CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;10 of 10 results for author: <span class="mathjax">Lv, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Lv%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lv, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lv%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lv, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.20733">arXiv:2502.20733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.20733">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-Broken Kondo Screening and Zero-Energy Mode in the Kagome Superconductor CsV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Y">Yubing Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zongyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenjian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Run Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xinyuan Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+N">Ning Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+L">Lei Shan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.20733v1-abstract-short" style="display: inline;"> The quantum states of matter reorganize themselves in response to defects, giving rise to emergent local excitations that imprint unique characteristics of the host states. While magnetic impurities are known to generate Kondo screening in a Fermi liquid and Yu-Shiba-Rusinov (YSR) states in a conventional superconductor, it remains unclear whether they can evoke distinct phenomena in the kagome su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20733v1-abstract-full').style.display = 'inline'; document.getElementById('2502.20733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.20733v1-abstract-full" style="display: none;"> The quantum states of matter reorganize themselves in response to defects, giving rise to emergent local excitations that imprint unique characteristics of the host states. While magnetic impurities are known to generate Kondo screening in a Fermi liquid and Yu-Shiba-Rusinov (YSR) states in a conventional superconductor, it remains unclear whether they can evoke distinct phenomena in the kagome superconductor AV3Sb5 (where A is K, Rb or Cs), which may host an orbital-antiferromagnetic charge density wave (CDW) state and an unconventional superconducting state driven by the convergence of topology, geometric frustration and electron correlations. In this work, we visualize the local density of states induced near various types of impurities in both the CDW and superconducting phases of CsV3-xMxSb5 (M = Ta, Cr) using scanning tunneling microscopy. We observe Kondo resonance states near magnetic Cr dopants. Notably, unlike in any known metal or CDW compound, the spatial pattern of Kondo screening breaks all in-plane mirror symmetries of the kagome lattice, suggesting an electronic chirality due to putative orbital loop currents. While Cooper pairs show relative insensitivity to nonmagnetic impurities, native V vacancies with weak magnetic moments induce a pronounced zero-bias conductance peak (ZBCP). This ZBCP coexists with trivial YSR states within the superconducting gap and does not split in energy with increasing tunneling transmission, tending instead to saturate. This behavior is reminiscent of signature of Majorana zero modes, which could be trapped by a sign-change boundary in the superconducting order parameter near a V vacancy, consistent with a surface topological superconducting state. Our findings provide a new approach to exploring novel quantum states on kagome lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20733v1-abstract-full').style.display = 'none'; document.getElementById('2502.20733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17452">arXiv:2411.17452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17452">pdf</a>, <a href="https://arxiv.org/format/2411.17452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> From the Shastry-Sutherland model to the $J_1$-$J_2$ Heisenberg model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rongyi Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+Y">Jong Yeon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingpu Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17452v1-abstract-short" style="display: inline;"> We propose a generalized Shastry-Sutherland model which bridges the Shastry-Sutherland model and the $J_1$-$J_2$ Heisenberg model. By employing large scale Density Matrix Renormalization Group and Fully Augmented Matrix Product State calculations, combined with careful finite-size scaling, we find the phase transition between the plaquette valence bond state (PVBS) and Neel anti-ferromagnetic (AFM&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17452v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17452v1-abstract-full" style="display: none;"> We propose a generalized Shastry-Sutherland model which bridges the Shastry-Sutherland model and the $J_1$-$J_2$ Heisenberg model. By employing large scale Density Matrix Renormalization Group and Fully Augmented Matrix Product State calculations, combined with careful finite-size scaling, we find the phase transition between the plaquette valence bond state (PVBS) and Neel anti-ferromagnetic (AFM) phase in the pure Shastry-Sutherland model is a weak first one. This result indicates the existence of an exotic tri-critical point in the PVBS to AFM transition line in the phase diagram, as the transition in the $J_1$-$J_2$ Heisenberg model was previously determined to be continuous. We determine the location of the tri-critical point in the phase diagram at which first-order transition turns to continuous. Our generalized Shastry-Sutherland model provides not only a valuable platform to explore exotic phases and phase transitions but also more realistic description of Shastry-Sutherland materials like SrCu$_2$(BO$_3$)$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17452v1-abstract-full').style.display = 'none'; document.getElementById('2411.17452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05024">arXiv:2307.05024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Physical origin of color changes in lutetium hydride under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Run Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+W">Wenqian Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenjian Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05024v1-abstract-short" style="display: inline;"> Recently, near-ambient superconductivity was claimed in nitrogen-doped lutetium hydride (LuH$_{3-未}$N$_蔚$) . Unfortunately, all follow-up research still cannot find superconductivity signs in successfully synthesized lutetium dihydride (LuH$_2$) and N-doped LuH$_{2\pm x}$N$_y$. However, a similar intriguing observation was the pressure-induced color changes (from blue to pink and subsequent red).