CINXE.COM
Jyeshtharaj Joshi - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jyeshtharaj Joshi - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="gyXMM6s7I/E/0gj0g1tKKYq0w4ZkrmegyP3srTQw4rJxT4yzB0ABLQoD3YRFMhW3CzBshgLMVPHyjsdeLhRpFA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="jyeshtharaj joshi" /> <meta name="description" content="Jyeshtharaj Joshi: 36 Followers, 4 Following, 36 Research papers. Research interests: Biofluid Mechanics, Process, and Computational Fluid Dynamics (CFD)…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277173960,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732446667000); window.Aedu.timeDifference = new Date().getTime() - 1732446667000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JyeshtharajJoshi" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":18310,"name":"Biofluid Mechanics","url":"https://www.academia.edu/Documents/in/Biofluid_Mechanics"},{"id":59407,"name":"Process","url":"https://www.academia.edu/Documents/in/Process"},{"id":61709,"name":"Computational Fluid Dynamics (CFD) modelling and simulation","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics_CFD_modelling_and_simulation"},{"id":171623,"name":"Droplets","url":"https://www.academia.edu/Documents/in/Droplets"},{"id":17331,"name":"Oil and gas","url":"https://www.academia.edu/Documents/in/Oil_and_gas"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JyeshtharajJoshi","location":"/JyeshtharajJoshi","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JyeshtharajJoshi","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c4df6011-b059-4ceb-8eae-9eed9d5546ea"></div> <div id="ProfileCheckPaperUpdate-react-component-c4df6011-b059-4ceb-8eae-9eed9d5546ea"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jyeshtharaj Joshi</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jyeshtharaj" data-follow-user-id="51448878" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="51448878"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">36</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51448878" href="https://www.academia.edu/Documents/in/Biofluid_Mechanics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JyeshtharajJoshi","location":"/JyeshtharajJoshi","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JyeshtharajJoshi","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Biofluid Mechanics"]}" data-trace="false" data-dom-id="Pill-react-component-b05bcd91-85f2-43f8-b138-c61e66dcaa3a"></div> <div id="Pill-react-component-b05bcd91-85f2-43f8-b138-c61e66dcaa3a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51448878" href="https://www.academia.edu/Documents/in/Process"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Process"]}" data-trace="false" data-dom-id="Pill-react-component-f08ac2c2-9943-4b1d-a94e-b61ed81d61ab"></div> <div id="Pill-react-component-f08ac2c2-9943-4b1d-a94e-b61ed81d61ab"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51448878" href="https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics_CFD_modelling_and_simulation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computational Fluid Dynamics (CFD) modelling and simulation"]}" data-trace="false" data-dom-id="Pill-react-component-b7a9c494-5ca6-430f-9353-01b4e77fdfaa"></div> <div id="Pill-react-component-b7a9c494-5ca6-430f-9353-01b4e77fdfaa"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51448878" href="https://www.academia.edu/Documents/in/Droplets"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Droplets"]}" data-trace="false" data-dom-id="Pill-react-component-559edaac-cd63-4121-a447-822ac727d44c"></div> <div id="Pill-react-component-559edaac-cd63-4121-a447-822ac727d44c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51448878" href="https://www.academia.edu/Documents/in/Oil_and_gas"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Oil and gas"]}" data-trace="false" data-dom-id="Pill-react-component-e02e6e8f-51ad-4027-943f-0e373eaa4e8e"></div> <div id="Pill-react-component-e02e6e8f-51ad-4027-943f-0e373eaa4e8e"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jyeshtharaj Joshi</h3></div><div class="js-work-strip profile--work_container" data-work-id="73649814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation"><img alt="Research paper thumbnail of Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation" class="work-thumbnail" src="https://attachments.academia-assets.com/82088450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation">Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 & 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f9f8db4b77e980b0d9334a5345f08d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088450,"asset_id":73649814,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649814]").text(description); $(".js-view-count[data-work-id=73649814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649814, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f9f8db4b77e980b0d9334a5345f08d8" } } $('.js-work-strip[data-work-id=73649814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649814,"title":"Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation","translated_title":"","metadata":{"abstract":"Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 \u0026 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 \u0026 