CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Gui, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Gui%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gui, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gui%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gui, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01564">arXiv:2404.01564</a> <span> [<a href="https://arxiv.org/pdf/2404.01564">pdf</a>, <a href="https://arxiv.org/format/2404.01564">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2451-5">10.1007/s11433-024-2451-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The radiative decay of scalar glueball from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+J">Jintao Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+W">Wen Qin</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01564v4-abstract-short" style="display: inline;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'inline'; document.getElementById('2404.01564v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01564v4-abstract-full" style="display: none;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width $螕(J/蠄\to 纬G)=0.578(86)~\text{keV}$ and the branching fraction $\text{Br}(J/蠄\to 纬G) = 6.2(9)\times 10^{-3}$. We then extend the similar calculation to the process $G\to 纬蠁$ and get the partial decay width $螕(G \to 纬蠁)= 0.074(47)~\text{keV}$, which implies that the combined branching fraction of $J/蠄\to纬G\to 纬纬蠁$ is as small as $\mathcal{O}(10^{-9})$ such that this process is hardly detected by the BESIII experiment even with the large $J/蠄$ sample of $\mathcal{O}(10^{10})$. With the vector meson dominance model, the two-photon decay width of the scalar glueball is estimated to be $螕(G\to纬纬)=0.53(46)~\text{eV}$, which results in a large stickiness $S(G)\sim \mathcal{O}(10^4)$ of the scalar glueball by assuming the stickiness of $f_2(1270)$ to be one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'none'; document.getElementById('2404.01564v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,11 figures. This version is to be published in SCPMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy , Volume 67, Issue 11: 111012 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04713">arXiv:2211.04713</a> <span> [<a href="https://arxiv.org/pdf/2211.04713">pdf</a>, <a href="https://arxiv.org/format/2211.04713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Triply charmed baryons mass decomposition from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+J">Jin-Bo Li</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+W">Wen Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04713v1-abstract-short" style="display: inline;"> We present the first lattice QCD calculation about the mass decomposition of triply charmed baryons with $J^{P}$ as $\frac{3}{2}^{+}$ and $\frac{3}{2}^{-}$. The quark mass term $\langle H_{M} \rangle$ contributes about 66\% to the mass of $\frac{3}{2}^+$ state, which is slightly lower than that of the meson system with the same valence charm quark. Furthermore, based on our results, the total cont… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04713v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04713v1-abstract-full" style="display: none;"> We present the first lattice QCD calculation about the mass decomposition of triply charmed baryons with $J^{P}$ as $\frac{3}{2}^{+}$ and $\frac{3}{2}^{-}$. The quark mass term $\langle H_{M} \rangle$ contributes about 66\% to the mass of $\frac{3}{2}^+$ state, which is slightly lower than that of the meson system with the same valence charm quark. Furthermore, based on our results, the total contribution of sea quarks, the gluons and the QCD anomaly accounts for about a quarter of the mass of these two triply charmed baryons. The mass difference of $\frac{3}{2}^+$ and $\frac{3}{2}^-$ states is mainly from the quark energy $\langle H_{E} \rangle$ of the QCD energy-momentum tensor. For comparison, the mass splitting is also calculated under the framework of the constituent quark model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04713v1-abstract-full').style.display = 'none'; document.getElementById('2211.04713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 page, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12749">arXiv:2107.12749</a> <span> [<a href="https://arxiv.org/pdf/2107.12749">pdf</a>, <a href="https://arxiv.org/format/2107.12749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.136960">10.1016/j.physletb.2022.136960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Glueball content of $畏_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12749v2-abstract-short" style="display: inline;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12749v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12749v2-abstract-full" style="display: none;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar glueball, the mixing angle is determined to be approximately $4.6(6)^\circ$, which results in a $+3.9(9)$ MeV mass shift of the ground state pseudoscalar charmonium. In the mean time, the mixing can raise the total width of the pseudoscalar charmonium by 7.2(8) MeV, which explains to some extent the relative large total width of the $畏_c$ meson. As a result, the branching fraction of $畏_c\to 纬纬$ can be understood in this $c\bar{c}$-glueball mixing framework. On the other hand, the possible discrepancy of the theoretical predictions and the experimental results of the partial width of $J/蠄\to纬畏_c$ cannot be alleviated by the $c\bar{c}$-glueball mixing picture yet, which