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05024v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05024v1-abstract-full" style="display: none;"> Recently, near-ambient superconductivity was claimed in nitrogen-doped lutetium hydride (LuH$_{3-未}$N$_蔚$) . Unfortunately, all follow-up research still cannot find superconductivity signs in successfully synthesized lutetium dihydride (LuH$_2$) and N-doped LuH$_{2\pm x}$N$_y$. However, a similar intriguing observation was the pressure-induced color changes (from blue to pink and subsequent red). The physical understanding of its origin and the correlation between the color, crystal structure, and chemical composition of Lu-H-N is still lacking. In this work, we theoretically study the optical properties of LuH$_2$, LuH$_3$, and some potential N-doped compounds using the first-principles calculations by considering both interband and intraband contributions. Our results show that LuH$_2$ has an optical reflectivity peak around blue light up to 10 GPa. Under higher pressure, the reflectivity of red light gradually becomes dominant. This evolution is driven by changes in the direct band gap and the Fermi velocity of free electrons under pressure. In contrast, LuH$_3$ exhibits gray and no color change up to 50 GPa. Furthermore, we considered different types of N-doped LuH$_2$ and LuH$_3$. We find that N-doped LuH$_2$ with the substitution of a hydrogen atom at the tetrahedral position maintains the color change when the N-doping concentration is low. As the doping level increases, this trend becomes less obvious. While other N-doped structures do not show significant color change. Our results can clarify the origin of the experimental observed blue-to-red color change in lutetium hydride and also provide a further understanding of the potential N-doped lutetium dihydride. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05024v1-abstract-full').style.display = 'none'; document.getElementById('2307.05024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13252">arXiv:2108.13252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Substrate effect on thermal conductivity of monolayer WS2: Experimental measurement and theoretical analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Q">Qian Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+A">Aoran Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Lingxiao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haidong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+W">Weigang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Ruitao Lv</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13252v1-abstract-short" style="display: inline;"> Monolayer WS2 has been a competitive candidate in electrical and optoelectronic devices due to its superior optoelectronic properties. To tackle the challenge of thermal management caused by the decreased size and concentrated heat in modern ICs, it is of great significance to accurately characterize the thermal conductivity of the monolayer WS2, especially with substrate supported. In this work,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13252v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13252v1-abstract-full" style="display: none;"> Monolayer WS2 has been a competitive candidate in electrical and optoelectronic devices due to its superior optoelectronic properties. To tackle the challenge of thermal management caused by the decreased size and concentrated heat in modern ICs, it is of great significance to accurately characterize the thermal conductivity of the monolayer WS2, especially with substrate supported. In this work, the dual-wavelength flash Raman method is used to experimentally measure the thermal conductivity of the suspended and the Si/SiO2 substrate supported monolayer WS2 at a temperature range of 200 K - 400 K. The room-temperature thermal conductivity of suspended and supported WS2 are 28.45 W/mK and 15.39 W/mK, respectively, with a ~50% reduction due to substrate effect. To systematically study the underlying mechanism behind the striking reduction, we employed the Raman spatial mapping analysis combined with the molecular dynamics simulation. The analysis of Raman spectra showed the increase of doping level, reduction of phonon lifetime and suppression of out-of-plane vibration mode due to substrate effect. In addition, the phonon transmission coefficient was mutually verified with Raman spectra analysis and further revealed that the substrate effect significantly enhances the phonon scattering at the interface and mainly suppresses the acoustic phonon, thus leading to the reduction of thermal conductivity. The thermal conductivity of other suspended and supported monolayer TMDCs (e.g. MoS2, MoSe2 and WSe2) were also listed for comparison. Our researches can be extended to understand the substrate effect of other 2D TMDCs and provide guidance for future TMDCs-based electrical and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13252v1-abstract-full').style.display = 'none'; document.getElementById('2108.13252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05151">arXiv:1902.05151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05151">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Insulating and Superconducting States in Twisted Bilayer Graphene Below the Magic Angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiyue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koester%2C+R">Ryan Koester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rui Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05151v1-abstract-short" style="display: inline;"> The emergence of flat bands and correlated behaviors in &#39;magic angle&#39; twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05151v1-abstract-full" style="display: none;"> The emergence of flat bands and correlated behaviors in &#39;magic angle&#39; twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electron concentration of +/-5 electrons per moire unit cell, we observe a narrow resistance peak with an activation energy gap of approximately 0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of +/-12 electrons per moire unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'none'; document.getElementById('1902.05151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08597">arXiv:1703.08597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.08597">pdf</a>, <a href="https://arxiv.org/format/1703.08597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yu Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pakhira%2C+S">Srimanta Pakhira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujisawa%2C+K">Kazunori Fujisawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iyiola%2C+O+O">Oluwagbenga Oare Iyiola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lopez%2C+N+P">Nestor Perea Lopez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elias%2C+A+L">Ana Laura Elias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajukumar%2C+L+P">Lakshmy Pulickal Rajukumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+C">Chanjing Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kabius%2C+B">Bernd Kabius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alem%2C+N">Nasim Alem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Endo%2C+M">Morinobu Endo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Ruitao Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mendoza-Cortes%2C+J+L">Jose L. Mendoza-Cortes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+M">Mauricio Terrones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08597v2-abstract-short" style="display: inline;"> Large-area ($\sim$cm$^2$) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide(TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature (300 $^\circ$C). In particular, we synthesized stacked graphene and W$_x$Mo$_{1-x}$S$_2$ alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08597v2-abstract-full').style.display = 'inline'; document.getElementById('1703.08597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08597v2-abstract-full" style="display: none;"> Large-area ($\sim$cm$^2$) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide(TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature (300 $^\circ$C). In particular, we synthesized stacked graphene and W$_x$Mo$_{1-x}$S$_2$ alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slope of 38.7 mV dec$^{-1}$ and 96 mV onset potential (at current density of 10 mA cm$^{-2}$) when the heterostructure alloy is annealed at 300 $^o$C. These results indicate that heterostructure formed by graphene and W$_{0.4}$Mo$_{0.6}$S$_2$ alloys are far more efficient than WS$_2$ and MoS$_2$ by at least a factor of two, and it is superior than any other reported TMD system. This strategy offers a cheap and low temperature synthesis alternative able to replace Pt in the hydrogen evolution reaction (HER). Furthermore, the catalytic activity of the alloy is stable over time, i.e. the catalytic activity does not experience a significant change even after 1000 cycles. Using density functional theory calculations, we found that this enhanced hydrogen evolution in the W$_x$Mo$_{1-x}$S$_2$ alloys is mainly due to the lower energy barrier created by a favorable overlap of the d-orbitals from the transition metals and the s-orbitals of H$_2$, with the lowest energy barrier occurring for W$_{0.4}$Mo$_{0.6}$S$_2$ alloy. Thus, it is now possible to further improve the performance of the &#34;inert&#34; TMD basal plane via metal alloying, in addition to the previously reported strategies of creation of point defects, vacancies and edges. The synthesis of graphene/W$_{0.4}$Mo$_{0.6}$S$_2$ produced at relatively low temperatures is scalable and could be used as an effective low cost Pt-free catalyst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08597v2-abstract-full').style.display = 'none'; document.getElementById('1703.08597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.06558">arXiv:1510.06558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.06558">pdf</a>, <a href="https://arxiv.org/format/1510.06558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-016-0620-3">10.1007/s11467-016-0620-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport through a quantum dot coupled to two Majorana bound states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qi-Bo Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+L">L. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rong Lv</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.06558v4-abstract-short" style="display: inline;"> We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06558v4-abstract-full').style.display = 'inline'; document.getElementById('1510.06558v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.06558v4-abstract-full" style="display: none;"> We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows $2蟺$ periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays $4蟺$ periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD--Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06558v4-abstract-full').style.display = 'none'; document.getElementById('1510.06558v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 12(4), 127302 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.1325">arXiv:1208.1325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.1325">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl3026357">10.1021/nl3026357 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraordinary room-temperature photoluminescence in WS2 monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guti%C3%A9rrez%2C+H+R">Humberto R. Guti茅rrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perea-L%C3%B3pez%2C+N">Nestor Perea-L贸pez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El%C3%ADas%2C+A+L">Ana Laura El铆as</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berkdemir%2C+A">Ayse Berkdemir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Ruitao Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B3pez-Ur%C3%ADas%2C+F">Florentino L贸pez-Ur铆as</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+H">Humberto Terrones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+M">Mauricio Terrones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.1325v1-abstract-short" style="display: inline;"> Individual monolayers of metal dichalcogenides are atomically thin two-dimensional crystals with attractive physical properties different from their bulk layered counterpart. Here we describe the direct synthesis of WS2 monolayers with triangular morphologies and strong room-temperature photoluminescence (PL). Bulk WS2 does not present PL due to its indirect band gap nature. The edges of these