CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–45 of 45 results for author: <span class="mathjax">Wang, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Wang%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12554">arXiv:2411.12554</a> <span> [<a href="https://arxiv.org/pdf/2411.12554">pdf</a>, <a href="https://arxiv.org/format/2411.12554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light Cone Distribution Amplitude for the $螞$ Baryon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+H">Haoyang Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12554v1-abstract-short" style="display: inline;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12554v1-abstract-full" style="display: none;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime, we simulate the equal-time correlations with the hadron momentum $P^z = \{2.52, 3.02, 3.52\}$ GeV. By investigating the potential analytic characteristics of the baryon quasi-distribution amplitude in coordinate space, we validate these findings through our lattice calculations. After renormalization and extrapolation, we present results for the three-dimensional distribution of momentum fractions for the two light quarks. Based on these findings the paper briefly discusses the phenomenological impact on weak decays of $螞_b$, and outlines potential systematic uncertainties that can be improved in the future. This work lays the theoretical foundation for accessing baryon LCDAs from lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'none'; document.getElementById('2411.12554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19602">arXiv:2410.19602</a> <span> [<a href="https://arxiv.org/pdf/2410.19602">pdf</a>, <a href="https://arxiv.org/format/2410.19602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Diffusion models for lattice gauge field simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+Q">Qianteng Zhu</a>, <a href="/search/hep-lat?searchtype=author&query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhou%2C+K">Kai Zhou</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+L">Lingxiao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19602v1-abstract-short" style="display: inline;"> We develop diffusion models for lattice gauge theories which build on the concept of stochastic quantization. This framework is applied to $U(1)$ gauge theory in $1+1$ dimensions. We show that a model trained at one small inverse coupling can be effectively transferred to larger inverse coupling without encountering issues related to topological freezing, i.e., the model can generate configuration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19602v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19602v1-abstract-full" style="display: none;"> We develop diffusion models for lattice gauge theories which build on the concept of stochastic quantization. This framework is applied to $U(1)$ gauge theory in $1+1$ dimensions. We show that a model trained at one small inverse coupling can be effectively transferred to larger inverse coupling without encountering issues related to topological freezing, i.e., the model can generate configurations corresponding to different couplings by introducing the Boltzmann factors as physics conditions, while maintaining the correct physical distributions without any additional training. This demonstrates the potential of physics-conditioned diffusion models for efficient and flexible lattice gauge theory simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19602v1-abstract-full').style.display = 'none'; document.getElementById('2410.19602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, accepted at the NeurIPS 2024 workshop "Machine Learning and the Physical Sciences"</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18654">arXiv:2410.18654</a> <span> [<a href="https://arxiv.org/pdf/2410.18654">pdf</a>, <a href="https://arxiv.org/format/2410.18654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calculation of heavy meson light-cone distribution amplitudes from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18654v1-abstract-short" style="display: inline;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18654v1-abstract-full" style="display: none;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approach by demonstrating the rationale behind devising a hierarchical ordering for the three involved scales, discussing the factorization at each step, clarifying the underlying reason for obtaining HQET LCDAs in the final phase, and addressing potential theoretical challenges. The lattice QCD simulation aspect is explored in detail, and the computations of quasi DAs are presented. We employ three fitting strategies to handle contributions from excited states and extract the bare matrix elements. For renormalization purposes, we apply hybrid renormalization schemes at short and long distance separations. To mitigate long-distance perturbations, we perform an extrapolation in $位= z\cdot P^z$ and assess the stability against various parameters. After two-step matching, our results for HQET LCDAs are found in agreement with existing model parametrizations. The potential phenomenological implications of the results are discussed, shedding light on how these findings could impact our understanding of the strong interaction dynamics and physics beyond the standard model. It should be noted, however, that systematic uncertainties have not been accounted for yet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'none'; document.getElementById('2410.18654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00632">arXiv:2409.00632</a> <span> [<a href="https://arxiv.org/pdf/2409.00632">pdf</a>, <a href="https://arxiv.org/format/2409.00632">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Probing heavy meson lightcone distribution amplitudes with heavy quark spin symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wei%2C+Y">Yan-Bing Wei</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00632v1-abstract-short" style="display: inline;"> Building on a previous work~\cite{Han:2024min}, we illustrate that the leading-twist light-cone distribution amplitudes (LCDAs) defined in heavy-quark effective theory (HQET) can be determined through lattice simulations of quasi-distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. Exploiting heavy-quark spin symmetry, we show that the LCDAs for a heavy pseudoscalar and vecto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00632v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00632v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00632v1-abstract-full" style="display: none;"> Building on a previous work~\cite{Han:2024min}, we illustrate that the leading-twist light-cone distribution amplitudes (LCDAs) defined in heavy-quark effective theory (HQET) can be determined through lattice simulations of quasi-distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. Exploiting heavy-quark spin symmetry, we show that the LCDAs for a heavy pseudoscalar and vector meson in the context of HQET exhibit degeneracy, and the degeneracy allows for the utilization of quasi DAs for both pseudoscalar and vector mesons on the lattice. We then derive the relevant short-distance coefficients for the matching between LCDAs defined with QCD fields and HQET LCDAs at the one-loop level. The incorporation of these three quasi DAs can not only confirm the methodology introduced in Ref.~\cite{Han:2024min} but also provides possible insight into power corrections. Discrepancies between the corresponding results offer a valuable perspective for estimating power corrections within the system which are imperative for precise investigations into heavy-meson LCDAs in the future particularly in the context of lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00632v1-abstract-full').style.display = 'none'; document.getElementById('2409.00632v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14097">arXiv:2405.14097</a> <span> [<a href="https://arxiv.org/pdf/2405.14097">pdf</a>, <a href="https://arxiv.org/format/2405.14097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of gauge fixing precision on the continuum limit of non-local quark-bilinear lattice operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chun-Jiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14097v1-abstract-short" style="display: inline;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14097v1-abstract-full" style="display: none;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge fixing is significant for fine lattices and long distances. For instance, even with the typically defined precision of Landau gauge fixing of $10^{-8}$, the deviation caused by imprecise gauge fixing can reach 12 percent, when calculating the trace of Wilson lines at 1.2 fm with a lattice spacing of approximately 0.03 fm. Similar behavior has been observed in $尉$ gauge and Coulomb gauge as well. For both quasi PDFs and quasi TMD-PDFs operators renormalized using the RI/MOM scheme, convergence for different lattice spacings at long distance is only observed when the precision of Landau gauge fixing is sufficiently high. To describe these findings quantitatively, we propose an empirical formula to estimate the required precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'none'; document.getElementById('2405.14097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17492">arXiv:2403.17492</a> <span> [<a href="https://arxiv.org/pdf/2403.17492">pdf</a>, <a href="https://arxiv.org/format/2403.17492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> A new method to access heavy meson lightcone distribution amplitudes from first-principle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17492v1-abstract-short" style="display: inline;"> We present a method to compute lightcone distribution amplitudes (LCDAs) of heavy meson within heavy quark effective theory (HQET). Our method utilizes quasi distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. We point out that by sequentially integrating out $P^z$ and $m_H$, one can disentangle different dynamical scales. Integrating out $P^z$ allows to connect quasi-DAs to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17492v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17492v1-abstract-full" style="display: none;"> We present a method to compute lightcone distribution amplitudes (LCDAs) of heavy meson within heavy quark effective theory (HQET). Our