CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 77 results for author: <span class="mathjax">Ji, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Ji%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ji, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ji%2C+X&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ji, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ji%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ji%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ji%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12554">arXiv:2411.12554</a> <span> [<a href="https://arxiv.org/pdf/2411.12554">pdf</a>, <a href="https://arxiv.org/format/2411.12554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light Cone Distribution Amplitude for the $螞$ Baryon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+H">Haoyang Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12554v1-abstract-short" style="display: inline;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12554v1-abstract-full" style="display: none;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime, we simulate the equal-time correlations with the hadron momentum $P^z = \{2.52, 3.02, 3.52\}$ GeV. By investigating the potential analytic characteristics of the baryon quasi-distribution amplitude in coordinate space, we validate these findings through our lattice calculations. After renormalization and extrapolation, we present results for the three-dimensional distribution of momentum fractions for the two light quarks. Based on these findings the paper briefly discusses the phenomenological impact on weak decays of $螞_b$, and outlines potential systematic uncertainties that can be improved in the future. This work lays the theoretical foundation for accessing baryon LCDAs from lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'none'; document.getElementById('2411.12554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18654">arXiv:2410.18654</a> <span> [<a href="https://arxiv.org/pdf/2410.18654">pdf</a>, <a href="https://arxiv.org/format/2410.18654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calculation of heavy meson light-cone distribution amplitudes from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18654v1-abstract-short" style="display: inline;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18654v1-abstract-full" style="display: none;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approach by demonstrating the rationale behind devising a hierarchical ordering for the three involved scales, discussing the factorization at each step, clarifying the underlying reason for obtaining HQET LCDAs in the final phase, and addressing potential theoretical challenges. The lattice QCD simulation aspect is explored in detail, and the computations of quasi DAs are presented. We employ three fitting strategies to handle contributions from excited states and extract the bare matrix elements. For renormalization purposes, we apply hybrid renormalization schemes at short and long distance separations. To mitigate long-distance perturbations, we perform an extrapolation in $位= z\cdot P^z$ and assess the stability against various parameters. After two-step matching, our results for HQET LCDAs are found in agreement with existing model parametrizations. The potential phenomenological implications of the results are discussed, shedding light on how these findings could impact our understanding of the strong interaction dynamics and physics beyond the standard model. It should be noted, however, that systematic uncertainties have not been accounted for yet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'none'; document.getElementById('2410.18654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12910">arXiv:2410.12910</a> <span> [<a href="https://arxiv.org/pdf/2410.12910">pdf</a>, <a href="https://arxiv.org/format/2410.12910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Effects of threshold resummation for large-$x$ PDF in large momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12910v1-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) at large $x$ are challenging to extract from experimental data, yet they are essential for understanding hadron structure and searching for new physics beyond the Standard Model. Within the framework of the large momentum $P^z$ expansion of lattice quasi-PDFs, we investigate large $x$ PDFs, where the matching coefficient is factorized into the hard kernel, rela… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12910v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12910v1-abstract-full" style="display: none;"> Parton distribution functions (PDFs) at large $x$ are challenging to extract from experimental data, yet they are essential for understanding hadron structure and searching for new physics beyond the Standard Model. Within the framework of the large momentum $P^z$ expansion of lattice quasi-PDFs, we investigate large $x$ PDFs, where the matching coefficient is factorized into the hard kernel, related to the active quark momentum $x P^z$, and the threshold soft function, associated with the spectator momentum $(1-x) P^z$. The renormalization group equation of the soft function enables the resummation of the threshold double logarithms $伪^{k} \ln^{2k-1}(1-x)$, which is crucial for a reliable and controllable calculation of large $x$ PDFs. Our analysis with pion valence PDFs indicates that perturbative matching breaks down when the spectator momentum $(1-x)P^z$ approaches $螞_{\rm QCD}$, but remains valid when both $x P^z$ and $(1-x)P^z$ are much larger than $螞_{\rm QCD}$. Additionally, we incorporate leading renormalon resummation within the threshold framework, demonstrating good perturbative convergence in the region where both spectator and active quark momenta are perturbative scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12910v1-abstract-full').style.display = 'none'; document.getElementById('2410.12910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04133">arXiv:2408.04133</a> <span> [<a href="https://arxiv.org/pdf/2408.04133">pdf</a>, <a href="https://arxiv.org/format/2408.04133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> On convergence properties of GPD expansion through Mellin/conformal moments and orthogonal polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+H">Hao-Cheng Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04133v2-abstract-short" style="display: inline;"> We examine convergence properties of reconstructing the generalized parton distributions (GPDs) through the universal moment parameterization (GUMP). We provide a heuristic explanation for the connection between the formal summation/expansion and the Mellin-Barnes integral in the literature, and specify the exact convergence condition. We derive an asymptotic condition on the conformal moments of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04133v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04133v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04133v2-abstract-full" style="display: none;"> We examine convergence properties of reconstructing the generalized parton distributions (GPDs) through the universal moment parameterization (GUMP). We provide a heuristic explanation for the connection between the formal summation/expansion and the Mellin-Barnes integral in the literature, and specify the exact convergence condition. We derive an asymptotic condition on the conformal moments of GPDs to satisfy the boundary condition at $x=1$ and subsequently develop an approximate formula for GPDs when $x>尉$. Since experimental observables constraining GPDs can be expressed in terms of double or even triple summations involving their moments, scale evolution factors, and Wilson coefficients, etc., we propose a method to handle the ordering of the multiple summations and convert them into multiple Mellin-Barnes integrals via analytical continuations of integer summation indices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04133v2-abstract-full').style.display = 'none'; document.getElementById('2408.04133v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03378">arXiv:2408.03378</a> <span> [<a href="https://arxiv.org/pdf/2408.03378">pdf</a>, <a href="https://arxiv.org/format/2408.03378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Euclidean Effective Theory for Partons in the Spirit of Steven Weinberg </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03378v1-abstract-short" style="display: inline;"> The standard formulation of parton physics involves light-cone correlations of quark and gluon fields in a hadron, which leads to a widespread impression that it can only be studied through real-time Hamiltonian dynamics or light-front quantization, which are challenged by non-perturbative computations with a pertinent regulator for light-cone/rapidity divergences (or zero modes). As such, standar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03378v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03378v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03378v1-abstract-full" style="display: none;"> The standard formulation of parton physics involves light-cone correlations of quark and gluon fields in a hadron, which leads to a widespread impression that it can only be studied through real-time Hamiltonian dynamics or light-front quantization, which are challenged by non-perturbative computations with a pertinent regulator for light-cone/rapidity divergences (or zero modes). As such, standard lattice QCD studies have been limited to indirect parton observables such as first few moments and short-distance correlations, which do not provide the $x$-distributions without solving the model-dependent inverse problem. Here I describe an alternative formulation of partons in terms of equal-time (or Euclidean) correlators, which allows to compute precision-controlled $x$-distribution through lattice QCD simulations. This approach is in accord with Weinberg's pioneering idea of effective field theory as well as Wilson's renormalization group, in which the large hadron momentum serves as a natural cut-off for light-cone/rapidity divergences and can ultimately be eliminated through a method like the ``perfect action'' program in lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03378v1-abstract-full').style.display = 'none'; document.getElementById('2408.03378v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 page, 1 fig, for Weinberg memorial vol</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl Phys B, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14097">arXiv:2405.14097</a> <span> [<a href="https://arxiv.org/pdf/2405.14097">pdf</a>, <a href="https://arxiv.org/format/2405.14097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of gauge fixing precision on the continuum limit of non-local quark-bilinear lattice operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chun-Jiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14097v1-abstract-short" style="display: inline;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14097v1-abstract-full" style="display: none;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge fixing is significant for fine lattices and long distances. For instance, even with the typically defined precision of Landau gauge fixing of $10^{-8}$, the deviation caused by imprecise gauge fixing can reach 12 percent, when calculating the trace of Wilson lines at 1.2 fm with a lattice spacing of approximately 0.03 fm. Similar behavior has been observed in $尉$ gauge and Coulomb gauge as well. For both quasi PDFs and quasi TMD-PDFs operators renormalized using the RI/MOM scheme, convergence for different lattice spacings at long distance is only observed when the precision of Landau gauge fixing is sufficiently high. To describe these findings quantitatively, we propose an empirical formula to estimate the required precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'none'; document.getElementById('2405.14097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17492">arXiv:2403.17492</a> <span> [<a href="https://arxiv.org/pdf/2403.17492">pdf</a>, <a href="https://arxiv.org/format/2403.17492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> A new method to access heavy meson lightcone distribution amplitudes from first-principle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17492v1-abstract-short" style="display: inline;"> We present a method to compute lightcone distribution amplitudes (LCDAs) of heavy meson within heavy quark effective theory (HQET). Our method utilizes quasi distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. We point out that by sequentially integrating out $P^z$ and $m_H$, one can disentangle different dynamical scales. Integrating out $P^z$ allows to connect quasi-DAs to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17492v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17492v1-abstract-full" style="display: none;"> We present a method to compute lightcone distribution amplitudes (LCDAs) of heavy meson within heavy quark effective theory (HQET). Our method utilizes quasi distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. We point out that by sequentially integrating out $P^z$ and $m_H$, one can disentangle different dynamical scales. Integrating out $P^z$ allows to connect quasi-DAs to QCD LCDAs, and then integrating out $m_H$ enables to relate QCD LCDAs to HQET LCDAs. To verify this proposal, we make use of lattice QCD simulation on a lattice ensemble with spacing $a = 0.05187$\,fm. The preliminary findings for HQET LCDAs qualitatively align with phenomenological models. Using a recent model for HQET LCDAs, we also fit the first inverse moment $位_B^{-1}$ and the result is consistent with the experimentally constrain from $B \to 纬\ell谓_\ell$. This agreement demonstrates the promise of our method in providing first-principle predictions for heavy meson LCDAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17492v1-abstract-full').style.display = 'none'; document.getElementById('2403.17492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6.5 +1.5 pages, 4 +2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06488">arXiv:2306.06488</a> <span> [<a href="https://arxiv.org/pdf/2306.06488">pdf</a>, <a href="https://arxiv.org/format/2306.06488">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2023)172">10.1007/JHEP08(2023)172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of the Intrinsic Soft Function and the Collins-Soper Kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06488v3-abstract-short" style="display: inline;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06488v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06488v3-abstract-full" style="display: none;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-dependent part called Collins-Soper kernel. We have adopted appropriate normalization when constructing the pseudo-scalar meson form factor that is needed in the determination of the intrinsic part and applied Fierz rearrangement to suppress the higher-twist effects. In the calculation of CS kernel we consider a CLS ensemble other than the MILC ensemble used in a previous study. We have also compared the applicability of determining the CS kernel using quasi TMDWFs and quasi TMDPDFs. As an example, the determined soft function is used to obtain the physical TMD wave functions (WFs) of pion and unpolarized iso-vector TMD parton distribution functions (PDFs) of proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'none'; document.getElementById('2306.06488v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2023)172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06992">arXiv:2305.06992</a> <span> [<a href="https://arxiv.org/pdf/2305.06992">pdf</a>, <a href="https://arxiv.org/format/2305.06992">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.034003">10.1103/PhysRevD.108.034003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated analysis of near-threshold heavy quarkonium production for probe of proton's gluonic gravitational form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guo%2C+Y">Yuxun Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+J">Jinghong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06992v2-abstract-short" style="display: inline;"> There has been growing interest in the near-threshold production of heavy quarkonium which can access the gluonic structure in the nucleon. Previously we studied this process with quantum chromodynamics (QCD) and showed that it can be factorized with the gluon generalized parton distributions (GPDs) in the heavy quark limit. We further argued that the hadronic matrix element is dominated by its le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06992v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06992v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06992v2-abstract-full" style="display: none;"> There has been growing interest in the near-threshold production of heavy quarkonium which can access the gluonic structure in the nucleon. Previously we studied this process with quantum chromodynamics (QCD) and showed that it can be factorized with the gluon generalized parton distributions (GPDs) in the heavy quark limit. We further argued that the hadronic matrix element is dominated by its leading moments corresponding to the gluonic gravitational form factors (GFFs) in this limit. Since then, there have been many new developments on this subject. More experimental measurements have been made and published, and the lattice simulation of gluonic GFFs has been improved as well. In this work, we make an important revision to a previous result and perform an updated analysis with the new inputs. We also study the importance of the large momentum transfer to extract these gluonic structures reliably in this framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06992v2-abstract-full').style.display = 'none'; document.getElementById('2305.06992v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05212">arXiv:2305.05212</a> <span> [<a href="https://arxiv.org/pdf/2305.05212">pdf</a>, <a href="https://arxiv.org/format/2305.05212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.138081">10.1016/j.physletb.2023.138081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leading Power Accuracy in Lattice Calculations of Parton Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05212v2-abstract-short" style="display: inline;"> In lattice-QCD calculations of parton distribution functions (PDFs) via large-momentum effective theory, the leading power (twist-three) correction appears as ${\cal O}(螞_{\rm QCD}/P^z)$ due to the linear-divergent self-energy of Wilson line in quasi-PDF operators. For lattice data with hadron momentum $P^z$ of a few GeV, this correction is dominant in matching, as large as 30\% or more. We show h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05212v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05212v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05212v2-abstract-full" style="display: none;"> In lattice-QCD calculations of parton distribution functions (PDFs) via large-momentum effective theory, the leading power (twist-three) correction appears as ${\cal O}(螞_{\rm QCD}/P^z)$ due to the linear-divergent self-energy of Wilson line in quasi-PDF operators. For lattice data with hadron momentum $P^z$ of a few GeV, this correction is dominant in matching, as large as 30\% or more. We show how to eliminate this uncertainty through choosing the mass renormalization parameter consistently with the resummation scheme of the infrared-renormalon series in perturbative matching coefficients. An example on the lattice pion PDF data at $P^z = 1.9$ GeV shows an improvement of matching accuracy by a factor of more than $3\sim 5$ in the expansion region $x= 0.2\sim 0.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05212v2-abstract-full').style.display = 'none'; document.getElementById('2305.05212v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to version published on PLB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04416">arXiv:2305.04416</a> <span> [<a href="https://arxiv.org/pdf/2305.04416">pdf</a>, <a href="https://arxiv.org/ps/2305.04416">ps</a>, <a href="https://arxiv.org/format/2305.04416">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Threshold resummation for computing large-$x$ parton distribution through large-momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04416v1-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) at large $x$ are poorly constrained by high-energy experimental data, but extremely important for probing physics beyond standard model at colliders. We study the calculation of PDFs at large-$x$ through large-momentum $P^z$ expansion of the lattice quasi PDFs. Similar to deep-inelastic scattering, there are two distinct perturbative scales in the threshold lim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04416v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04416v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04416v1-abstract-full" style="display: none;"> Parton distribution functions (PDFs) at large $x$ are poorly constrained by high-energy experimental data, but extremely important for probing physics beyond standard model at colliders. We study the calculation of PDFs at large-$x$ through large-momentum $P^z$ expansion of the lattice quasi PDFs. Similar to deep-inelastic scattering, there are two distinct perturbative scales in the threshold limit where the matching coefficient can be factorized into a space-like jet function at scale $P^z|1-y|$ and a pair of heavy-light Sudakov form factors at scale $P^z$. The matching formula allows us to derive a full renormalization group resummation of large threshold logarithms, and the result is consistent with the known calculation to the next-to-next to leading order (NNLO). This paves the way for direct large-$x$ PDFs calculations in lattice QCD. As by-products, we find that the space-like jet function is related to a time-like version calculated previously through analytic continuation, and the heavy-light Sudakov form factor, calculated here to NNLO, is a universal object appearing as well in the large momentum expansion of quasi transverse-momentum-dependent PDFs and quasi wave-function amplitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04416v1-abstract-full').style.display = 'none'; document.getElementById('2305.04416v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03302">arXiv:2304.03302</a> <span> [<a href="https://arxiv.org/pdf/2304.03302">pdf</a>, <a href="https://arxiv.org/format/2304.03302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> TMD Handbook </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boussarie%2C+R">Renaud Boussarie</a>, <a href="/search/hep-lat?searchtype=author&query=Burkardt%2C+M">Matthias Burkardt</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Ebert%2C+M">Markus Ebert</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+S">Sean Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gamberg%2C+L">Leonard Gamberg</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Kang%2C+Z">Zhong-Bo Kang</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+C">Christopher Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/hep-lat?searchtype=author&query=Mehen%2C+T">Thomas Mehen</a>, <a href="/search/hep-lat?searchtype=author&query=Metz%2C+A">Andreas Metz</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J">John Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pitonyak%2C+D">Daniel Pitonyak</a>, <a href="/search/hep-lat?searchtype=author&query=Prokudin%2C+A">Alexei Prokudin</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&query=Rajan%2C+A">Abha Rajan</a>, <a href="/search/hep-lat?searchtype=author&query=Schlegel%2C+M">Marc Schlegel</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Schweitzer%2C+P">Peter Schweitzer</a>, <a