mon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.1325v1-abstract-full').style.display = 'inline'; document.getElementById('1208.1325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.1325v1-abstract-full" style="display: none;"> Individual monolayers of metal dichalcogenides are atomically thin two-dimensional crystals with attractive physical properties different from their bulk layered counterpart. Here we describe the direct synthesis of WS2 monolayers with triangular morphologies and strong room-temperature photoluminescence (PL). Bulk WS2 does not present PL due to its indirect band gap nature. The edges of these monolayers exhibit PL signals with extraordinary intensity, around 25 times stronger than the platelets center. The structure and composition of the platelet edges appear to be critical for the PL enhancement effect. Electron diffraction revealed that platelets present zigzag edges, while first-principles calculations indicate that sulfur-rich zigzag WS2 edges possess metallic edge states, which might tailor the optical response reported here. These novel 2D nanoscale light sources could find diverse applications including the fabrication of flexible/transparent/low-energy optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.1325v1-abstract-full').style.display = 'none'; document.getElementById('1208.1325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0806.2511">arXiv:0806.2511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0806.2511">pdf</a>, <a href="https://arxiv.org/ps/0806.2511">ps</a>, <a href="https://arxiv.org/format/0806.2511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> How does &#34;Which Way&#34; Detector affect Fano Effect in Mesoscopic Transport --&#34;Phonon-Fano&#34; Or Not </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zuo-zi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rong Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bang-fen Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0806.2511v1-abstract-short" style="display: inline;"> We investigate the Fano interference in the presence of a &#34;which way&#34; detector, i.e., a local electron-phonon coupler, in the context of mesoscopic transport. Special attention is paid to study whether the phonon sidebands in the differential conductance spectra exhibit the typical lineshape of the Fano interference. When using a double-dot model we obtain two seemly contradictory results by sli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2511v1-abstract-full').style.display = 'inline'; document.getElementById('0806.2511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0806.2511v1-abstract-full" style="display: none;"> We investigate the Fano interference in the presence of a &#34;which way&#34; detector, i.e., a local electron-phonon coupler, in the context of mesoscopic transport. Special attention is paid to study whether the phonon sidebands in the differential conductance spectra exhibit the typical lineshape of the Fano interference. When using a double-dot model we obtain two seemly contradictory results by slightly different approaches: The Markovian approach leads to {\it absolutely no} Fano interference at the phonon sidebands, while the Non-Markovian approach results in {\it finite} Fano interference at the phonon sidebands. On the other hand, by using the usual Aharonov-Bohm (AB)-ring model, i.e., only one dot is embedded into one arm of an AB-ring, only the Non-Markovian results are recovered. We explain these contradictory results and make a comparison between the double-dot model and the usual AB-ring model at length. Moreover, we also point out the essential difference between the manifestation of the &#34;which way&#34; effect in mesoscopic double-slit experiments and its optical counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2511v1-abstract-full').style.display = 'none'; document.getElementById('0806.2511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0401173">arXiv:cond-mat/0401173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0401173">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0401173">ps</a>, <a href="https://arxiv.org/format/cond-mat/0401173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.69.063609">10.1103/PhysRevA.69.063609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-Layer Bose-Einstein Condensates with Large Number of Vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Q">Qi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rong Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+L">Lee Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0401173v2-abstract-short" style="display: inline;"> In this paper we systematically study the double layer vortex lattice model, which is proposed to illustrate the interplay between the physics of a fast rotating Bose-Einstein condensate and the macroscopic quantum tunnelling. The phase diagram of the system is obtained. We find that under certain conditions the system will exhibit one novel phase transition, which is consequence of competition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0401173v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0401173v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0401173v2-abstract-full" style="display: none;"> In this paper we systematically study the double layer vortex lattice model, which is proposed to illustrate the interplay between the physics of a fast rotating Bose-Einstein condensate and the macroscopic quantum tunnelling. The phase diagram of the system is obtained. We find that under certain conditions the system will exhibit one novel phase transition, which is consequence of competition between inter-layer coherent hopping and inter-layer density-density interaction. In one phase the vortices in one layer coincide with those in the other layer. And in another phase two sets of vortex lattices are staggered, and as a result the quantum tunnelling between two layers is suppressed. To obtain the phase diagram we use two kinds of mean field theories which are quantum Hall mean field and Thomas-Fermi mean field. Two different criteria for the transition taking place are obtained respectively, which reveals some fundamental differences between these two mean field states. The sliding mode excitation is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0401173v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0401173v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A, 69, 063609 (2004) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10