demands future precise experimental measurements of this partial width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'none'; document.getElementById('2107.12749v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures;v2: accepted by Physics Letter B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81T25 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B, 827(2022)136960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02965">arXiv:2103.02965</a> <span> [<a href="https://arxiv.org/pdf/2103.02965">pdf</a>, <a href="https://arxiv.org/format/2103.02965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115443">10.1016/j.nuclphysb.2021.115443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Renormalization of Quasi-Light-Front Correlators on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02965v1-abstract-short" style="display: inline;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02965v1-abstract-full" style="display: none;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'none'; document.getElementById('2103.02965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03666">arXiv:1906.03666</a> <span> [<a href="https://arxiv.org/pdf/1906.03666">pdf</a>, <a href="https://arxiv.org/format/1906.03666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.054511">10.1103/PhysRevD.100.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the pseudoscalar glueball in $J/蠄$ radiative decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Dong%2C+J">Jia-Mei Dong</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03666v3-abstract-short" style="display: inline;"> We aim to explore the production rate of the pseudoscalar glueball in $J/蠄$ radiative decay by lattice QCD in quenched approximation. The calculation is performed on three anisotropic lattices with the spatial lattice spacing ranging from 0.222(2) fm to 0.110(1) fm. As a calibration of some systematical uncertainties, we first extract the $M1$ form factor $\hat{V}(0)$ of the process… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03666v3-abstract-full').style.display = 'inline'; document.getElementById('1906.03666v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03666v3-abstract-full" style="display: none;"> We aim to explore the production rate of the pseudoscalar glueball in $J/蠄$ radiative decay by lattice QCD in quenched approximation. The calculation is performed on three anisotropic lattices with the spatial lattice spacing ranging from 0.222(2) fm to 0.110(1) fm. As a calibration of some systematical uncertainties, we first extract the $M1$ form factor $\hat{V}(0)$ of the process $J/蠄\to纬畏_{c}$ and get the result $\hat{V}(0)=1.933(41)$ in the continuum limit, which gives the partial width $螕(J/蠄\to纬畏_{c})=2.47(11)$ keV. These results are in agreement with that of previous lattice studies. As for the pseudoscalar glueball $G_{0^{-+}}$, its mass is derived to be $2.395(14)$ GeV, and the form factor $\hat{V}(0)$ of the process $J/蠄\to纬G_{0^{-+}}$ is determined to be $\hat{V}(0)=0.0246(43)$ after continuum extrapolation. Finally, the production rate of the pseudoscalar glueball is predicted to be $2.31(90)\times10^{-4}$, which is much smaller than that of conventional light $q\bar{q}$ $畏$ states. After the subtraction of the phase space factor, the couplings of $J/蠄X纬$ are similar where $X$ stands for $畏$ states and the pseudoscalar glueball. Possibly, the $U_{A}(1)$ anomaly plays an important role for the large couplings of gluons to the flavor singlet $畏$ states in $J/蠄$ radiative decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03666v3-abstract-full').style.display = 'none'; document.getElementById('1906.03666v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 16 figures, 7 tables, revised version. To appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 054511 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00711">arXiv:1711.00711</a> <span> [<a href="https://arxiv.org/pdf/1711.00711">pdf</a>, <a href="https://arxiv.org/format/1711.00711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505016">10.1051/epjconf/201817505016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball relevant study on isoscalars from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00711v1-abstract-short" style="display: inline;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00711v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00711v1-abstract-full" style="display: none;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to this state. So this state is most likely a glueball state. For pseudoscalars, along with the exiting lattice results, our study implies that both the conventional $q\bar{q}$ state $畏_2$ (or $畏'$ in flavor $SU(3)$) and a heavier glueball-like state with a mass of roughly 2.6 GeV exist in the spectrum of lattice QCD with dynamical quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'none'; document.getElementById('1711.00711v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 3 tables, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 05016 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.08174">arXiv:1702.08174</a> <span> [<a href="https://arxiv.org/pdf/1702.08174">pdf</a>, <a href="https://arxiv.org/format/1702.08174">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/42/9/093103">10.1088/1674-1137/42/9/093103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball spectrum from $N_f=2$ lattice QCD study on anisotropic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.08174v2-abstract-short" style="display: inline;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'inline'; document.getElementById('1702.08174v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.08174v2-abstract-full" style="display: none;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson loops are utilized in calculating the corresponding correlation functions. In the tensor channel, we obtain the ground state mass to be 2.363(39) GeV and 2.384(67) GeV at $m_蟺\sim 938$ MeV and $650$ MeV, respectively. In the pseudoscalar channel, when using the gluonic operator whose continuum limit has the form of $蔚_{ijk}TrB_iD_jB_k$, we obtain the ground state mass to be 2.573(55) GeV and 2.585(65) GeV at the two pion masses. These results are compatible with the corresponding results in the quenched approximation. In contrast, if we use the topological charge density as field operators for the pseudoscalar, the masses of the lowest state are much lighter (around 1GeV) and compatible with the expected masses of the flavor singlet $q\bar{q}$ meson. This indicates that the operator $蔚_{ijk}TrB_iD_jB_k$ and the topological charge density couple rather differently to the glueball states and $q\bar{q}$ mesons. The observation of the light flavor singlet pseudoscalar meson can be viewed as the manifestation of effects of dynamical quarks. In the scalar channel, the ground state masses extracted from the correlation functions of gluonic operators are determined to be around 1.4-1.5 GeV, which is close to the ground state masses from the correlation functions of the quark bilinear operators. In all cases, the mixing between glueballs and conventional mesons remains to be further clarified in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'none'; document.getElementById('1702.08174v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 9 tables; typos fixed, minor modifications, match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C42 (2018) no.9, 093103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.03401">arXiv:1604.03401</a> <span> [<a href="https://arxiv.org/pdf/1604.03401">pdf</a>, <a href="https://arxiv.org/ps/1604.03401">ps</a>, <a href="https://arxiv.org/format/1604.03401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/40/8/081002">10.1088/1674-1137/40/8/081002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exotic vector charmonium and its leptonic decay width </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.03401v1-abstract-short" style="display: inline;"> We propose a novel type of interpolating field operators, which manifests the hybrid-like configuration that the charm quark-antiquark pair recoils against gluonic degrees of freedom. A heavy vector charmonium-like state with a mass of $4.33(2)\,{\rm GeV}$ is disentangled from the conventional charmonium states in the quenched approximation. This state has affinity for the hybrid-like operators bu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.03401v1-abstract-full').style.display = 'inline'; document.getElementById('1604.03401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.03401v1-abstract-full" style="display: none;"> We propose a novel type of interpolating field operators, which manifests the hybrid-like configuration that the charm quark-antiquark pair recoils against gluonic degrees of freedom. A heavy vector charmonium-like state with a mass of $4.33(2)\,{\rm GeV}$ is disentangled from the conventional charmonium states in the quenched approximation. This state has affinity for the hybrid-like operators but couples less to the relevant quark bilinear operator. We also try to extract its leptonic decay constant and give a tentative upper limit that it is less than one tenth of that of $J/蠄$, which corresponds to a leptonic decay width about dozens of eV. The connection of this state with $X(4260)$ is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.03401v1-abstract-full').style.display = 'none'; document.getElementById('1604.03401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, to be submitted to Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 40, 081002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1083">arXiv:1411.1083</a> <span> [<a href="https://arxiv.org/pdf/1411.1083">pdf</a>, <a href="https://arxiv.org/ps/1411.1083">ps</a>, <a href="https://arxiv.org/format/1411.1083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.054513">10.1103/PhysRevD.91.054513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wave functions of $SU(3)$ pure gauge glueballs on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1083v3-abstract-short" style="display: inline;"> The Bethe-Salpeter wave functions of $SU(3)$ pure gauge glueballs are revisited in this study. The ground and the first excited states of scalar and tensor glueballs are identified unambiguously by using the variational method on the basis of large operator sets. We calculate their wave functions in the Coulomb gauge and use two lattices with different lattice spacings to check the discretization… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1083v3-abstract-full').style.display = 'inline'; document.getElementById('1411.1083v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1083v3-abstract-full" style="display: none;"> The Bethe-Salpeter wave functions of $SU(3)$ pure gauge glueballs are revisited in this study. The ground and the first excited states of scalar and tensor glueballs are identified unambiguously by using the variational method on the basis of large operator sets. We calculate their wave functions in the Coulomb gauge and use two lattices with different lattice spacings