href="/search/hep-lat?searchtype=author&query=Stewart%2C+I+W">Iain W. Stewart</a>, <a href="/search/hep-lat?searchtype=author&query=Tarasov%2C+A">Andrey Tarasov</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03302v1-abstract-short" style="display: inline;"> This handbook provides a comprehensive review of transverse-momentum-dependent parton distribution functions and fragmentation functions, commonly referred to as transverse momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton and other hadrons with respect to both their longitudinal and transverse momenta. They provide unique insight into the internal momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03302v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03302v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03302v1-abstract-full" style="display: none;"> This handbook provides a comprehensive review of transverse-momentum-dependent parton distribution functions and fragmentation functions, commonly referred to as transverse momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton and other hadrons with respect to both their longitudinal and transverse momenta. They provide unique insight into the internal momentum and spin structure of hadrons, and are a key ingredient in the description of many collider physics cross sections. Understanding TMDs requires a combination of theoretical techniques from quantum field theory, nonperturbative calculations using lattice QCD, and phenomenological analysis of experimental data. The handbook covers a wide range of topics, from theoretical foundations to experimental analyses, as well as recent developments and future directions. It is intended to provide an essential reference for researchers and graduate students interested in understanding the structure of hadrons and the dynamics of partons in high energy collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03302v1-abstract-full').style.display = 'none'; document.getElementById('2304.03302v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">471 pages, many figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09961">arXiv:2302.09961</a> <span> [<a href="https://arxiv.org/pdf/2302.09961">pdf</a>, <a href="https://arxiv.org/format/2302.09961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Transverse-Momentum-Dependent Wave Functions of Pion from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09961v1-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09961v1-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge action generated by the CLS Collaboration with $a=0.098$~fm. As a key ingredient, the soft function is first obtained by incorporating the one-loop perturbative contributions and a proper normalization. Based on this and the equal-time quasi-TMDWFs simulated on the lattice, we extract the light-cone TMDWFs. The results are comparable between the two lattice ensembles and a comparison with phenomenological parametrization is made. Our studies provide a first attempt of $ab$ $initio$ calculation of TMDWFs which will eventually lead to crucial theory inputs for making predictions for exclusive processes under QCD factorization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'none'; document.getElementById('2302.09961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10372">arXiv:2301.10372</a> <span> [<a href="https://arxiv.org/pdf/2301.10372">pdf</a>, <a href="https://arxiv.org/format/2301.10372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116282">10.1016/j.nuclphysb.2023.116282 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Control in Lattice Calculation of $x$-dependent Pion Distribution Amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10372v2-abstract-short" style="display: inline;"> We present a new Bjorken $x$-dependence analysis of a previous lattice quantum chromodynamics data for the pion distribution amplitude from MILC configurations with three lattice spacing $a=0.06,0.09, 0.12$~fm. A leading renormalon resummation in renormalization as well as the perturbative matching kernel in the framework of large momentum expansion generates the power accuracy of the matching to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10372v2-abstract-full').style.display = 'inline'; document.getElementById('2301.10372v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10372v2-abstract-full" style="display: none;"> We present a new Bjorken $x$-dependence analysis of a previous lattice quantum chromodynamics data for the pion distribution amplitude from MILC configurations with three lattice spacing $a=0.06,0.09, 0.12$~fm. A leading renormalon resummation in renormalization as well as the perturbative matching kernel in the framework of large momentum expansion generates the power accuracy of the matching to the light-cone amplitude. Meanwhile, a small momentum log resummation is implemented for both the quark momentum $xP_z$ and the antiquark momentum $(1-x)P_z$ inside a meson of boost momentum $P_z$ up to 1.72 GeV along the $z$ direction, allowing us to have more accurate determination of the $x$-dependence in the middle range. Finally, we use the complementarity between the short-distance factorization and the large momentum expansion to constrain the endpoint regions $x\sim 0, 1$, thus obtaining the full-range $x$-dependence of the amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10372v2-abstract-full').style.display = 'none'; document.getElementById('2301.10372v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update to the published version in NPB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.B 993 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11107">arXiv:2212.11107</a> <span> [<a href="https://arxiv.org/pdf/2212.11107">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11949-2">10.1140/epjc/s10052-023-11949-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 50 Years of Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gross%2C+F">Franz Gross</a>, <a href="/search/hep-lat?searchtype=author&query=Klempt%2C+E">Eberhard Klempt</a>, <a href="/search/hep-lat?searchtype=author&query=Brodsky%2C+S+J">Stanley J. Brodsky</a>, <a href="/search/hep-lat?searchtype=author&query=Buras%2C+A+J">Andrzej J. Buras</a>, <a href="/search/hep-lat?searchtype=author&query=Burkert%2C+V+D">Volker D. Burkert</a>, <a href="/search/hep-lat?searchtype=author&query=Heinrich%2C+G">Gudrun Heinrich</a>, <a href="/search/hep-lat?searchtype=author&query=Jakobs%2C+K">Karl Jakobs</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+C+A">Curtis A. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Strickland%2C+M">Michael Strickland</a>, <a href="/search/hep-lat?searchtype=author&query=Stachel%2C+J">Johanna Stachel</a>, <a href="/search/hep-lat?searchtype=author&query=Zanderighi%2C+G">Giulia Zanderighi</a>, <a href="/search/hep-lat?searchtype=author&query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/hep-lat?searchtype=author&query=Braun-Munzinger%2C+P">Peter Braun-Munzinger</a>, <a href="/search/hep-lat?searchtype=author&query=Britzger%2C+D">Daniel Britzger</a>, <a href="/search/hep-lat?searchtype=author&query=Capstick%2C+S">Simon Capstick</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+T">Tom Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Crede%2C+V">Volker Crede</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Davies%2C+C">Christine Davies</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Denig%2C+A">Achim Denig</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Deur%2C+A">Alexandre Deur</a>, <a href="/search/hep-lat?searchtype=author&query=Dokshitzer%2C+Y">Yuri Dokshitzer</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11107v2-abstract-short" style="display: inline;"> This paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11107v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11107v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11107v2-abstract-full" style="display: none;"> This paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD, the only known method for obtaining exact predictions from QCD; methods for approximating QCD, with special focus on effective field theories; QCD under extreme conditions; measurements and predictions of meson and baryon states; a special discussion of the structure of the nucleon; techniques for study of QCD at high energy, including treatment of jets and showers; measurements at colliders; weak decays and quark mixing; and a section on the future, which discusses new experimental facilities or upgrades currently funded. The paper is intended to provide a broad background for Ph.D. students and postdocs starting their career. Some contributions include personal accounts of how the ideas or experiments were developed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11107v2-abstract-full').style.display = 'none'; document.getElementById('2212.11107v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited volume for the EJPC; 567 pages if text/figures and 4783 references occupying about 160 additional pages. arXiv abstract abridged, for the complete abstract please see the full text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The European Physical Journal C 83 (12), 1125 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15746">arXiv:2211.15746</a> <span> [<a href="https://arxiv.org/pdf/2211.15746">pdf</a>, <a href="https://arxiv.org/format/2211.15746">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2023.104032">10.1016/j.ppnp.2023.104032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Studies of QCD in the Low Energy Domain of the EIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Burkert%2C+V">V. Burkert</a>, <a href="/search/hep-lat?searchtype=author&query=Elouadrhiri%2C+L">L. Elouadrhiri</a>, <a href="/search/hep-lat?searchtype=author&query=Afanasev%2C+A">A. Afanasev</a>, <a href="/search/hep-lat?searchtype=author&query=Arrington%2C+J">J. Arrington</a>, <a href="/search/hep-lat?searchtype=author&query=Contalbrigo%2C+M">M. Contalbrigo</a>, <a href="/search/hep-lat?searchtype=author&query=Cosyn%2C+W">W. Cosyn</a>, <a href="/search/hep-lat?searchtype=author&query=Deshpande%2C+A">A. Deshpande</a>, <a href="/search/hep-lat?searchtype=author&query=Glazier%2C+D">D. Glazier</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">X. Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liuti%2C+S">S. Liuti</a>, <a href="/search/hep-lat?searchtype=author&query=Oh%2C+Y">Y. Oh</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D">D. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Satogata%2C+T">T. Satogata</a>, <a href="/search/hep-lat?searchtype=author&query=Vossen%2C+A">A. Vossen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15746v3-abstract-short" style="display: inline;"> The manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15746v3-abstract-full').style.display = 'inline'; document.getElementById('2211.15746v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15746v3-abstract-full" style="display: none;"> The manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15746v3-abstract-full').style.display = 'none'; document.getElementById('2211.15746v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">103 pages,47 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02340">arXiv:2211.02340</a> <span> [<a href="https://arxiv.org/pdf/2211.02340">pdf</a>, <a href="https://arxiv.org/format/2211.02340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02340v3-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'inline'; document.getElementById('2211.02340v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02340v3-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentum distributions in a large-momentum nucleon on the lattice. The state-of-the-art techniques in renormalization and extrapolation in the correlation distance on the lattice are adopted. {The perturbative kernel up to next-to-next-to-leading order is taken into account}, and the dependence on the pion mass and the hadron momentum is explored. Our results are qualitatively comparable with phenomenological TMDPDFs, which provide an opportunity to predict high energy scatterings from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'none'; document.getElementById('2211.02340v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09332">arXiv:2209.09332</a> <span> [<a href="https://arxiv.org/pdf/2209.09332">pdf</a>, <a href="https://arxiv.org/format/2209.09332">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Large-Momentum Effective Theory vs. Short-Distance Operator Expansion: Contrast and Complementarity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09332v1-abstract-short" style="display: inline;"> Although equivalent in the infinite-momentum limit, large-momentum effective theory (LaMET) and short-distance operator product expansion (SD-OPE) are two different approaches to extract parton distribution functions (PDFs) from coordinate-space correlation functions in large-momentum hadrons. LaMET implements a momentum-space expansion in $螞_{\rm QCD}/[x(1-x)P^z]$ to directly calculate PDFs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09332v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09332v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09332v1-abstract-full" style="display: none;"> Although equivalent in the infinite-momentum limit, large-momentum effective theory (LaMET) and short-distance operator product expansion (SD-OPE) are two different approaches to extract parton distribution functions (PDFs) from coordinate-space correlation functions in large-momentum hadrons. LaMET implements a momentum-space expansion in $螞_{\rm QCD}/[x(1-x)P^z]$ to directly calculate PDFs $f(x)$ in a middle region of Bjorken $x\in [x_{\rm min}\sim 螞_{\rm QCD}/P^z, x_{\rm max}\sim 1-x_{\min}]$. SD-OPE applies perturbative QCD at small Euclidean distances $z$ to extract a range $[0,位_{\rm max}]$ of leading-twist correlations, $h(位=zP^z)$, corresponding to the Fourier transformation of PDFs. Similar to the quantum mechanical uncertainty principle, an incomplete leading-twist correlation cannot be readily converted to a momentum-space local distribution, and the methods to solve the ``inverse problem'' involve essentially modelling of the missing information beyond $位_{\rm max}$. On the other hand, short-distance correlations, along with the expected end-point asymptotics, can be used to phenomenologically fit the PDFs in the LaMET-complementary regions: $x\in [0,x_{\rm min}]$ and $[x_{\rm max}, 1]$. We use the recent results of the pion valence quark distribution from the ANL/BNL collaboration to demonstrate this point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09332v1-abstract-full').style.display = 'none'; document.getElementById('2209.09332v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01236">arXiv:2209.01236</a> <span> [<a href="https://arxiv.org/pdf/2209.01236">pdf</a>, <a href="https://arxiv.org/format/2209.01236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116201">10.1016/j.nuclphysb.2023.116201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resumming Quark's Longitudinal Momentum Logarithms in LaMET Expansion of Lattice PDFs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01236v2-abstract-short" style="display: inline;"> In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is the longitudinal momentum ($p_z$) of the quarks (or gluons) in a large-momentum hadron. We show how to expose this scale dependence through resumming logarithms of the type $\ln^n p_z/渭$ in the matching coefficient, where $渭$ is a fixed renormalization scale. The result enhances the accuracy of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01236v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01236v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01236v2-abstract-full" style="display: none;"> In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is the longitudinal momentum ($p_z$) of the quarks (or gluons) in a large-momentum hadron. We show how to expose this scale dependence through resumming logarithms of the type $\ln^n p_z/渭$ in the matching coefficient, where $渭$ is a fixed renormalization scale. The result enhances the accuracy of the expansion at moderate $p_z>1$ GeV, and at the same time, clearly shows that the partons cannot be approximated from quarks with $p_z\sim 螞_{\rm QCD}$ which are not predominantly collinear with the parent hadron momentum, consistent with power counting of the large-momentum effective theory. The same physics mechanism constrains the coordinate space expansion at large distances $z$, the conjugate of $p_z$, as illustrated in the example of fitting the moments of the PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01236v2-abstract-full').style.display = 'none'; document.getElementById('2209.01236v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08008">arXiv:2208.08008</a> <span> [<a href="https://arxiv.org/pdf/2208.08008">pdf</a>, <a href="https://arxiv.org/format/2208.08008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity Distribution in the Continuum and Physical Mass Limit from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lahrtz%2C+S">Sebastian Lahrtz</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+L">Lingquan Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Mohanta%2C+P">Protick Mohanta</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+X">Xiaonu Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08008v2-abstract-short" style="display: inline;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-pert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08008v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08008v2-abstract-full" style="display: none;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-perturbatively renormalized in the hybrid scheme with self renormalization which treats the infrared physics at large correlation distance properly, and extrapolated to the continuum, physical mass and infinite momentum limit. We also compare with recent global analyses for the nucleon isovector quark transversity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'none'; document.getElementById('2208.08008v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13402">arXiv:2205.13402</a> <span> [<a href="https://arxiv.org/pdf/2205.13402">pdf</a>, <a href="https://arxiv.org/format/2205.13402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.082002">10.1103/PhysRevLett.129.082002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalization of transverse-momentum-dependent parton distribution on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13402v2-abstract-short" style="display: inline;"> To calculate the transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice QCD, an important goal yet to be realized, it is crucial to establish a viable non-perturbative renormalization approach for linear divergences in the corresponding Euclidean quasi-TMDPDF correlators in large-momentum effective theory. We perform a first systematic study of the renormalization prope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13402v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13402v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13402v2-abstract-full" style="display: none;"> To calculate the transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice QCD, an important goal yet to be realized, it is crucial to establish a viable non-perturbative renormalization approach for linear divergences in the corresponding Euclidean quasi-TMDPDF correlators in large-momentum effective theory. We perform a first systematic study of the renormalization property of the quasi-TMDPDFs by calculating the relevant matrix elements in a pion state at 5 lattice spacings ranging from 0.03 fm to 0.12 fm. We demonstrate that the square root of the Wilson loop combined with the short distance hadron matrix element provides a successful method to remove all ultraviolet divergences of the quasi-TMD operator, and thus provide the necessary justification to perform a continuum limit calculation of TMDPDFs. In contrast, the popular RI/MOM renormalization scheme fails to eliminate all linear divergences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13402v2-abstract-full').style.display = 'none'; document.getElementById('2205.13402v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 17 figures. accepted version with the TMD wave function case in the supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00200">arXiv:2204.00200</a> <span> [<a href="https://arxiv.org/pdf/2204.00200">pdf</a>, <a href="https://arxiv.org/ps/2204.00200">ps</a>, <a href="https://arxiv.org/format/2204.00200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.034509">10.1103/PhysRevD.106.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jialu Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00200v1-abstract-short" style="display: inline;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00200v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00200v1-abstract-full" style="display: none;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing $a=0.12$~fm from MILC, and renormalize the pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave functions, we determine the Collins-Soper kernel with transverse separation up to 0.6~fm. We study the systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher power corrections. Our results potentially allow for a determination of the soft function and other transverse-momentum dependent quantities at one-loop accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'none'; document.getElementById('2204.00200v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07193">arXiv:2202.07193</a> <span> [<a href="https://arxiv.org/pdf/2202.07193">pdf</a>, <a href="https://arxiv.org/ps/2202.07193">ps</a>, <a href="https://arxiv.org/format/2202.07193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Calculations of Parton Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Sato%2C+N">Nobuo Sato</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&query=Yuan%2C+C+-">C. -P. Yuan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07193v1-abstract-short" style="display: inline;"> In this document, we summarize the status and challenges of calculating parton physics in lattice QCD for the US Particle Physics Community Planning Exercise (a.k.a. "Snowmass"). While PDF-moments calculations have been very successful and been continuously improved, new methods have been developed to calculate distributions directly in $x$-space. Many recent lattice studies have been focused on c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07193v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07193v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07193v1-abstract-full" style="display: none;"> In this document, we summarize the status and challenges of calculating parton physics in lattice QCD for the US Particle Physics Community Planning Exercise (a.k.a. "Snowmass"). While PDF-moments calculations have been very successful and been continuously improved, new methods have been developed to calculate distributions directly in $x$-space. Many recent lattice studies have been focused on calculating isovector PDFs of the pion and nucleon, learning to control systematics associated with excited-state contamination, renormalization and continuum extrapolations, pion-mass and finite-volume effects, etc. Although in some cases, the lattice results are already competitive with experimental data, to reach the level of precision in a wide range of $x$ for unpolarized nucleon PDFs impactful for future collider physics remains a challenge, and may require exascale supercomputing power. The new theoretical methods open the door for calculating other partonic observables which will be the focus of the experimental program in nuclear physics, including generalized parton distributions and transverse-momentum dependent PDFs. A fruitful interplay between experimental data and lattice-QCD calculations will usher in a new era for parton physics and hadron structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07193v1-abstract-full').style.display = 'none'; document.getElementById('2202.07193v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-22-3564,MIT-CTP/5408,MSUHEP-22-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09173">arXiv:2201.09173</a> <span> [<a href="https://arxiv.org/pdf/2201.09173">pdf</a>, <a href="https://arxiv.org/format/2201.09173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.132001">10.1103/PhysRevLett.129.