method utilizes quasi distribution amplitudes (quasi-DAs) with a large momentum component $P^z$. We point out that by sequentially integrating out $P^z$ and $m_H$, one can disentangle different dynamical scales. Integrating out $P^z$ allows to connect quasi-DAs to QCD LCDAs, and then integrating out $m_H$ enables to relate QCD LCDAs to HQET LCDAs. To verify this proposal, we make use of lattice QCD simulation on a lattice ensemble with spacing $a = 0.05187$\,fm. The preliminary findings for HQET LCDAs qualitatively align with phenomenological models. Using a recent model for HQET LCDAs, we also fit the first inverse moment $位_B^{-1}$ and the result is consistent with the experimentally constrain from $B \to 纬\ell谓_\ell$. This agreement demonstrates the promise of our method in providing first-principle predictions for heavy meson LCDAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17492v1-abstract-full').style.display = 'none'; document.getElementById('2403.17492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6.5 +1.5 pages, 4 +2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03959">arXiv:2402.03959</a> <span> [<a href="https://arxiv.org/pdf/2402.03959">pdf</a>, <a href="https://arxiv.org/format/2402.03959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad4e24">10.1088/1674-1137/ad4e24 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A comparative lattice analysis of $SU(2)$ dark gluebal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Lai%2C+J">Jun-Hui Lai</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jialu Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+Q">Qianteng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03959v2-abstract-short" style="display: inline;"> We study the mass and scattering cross section of $SU(2)$ glueballs as dark matter candidates using lattice simulations. We employ both naive and improved $SU(2)$ gauge actions in $3+1$ dimensions with several $尾$ values, and adopt both the traditional Monte Carlo method and the flow-based model based on machine learning techniques to generate lattice configurations. The mass of dark scalar glueba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03959v2-abstract-full').style.display = 'inline'; document.getElementById('2402.03959v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03959v2-abstract-full" style="display: none;"> We study the mass and scattering cross section of $SU(2)$ glueballs as dark matter candidates using lattice simulations. We employ both naive and improved $SU(2)$ gauge actions in $3+1$ dimensions with several $尾$ values, and adopt both the traditional Monte Carlo method and the flow-based model based on machine learning techniques to generate lattice configurations. The mass of dark scalar glueball with $J^{PC}=0^{++}$ and the NBS wave function are calculated. Using a coupling constant of $尾=2.2$ as an illustration, we compare the dark glueball mass calculated from the configurations generated from the two methods. While consistent results can be achieved, the two methods demonstrate distinct advantages. Using the Runge-Kutta method, we extract the glueball interaction potential and two-body scattering cross section. From the observational constraints, we obtain the lower bound of the mass of scalar glueball as candidates of dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03959v2-abstract-full').style.display = 'none'; document.getElementById('2402.03959v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures; v2: 15 pages, 12 figures; Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 48, 083108 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00814">arXiv:2310.00814</a> <span> [<a href="https://arxiv.org/pdf/2310.00814">pdf</a>, <a href="https://arxiv.org/format/2310.00814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark masses and low energy constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hu%2C+Z">Zhi-Cheng Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bo-Lun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00814v2-abstract-short" style="display: inline;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00814v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00814v2-abstract-full" style="display: none;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses $m_蟺\in[135,350]$ MeV, and several values of the strange quark mass. The quark mass is defined through the partially conserved axial current (PCAC) relation and renormalized to $\overline{\mathrm{MS}}$ 2 GeV through the intermediate regularization independent momentum subtraction (RI/MOM) scheme. The systematic uncertainty of using the symmetric momentum subtraction (SMOM) scheme is also included. Eventually, we predict $m_u=2.45(22)(20)$ MeV, $m_d=4.74(11)(09)$ MeV, and $m_s=98.8(2.9)(4.7)$ MeV with the systematic uncertainties from lattice spacing determination, continuum extrapolation and renormalization constant included. We also obtain the chiral condensate $危^{1/3}=268.6(3.6)(0.7)$ MeV and the pion decay constant $F=86.6(7)(1.4) $ MeV in the $N_f=2$ chiral limit, and the next-to-leading order low energy constants $\ell_3=2.43(54)(05)$ and $\ell_4=4.322(75)(96)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'none'; document.getElementById('2310.00814v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted by PRD. 7 pages, 4 figures, with more details in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16793">arXiv:2308.16793</a> <span> [<a href="https://arxiv.org/pdf/2308.16793">pdf</a>, <a href="https://arxiv.org/format/2308.16793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Hybrid Renormalization for Quasi Distribution Amplitudes of A Light Baryon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+C">Chao Han</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jia-Lu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16793v2-abstract-short" style="display: inline;"> We develop a hybrid scheme to renormalize quasi distribution amplitudes of a light baryon on the lattice, which combines the self-renormalization and ratio scheme. By employing self-renormalization, the UV divergences and linear divergence at large spatial separations in quasi distribution amplitudes are removed without introducing extra nonperturbative effects, while making a ratio with respect t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16793v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16793v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16793v2-abstract-full" style="display: none;"> We develop a hybrid scheme to renormalize quasi distribution amplitudes of a light baryon on the lattice, which combines the self-renormalization and ratio scheme. By employing self-renormalization, the UV divergences and linear divergence at large spatial separations in quasi distribution amplitudes are removed without introducing extra nonperturbative effects, while making a ratio with respect to the zero-momentum matrix element can properly remove the UV divergences in small spatial separations. As a specific application, distribution amplitudes of the $螞$ baryon made of $uds$ are investigated, and the requisite equal-time correlators, which define quasi distribution amplitudes in coordinate space, are perturbatively calculated up to the next-to-leading order in strong coupling constant $伪_s$. These perturbative equal-time correlators are used to convert lattice QCD matrix elements to the continuum space during the renormalization process. Subsequently, quasi distribution amplitudes are matched onto lightcone distribution amplitudes by integrating out hard modes and the corresponding hard kernels are derived up to next-to-leading order in $伪_s$ including the hybrid counterterms. These results are valuable in the lattice-based investigation of the lightcone distribution amplitudes of a light baryon from the first principles of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16793v2-abstract-full').style.display = 'none'; document.getElementById('2308.16793v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13977">arXiv:2308.13977</a> <span> [<a href="https://arxiv.org/pdf/2308.13977">pdf</a>, <a href="https://arxiv.org/ps/2308.13977">ps</a>, <a href="https://arxiv.org/format/2308.13977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Accessing the subleading-twist $B$-meson light-cone distribution amplitude with Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hu%2C+S">Shu-Man Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13977v1-abstract-short" style="display: inline;"> Within the framework of large momentum effective theory (LaMET), we propose a hard-collinear factorization formula to extract the subleading-twist $B$-meson light-cone distribution amplitude (LCDA) from the quasidistribution amplitude calculated on the lattice. The one-loop matching coefficient and an integro-differential equation governing the evolution of the quasidistribution amplitude are deri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13977v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13977v1-abstract-full" style="display: none;"> Within the framework of large momentum effective theory (LaMET), we propose a hard-collinear factorization formula to extract the subleading-twist $B$-meson light-cone distribution amplitude (LCDA) from the quasidistribution amplitude calculated on the lattice. The one-loop matching coefficient and an integro-differential equation governing the evolution of the quasidistribution amplitude are derived. Our results could be useful either in evaluating the subleading-twist $B$-meson LCDA on the lattice or in the understanding the feasibility of LaMET on higher-twist distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13977v1-abstract-full').style.display = 'none'; document.getElementById('2308.13977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06488">arXiv:2306.06488</a> <span> [<a href="https://arxiv.org/pdf/2306.06488">pdf</a>, <a href="https://arxiv.org/format/2306.06488">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2023)172">10.1007/JHEP08(2023)172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of the Intrinsic Soft Function and the Collins-Soper Kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06488v3-abstract-short" style="display: inline;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06488v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06488v3-abstract-full" style="display: none;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-dependent part called Collins-Soper kernel. We have adopted appropriate normalization when constructing the pseudo-scalar meson form factor that is needed in the determination of the intrinsic part and applied Fierz rearrangement to suppress the higher-twist effects. In the calculation of CS kernel we consider a CLS ensemble other than the MILC ensemble used in a previous study. We have also compared the applicability of determining the CS kernel using quasi TMDWFs and quasi TMDPDFs. As an example, the determined soft function is used to obtain the physical TMD wave functions (WFs) of pion and unpolarized iso-vector TMD parton distribution functions (PDFs) of proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'none'; document.getElementById('2306.06488v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2023)172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17865">arXiv:2303.17865</a> <span> [<a href="https://arxiv.org/pdf/2303.17865">pdf</a>, <a href="https://arxiv.org/format/2303.17865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137941">10.1016/j.physletb.2023.137941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螢_c-螢_c^{\prime}$ mixing From Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Tan%2C+J">Jin-Xin Tan</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17865v2-abstract-short" style="display: inline;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c'$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c'$ mixing by calculating the two-point correlation fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17865v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17865v2-abstract-full" style="display: none;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c'$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c'$ mixing by calculating the two-point correlation functions of the $螢_c$ and $螢_c'$ baryons from lattice QCD. Based on the lattice data, we adopt two independent methods to determine the mixing angle between $螢_c$ and $螢_c'$. After making the chiral and continuum extrapolation, it is found that the mixing angle $胃$ is $1.2^{\circ}\pm0.1^{\circ}$, which seems insufficient to account for the large SU(3) symmetry breaking effects found in weak decays of charmed baryons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'none'; document.getElementById('2303.17865v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09961">arXiv:2302.09961</a> <span> [<a href="https://arxiv.org/pdf/2302.09961">pdf</a>, <a href="https://arxiv.org/format/2302.09961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Transverse-Momentum-Dependent Wave Functions of Pion from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09961v1-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09961v1-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge action generated by the CLS Collaboration with $a=0.098$~fm. As a key ingredient, the soft function is first obtained by incorporating the one-loop perturbative contributions and a proper normalization. Based on this and the equal-time quasi-TMDWFs simulated on the lattice, we extract the light-cone TMDWFs. The results are comparable between the two lattice ensembles and a comparison with phenomenological parametrization is made. Our studies provide a first attempt of $ab$ $initio$ calculation of TMDWFs which will eventually lead to crucial theory inputs for making predictions for exclusive processes under QCD factorization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'none'; document.getElementById('2302.09961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12223">arXiv:2212.12223</a> <span> [<a href="https://arxiv.org/pdf/2212.12223">pdf</a>, <a href="https://arxiv.org/format/2212.12223">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137760">10.1016/j.physletb.2023.137760 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new look at the $P_{cs}$ states from a molecular perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Feijoo%2C+A">Albert Feijoo</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wen-Fei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xiao%2C+C">Chu-Wen Xiao</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-Jun Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Oset%2C+E">Eulogio Oset</a>, <a href="/search/hep-lat?searchtype=author&query=Nieves%2C+J">Juan Nieves</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+B">Bing-Song Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12223v2-abstract-short" style="display: inline;"> We have a look at the $P_{cs}$ states generated from the interaction of $\bar D^{(*)} 螢^{(\prime*)}_c$ coupled channels. We consider the blocks of pseudoscalar-baryon $({\frac12}^+, {\frac32}^+)$ and vector-baryon $({\frac12}^+, {\frac32}^+)$, and find $10$ resonant states coupling mostly to $\bar D 螢_c, \bar D^* 螢_c,\bar D 螢'_c, \bar D^* 螢'_c,\bar D 螢^*_c$ and $\bar D^* 螢^*_c$. A novel aspect of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12223v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12223v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12223v2-abstract-full" style="display: none;"> We have a look at the $P_{cs}$ states generated from the interaction of $\bar D^{(*)} 螢^{(\prime*)}_c$ coupled channels. We consider the blocks of pseudoscalar-baryon $({\frac12}^+, {\frac32}^+)$ and vector-baryon $({\frac12}^+, {\frac32}^+)$, and find $10$ resonant states coupling mostly to $\bar D 螢_c, \bar D^* 螢_c,\bar D 螢'_c, \bar D^* 螢'_c,\bar D 螢^*_c$ and $\bar D^* 螢^*_c$. A novel aspect of the work is the realization that the $\bar D 螢_c,\bar D_s螞_c$ or $\bar D^* 螢_c,\bar D^*_s螞_c$ channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states $\bar D 危_c,\bar D螞_c$ or $\bar D^* 危_c,\bar D^*螞_c$ appearing in the generation of the strangenessless $P_{c}$ states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the $\bar D 螢_c,\bar D^* 螢_c$ pairs preclude the association of these channels to the $P_{cs}(4338)$ and $P_{cs}(4459)$ states respectively. Then we find a natural association of the $P_{cs}(4338)$ state coupling mostly to $\bar D^* 螢_c$ while the $P_{cs}(4459)$ is associated to the state found that couples mostly to $\bar D 螢'_c$. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find $10$ states, which we hope can be observed in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12223v2-abstract-full').style.display = 'none'; document.getElementById('2212.12223v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, accepted for publication in Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 839 (2023) 137760 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02340">arXiv:2211.02340</a> <span> [<a href="https://arxiv.org/pdf/2211.02340">pdf</a>, <a href="https://arxiv.org/format/2211.02340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02340v3-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'inline'; document.getElementById('2211.02340v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02340v3-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentum distributions in a large-momentum nucleon on the lattice. The state-of-the-art techniques in renormalization and extrapolation in the correlation distance on the lattice are adopted. {The perturbative kernel up to next-to-next-to-leading order is taken into account}, and the dependence on the pion mass and the hadron momentum is explored. Our results are qualitatively comparable with phenomenological TMDPDFs, which provide an opportunity to predict high energy scatterings from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'none'; document.getElementById('2211.02340v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07280">arXiv:2207.07280</a> <span> [<a href="https://arxiv.org/pdf/2207.07280">pdf</a>, <a href="https://arxiv.org/ps/2207.07280">ps</a>, <a href="https://arxiv.org/format/2207.07280">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2022)046">10.1007/JHEP09(2022)046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transverse-momentum-dependent wave functions and Soft functions at one-loop in Large Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07280v1-abstract-short" style="display: inline;"> In large-momentum effective theory (LaMET), the transverse-momentum-dependent (TMD) light-front wave functions and soft functions can be extracted from the simulation of a four-quark form factor and equal-time correlation functions. In this work, using expansion by regions we provide a one-loop proof of TMD factorization of the form factor. For the one-loop validation, we also present a detailed c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07280v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07280v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07280v1-abstract-full" style="display: none;"> In large-momentum effective theory (LaMET), the transverse-momentum-dependent (TMD) light-front wave functions and soft functions can be extracted from the simulation of a four-quark form factor and equal-time correlation functions. In this work, using expansion by regions we provide a one-loop proof of TMD factorization of the form factor. For the one-loop validation, we also present a detailed calculation of ${\cal O}(伪_s)$ perturbative corrections to these quantities, in which we adopt a modern technique for the calculation of TMD form factor based the integration by part and differential equation. The one-loop hard functions are then extracted. Using lattice data from Lattice Parton Collaboration on quasi-TMDWFs, we estimate the effects from the one-loop matching kernel and find that the perturbative corrections depend on the operator to define the form factor, but are less sensitive to the transverse separation. These results will be helpful to precisely extract the soft functions and TMD wave functions from the first-principle in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07280v1-abstract-full').style.display = 'none'; document.getElementById('2207.07280v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00183">arXiv:2207.00183</a> <span> [<a href="https://arxiv.org/pdf/2207.00183">pdf</a>, <a href="https://arxiv.org/format/2207.00183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2205-0">10.1007/s11433-023-2205-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden-charm Hexaquarks from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jinchen