534v1-abstract-full" style="display: none;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-dot array are then tuned up and its charge configurations are fully mapped out with the two charge sensors. The energy level of each dot in the array can be controlled individually by using a compensated gate architecture (i.e., "virtual gate"). After that, four dots in the array are selected to form two double quantum dots and ultra strong inter-double-dot interaction is obtained. A theoretical simulation based on a 4-dimensional Hamiltonian confirms the strong coupling strength between the two double quantum dots. The highly controllable one-dimensional quantum dot array achieved in this work is expected to be valuable for employing InAs nanowires to construct advanced quantum hardware in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'none'; document.getElementById('2407.15534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07954">arXiv:2407.07954</a> <span> [<a href="https://arxiv.org/pdf/2407.07954">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> 3D E-textile for Exercise Physiology and Clinical Maternal Health Monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Junyi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C">Chansoo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weilun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+Z">Zichao Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Z">Zhili Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chakrabartty%2C+S">Shantanu Chakrabartty</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07954v1-abstract-short" style="display: inline;"> Electronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07954v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07954v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07954v1-abstract-full" style="display: none;"> Electronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system that features 3D microfiber-based electrodes for greatly increasing the surface area. The soft and fluffy conductive microfibers disperse freely and securely adhere to the skin, achieving a low impedance at the electrode-skin interface even in the absence of gel. A superhydrophobic fluorinated self-assembled monolayer was deposited on the E-textile surface to render it waterproof while retaining the electrical conductivity. Equipped with a custom-designed motion-artifact canceling wireless data recording circuit, the E-textile system could be integrated into a variety of smart garments for exercise physiology and health monitoring applications. Real-time multimodal electrophysiological signal monitoring, including electrocardiogram (ECG) and electromyography (EMG), was successfully carried out during strenuous cycling and even underwater swimming activities. Furthermore, a multi-channel E-textile was developed and implemented in clinical patient studies for simultaneous real-time monitoring of maternal ECG and uterine EMG signals, incorporating spatial-temporal potential mapping capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07954v1-abstract-full').style.display = 'none'; document.getElementById('2407.07954v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05455">arXiv:2407.05455</a> <span> [<a href="https://arxiv.org/pdf/2407.05455">pdf</a>, <a href="https://arxiv.org/format/2407.05455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Supercritical Crossovers with Dynamical Singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Junsen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+E">Enze Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xinyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Yuliang Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05455v2-abstract-short" style="display: inline;"> Supercriticality, characterized by strong fluctuations and a wealth of phenomena, emerges as an intriguing state beyond the classical liquid-gas critical point. In this study, we extend this notable concept to quantum many-body systems near the quantum critical point, by studying the quantum Ising model and Rydberg atom array through tensor network calculations and scaling analyses. We find two su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05455v2-abstract-full').style.display = 'inline'; document.getElementById('2407.05455v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05455v2-abstract-full" style="display: none;"> Supercriticality, characterized by strong fluctuations and a wealth of phenomena, emerges as an intriguing state beyond the classical liquid-gas critical point. In this study, we extend this notable concept to quantum many-body systems near the quantum critical point, by studying the quantum Ising model and Rydberg atom array through tensor network calculations and scaling analyses. We find two supercritical crossover lines in the quantum phase diagram with universal scaling, $h \propto (g - g_c)^{尾+ 纬}$, where $g$ ($h$) is the transverse (longitudinal) field, $g_c$ is the critical field, and $尾, 纬$ are the related critical exponents. Enclosed by the two crossover lines, there exist supercritical quantum states with universal behaviors in correlations and entanglement. In particular, we reveal a dynamical quantum phase transition occurring when traversing the quantum supercritical crossover line. These dynamical singularities, attributed to the intersection of Lee-Yang-Fisher zero lines with the real-time axis, have no counterpart in classical supercriticality. We propose that the Rydberg atom array offers an ideal platform for studying the quantum supercritical crossovers and measuring the critical exponents. The present work establishes a foundation for exploring quantum supercriticality and related phenomena in correlated many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05455v2-abstract-full').style.display = 'none'; document.getElementById('2407.05455v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Major revision, to be resubmit to PRL. 6 pages, 4 figures (SM 2 pages, 3 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.20040">arXiv:2406.20040</a> <span> [<a href="https://arxiv.org/pdf/2406.20040">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Twist angle driven electronic structure evolution of twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+J">Jiawei Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+G">Guihao Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+K">Kebin Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+Y">Yongkang Ju</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongyun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhiqiang Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yunkai Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+P">Peizhe Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shuyun Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.20040v1-abstract-short" style="display: inline;"> In twisted bilayer graphene (TBG) devices, local strains often coexist and entangle with the twist-angle dependent moir茅 superlattice, both of which can significantly affect the electronic properties of TBG. Here, using low-temperature scanning tunneling microscopy, we investigate the fine evolution of the electronic structures of a TBG device with continuous variation of twist angles from 0.32掳 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.20040v1-abstract-full').style.display = 'inline'; document.getElementById('2406.20040v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.20040v1-abstract-full" style="display: none;"> In twisted bilayer graphene (TBG) devices, local strains often coexist and entangle with the twist-angle dependent moir茅 superlattice, both of which can significantly affect the electronic properties of TBG. Here, using low-temperature scanning tunneling microscopy, we investigate the fine evolution of the electronic structures of a TBG device with continuous variation of twist angles from 0.32掳 to 1.29掳, spanning the first (1.1掳), second (0.5掳) and third (0.3掳) magic angles. We reveal the exotic behavior of the flat bands and remote bands in both the energy space and real space near the magic angles. Interestingly, we observe an anomalous spectral weight transfer between the two flat band peaks in the tunneling spectra when approaching the first magic angle, suggesting strong inter-flat-bands interactions. The position of the remote band peak can be an index for the twist angle in TBG, since it positively correlates with the twist angle but is insensitive to the strain. Moreover, influences of the twist angle gradient on symmetry breaking of the flat bands are also studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.20040v1-abstract-full').style.display = 'none'; document.getElementById('2406.20040v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09591">arXiv:2406.09591</a> <span> [<a href="https://arxiv.org/pdf/2406.09591">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetism and Topology of the Higher Flat Band in a Fractional Chern Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Park%2C+H">Heonjoon Park</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+J">Jiaqi Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Anderson%2C+E">Eric Anderson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiao-Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Holtzmann%2C+W">William Holtzmann</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weijie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yuzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jihui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cobden%2C+D">David Cobden</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09591v2-abstract-short" style="display: inline;"> The recent observation of the fractional quantum anomalous Hall effect in moir茅 fractional Chern insulators provides an opportunity to investigate zero magnetic field anyons. To potentially realize non-Abelian anyons, one approach is to engineer higher flat Chern bands that mimic higher Landau levels. Here, we investigate the interaction, topology, and ferromagnetism of the second moir茅 miniband i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09591v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09591v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09591v2-abstract-full" style="display: none;"> The recent observation of the fractional quantum anomalous Hall effect in moir茅 fractional Chern insulators provides an opportunity to investigate zero magnetic field anyons. To potentially realize non-Abelian anyons, one approach is to engineer higher flat Chern bands that mimic higher Landau levels. Here, we investigate the interaction, topology, and ferromagnetism of the second moir茅 miniband in twisted MoTe2 bilayers. At half filling of the second miniband, we observe spontaneous ferromagnetism and an incipient Chern insulator state. The Chern numbers of the top two moir茅 flat bands exhibit opposite signs for twist angles above 3.1掳, but share the same sign near 2.6掳, consistent with theoretical predictions. In the 2.6掳 device, increasing magnetic field induces a topological phase transition via band crossing between opposite valleys, resulting in an emergent state with Chern number C = -2. Additionally, an insulating state at half filling of the second valley-polarized band suggests a charge-ordered state is favored over the fractional Chern insulator state. These findings lay a foundation for understanding the higher flat Chern bands, crucial for the discovery of non-Abelian fractional Chern insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09591v2-abstract-full').style.display = 'none'; document.getElementById('2406.09591v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures, updated version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07159">arXiv:2406.07159</a> <span> [<a href="https://arxiv.org/pdf/2406.07159">pdf</a>, <a href="https://arxiv.org/format/2406.07159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.184104">10.1103/PhysRevB.110.184104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Eigenstate plateau transition and equilibration in 1D quantum lattice models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Saberi%2C+A+A">Abbas Ali Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07159v2-abstract-short" style="display: inline;"> We report on a remarkable spectral phenomenon in a generic type of quantum lattice gas model. As the interaction strength increases, eigenstates spontaneously reorganize and lead to plateaus of the interaction energy, with gaps opening akin to continuous phase transitions. Perturbation theory identifies a hidden structure underlying eigenstates