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion and Kaon Distribution Amplitudes from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09173v1-abstract-short" style="display: inline;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09173v1-abstract-full" style="display: none;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hybrid scheme with self renormalization, and extrapolated to the continuum as well as the infinite momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a large $SU(3)$ flavor breaking effect in the kaon DA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'none'; document.getElementById('2201.09173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14781">arXiv:2110.14781</a> <span> [<a href="https://arxiv.org/pdf/2110.14781">pdf</a>, <a href="https://arxiv.org/format/2110.14781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.034028">10.1103/PhysRevD.106.034028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-Current Gravitational Multipoles of Hadrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14781v2-abstract-short" style="display: inline;"> We study multipole expansion of the momentum currents in hadrons, with three series $S^{(J)}$, $\tilde T^{(J)}$, and $T^{(J)}$, in connection with the gravitational fields generated nearby. The momentum currents are related to their energy-momentum form factors, which in principle can be probed through processes like deeply-virtual Compton scattering currently studied at JLab 12 GeV facility and f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14781v2-abstract-full').style.display = 'inline'; document.getElementById('2110.14781v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14781v2-abstract-full" style="display: none;"> We study multipole expansion of the momentum currents in hadrons, with three series $S^{(J)}$, $\tilde T^{(J)}$, and $T^{(J)}$, in connection with the gravitational fields generated nearby. The momentum currents are related to their energy-momentum form factors, which in principle can be probed through processes like deeply-virtual Compton scattering currently studied at JLab 12 GeV facility and future Electron Ion Collider. We define the leading momentum-current multipoles, tensor monopole $蟿$ ($T0$) and scalar quadrupole $\hat 蟽^{ij}$ ($S2$) moments, relating the former to the so-called $D$-term in the literature. We calculate the momentum current distribution in hydrogen atom and its monopole moment in the basic unit of $蟿_0 =\hbar^2/4M$, showing that the sign of $D$-term has little to do with mechanical stability. The momentum current distribution also strongly modifies the static gravitational field inside hadrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14781v2-abstract-full').style.display = 'none'; document.getElementById('2110.14781v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05310">arXiv:2106.05310</a> <span> [<a href="https://arxiv.org/pdf/2106.05310">pdf</a>, <a href="https://arxiv.org/format/2106.05310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.076014">10.1103/PhysRevD.105.076014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Computing Light-Front Wave Functions Without Light-Front Quantization: A Large-Momentum Effective Theory Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05310v1-abstract-short" style="display: inline;"> Light-front wave functions play a fundamental role in the light-front quantization approach to QCD and hadron structure. However, a naive implementation of the light-front quantization suffers from various subtleties including the well-known zero-mode problem, the associated rapidity divergences which mixes ultra-violet divergences with infrared physics, as well as breaking of spatial rotational s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05310v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05310v1-abstract-full" style="display: none;"> Light-front wave functions play a fundamental role in the light-front quantization approach to QCD and hadron structure. However, a naive implementation of the light-front quantization suffers from various subtleties including the well-known zero-mode problem, the associated rapidity divergences which mixes ultra-violet divergences with infrared physics, as well as breaking of spatial rotational symmetry. We advocate that the light-front quantization should be viewed as an effective theory in which small $k^+$ modes have been effectively ``integrated out'', with an infinite number of renormalization constants. Instead of solving light-front quantized field theories directly, we make the large momentum expansion of the equal-time Euclidean correlation functions in instant quantization as an effective way to systematically calculate light-front correlations, including the light-front wave function amplitudes. This large-momentum effective theory accomplishes an effective light-front quantization through lattice QCD calculations. We demonstrate our approach using an example of a pseudo-scalar meson wave function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05310v1-abstract-full').style.display = 'none'; document.getElementById('2106.05310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03974">arXiv:2105.03974</a> <span> [<a href="https://arxiv.org/pdf/2105.03974">pdf</a>, <a href="https://arxiv.org/ps/2105.03974">ps</a>, <a href="https://arxiv.org/format/2105.03974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115537">10.1016/j.nuclphysb.2021.115537 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scale symmetry breaking, quantum anomalous energy and proton mass decomposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03974v1-abstract-short" style="display: inline;"> We study the anomalous scale symmetry breaking effects on the proton mass in QCD due to quantum fluctuations at ultraviolet scales. We confirm that a novel contribution naturally arises as a part of the proton mass, which we call the quantum anomalous energy (QAE). We discuss the QAE origins in both lattice and dimensional regularizations and demonstrate its role as a scheme-and-scale independent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03974v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03974v1-abstract-full" style="display: none;"> We study the anomalous scale symmetry breaking effects on the proton mass in QCD due to quantum fluctuations at ultraviolet scales. We confirm that a novel contribution naturally arises as a part of the proton mass, which we call the quantum anomalous energy (QAE). We discuss the QAE origins in both lattice and dimensional regularizations and demonstrate its role as a scheme-and-scale independent component in the mass decomposition. We further argue that QAE role in the proton mass resembles a dynamical Higgs mechanism, in which the anomalous scale symmetry breaking field generates mass scales through its vacuum condensate, as well as its static and dynamical responses to the valence quarks. We demonstrate some of our points in two simpler but closely related quantum field theories, namely the 1+1 dimensional non-linear sigma model in which QAE is non-perturbative and scheme-independent, and QED where the anomalous energy effect is perturbative calculable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03974v1-abstract-full').style.display = 'none'; document.getElementById('2105.03974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.11506">arXiv:2103.11506</a> <span> [<a href="https://arxiv.org/pdf/2103.11506">pdf</a>, <a href="https://arxiv.org/format/2103.11506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.096010">10.1103/PhysRevD.103.096010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD Analysis of Near-Threshold Photon-Proton Production of Heavy Quarkonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guo%2C+Y">Yuxun Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.11506v1-abstract-short" style="display: inline;"> The near threshold photo or electroproduction of heavy vector quarkonium off the proton is studied in quantum chromodynamics. Similar to the high-energy limit, the production amplitude can be factorized in terms of gluonic Generalized Parton Distributions and the quarkonium distribution amplitude. At the threshold, the threshold kinematics has a large skewness parameter $尉$, leading to the dominan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11506v1-abstract-full').style.display = 'inline'; document.getElementById('2103.11506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.11506v1-abstract-full" style="display: none;"> The near threshold photo or electroproduction of heavy vector quarkonium off the proton is studied in quantum chromodynamics. Similar to the high-energy limit, the production amplitude can be factorized in terms of gluonic Generalized Parton Distributions and the quarkonium distribution amplitude. At the threshold, the threshold kinematics has a large skewness parameter $尉$, leading to the dominance of the spin-2 contribution over higher-spin twist-2 operators. Thus threshold production data are useful to extract the gluonic gravitational form factors, allowing studying the gluonic contributions to the quantum anomalous energy, mass radius, spin and mechanical pressure in the proton. We use the recent GlueX data on the $J/蠄$ photoproduction to illustrate the potential physics impact from the high-precision data from future JLab 12 GeV and EIC physics program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11506v1-abstract-full').style.display = 'none'; document.getElementById('2103.11506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 096010 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02965">arXiv:2103.02965</a> <span> [<a href="https://arxiv.org/pdf/2103.02965">pdf</a>, <a href="https://arxiv.org/format/2103.02965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115443">10.1016/j.nuclphysb.2021.115443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Renormalization of Quasi-Light-Front Correlators on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02965v1-abstract-short" style="display: inline;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02965v1-abstract-full" style="display: none;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'none'; document.getElementById('2103.02965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07830">arXiv:2102.07830</a> <span> [<a href="https://arxiv.org/pdf/2102.07830">pdf</a>, <a href="https://arxiv.org/ps/2102.07830">ps</a>, <a href="https://arxiv.org/format/2102.07830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Proton mass decomposition: naturalness and interpretations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07830v2-abstract-short" style="display: inline;"> I discuss the scope and naturalness of the proton mass decomposition (or sum rule) published in PRL74, 1071 (1995) and answer a few criticisms that appeared recently in the literature, focusing particularly on its interpretation and the quantum anomalous energy contribution. I comment on the so-called frame-independent or invariant-mass decomposition from the trace of the energy-momentum tensor. I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07830v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07830v2-abstract-full" style="display: none;"> I discuss the scope and naturalness of the proton mass decomposition (or sum