He</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00183v2-abstract-short" style="display: inline;"> We present a lattice QCD study of hidden-charm hexaquarks with quark content $usc\bar{d}\bar{s}\bar{c}$ based on four ensembles of gauge configurations generated by CLQCD Collaboration with pion mass in the range of 220-300MeV. Four operators with quantum numbers $0^{++}, 0^{-+}, 1^{++}$ and $1^{--}$ respectively are constructed to interpolate the hexaquarks. After validating the spectrum and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00183v2-abstract-full').style.display = 'inline'; document.getElementById('2207.00183v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00183v2-abstract-full" style="display: none;"> We present a lattice QCD study of hidden-charm hexaquarks with quark content $usc\bar{d}\bar{s}\bar{c}$ based on four ensembles of gauge configurations generated by CLQCD Collaboration with pion mass in the range of 220-300MeV. Four operators with quantum numbers $0^{++}, 0^{-+}, 1^{++}$ and $1^{--}$ respectively are constructed to interpolate the hexaquarks. After validating the spectrum and the dispersion relation for ordinary hadrons, we calculate the masses of the hexaquarks and extrapolate the results to the physical pion mass and the continuum limit. We find that the masses of the four hexaquarks are all below the $螢_c \bar 螢_c$ threshold, while the $0^{-+}$ hexaquark lies around the $畏_c K^+K^-$ threshold. These results will be helpful for experimental searches in future and for a deep understanding of the nature of multiquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00183v2-abstract-full').style.display = 'none'; document.getElementById('2207.00183v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00200">arXiv:2204.00200</a> <span> [<a href="https://arxiv.org/pdf/2204.00200">pdf</a>, <a href="https://arxiv.org/ps/2204.00200">ps</a>, <a href="https://arxiv.org/format/2204.00200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.034509">10.1103/PhysRevD.106.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jialu Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00200v1-abstract-short" style="display: inline;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00200v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00200v1-abstract-full" style="display: none;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing $a=0.12$~fm from MILC, and renormalize the pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave functions, we determine the Collins-Soper kernel with transverse separation up to 0.6~fm. We study the systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher power corrections. Our results potentially allow for a determination of the soft function and other transverse-momentum dependent quantities at one-loop accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'none'; document.getElementById('2204.00200v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09173">arXiv:2201.09173</a> <span> [<a href="https://arxiv.org/pdf/2201.09173">pdf</a>, <a href="https://arxiv.org/format/2201.09173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.132001">10.1103/PhysRevLett.129.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion and Kaon Distribution Amplitudes from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09173v1-abstract-short" style="display: inline;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09173v1-abstract-full" style="display: none;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hybrid scheme with self renormalization, and extrapolated to the continuum as well as the infinite momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a large $SU(3)$ flavor breaking effect in the kaon DA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'none'; document.getElementById('2201.09173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07064">arXiv:2103.07064</a> <span> [<a href="https://arxiv.org/pdf/2103.07064">pdf</a>, <a href="https://arxiv.org/ps/2103.07064">ps</a>, <a href="https://arxiv.org/format/2103.07064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac2b12">10.1088/1674-1137/ac2b12 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Lattice QCD determination of semileptonic decays of charmed-strange baryons $螢_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Huang%2C+F">Fei Huang</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+R">Renbo Li</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+C">Cai-Dian Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07064v2-abstract-short" style="display: inline;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'inline'; document.getElementById('2103.07064v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07064v2-abstract-full" style="display: none;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors, $螢_c$ baryons (made of $csu$ or $csd$) have been extensively studied in experiments at the large hadron collider and in electron-positron collision. However the lack of reliable knowledge in theory becomes the unavoidable obstacle in the way. In this work, we use the state-of-the-art Lattice QCD techniques, and generate 2+1 clover fermion ensembles with two lattice spacings, $a=(0.108{\rm fm},0.080{\rm fm})$. We then present the first {\it ab-initio} lattice QCD determination of form factors governing $螢_{c}\to 螢\ell^+谓_{\ell}$, analogous with the notable $尾$-decay of nuclei. Our theoretical results for decay widths are consistent with and about two times more precise than the latest measurements by ALICE and Belle collaborations. Together with experimental measurements, we independently determine the quark-mixing matrix element $|V_{cs}|$, which is found in good agreement with other determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'none'; document.getElementById('2103.07064v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+1 pages, 4 figures; v2: 7 pages, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 46, 011002(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02965">arXiv:2103.02965</a> <span> [<a href="https://arxiv.org/pdf/2103.02965">pdf</a>, <a href="https://arxiv.org/format/2103.02965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115443">10.1016/j.nuclphysb.2021.115443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Renormalization of Quasi-Light-Front Correlators on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02965v1-abstract-short" style="display: inline;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02965v1-abstract-full" style="display: none;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'none'; document.getElementById('2103.02965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09788">arXiv:2011.09788</a> <span> [<a href="https://arxiv.org/pdf/2011.09788">pdf</a>, <a href="https://arxiv.org/format/2011.09788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.062002">10.1103/PhysRevLett.127.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distribution Amplitudes of $K^*$ and $蠁$ at Physical Pion Mass from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09788v2-abstract-short" style="display: inline;"> We present the first lattice QCD calculation of the distribution amplitudes of longitudinally and transversely polarized vector mesons $K^*$ and $蠁$ using large momentum effective theory. We use the clover fermion action on three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ) action, generated by MILC collaboration, at physical pion mass and \{0.06, 0.09, 0.12\} fm lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09788v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09788v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09788v2-abstract-full" style="display: none;"> We present the first lattice QCD calculation of the distribution amplitudes of longitudinally and transversely polarized vector mesons $K^*$ and $蠁$ using large momentum effective theory. We use the clover fermion action on three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ) action, generated by MILC collaboration, at physical pion mass and \{0.06, 0.09, 0.12\} fm lattice spacings, and choose three different hadron momenta $P_z=\{1.29, 1.72, 2.15\}$ GeV. The resulting lattice matrix elements are nonperturbatively renormalized in a hybrid scheme proposed recently. An extrapolation to the continuum and infinite momentum limit is carried out. We find that while the longitudinal distribution amplitudes tend to be close to the asymptotic form, the transverse ones deviate rather significantly from the asymptotic form. Our final results provide crucial {\it ab initio} theory inputs for analyzing pertinent exclusive processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09788v2-abstract-full').style.display = 'none'; document.getElementById('2011.09788v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+3 pages; 5 + 6 figures; v2: 7+6 pages, expanded discussions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 062002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03886">arXiv:2008.03886</a> <span> [<a href="https://arxiv.org/pdf/2008.03886">pdf</a>, <a href="https://arxiv.org/format/2008.03886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115311">10.1016/j.nuclphysb.2021.115311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hybrid Renormalization Scheme for Quasi Light-Front Correlations in Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03886v2-abstract-short" style="display: inline;"> In large-momentum effective theory (LaMET), calculating parton physics starts from calculating coordinate-space-$z$ correlation functions $\tilde h(z, a,P^z)$ in a hadron of momentum $P^z$ in lattice QCD. Such correlation functions involve both linear and logarithmic divergences in lattice spacing $a$, and thus need to be properly renormalized. We introduce a hybrid renormalization procedure to ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03886v2-abstract-full').style.display = 'inline'; document.getElementById('2008.03886v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03886v2-abstract-full" style="display: none;"> In large-momentum effective theory (LaMET), calculating parton physics starts from calculating coordinate-space-$z$ correlation functions $\tilde h(z, a,P^z)$ in a hadron of momentum $P^z$ in lattice QCD. Such correlation functions involve both linear and logarithmic divergences in lattice spacing $a$, and thus need to be properly renormalized. We introduce a hybrid renormalization