within each plateau, resulting in a statistical shift… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07159v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07159v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07159v2-abstract-full" style="display: none;"> We report on a remarkable spectral phenomenon in a generic type of quantum lattice gas model. As the interaction strength increases, eigenstates spontaneously reorganize and lead to plateaus of the interaction energy, with gaps opening akin to continuous phase transitions. Perturbation theory identifies a hidden structure underlying eigenstates within each plateau, resulting in a statistical shift in the wavefunction amplitudes described by extreme value theory. The structured eigenstates manifest themselves naturally in far-from-equilibrium dynamics proceeding through multiple universal stages. Our findings reveal a profound connection between emergent properties in high-energy states and out-of-equilibrium dynamics, providing insights into the impact of interactions across the entire energy spectrum. The results are directly relevant to experiments probing equilibration in quantum spin and lattice gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07159v2-abstract-full').style.display = 'none'; document.getElementById('2406.07159v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06456">arXiv:2406.06456</a> <span> [<a href="https://arxiv.org/pdf/2406.06456">pdf</a>, <a href="https://arxiv.org/ps/2406.06456">ps</a>, <a href="https://arxiv.org/format/2406.06456">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence of 3$d$-4$f$ antiferromagnetic coupling in strain-tuned PrCo$_{0.5}$Ni$_{0.5}$O$_{3-未}$ epitaxial films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sreejith%2C+P+K">P. K. Sreejith</a>, <a href="/search/cond-mat?searchtype=author&query=Vasili%2C+H+B">H. B. Vasili</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Valvidares%2C+M">M. Valvidares</a>, <a href="/search/cond-mat?searchtype=author&query=Burnell%2C+G">G. Burnell</a>, <a href="/search/cond-mat?searchtype=author&query=Cespedes%2C+O">O. Cespedes</a>, <a href="/search/cond-mat?searchtype=author&query=Sethupathi%2C+K">K. Sethupathi</a>, <a href="/search/cond-mat?searchtype=author&query=Sankaranarayanan%2C+V">V. Sankaranarayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+M+S+R">M. S. Ramachandra Rao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06456v1-abstract-short" style="display: inline;"> The strong exchange interaction between 3$d$-4$f$ magnetic sublattice in rare-earth perovskites introduces a variety of complex magnetic states hosting fascinating electronic ground states with exotic properties. Especially when it comes to rare-earth nickelate and cobaltite perovskites, tuning their rich magnetic phase diagram and spin-state transitions make them potential candidates for spintron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06456v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06456v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06456v1-abstract-full" style="display: none;"> The strong exchange interaction between 3$d$-4$f$ magnetic sublattice in rare-earth perovskites introduces a variety of complex magnetic states hosting fascinating electronic ground states with exotic properties. Especially when it comes to rare-earth nickelate and cobaltite perovskites, tuning their rich magnetic phase diagram and spin-state transitions make them potential candidates for spintronic applications. Here, we report the observation of antiferromagnetic coupling between Pr 4$f$ and Ni/Co 3$d$ magnetic sublattices and its tunability with strain in PrCo$_{0.5}$Ni$_{0.5}$O$_{3-未}$ (PCNO) thin films. SQUID magnetization measurements reveal ferromagnetic (FM) ordering around 25 K, followed by a spin glass transition at low temperatures subject to spin reorientation. Competing magnetic interactions arise owing to the 3$d$-4$f$ antiferromagnetic (AFM) coupling between Pr and Co/Ni sublattice as revealed by the X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Pr $M_{4,5}$ and Co/Ni $L_{2,3}$ absorption edges. Strain dependence on these AFM coupling reveals an increase (decrease) in the AFM exchange interaction for tensile (compressive) strained films, leading to a net decrease (increase) in the magnetization of PCNO films at low temperatures. The relative increase in low-temperature negative magnetoresistance for compressively strained films also reflects the enhanced ferromagnetic ordering in the system. The angle-dependent magnetoresistance measurements reveal a two-fold anisotropic magnetoresistance (AMR) in tensile strained PCNO films. In contrast, temperature-dependent switching of AMR accompanied by a two- to four-fold symmetry crossover is observed for LaAlO$_3$-grown compressive strained films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06456v1-abstract-full').style.display = 'none'; document.getElementById('2406.06456v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19853">arXiv:2405.19853</a> <span> [<a href="https://arxiv.org/pdf/2405.19853">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Density-Wave Gap in Trilayer Nickelate La4Ni3O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19853v1-abstract-short" style="display: inline;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19853v1-abstract-full" style="display: none;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popularity of nickelates in the Ruddlesden-Popper phase. In this study, combining high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La4Ni3O10 at ambient pressure. We reveal a high resemblance of La4Ni3O10 with La3Ni2O7 in the orbital-dependent fermiology and electronic structure, suggesting a similar electronic correlation between the two compounds. The temperature-dependent measurements imply an orbital-dependent energy gap related to the density-wave transition in La4Ni3O10. By comparing the theoretical pressure-dependent electronic structure, clues about the superconducting high-pressure phase can be deduced from the ambient measurements, providing crucial information for deciphering the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'none'; document.getElementById('2405.19853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+W&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>