rule) published in PRL74, 1071 (1995) and answer a few criticisms that appeared recently in the literature, focusing particularly on its interpretation and the quantum anomalous energy contribution. I comment on the so-called frame-independent or invariant-mass decomposition from the trace of the energy-momentum tensor. I stress the importance of measuring the quantum anomalous energy through experiments. Finally, I point out a large discrepancy in the scalar radius of the nucleon extracted from vector-meson productions and lattice QCD calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07830v2-abstract-full').style.display = 'none'; document.getElementById('2102.07830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated with mass radius discussions, 10 pages, no figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05243">arXiv:2101.05243</a> <span> [<a href="https://arxiv.org/pdf/2101.05243">pdf</a>, <a href="https://arxiv.org/format/2101.05243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115440">10.1016/j.nuclphysb.2021.115440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel twist-three transverse-spin sum rule for the proton and related generalized parton distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guo%2C+Y">Yuxun Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Shiells%2C+K">Kyle Shiells</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05243v1-abstract-short" style="display: inline;"> We derive a new twist-3 partonic sum rule for the transverse spin of the proton, which involves the well-know quark spin structure function $g_T(x)=g_1(x)+g_2(x)$, the less-studied but known transverse gluon polarization density $螖G_T(x)$, and quark and gluon canonical orbital angular momentum densities associated with transverse polarization. This is the counter part of the sum rule for the longi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05243v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05243v1-abstract-full" style="display: none;"> We derive a new twist-3 partonic sum rule for the transverse spin of the proton, which involves the well-know quark spin structure function $g_T(x)=g_1(x)+g_2(x)$, the less-studied but known transverse gluon polarization density $螖G_T(x)$, and quark and gluon canonical orbital angular momentum densities associated with transverse polarization. This is the counter part of the sum rule for the longitudinal spin of the proton derived by Jaffe and Manohar previously. We relate the partonic canonical orbital angular momentum densities to a new class of twist-3 generalized parton distribution functions which are potentially measurable in deep-virtual exclusive processes. We also discuss in detail an important technicality related to the transverse polarization in the infinite momentum frame, i.e., separation of intrinsic contributions from the extrinsic ones. We apply our finding to the transverse-space distributions of partons, angular momentum, and magnetic moment, respectively, in a transversely polarized proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05243v1-abstract-full').style.display = 'none'; document.getElementById('2101.05243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure, 49 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04483">arXiv:2101.04483</a> <span> [<a href="https://arxiv.org/pdf/2101.04483">pdf</a>, <a href="https://arxiv.org/ps/2101.04483">ps</a>, <a href="https://arxiv.org/format/2101.04483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum Anomalous Energy Effects on the Nucleon Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04483v1-abstract-short" style="display: inline;"> Apart from the quark and gluon kinetic and potential energies, the nucleon mass includes a novel energy of pure quantum origin resulting from anomalous breaking of scale symmetry. We demonstrate the effects of this quantum anomalous energy (QAE) in QED, as well as in a toy 1+1 dimensional non-linear sigma model where it contributes non-perturbatively, in a way resembling the Higgs mechanism for th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04483v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04483v1-abstract-full" style="display: none;"> Apart from the quark and gluon kinetic and potential energies, the nucleon mass includes a novel energy of pure quantum origin resulting from anomalous breaking of scale symmetry. We demonstrate the effects of this quantum anomalous energy (QAE) in QED, as well as in a toy 1+1 dimensional non-linear sigma model where it contributes non-perturbatively, in a way resembling the Higgs mechanism for the masses of matter particles in electro-weak theory. The QAE contribution to the nucleon mass can be explained using a similar mechanism, in terms of a dynamical response of the gluonic scalar field through Higgs-like couplings between the nucleon and scalar resonances. In addition, the QAE sets the scale for other energies in the nucleon through a relativistic virial theorem, and contributes a negative pressure to confine the colored quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04483v1-abstract-full').style.display = 'none'; document.getElementById('2101.04483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13397">arXiv:2011.13397</a> <span> [<a href="https://arxiv.org/pdf/2011.13397">pdf</a>, <a href="https://arxiv.org/ps/2011.13397">ps</a>, <a href="https://arxiv.org/format/2011.13397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074005">10.1103/PhysRevD.103.074005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single Transverse-Spin Asymmetry and Sivers Function in Large Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13397v1-abstract-short" style="display: inline;"> We apply recent developments in large momentum effective theory (LaMET) to formulate a non-perturbative calculation of the single-transverse spin asymmetry in terms of the quasi transverse-momentum-dependent quark distribution functions from the so-called Sivers mechanism. When the spin asymmetry is defined as the ratio of the quark Sivers function over the spin averaged distribution, it can be di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13397v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13397v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13397v1-abstract-full" style="display: none;"> We apply recent developments in large momentum effective theory (LaMET) to formulate a non-perturbative calculation of the single-transverse spin asymmetry in terms of the quasi transverse-momentum-dependent quark distribution functions from the so-called Sivers mechanism. When the spin asymmetry is defined as the ratio of the quark Sivers function over the spin averaged distribution, it can be directly calculated in terms of the relevant quasi distributions with the soft functions and perturbative matching kernels cancelling out. Apart from the general formula presented, we have verified the result in the small transverse distance limit at one-loop order, which reduces to a collinear expansion at twist-three level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13397v1-abstract-full').style.display = 'none'; document.getElementById('2011.13397v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.06665">arXiv:2010.06665</a> <span> [<a href="https://arxiv.org/pdf/2010.06665">pdf</a>, <a href="https://arxiv.org/ps/2010.06665">ps</a>, <a href="https://arxiv.org/format/2010.06665">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074002">10.1103/PhysRevD.103.074002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass structure of hadrons and light-front sum rules in t' Hooft model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zahed%2C+I">Ismail Zahed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.06665v3-abstract-short" style="display: inline;"> We study the mass/energy structure of the bound state of hadrons in two-dimensional quantum chromodynamics in the large number of color limit (t' Hooft model). We analyze separately the contributions from the traceless and trace part of the energy-momentum tensor, and show that the masses are related to the matrix elements of the scalar charge and Coulomb energy. We derive the light-front sum rule… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06665v3-abstract-full').style.display = 'inline'; document.getElementById('2010.06665v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.06665v3-abstract-full" style="display: none;"> We study the mass/energy structure of the bound state of hadrons in two-dimensional quantum chromodynamics in the large number of color limit (t' Hooft model). We analyze separately the contributions from the traceless and trace part of the energy-momentum tensor, and show that the masses are related to the matrix elements of the scalar charge and Coulomb energy. We derive the light-front sum rules for the scalar charge and Coulomb energy, expressed in terms of the light-front wave functions, and find that they are regular at $x=0$ without the delta function contribution. We also consider the result for the massless Goldstone boson, as well as the structure of the gravitational form factors of the bound meson states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06665v3-abstract-full').style.display = 'none'; document.getElementById('2010.06665v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01291">arXiv:2009.01291</a> <span> [<a href="https://arxiv.org/pdf/2009.01291">pdf</a>, <a href="https://arxiv.org/format/2009.01291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Proton spin after 30 years: what we know and what we don't? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01291v1-abstract-short" style="display: inline;"> More than three decades has passed since the European Muon Collaboration published the first surprising result on the spin structure of the proton. Much theoretical and experimental progress has been made in understanding the origins of the proton spin. In this review, we will discuss what we have learned so far, what are still missing, and what we shall expect to learn from the upcoming experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01291v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01291v1-abstract-full" style="display: none;"> More than three decades has passed since the European Muon Collaboration published the first surprising result on the spin structure of the proton. Much theoretical and experimental progress has been made in understanding the origins of the proton spin. In this review, we will discuss what we have learned so far, what are still missing, and what we shall expect to learn from the upcoming experiments including JLab 12 GeV and Electron-Ion Collider. In particular, we focus on first principles calculations and experimental measurements of the total gluon helicity $螖G$, and quark and gluon orbital angular momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01291v1-abstract-full').style.display = 'none'; document.getElementById('2009.01291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, to appear in Nature Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04349">arXiv:2008.04349</a> <span> [<a href="https://arxiv.org/pdf/2008.04349">pdf</a>, <a href="https://arxiv.org/ps/2008.04349">ps</a>, <a href="https://arxiv.org/format/2008.04349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135786">10.1016/j.physletb.2020.135786 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transverse spin sum rule of the proton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04349v2-abstract-short" style="display: inline;"> The transversely-polarized state of a proton with arbitrary momentum is not an eigenstate of transverse angular momentum operator. The latter does not commute with the QCD Hamiltonian. However, the expectation value of the transverse angular momentum in the state is well-defined and grows proportionally to the energy of the particle. The transverse spin content of the proton is analyzed in terms