procedure to match these lattice correlations to those in the continuum $\overline{\rm MS}$ scheme, without introducing extra non-perturbative effects at large $z$. We analyze the effect of ${\cal O}(螞_{\rm QCD})$ ambiguity in the Wilson line self-energy subtraction involved in this hybrid scheme. To obtain the momentum-space distributions, we recommend to extrapolate the lattice data to the asymptotic $z$-region using the generic properties of the coordinate space correlations at moderate and large $P^z$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03886v2-abstract-full').style.display = 'none'; document.getElementById('2008.03886v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Text revised, version to appear in NPB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys. B964 (2021) 115311 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14825">arXiv:2006.14825</a> <span> [<a href="https://arxiv.org/pdf/2006.14825">pdf</a>, <a href="https://arxiv.org/format/2006.14825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.072002">10.1103/PhysRevLett.126.072002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Next-to-next-to-leading order corrections to quark Quasi parton distribution functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+L">Long-Bin Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+R">Ruilin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14825v4-abstract-short" style="display: inline;"> We present the next-to-next-to-leading order (NNLO) calculation of quark quasi parton distribution functions (PDFs) in the large momentum effective theory. The nontrivial factorization at this order is established explicitly and the full analytic matching coefficients between the quasi distribution and the lightcone distribution are derived. We demonstrate that the NNLO numerical contributions can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14825v4-abstract-full').style.display = 'inline'; document.getElementById('2006.14825v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14825v4-abstract-full" style="display: none;"> We present the next-to-next-to-leading order (NNLO) calculation of quark quasi parton distribution functions (PDFs) in the large momentum effective theory. The nontrivial factorization at this order is established explicitly and the full analytic matching coefficients between the quasi distribution and the lightcone distribution are derived. We demonstrate that the NNLO numerical contributions can improve the behavior of the extracted PDFs sizably. With the unprecedented precision study of nucleon tomography at the planned electron-ion collider, high precision Lattice QCD simulations with our NNLO results implemented will enable to test the QCD theory and more precise results on the PDFs of nucleons will be obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14825v4-abstract-full').style.display = 'none'; document.getElementById('2006.14825v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure; comments and discussions are warmly welcome; v2: 10 pages, 2 figures, an error corrected, and numerical results added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 072002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10917">arXiv:2006.10917</a> <span> [<a href="https://arxiv.org/pdf/2006.10917">pdf</a>, <a href="https://arxiv.org/ps/2006.10917">ps</a>, <a href="https://arxiv.org/format/2006.10917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2020)079">10.1007/JHEP10(2020)079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Master Integrals for two-loop QCD corrections to Quasi PDFs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+L">Long-Bin Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+R">Ruilin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10917v1-abstract-short" style="display: inline;"> We compute the master integrals for two-loop QCD corrections to quasi parton distribution functions (PDFs) in large momentum effective theory. Analytical results of the master integrals are derived using the method of differential equations, along with a proper choice of canonical basis. The results of master integrals are expressed in terms of Goncharov polylogarithms. These integrals allow to ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10917v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10917v1-abstract-full" style="display: none;"> We compute the master integrals for two-loop QCD corrections to quasi parton distribution functions (PDFs) in large momentum effective theory. Analytical results of the master integrals are derived using the method of differential equations, along with a proper choice of canonical basis. The results of master integrals are expressed in terms of Goncharov polylogarithms. These integrals allow to extract the two-loop short-distance matching coefficients between quasi and light cone PDFs in large momentum effective theory, and are helpful to extract the nucleon PDFs from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10917v1-abstract-full').style.display = 'none'; document.getElementById('2006.10917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14572">arXiv:2005.14572</a> <span> [<a href="https://arxiv.org/pdf/2005.14572">pdf</a>, <a href="https://arxiv.org/format/2005.14572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.192001">10.1103/PhysRevLett.125.192001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice-QCD Calculations of TMD Soft Function Through Large-Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yikai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14572v2-abstract-short" style="display: inline;"> The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic ensemble with $a=0.098$ fm. We extract the rapidity-independent (or intrinsic) part of the soft function through a large-mom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14572v2-abstract-full').style.display = 'inline'; document.getElementById('2005.14572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14572v2-abstract-full" style="display: none;"> The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic ensemble with $a=0.098$ fm. We extract the rapidity-independent (or intrinsic) part of the soft function through a large-momentum-transfer pseudo-scalar meson form factor and its quasi-TMD wave function using leading-order factorization in large-momentum effective theory. We also investigate the rapidity-dependent part of the soft function---the Collins-Soper evolution kernel---based on the large-momentum evolution of the quasi-TMD wave function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14572v2-abstract-full').style.display = 'none'; document.getElementById('2005.14572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 +4 pages, 5 + 7 figures; v2: 7 + 6 pages, 5 + 9 figures, accepted for publication by Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 192001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13757">arXiv:2005.13757</a> <span> [<a href="https://arxiv.org/pdf/2005.13757">pdf</a>, <a href="https://arxiv.org/format/2005.13757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.011503">10.1103/PhysRevD.102.011503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi parton distribution functions at NNLO: flavor non-diagonal quark contributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+L">Long-Bin Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+R">Ruilin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13757v2-abstract-short" style="display: inline;"> We present a next-to-next-to-leading order (NNLO) calculation of the quasi parton distribution functions (Quasi-PDFs) in the large momentum effective theory (LaMET). We focus on the flavor non-diagonal quark-quark channel and demonstrate the LaMET factorization at the NNLO accuracy in the modified minimal subtraction scheme. The matching coefficient between the quasi-PDF and the light-cone PDF is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13757v2-abstract-full').style.display = 'inline'; document.getElementById('2005.13757v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13757v2-abstract-full" style="display: none;"> We present a next-to-next-to-leading order (NNLO) calculation of the quasi parton distribution functions (Quasi-PDFs) in the large momentum effective theory (LaMET). We focus on the flavor non-diagonal quark-quark channel and demonstrate the LaMET factorization at the NNLO accuracy in the modified minimal subtraction scheme. The matching coefficient between the quasi-PDF and the light-cone PDF is derived. This provides a first step towards a complete NNLO analysis of quasi-PDFs and to better understand the nucleon structures from the first principle of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13757v2-abstract-full').style.display = 'none'; document.getElementById('2005.13757v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; v2: accepted for publication in Physical Review D as a rapid communication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 011503 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09779">arXiv:2004.09779</a> <span> [<a href="https://arxiv.org/pdf/2004.09779">pdf</a>, <a href="https://arxiv.org/format/2004.09779">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08483-w">10.1140/epjc/s10052-020-08483-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadruply charmed baryons as heavy quark symmetry partners of the $D_{s0}^*(2317)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+T">Tian-Wei Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+M">Ming-Zhu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a>, <a href="/search/hep-lat?searchtype=author&query=Hiyama%2C+E">Emiko Hiyama</a>, <a href="/search/hep-lat?searchtype=author&query=Valderrama%2C+M+P">Manuel Pavon Valderrama</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wen-Ling Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09779v1-abstract-short" style="display: inline;"> Both unitary chiral theories and lattice QCD simulations show that the $DK$ interaction is attractive and can form a bound state, namely, $D^*_{s0}(2317)$. Assuming the validity of the heavy antiquark-diquark symmetry (HADS), the $螢_{cc}\bar{K}$ interaction is the same as the $DK$ interaction, which implies the existence of a $螢_{cc}\bar{K}$ bound state with a binding energy of $49-64$ MeV. In thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09779v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09779v1-abstract-full" style="display: none;"> Both unitary chiral theories and lattice QCD simulations show that the $DK$ interaction is attractive and can form a bound state, namely, $D^*_{s0}(2317)$. Assuming the validity of the heavy antiquark-diquark symmetry (HADS), the $螢_{cc}\bar{K}$ interaction is the same as the $DK$ interaction, which implies the existence of a $螢_{cc}\bar{K}$ bound state with a binding energy of $49-64$ MeV. In this work, we study whether a $螢_{cc}螢_{cc}\bar{K}$ three-body system binds. The $螢_{cc}螢_{cc}$ interaction is described by exchanging $蟺$, $蟽$, $蟻$, and $蠅$ mesons, with the corresponding couplings related to those of the $NN$ interaction via the quark model. We indeed find a $螢_{cc}螢_{cc}\bar{K}$ bound state, with quantum numbers $J^P=0^-$, $I=\frac{1}{2}$, $S=1$ and $C=4$, and a binding energy of $80-118$ MeV. It is interesting to note that this system is very similar to the well-known $NN\bar{K}$ system, which has been studied extensively both theoretically and experimentally. Within the same framework, we show the existence of a $NN\bar{K}$ state with a binding energy of $35-43$ MeV, consistent with the results of other theoretical works and experimental data, which serves as a consistency check on the predicted $螢_{cc}螢_{cc}\bar{K}$ bound state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09779v1-abstract-full').style.display = 'none'; document.getElementById('2004.09779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01722">arXiv:2003.01722</a> <span> [<a href="https://arxiv.org/pdf/2003.01722">pdf</a>, <a href="https://arxiv.org/format/2003.01722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235118">10.1103/PhysRevB.101.235118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement transition in the QED$_3$-Gross-Neveu-XY universality class </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Janssen%2C+L">Lukas Janssen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01722v2-abstract-short" style="display: inline;"> The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01722v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01722v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01722v2-abstract-full" style="display: none;"> The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charged under a U(1) gauge field in 2+1 dimensions. Using Quantum Monte Carlo simulations, we investigate a lattice model that exhibits a continuous transition at zero temperature between a gapless deconfined phase, described by three-dimensional quantum electrodynamics, and a gapped confined phase, in which the system develops valence-bond-solid order. We argue that the quantum critical point is in the universality class of the QED$_3$-Gross-Neveu-XY model. We study this field theory within a $1/N_f$ expansion in fixed dimension as well as a renormalization group analysis in $4-蔚$ space-time dimensions. The consistency between numerical and analytical results is revealed from large to intermediate flavor number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01722v2-abstract-full').style.display = 'none'; document.getElementById('2003.01722v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures; v2: additional data and explanations, corrected erroneous interpretation of dimer scaling dimension</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 235118 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07430">arXiv:1910.07430</a> <span> [<a href="https://arxiv.org/pdf/1910.07430">pdf</a>, <a href="https://arxiv.org/format/1910.07430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.064308">10.1103/PhysRevB.101.064308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designer Monte Carlo Simulation for Gross-Neveu Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07430v5-abstract-short" style="display: inline;"> In this manuscript, we study quantum criticality of Dirac fermions via large-scale numerical simulations, focusing on the Gross-Neveu-Yukawa(GNY) chiral-Ising quantum critical point with critical bosonic modes coupled with Dirac fermions. We show that finite-size effects at this quantum critical point can be efficiently minimized via model design, which maximizes the ultraviolet cutoff and at the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07430v5-abstract-full').style.display = 'inline'; document.getElementById('1910.07430v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07430v5-abstract-full" style="display: none;"> In this manuscript, we study quantum criticality of Dirac fermions via large-scale numerical simulations, focusing on the Gross-Neveu-Yukawa(GNY) chiral-Ising quantum critical point with critical bosonic modes coupled with Dirac fermions. We show that finite-size effects at this quantum critical point can be efficiently minimized via model design, which maximizes the ultraviolet cutoff and at the same time places the bare control parameters closer to the nontrivial fixed point to better expose the critical region. Combined with the efficient self-learning quantum Monte Carlo algorithm, which enables non-local update of the bosonic field, we find that moderately-large system size (up to $16\times 16$) is already sufficient to produce robust scaling behavior and critical exponents.The conductance of the Dirac fermions is also calculated and its frequency dependence is found to be consistent with the scaling behavior predicted by the conformal field theory. The methods and model-design principles developed for this study can be generalized to other fermionic QCPs, and thus provide a promising direction for controlled studies of strongly-correlated itinerant systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07430v5-abstract-full').style.display = 'none'; document.getElementById('1910.07430v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 064308 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09933">arXiv:1908.09933</a> <span> [<a href="https://arxiv.org/pdf/1908.09933">pdf</a>, <a href="https://arxiv.org/format/1908.09933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.011502">10.1103/PhysRevD.102.011502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $B$-meson light-cone distribution amplitude from the Euclidean quantity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Y">Yu-Ming Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09933v3-abstract-short" style="display: inline;"> A new method for the model-independent determination of the light-cone distribution amplitude (LCDA) of the $B$-meson in heavy quark effective theory (HQET) is proposed by combining the large momentum effective theory (LaMET) and the numerical simulation technique on the Euclidean lattice. We demonstrate the autonomous scale dependence of the non-local quasi-HQET operator with the aid of the auxil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09933v3-abstract-full').style.display = 'inline'; document.getElementById('1908.09933v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09933v3-abstract-full" style="display: none;"> A new method for the model-independent determination of the light-cone distribution amplitude (LCDA) of the $B$-meson in heavy quark effective theory (HQET) is proposed by combining the large momentum effective theory (LaMET) and the numerical simulation technique on the Euclidean lattice. We demonstrate the autonomous scale dependence of the non-local quasi-HQET operator with the aid of the auxiliary field approach, and further determine the perturbative matching coefficient entering the hard-collinear factorization formula for the $B$-meson quasi-distribution amplitude at the one-loop accuracy. These results will be crucial to explore the partonic structure of heavy-quark hadrons in the static limit and to improve the theory description of exclusive $B$-meson decay amplitudes based upon perturbative QCD factorization theorems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09933v3-abstract-full').style.display = 'none'; document.getElementById('1908.09933v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-19-3025 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 011502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06929">arXiv:1906.06929</a> <span> [<a href="https://arxiv.org/pdf/1906.06929">pdf</a>, <a href="https://arxiv.org/format/1906.06929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.085123">10.1103/PhysRevB.100.085123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of Compact Quantum Electrodynamics at Large Fermion Flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+D">Da-Chuan Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06929v4-abstract-short" style="display: inline;"> Thanks to the development in quantum Monte Carlo technique, the compact U(1) lattice gauge theory coupled to fermionic matter at (2+1)D is now accessible with large-scale numerical simulations, and the ground state phase diagram as a function of fermion flavor ($N_f$) and the strength of gauge fluctuations is mapped out~\cite{Xiao2018Monte}. Here we focus on the large fermion flavor case ($N_f=8$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06929v4-abstract-full').style.display = 'inline'; document.getElementById('1906.06929v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06929v4-abstract-full" style="display: none;"> Thanks to the development in quantum Monte Carlo technique, the compact U(1) lattice gauge theory coupled to fermionic matter at (2+1)D is now accessible with large-scale numerical simulations, and the ground state phase diagram as a function of fermion flavor ($N_f$) and the strength of gauge fluctuations is mapped out~\cite{Xiao2018Monte}. Here we focus on the large fermion flavor case ($N_f=8$) to investigate the dynamic properties across the deconfinement-to-confinement phase transition. In the deconfined phase, fermions coupled to the fluctuating gauge field to form U(1) spin liquid with continua in both spin and dimer spectral functions, and in the confined phase fermions are gapped out into valence bond solid phase with translational symmetry breaking and gapped spectra. The dynamical behaviors provide supporting evidence for the existence of the U(1) deconfined phase and could shine light on the nature of the U(1)-to-VBS phase transition which is of the QED$_3$-Gross-Neveu chiral O(2) universality whose properties still largely unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06929v4-abstract-full').style.display = 'none'; document.getElementById('1906.06929v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 085123 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00978">arXiv:1904.00978</a> <span> [<a href="https://arxiv.org/pdf/1904.00978">pdf</a>, <a href="https://arxiv.org/format/1904.00978">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.074509">10.1103/PhysRevD.100.074509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete Matching for Quasi-distribution Functions in Large Momentum Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+R">Ruilin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00978v3-abstract-short" style="display: inline;"> We complete the procedure of extracting parton distribution functions (PDFs) using large momentum effective theory (LaMET) at leading power accuracy in the hadron momentum. We derive a general factorization formula for the quasi PDFs in the presence of mixing, and give the corresponding hard matching kernel at $\mathcal O(伪_s)$, both for the unpolarized and for the polarized quark and gluon quasi-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00978v3-abstract-full').style.display = 'inline'; document.getElementById('1904.00978v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00978v3-abstract-full" style="display: none;"> We complete the procedure of extracting parton distribution functions (PDFs) using large momentum effective theory (LaMET) at leading power accuracy in the hadron momentum. We derive a general factorization formula for the quasi PDFs in the presence of mixing, and give the corresponding hard matching kernel at $\mathcal O(伪_s)$, both for the unpolarized and for the polarized quark and gluon quasi-PDFs. Our calculation is performed in a regularization-independent momentum subtraction scheme. The results allow us to match the nonperturbatively renormalized quasi-PDFs to normal PDFs in the presence of mixing, and therefore can be used to extract flavor-singlet quark PDFs as well as gluon PDFs from lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00978v3-abstract-full').style.display = 'none'; document.getElementById('1904.00978v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures. Errors in Eq. (90) are corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-19-2907 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 074509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00307">arXiv:1902.00307</a> <span> [<a href="https://arxiv.org/pdf/1902.00307">pdf</a>, <a href="https://arxiv.org/format/1902.00307">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034006">10.1103/PhysRevD.100.034006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matching Quasi Generalized Parton Distributions in the RI/MOM scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00307v2-abstract-short" style="display: inline;"> Within the framework of large momentum effective theory (LaMET), genenaralized parton distributions (GPDs) can be extracted from lattice calculations of quasi-GPDs through a perturbative matching relation, up to power corrections that are suppressed by the hadron momentum. In this paper, we focus on isovector quark GPDs, including the unpolarized, longitudinally and transversely polarized cases, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00307v2-abstract-full').style.display = 'inline'; document.getElementById('1902.00307v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00307v2-abstract-full" style="display: none;"> Within the framework of large momentum effective theory (LaMET), genenaralized parton distributions (GPDs) can be extracted from lattice calculations of quasi-GPDs through a perturbative matching relation, up to power corrections that are suppressed by the hadron momentum. In this paper, we focus on isovector quark GPDs, including the unpolarized, longitudinally and transversely polarized cases, and present the one-loop matching that connects the quasi-GPDs renormalized in a regularization-independent momentum subtraction (RI/MOM) scheme to the GPDs in MS scheme. We find that the matching coefficient is independent of the momentum transfer squared. As a consequence, the matching for the quasi-GPD with zero skewness is the same as that for the quasi-PDF. Our results provide a crucial input for the determination of quark GPDs from lattice QCD using LaMET. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00307v2-abstract-full').style.display = 'none'; document.getElementById('1902.00307v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5074, INT-PUB-19-004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034006 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.10879">arXiv:1810.10879</a> <span> [<a href="https://arxiv.org/pdf/1810.10879">pdf</a>, <a href="https://arxiv.org/ps/1810.10879">ps</a>, <a href="https://arxiv.org/format/1810.10879">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.094036">10.1103/PhysRevD.99.094036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Matching the Quasi Meson Distribution Amplitude in RI/MOM scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.10879v1-abstract-short" style="display: inline;"> The $x$-dependence of light-cone distribution amplitude (LCDA) can be directly calculated from a quasi distribution amplitude (DA) in lattice QCD within the framework of large-momentum effective theory (LaMET). In this paper, we study the one-loop renormalization of the quasi-DA in the regularization-independent momentum subtraction (RI/MOM) scheme. The renormalization factor for the quasi parton… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10879v1-abstract-full').style.display = 'inline'; document.getElementById('1810.10879v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.10879v1-abstract-full" style="display: none;"> The $x$-dependence of light-cone distribution amplitude (LCDA) can be directly calculated from a quasi distribution amplitude (DA) in lattice QCD within the framework of large-momentum effective theory (LaMET). In this paper, we study the one-loop renormalization of the quasi-DA in the regularization-independent momentum subtraction (RI/MOM) scheme. The renormalization factor for the quasi parton distribution function can be used to renormalize the quasi-DA provided that they are implemented on lattice and in perturbation theory in the same manner. We derive the one-loop matching coefficient that matches quasi-DA in the RI/MOM scheme onto LCDA in the $\overline{\rm MS}$ scheme. Our result provides the crucial step to extract the LCDAs from lattice matrix elements of quasi-DAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10879v1-abstract-full').style.display = 'none'; document.getElementById('1810.10879v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 0 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 094036 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span> [<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) < 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10824">arXiv:1808.10824</a> <span> [<a href="https://arxiv.org/pdf/1808.10824">pdf</a>, <a href="https://arxiv.org/ps/1808.10824">ps</a>, <a href="https://arxiv.org/format/1808.10824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.142001">10.1103/PhysRevLett.122.142001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accessing gluon parton distributions in large momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10824v2-abstract-short" style="display: inline;"> Gluon parton distribution functions (PDFs) in the proton can be calculated directly on Euclidean lattices using large momentum effective theory (LaMET). To realize this goal, one has to find renormalized gluon quasi-PDFs in which power divergences and operator mixing are thoroughly understood. For the unpolarized distribution, we identify four independent quasi-PDF correlators that can be multipli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10824v2-abstract-full').style.display = 'inline'; document.getElementById('1808.10824v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10824v2-abstract-full" style="display: none;"> Gluon parton distribution functions (PDFs) in the proton can be calculated directly on Euclidean lattices using large momentum effective theory (LaMET). To realize this goal, one has to find renormalized gluon quasi-PDFs in which power divergences and operator mixing are thoroughly understood. For the unpolarized distribution, we identify four independent quasi-PDF correlators that can be multiplicatively renormalized on the lattice. Similarly, the helicity distribution can be derived from three independent multiplicatively renormalizable quasi-PDFs. We provide a LaMET factorization formula for these renormalized quasi-PDFs from which one can extract the gluon PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10824v2-abstract-full').style.display = 'none'; document.getElementById('1808.10824v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, version accepted by Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 142001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06566">arXiv:1807.06566</a> <span> [<a href="https://arxiv.org/pdf/1807.06566">pdf</a>, <a href="https://arxiv.org/format/1807.06566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034020">10.1103/PhysRevD.101.034020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unpolarized isovector quark distribution function from Lattice QCD: A systematic analysis of renormalization and matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06566v2-abstract-short" style="display: inline;"> We present a detailed Lattice QCD study of the unpolarized isovector quark Parton Distribution Function (PDF) using large-momentum effective theory framework. We choose a quasi-PDF defined by a spatial correlator which is free from mixing with other operators of the same dimension. In the lattice simulation, we use a Gaussian-momentum-smeared source at $M_蟺=356$ MeV and $P_z \in \{1.8,2.3\}$ GeV.