to check the discretization artifacts. For ground states, the radial wave functions are approximately Gaussian and the size of the tensor is twice as large as that of the scalar. For the first excited states, the radial nodes are clearly observed for both the scalar and the tensor glueballs, such that they can be interpreted as the first radial excitations. These observations may shed light on the theoretical understanding of the inner structure of glueballs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1083v3-abstract-full').style.display = 'none'; document.getElementById('1411.1083v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 054513 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.3923">arXiv:1402.3923</a> <span> [<a href="https://arxiv.org/pdf/1402.3923">pdf</a>, <a href="https://arxiv.org/ps/1402.3923">ps</a>, <a href="https://arxiv.org/format/1402.3923">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Glueballs in charmonia radiative decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.3923v1-abstract-short" style="display: inline;"> Scalar \cite{scalar_paper} and tensor \cite{tensor_paper} glueballs created in $J/蠄$ radiative decays are studied in quenched lattice QCD. Using two anisotropic lattices to approach the continuum limit, we compute the relevant form factors responsible for the decay rates for $J/蠄\rightarrow纬G_{0^{++}}$ and $J/蠄\rightarrow纬G_{2^{++}}$. Comparing with the existing experimental data, it is argued t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3923v1-abstract-full').style.display = 'inline'; document.getElementById('1402.3923v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.3923v1-abstract-full" style="display: none;"> Scalar \cite{scalar_paper} and tensor \cite{tensor_paper} glueballs created in $J/蠄$ radiative decays are studied in quenched lattice QCD. Using two anisotropic lattices to approach the continuum limit, we compute the relevant form factors responsible for the decay rates for $J/蠄\rightarrow纬G_{0^{++}}$ and $J/蠄\rightarrow纬G_{2^{++}}$. Comparing with the existing experimental data, it is argued that $f_0(1710)$ is a favorable candidate for scalar glueball. The decay rate for $J/蠄\rightarrow纬G_{2^{++}}$ is found to be quite substantial. A comprehensive search in the tensor channel on BESIII is therefore suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3923v1-abstract-full').style.display = 'none'; document.getElementById('1402.3923v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany, 7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2013)435 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.3532">arXiv:1310.3532</a> <span> [<a href="https://arxiv.org/pdf/1310.3532">pdf</a>, <a href="https://arxiv.org/ps/1310.3532">ps</a>, <a href="https://arxiv.org/format/1310.3532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094507">10.1103/PhysRevD.89.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oscillatory behavior of the domain wall fermions revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.3532v2-abstract-short" style="display: inline;"> In the generic domain wall fermion formulation of chiral fermions on the lattice, the zero modes of the four-dimensional Wilson fermion operator with the negative mass parameter $-M_5$ introduce unphysical massive modes propagating in the four-dimensional spacetime. In the free fermion case, the pole mass of this kind of unphysical modes is given by $\tilde{E}=\ln(1-M_5)$, which acquires an imagin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.3532v2-abstract-full').style.display = 'inline'; document.getElementById('1310.3532v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.3532v2-abstract-full" style="display: none;"> In the generic domain wall fermion formulation of chiral fermions on the lattice, the zero modes of the four-dimensional Wilson fermion operator with the negative mass parameter $-M_5$ introduce unphysical massive modes propagating in the four-dimensional spacetime. In the free fermion case, the pole mass of this kind of unphysical modes is given by $\tilde{E}=\ln(1-M_5)$, which acquires an imaginary part, $i蟺$, when $M_5>1$ and results in an oscillatory behavior of the domain wall fermion propagator in time. The existence of the unphysical modes in the presence of gauge fields is investigated in the mean field approximation, and their physical consequences are discussed. In addition, we also give a semiquantitative criterion for tuning $M_5$ in the realistic numerical study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.3532v2-abstract-full').style.display = 'none'; document.getElementById('1310.3532v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, no figures. Minor corrections to match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 89, 094507 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.3807">arXiv:1304.3807</a> <span> [<a href="https://arxiv.org/pdf/1304.3807">pdf</a>, <a href="https://arxiv.org/ps/1304.3807">ps</a>, <a href="https://arxiv.org/format/1304.3807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.091601">10.1103/PhysRevLett.111.091601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Study of Radiative $J/蠄$ Decay to a Tensor Glueball </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.3807v2-abstract-short" style="display: inline;"> The radiative decay of $J/蠄$ into a pure gauge tensor glueball is studied in the quenched lattice QCD formalism. With two anisotropic lattices, the mutlipole amplitudes E_1(0), M_2(0) and E_3(0) are obtained to be 0.114(12)(6)GeV, -0.011(5)(1)GeV, and 