o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04349v2-abstract-full').style.display = 'inline'; document.getElementById('2008.04349v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04349v2-abstract-full" style="display: none;"> The transversely-polarized state of a proton with arbitrary momentum is not an eigenstate of transverse angular momentum operator. The latter does not commute with the QCD Hamiltonian. However, the expectation value of the transverse angular momentum in the state is well-defined and grows proportionally to the energy of the particle. The transverse spin content of the proton is analyzed in terms of the QCD angular momentum structure. In particular, we reconfirm that the generalized parton distributions $H+E$ provide transverse orbital angular momentum densities of quarks and gluons in the infinite momentum frame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04349v2-abstract-full').style.display = 'none'; document.getElementById('2008.04349v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03886">arXiv:2008.03886</a> <span> [<a href="https://arxiv.org/pdf/2008.03886">pdf</a>, <a href="https://arxiv.org/format/2008.03886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115311">10.1016/j.nuclphysb.2021.115311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hybrid Renormalization Scheme for Quasi Light-Front Correlations in Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03886v2-abstract-short" style="display: inline;"> In large-momentum effective theory (LaMET), calculating parton physics starts from calculating coordinate-space-$z$ correlation functions $\tilde h(z, a,P^z)$ in a hadron of momentum $P^z$ in lattice QCD. Such correlation functions involve both linear and logarithmic divergences in lattice spacing $a$, and thus need to be properly renormalized. We introduce a hybrid renormalization procedure to ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03886v2-abstract-full').style.display = 'inline'; document.getElementById('2008.03886v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03886v2-abstract-full" style="display: none;"> In large-momentum effective theory (LaMET), calculating parton physics starts from calculating coordinate-space-$z$ correlation functions $\tilde h(z, a,P^z)$ in a hadron of momentum $P^z$ in lattice QCD. Such correlation functions involve both linear and logarithmic divergences in lattice spacing $a$, and thus need to be properly renormalized. We introduce a hybrid renormalization procedure to match these lattice correlations to those in the continuum $\overline{\rm MS}$ scheme, without introducing extra non-perturbative effects at large $z$. We analyze the effect of ${\cal O}(螞_{\rm QCD})$ ambiguity in the Wilson line self-energy subtraction involved in this hybrid scheme. To obtain the momentum-space distributions, we recommend to extrapolate the lattice data to the asymptotic $z$-region using the generic properties of the coordinate space correlations at moderate and large $P^z$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03886v2-abstract-full').style.display = 'none'; document.getElementById('2008.03886v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Text revised, version to appear in NPB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys. B964 (2021) 115311 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06613">arXiv:2007.06613</a> <span> [<a href="https://arxiv.org/pdf/2007.06613">pdf</a>, <a href="https://arxiv.org/format/2007.06613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Why is LaMET an effective field theory for partonic structure? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06613v1-abstract-short" style="display: inline;"> Partons are effective degrees of freedom describing the structure of hadrons involved in high-energy collisions. Familiar theories of partons are QCD light-front quantization and soft-collinear effective theory, both of which are intrinsically Minkowskian and appear unsuitable for classical Monte Carlo simulations. A ``new'' form of the parton theory has been formulated in term of the old-fashione… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06613v1-abstract-full').style.display = 'inline'; document.getElementById('2007.06613v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06613v1-abstract-full" style="display: none;"> Partons are effective degrees of freedom describing the structure of hadrons involved in high-energy collisions. Familiar theories of partons are QCD light-front quantization and soft-collinear effective theory, both of which are intrinsically Minkowskian and appear unsuitable for classical Monte Carlo simulations. A ``new'' form of the parton theory has been formulated in term of the old-fashioned, Feynman's infinite momentum frame, in which the parton degrees of freedom are filtered through infinite-momentum external states. The partonic structure of hadrons is then related to the matrix elements of static (equal-time) correlators in the state $|P^z=\infty\rangle$. This representation lays the foundation of large-momentum effective theory (LaMET) which approximates parton physics through a systematic $M/P^z$ expansion of the lattice QCD matrix elements at a finite but large momentum $P^z$, and removes the residual logarithmic-$P^z$ dependence by the standard effective-field-theory matching and running. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06613v1-abstract-full').style.display = 'none'; document.getElementById('2007.06613v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14572">arXiv:2005.14572</a> <span> [<a href="https://arxiv.org/pdf/2005.14572">pdf</a>, <a href="https://arxiv.org/format/2005.14572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.192001">10.1103/PhysRevLett.125.192001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yikai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14572v2-abstract-short" style="display: inline;"> The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic ensemble with $a=0.098$ fm. We extract the rapidity-independent (or intrinsic) part of the soft function through a large-mom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14572v2-abstract-full').style.display = 'inline'; document.getElementById('2005.14572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14572v2-abstract-full" style="display: none;"> The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic ensemble with $a=0.098$ fm. We extract the rapidity-independent (or intrinsic) part of the soft function through a large-momentum-transfer pseudo-scalar meson form factor and its quasi-TMD wave function using leading-order factorization in large-momentum effective theory. We also investigate the rapidity-dependent part of the soft function---the Collins-Soper evolution kernel---based on the large-momentum evolution of the quasi-TMD wave function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14572v2-abstract-full').style.display = 'none'; document.getElementById('2005.14572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 +4 pages, 5 + 7 figures; v2: 7 + 6 pages, 5 + 9 figures, accepted for publication by Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 192001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03543">arXiv:2004.03543</a> <span> [<a href="https://arxiv.org/pdf/2004.03543">pdf</a>, <a href="https://arxiv.org/ps/2004.03543">ps</a>, <a href="https://arxiv.org/format/2004.03543">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/RevModPhys.93.035005">10.1103/RevModPhys.93.035005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03543v2-abstract-short" style="display: inline;"> Since the parton model was introduced by Feynman more than fifty years ago, we have learned much about the partonic structure of the proton through a large body of high-energy experimental data and dedicated global fits. However, calculating the partonic observables such as parton distribution function (PDFs) from the fundamental theory of strong interactions, QCD, has made limited progress. Recen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03543v2-abstract-full').style.display = 'inline'; document.getElementById('2004.03543v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03543v2-abstract-full" style="display: none;"> Since the parton model was introduced by Feynman more than fifty years ago, we have learned much about the partonic structure of the proton through a large body of high-energy experimental data and dedicated global fits. However, calculating the partonic observables such as parton distribution function (PDFs) from the fundamental theory of strong interactions, QCD, has made limited progress. Recently, the authors have advocated a formalism, large-momentum effective theory (LaMET), through which one can extract parton physics from the properties of the proton travelling at a moderate boost-factor, e.g., $纬\sim (2-5)$. The key observation behind this approach is that Lorentz symmetry allows the standard formalism of partons in terms of light-front operators to be replaced by an equivalent one with large-momentum states and time-independent operators of a universality class. With LaMET, the PDFs, generalized PDFs or GPDs, transverse-momentum-dependent PDFs, and light-front wave functions can all be extracted in principle from lattice simulations of QCD (or other non-perturbative methods) through standard effective field theory matching and running. Future lattice QCD calculations with exa-scale computational facilities can help to understand the experimental data related to the hadronic structure, including those from the upcoming Electron-Ion Colliders dedicated to exploring the partonic landscape of the proton. Here we review the progress made in the past few years in development of the LaMET formalism and its applications, particularly on the demonstration of its effectiveness from initial lattice QCD simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03543v2-abstract-full').style.display = 'none'; document.getElementById('2004.03543v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">75 pages, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Mod. Phys. 93, 35005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04478">arXiv:2003.04478</a> <span> [<a href="https://arxiv.org/pdf/2003.04478">pdf</a>, <a href="https://arxiv.org/ps/2003.04478">ps</a>, <a href="https://arxiv.org/format/2003.04478">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2020.115181">10.1016/j.nuclphysb.2020.115181 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fundamental Properties of the Proton in Light-Front Zero Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04478v1-abstract-short" style="display: inline;"> For a proton in the infinite momentum frame, its wave function contains a zero-momentum part (light-front zero-modes) originated from the modification of the QCD vacuum in the presence of the valence quarks, exhibiting a light-front long-range order in the quantum state. This ``non-travelling'' component of the proton contributes to its fundamental properties, including the mass and spin, as well… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04478v1-abstract-full').style.display = 'inline'; document.getElementById('2003.04478v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04478v1-abstract-full" style="display: none;"> For a proton in the infinite momentum frame, its wave function contains a zero-momentum part (light-front zero-modes) originated from the modification of the QCD vacuum in the presence of the valence quarks, exhibiting a light-front long-range order in the quantum state. This ``non-travelling'' component of the proton contributes to its fundamental properties, including the mass and spin, as well as the naive-time-reversal-odd correlations between transverse momentum and spin. The large momentum effective theory (LaMET) provides a theoretical approach to study the physical properties of the proton's zero-mode ``condensate'' through lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04478v1-abstract-full').style.display = 'none'; document.getElementById('2003.04478v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, no figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03840">arXiv:1911.03840</a> <span> [<a href="https://arxiv.org/pdf/1911.03840">pdf</a>, <a href="https://arxiv.org/ps/1911.03840">ps</a>, <a href="https://arxiv.org/format/1911.03840">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135946">10.1016/j.physletb.2020.135946 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transverse-Momentum-Dependent Parton Distribution Functions from Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03840v2-abstract-short" style="display: inline;"> We show that transverse-momentum-dependent parton distribution functions (TMDPDFs), important non-perturbative quantities for describing the properties of hadrons in high-energy scattering processes such as Drell-Yan and semi-inclusive deep-inelastic scattering with observed small transverse momentum, can be obtained from Euclidean QCD calculations in the framework of large-momentum effective theo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03840v2-abstract-full').style.display = 'inline'; document.getElementById('1911.03840v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03840v2-abstract-full" style="display: none;"> We show that transverse-momentum-dependent parton distribution functions (TMDPDFs), important non-perturbative quantities for describing the properties of hadrons in high-energy scattering processes such as Drell-Yan and semi-inclusive deep-inelastic scattering with observed small transverse momentum, can be obtained from Euclidean QCD calculations in the framework of large-momentum effective theory (LaMET). We present a LaMET factorization of the Euclidean quasi-TMDPDFs in terms of the physical TMDPDFs and off-light-cone soft function at leading order in $1/P^z$ expansion, with the perturbative matching coefficient satisfying a renormalization group equation. We also discuss the implementation in lattice QCD with finite-length gauge links as well as the rapidity-regularization-independent factorization for Drell-Yan cross section. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03840v2-abstract-full').style.display = 'none'; document.getElementById('1911.03840v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11415">arXiv:1910.11415</a> <span> [<a href="https://arxiv.org/pdf/1910.11415">pdf</a>, <a href="https://arxiv.org/format/1910.11415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2020.115054">10.1016/j.nuclphysb.2020.115054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TMD Soft Function from Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11415v3-abstract-short" style="display: inline;"> We study Euclidean formulations of the transverse-momentum-dependent (TMD) soft function, which is a cross section for soft gluon radiations involving color charges moving in two conjugate lightcone directions in quantum chromodynamics. We show it is related to a special form factor of a pair of color sources traveling with nearly-lightlike velocities, which can be matched to TMD physical observab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11415v3-abstract-full').style.display = 'inline'; document.getElementById('1910.11415v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11415v3-abstract-full" style="display: none;"> We study Euclidean formulations of the transverse-momentum-dependent (TMD) soft function, which is a cross section for soft gluon radiations involving color charges moving in two conjugate lightcone directions in quantum chromodynamics. We show it is related to a special form factor of a pair of color sources traveling with nearly-lightlike velocities, which can be matched to TMD physical observables in semi-inclusive deep-inelastic scattering and Drell-Yan process in the framework of large momentum effective theory. It can also be extracted by combining a large-momentum form factor of light meson and its leading TMD wave function. These formulations are useful for initiating nonperturbative calculations of this useful quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11415v3-abstract-full').style.display = 'none'; document.getElementById('1910.11415v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span> [<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) < 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10824">arXiv:1808.10824</a> <span> [<a href="https://arxiv.org/pdf/1808.10824">pdf</a>, <a href="https://arxiv.org/ps/1808.10824">ps</a>, <a href="https://arxiv.org/format/1808.10824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.142001">10.1103/PhysRevLett.122.142001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accessing gluon parton distributions in large momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10824v2-abstract-short" style="display: inline;"> Gluon parton distribution functions (PDFs) in the proton can be calculated directly on Euclidean lattices using large momentum effective theory (LaMET). To realize this goal, one has to find renormalized gluon quasi-PDFs in which power divergences and operator mixing are thoroughly understood. For the unpolarized distribution, we identify four independent quasi-PDF correlators that can be multipli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10824v2-abstract-full').style.display = 'inline'; document.getElementById('1808.10824v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10824v2-abstract-full" style="display: none;"> Gluon parton distribution functions (PDFs) in the proton can be calculated directly on Euclidean lattices using large momentum effective theory (LaMET). To realize this goal, one has to find renormalized gluon quasi-PDFs in which power divergences and operator mixing are thoroughly understood. For the unpolarized distribution, we identify four independent quasi-PDF correlators that can be multiplicatively renormalized on the lattice. Similarly, the helicity distribution can be derived from three independent multiplicatively renormalizable quasi-PDFs. We provide a LaMET factorization formula for these renormalized quasi-PDFs from which one can extract the gluon PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10824v2-abstract-full').style.display = 'none'; document.getElementById('1808.10824v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, version accepted by Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 142001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10567">arXiv:1808.10567</a> <span> [<a href="https://arxiv.org/pdf/1808.10567">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptz106">10.1093/ptep/ptz106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Belle II Physics Book </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kou%2C+E">E. Kou</a>, <a href="/search/hep-lat?searchtype=author&query=Urquijo%2C+P">P. Urquijo</a>, <a href="/search/hep-lat?searchtype=author&query=Altmannshofer%2C+W">W. Altmannshofer</a>, <a href="/search/hep-lat?searchtype=author&query=Beaujean%2C+F">F. Beaujean</a>, <a href="/search/hep-lat?searchtype=author&query=Bell%2C+G">G. Bell</a>, <a href="/search/hep-lat?searchtype=author&query=Beneke%2C+M">M. Beneke</a>, <a href="/search/hep-lat?searchtype=author&query=Bigi%2C+I+I">I. I. Bigi</a>, <a href="/search/hep-lat?searchtype=author&query=Blanke%2C+F+B+M">F. Bishara M. Blanke</a>, <a href="/search/hep-lat?searchtype=author&query=Bobeth%2C+C">C. Bobeth</a>, <a href="/search/hep-lat?searchtype=author&query=Bona%2C+M">M. Bona</a>, <a href="/search/hep-lat?searchtype=author&query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&query=Braun%2C+V+M">V. M. Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Brod%2C+J">J. Brod</a>, <a href="/search/hep-lat?searchtype=author&query=Buras%2C+A+J">A. J. Buras</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+H+Y">H. Y. Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Chiang%2C+C+W">C. W. Chiang</a>, <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=Czyz%2C+H">H. Czyz</a>, <a href="/search/hep-lat?searchtype=author&query=Datta%2C+A">A. Datta</a>, <a href="/search/hep-lat?searchtype=author&query=De+Fazio%2C+F">F. De Fazio</a>, <a href="/search/hep-lat?searchtype=author&query=Deppisch%2C+T">T. Deppisch</a>, <a href="/search/hep-lat?searchtype=author&query=Dolan%2C+M+J">M. J. Dolan</a>, <a href="/search/hep-lat?searchtype=author&query=Fajfer%2C+S">S. Fajfer</a>, <a href="/search/hep-lat?searchtype=author&query=Feldmann%2C+T">T. Feldmann</a>, <a href="/search/hep-lat?searchtype=author&query=Godfrey%2C+S">S. Godfrey</a> , et al. (504 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10567v4-abstract-short" style="display: inline;"> We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB $e^+e^-$ collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10567v4-abstract-full').style.display = 'inline'; document.getElementById('1808.10567v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10567v4-abstract-full" style="display: none;"> We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB $e^+e^-$ collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theory interface platform (B2TiP), an effort that commenced in 2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, tau, quarkonium, electroweak precision measurements and dark sector searches. It is composed of nine working groups (WGs), which are coordinated by teams of theorist and experimentalists conveners: Semileptonic and leptonic B decays, Radiative and Electroweak penguins, phi_1 and phi_2 (time-dependent CP violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm, Quarkonium(like), tau and low-multiplicity processes, new physics and global fit analyses. This book highlights "golden- and silver-channels", i.e. those that would have the highest potential impact in the field. Theorists scrutinised the role of those measurements and estimated the respective theoretical uncertainties, achievable now as well as prospects for the future. Experimentalists investigated the expected improvements with the large dataset expected from Belle II, taking into account improved performance from the upgraded detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10567v4-abstract-full').style.display = 'none'; document.getElementById('1808.10567v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">689 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK Preprint 2018-27, BELLE2-PUB-PH-2018-001, FERMILAB-PUB-18-398-T, JLAB-THY-18-2780, INT-PUB-18-047, UWThPh 2018-26 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07431">arXiv:1807.07431</a> <span> [<a href="https://arxiv.org/pdf/1807.07431">pdf</a>, <a href="https://arxiv.org/format/1807.07431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.242003">10.1103/PhysRevLett.121.242003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07431v2-abstract-short" style="display: inline;"> We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unpreceden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07431v2-abstract-full').style.display = 'inline'; document.getElementById('1807.07431v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07431v2-abstract-full" style="display: none;"> We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution with combined statistical and systematic errors is in agreement with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $螖\bar{u}(x)>螖\bar{d}(x)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07431v2-abstract-full').style.display = 'none'; document.getElementById('1807.07431v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-18-013, MIT-CTP/5032 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 121 (2018) no.24, 242003 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Ji%2C+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Ji%2C+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Ji%2C+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>