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06566v2-abstract-full').style.display = 'inline'; document.getElementById('1807.06566v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06566v2-abstract-full" style="display: none;"> We present a detailed Lattice QCD study of the unpolarized isovector quark Parton Distribution Function (PDF) using large-momentum effective theory framework. We choose a quasi-PDF defined by a spatial correlator which is free from mixing with other operators of the same dimension. In the lattice simulation, we use a Gaussian-momentum-smeared source at $M_蟺=356$ MeV and $P_z \in \{1.8,2.3\}$ GeV. To control the systematics associated with the excited states, we explore {five different source-sink separations}. The nonperturbative renormalization is conducted in a regularization-independent momentum subtraction scheme, and the matching between the renormalized quasi-PDF and $\bar{\rm MS}$ PDF is calculated based on perturbative QCD up to one-loop order. Systematic errors due to renormalization and perturbative matching are also analyzed in detail. Our results for lightcone PDF are in reasonable agreement with the latest phenomenological analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06566v2-abstract-full').style.display = 'none'; document.getElementById('1807.06566v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034020 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09247">arXiv:1712.09247</a> <span> [<a href="https://arxiv.org/pdf/1712.09247">pdf</a>, <a href="https://arxiv.org/ps/1712.09247">ps</a>, <a href="https://arxiv.org/format/1712.09247">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2018)142">10.1007/JHEP05(2018)142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the power divergence in quasi gluon distribution function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09247v2-abstract-short" style="display: inline;"> Recent perturbative calculation of quasi gluon distribution function at one-loop level shows the existence of extra linear ultraviolet divergences in the cut-off scheme. We employ the auxiliary field approach, and study the renormalization of gluon operators. The non-local gluon operator can mix with new operators under renormalization, and the linear divergences in quasi distribution function can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09247v2-abstract-full').style.display = 'inline'; document.getElementById('1712.09247v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09247v2-abstract-full" style="display: none;"> Recent perturbative calculation of quasi gluon distribution function at one-loop level shows the existence of extra linear ultraviolet divergences in the cut-off scheme. We employ the auxiliary field approach, and study the renormalization of gluon operators. The non-local gluon operator can mix with new operators under renormalization, and the linear divergences in quasi distribution function can be into the newly introduced operators. After including the mixing, we find the improved quasi gluon distribution functions contain only logarithmic divergences, and thus can be used to extract the gluon distribution in large momentum effective theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09247v2-abstract-full').style.display = 'none'; document.getElementById('1712.09247v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures. Published version in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP05(2018)142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.02458">arXiv:1708.02458</a> <span> [<a href="https://arxiv.org/pdf/1708.02458">pdf</a>, <a href="https://arxiv.org/ps/1708.02458">ps</a>, <a href="https://arxiv.org/format/1708.02458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-5617-3">10.1140/epjc/s10052-018-5617-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluon quasidistribution function at one loop </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+R">Ruilin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.02458v3-abstract-short" style="display: inline;"> We study the unpolarized gluon quasidistribution function in the nucleon at one loop level in the large momentum effective theory. For the quark quasidistribution, power law ultraviolet divergences arise in the cut-off scheme and an important observation is that they all are subjected to Wilson lines. However for the gluon quasidistribution function, we first point out that the linear ultraviolet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02458v3-abstract-full').style.display = 'inline'; document.getElementById('1708.02458v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.02458v3-abstract-full" style="display: none;"> We study the unpolarized gluon quasidistribution function in the nucleon at one loop level in the large momentum effective theory. For the quark quasidistribution, power law ultraviolet divergences arise in the cut-off scheme and an important observation is that they all are subjected to Wilson lines. However for the gluon quasidistribution function, we first point out that the linear ultraviolet divergences also exist in the real diagram which is not connected to any Wilson line. We then study the one loop corrections to parton distribution functions in both cut-off scheme and dimensional regularization to deal with the ultraviolet divergences. In addition to the ordinary quark and gluon distributions, we also include the quark to gluon and gluon to quark splitting diagrams. The complete one-loop matching factors between the quasi and light cone parton distribution functions are presented in the cut-off scheme. We derive the $P^z$ evolution equation for quasi parton distribution functions, and find that the $P^z$ evolution kernels are identical to the DGLAP evolution kernels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02458v3-abstract-full').style.display = 'none'; document.getElementById('1708.02458v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages,8 figures;accepted by Eur.Phys.J C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2018) 78:147 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04950">arXiv:1507.04950</a> <span> [<a href="https://arxiv.org/pdf/1507.04950">pdf</a>, <a href="https://arxiv.org/format/1507.04950">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.071502">10.1103/PhysRevD.92.071502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How to reveal the exotic nature of the P_c(4450) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guo%2C+F">Feng-Kun Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Z">Zhi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04950v2-abstract-short" style="display: inline;"> The LHCb Collaboration announced two pentaquark-like structures in the $J/蠄p$ invariant mass distribution. We show that the current information on the narrow structure at 4.45 GeV is compatible with kinematical effects of the rescattering from $蠂_{c1} p$ to $J/蠄p$: First, it is located exactly at the $蠂_{c1} p$ threshold. Second, the mass of the four-star well-established $螞(1890)$ is such that a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04950v2-abstract-full').style.display = 'inline'; document.getElementById('1507.04950v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04950v2-abstract-full" style="display: none;"> The LHCb Collaboration announced two pentaquark-like structures in the $J/蠄p$ invariant mass distribution. We show that the current information on the narrow structure at 4.45 GeV is compatible with kinematical effects of the rescattering from $蠂_{c1} p$ to $J/蠄p$: First, it is located exactly at the $蠂_{c1} p$ threshold. Second, the mass of the four-star well-established $螞(1890)$ is such that a leading Landau singularity from a triangle diagram can coincidentally appear at the $蠂_{c1} p$ threshold, and third, there is a narrow structure at the $蠂_{c1}\,p$ threshold but not at the $蠂_{c0} p$ and $蠂_{c2} p$ thresholds. In order to check whether that structure corresponds to a real exotic resonance, one has to measure the process $螞_b^0\to K^-蠂_{c1} p$. If the $P_c(4450)$ structure exists in the $蠂_{c1} p$ invariant mass distribution as well, then the structure cannot be just a kinematical effect but is a real resonance, otherwise, one cannot conclude the $P_c(4450)$ to be another exotic hadron. In addition, it is also worthwhile to measure the decay $违(1S)\to J/蠄p \bar p$: a narrow structure at 4.45 GeV but not at the $蠂_{c0} p$ and $蠂_{c2} p$ thresholds would exclude the possibility of a pure kinematical effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04950v2-abstract-full').style.display = 'none'; document.getElementById('1507.04950v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures. Version published in PRD as a Rapid Communication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 071502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0010143">arXiv:hep-ph/0010143</a> <span> [<a href="https://arxiv.org/pdf/hep-ph/0010143">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0010143">ps</a>, <a href="https://arxiv.org/format/hep-ph/0010143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.63.105001">10.1103/PhysRevD.63.105001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermions, Gauge Theories, and the Sinc Function Representation for Feynman Diagrams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Petrov%2C+D">Dmitri Petrov</a>, <a href="/search/hep-lat?searchtype=author&query=Easther%2C+R">Richard Easther</a>, <a href="/search/hep-lat?searchtype=author&query=Guralnik%2C+G">Gerald Guralnik</a>, <a href="/search/hep-lat?searchtype=author&query=Hahn%2C+S">Stephen Hahn</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei-Mun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0010143v1-abstract-short" style="display: inline;"> We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spin-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sinc function represe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0010143v1-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0010143v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0010143v1-abstract-full" style="display: none;"> We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spin-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sinc function representation for scalar field Feynman integrals are shared by fields with non-zero spin. We then investigate the application of the Sinc function representation to simple QED diagrams, including first order corrections to the propagators and the vertex. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0010143v1-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0010143v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, Latex, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BROWN-HET-1125 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D63 (2001) 105001 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>