0.023(8)(1)GeV, respectively. The first error comes from the statistics, the Q^2 interpolation, and the continuum extrapolation, while the second is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3807v2-abstract-full').style.display = 'inline'; document.getElementById('1304.3807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.3807v2-abstract-full" style="display: none;"> The radiative decay of $J/蠄$ into a pure gauge tensor glueball is studied in the quenched lattice QCD formalism. With two anisotropic lattices, the mutlipole amplitudes E_1(0), M_2(0) and E_3(0) are obtained to be 0.114(12)(6)GeV, -0.011(5)(1)GeV, and 0.023(8)(1)GeV, respectively. The first error comes from the statistics, the Q^2 interpolation, and the continuum extrapolation, while the second is due to the uncertainty of the scale parameter r_0^{-1}=410(20) MeV. Thus the partial decay width $螕(J/蠄\rightarrow 纬G_{2^{++}})$ is estimated to be 1.01(22)(10) keV which corresponds to a large branch ratio 1.1(2)(1)x10^{-2}. The phenomenological implication of this result is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3807v2-abstract-full').style.display = 'none'; document.getElementById('1304.3807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. Title modified, references added, and typos corrected. The systematic errors owing to the uncertainty of the scale parameter r_0 is considered. Published version in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 091601 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.2086">arXiv:1206.2086</a> <span> [<a href="https://arxiv.org/pdf/1206.2086">pdf</a>, <a href="https://arxiv.org/ps/1206.2086">ps</a>, <a href="https://arxiv.org/format/1206.2086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.014501">10.1103/PhysRevD.87.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice study on $畏_{c2}$ and X(3872) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.2086v2-abstract-short" style="display: inline;"> Properties of $2^{-+}$ charmonium $畏_{c2}$ are investigated in quenched lattice QCD. The mass of $畏_{c2}$ is determined to be 3.80(3) GeV, which is close to the mass of $D$-wave charmonium $蠄(3770)$ and in agreement with quark model predictions. The transition width of $畏_{c2}\to 纬J/蠄$ is also obtained with a value $螕=3.8(9)$ keV. Since the possible $2^{-+}$ assignment to X(3872) has not been rule… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2086v2-abstract-full').style.display = 'inline'; document.getElementById('1206.2086v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.2086v2-abstract-full" style="display: none;"> Properties of $2^{-+}$ charmonium $畏_{c2}$ are investigated in quenched lattice QCD. The mass of $畏_{c2}$ is determined to be 3.80(3) GeV, which is close to the mass of $D$-wave charmonium $蠄(3770)$ and in agreement with quark model predictions. The transition width of $畏_{c2}\to 纬J/蠄$ is also obtained with a value $螕=3.8(9)$ keV. Since the possible $2^{-+}$ assignment to X(3872) has not been ruled out by experiments, our results help to clarify the nature of X(3872). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2086v2-abstract-full').style.display = 'none'; document.getElementById('1206.2086v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures. typos, grammatical errors and some references corrected, redundant discussions deleted, conclusion does not change. published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. ReV. D 87, 014501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.0125">arXiv:1206.0125</a> <span> [<a href="https://arxiv.org/pdf/1206.0125">pdf</a>, <a href="https://arxiv.org/ps/1206.0125">ps</a>, <a href="https://arxiv.org/format/1206.0125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.021601">10.1103/PhysRevLett.110.021601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalar Glueball in Radiative $J/蠄$ Decay on Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.0125v2-abstract-short" style="display: inline;"> The form factors in the radiative decay of $J/蠄$ to a scalar glueball are studied within quenched lattice QCD on anisotropic lattices. The continuum extrapolation is carried out by using two different lattice spacings. With the results of these form factors, the partial width of $J/蠄$ radiatively decaying into the pure gauge scalar glueball is predicted to be 0.35(8) keV, which corresponds to a br… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0125v2-abstract-full').style.display = 'inline'; document.getElementById('1206.0125v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.0125v2-abstract-full" style="display: none;"> The form factors in the radiative decay of $J/蠄$ to a scalar glueball are studied within quenched lattice QCD on anisotropic lattices. The continuum extrapolation is carried out by using two different lattice spacings. With the results of these form factors, the partial width of $J/蠄$ radiatively decaying into the pure gauge scalar glueball is predicted to be 0.35(8) keV, which corresponds to a branching ratio of 3.8(9)x10^{-3}. By comparing with the experiments, out results indicate that f_0(1710) has a larger overlap with the pure gauge glueball than other related scalar mesons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0125v2-abstract-full').style.display = 'none'; document.getElementById('1206.0125v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, typos corrected, references corrected and added, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 021601 (2013) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>