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.","internal_url":"https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation","translated_internal_url":"","created_at":"2022-03-13T03:31:24.480-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088450/thumbnails/1.jpg","file_name":"041KHA.pdf","download_url":"https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bed_Expansion_Behaviour_in_a_Binary_Soli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088450/041KHA-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DBed_Expansion_Behaviour_in_a_Binary_Soli.pdf\u0026Expires=1732450266\u0026Signature=e6jAOFqg2A00lcPU4pdeVv1W28VvEooG5c1wGYkBvLcuxJ1Qbp-K1Jnme-mI3iGlT~OtRMP-VXCO3TTVX4AB45MPdHl3ZyfbOVwuTDfVx9nlrWLvjijA0Z84Javkv0i9qjpFXWQvF4vaVX7LJSuC2pQmMZMfoH25oxATNGgAfIkLaujvQqY~n1j1zV14bmL-v3q4IFjLqhXV0Eh6AZFktxg0ZAsy7WD7PxZKTAzpIagD4xRCayTUktP2OGuzefzUUkVElh-aQoQrm9AdF9KFNvgAxLwgKbNAkkW6F1v7edQ4M5fzkyZxFi4mA~QseUzc5pBKcM3RoVS95cUE2EZdKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088450/thumbnails/1.jpg","file_name":"041KHA.pdf","download_url":"https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bed_Expansion_Behaviour_in_a_Binary_Soli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088450/041KHA-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DBed_Expansion_Behaviour_in_a_Binary_Soli.pdf\u0026Expires=1732450266\u0026Signature=e6jAOFqg2A00lcPU4pdeVv1W28VvEooG5c1wGYkBvLcuxJ1Qbp-K1Jnme-mI3iGlT~OtRMP-VXCO3TTVX4AB45MPdHl3ZyfbOVwuTDfVx9nlrWLvjijA0Z84Javkv0i9qjpFXWQvF4vaVX7LJSuC2pQmMZMfoH25oxATNGgAfIkLaujvQqY~n1j1zV14bmL-v3q4IFjLqhXV0Eh6AZFktxg0ZAsy7WD7PxZKTAzpIagD4xRCayTUktP2OGuzefzUUkVElh-aQoQrm9AdF9KFNvgAxLwgKbNAkkW6F1v7edQ4M5fzkyZxFi4mA~QseUzc5pBKcM3RoVS95cUE2EZdKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18465791,"url":"https://web.archive.org/web/20180413100315/http://www.cfd.com.au/cfd_conf15/PDFs/041KHA.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers"><img alt="Research paper thumbnail of Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers">Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649813]").text(description); $(".js-view-count[data-work-id=73649813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649813, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649813,"title":"Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_internal_url":"","created_at":"2022-03-13T03:31:24.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"}],"urls":[{"id":18465790,"url":"http://search.informit.com.au/documentSummary;dn=700385940259087;res=IELENG"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649812"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film"><img alt="Research paper thumbnail of Interaction dynamics of a spherical particle with a suspended liquid film" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film">Interaction dynamics of a spherical particle with a suspended liquid film</a></div><div class="wp-workCard_item"><span>AIChE Journal</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hydrodynamics of collision interactions between a particle and gas-liquid interface such as dropl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649812"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649812"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649812; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649812]").text(description); $(".js-view-count[data-work-id=73649812]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649812; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649812']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649812, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649812]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649812,"title":"Interaction dynamics of a spherical particle with a suspended liquid film","translated_title":"","metadata":{"abstract":"Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"AIChE Journal"},"translated_abstract":"Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016","internal_url":"https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film","translated_internal_url":"","created_at":"2022-03-13T03:31:24.152-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2820942,"name":"Aiche","url":"https://www.academia.edu/Documents/in/Aiche"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649811"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection"><img alt="Research paper thumbnail of A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection" class="work-thumbnail" src="https://attachments.academia-assets.com/82088487/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection">A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4541db7d67ce796cd1fd2030f00aa689" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088487,"asset_id":73649811,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649811"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649811"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649811; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649811]").text(description); $(".js-view-count[data-work-id=73649811]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649811; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649811']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649811, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4541db7d67ce796cd1fd2030f00aa689" } } $('.js-work-strip[data-work-id=73649811]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649811,"title":"A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection","translated_internal_url":"","created_at":"2022-03-13T03:31:23.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088487/thumbnails/1.jpg","file_name":"0673-0755.pdf","download_url":"https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_review_on_the_thermal_hydraulic_charac.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088487/0673-0755-libre.pdf?1647168025=\u0026response-content-disposition=attachment%3B+filename%3DA_review_on_the_thermal_hydraulic_charac.pdf\u0026Expires=1732450266\u0026Signature=cD06QERGksgk1GCGViDmGIIhJ-FgTNUDqH9c-4o9SofAGhq-A1XKy-OvoGzx4t6Cz7uLbUe8Y7r6ACDAcSsPywxGDc~wvIeYxa2lZ0Ocyi1FyQTKFULm3vQ3qYdbLsVWMFPW0IGK~lirH2zkOTkRBln-9ZCwnd0~9a-lluogjn4lFEc4FegN6KOPzLwkhngQcLm2sWUEZG7Ty2taMbogH7OmBbA4k~16q5cPKq4ZoDghDVcCOkAMfX97Jdec2a4KUyHPHsx1LZvOLZjulRU6ez7kAutAXnA6etI71mp6AO1rhij8zZ5IPaKn0swJ-f2rI4QPMIPYq8h4vFoY7K~Blw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection","translated_slug":"","page_count":83,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088487/thumbnails/1.jpg","file_name":"0673-0755.pdf","download_url":"https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_review_on_the_thermal_hydraulic_charac.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088487/0673-0755-libre.pdf?1647168025=\u0026response-content-disposition=attachment%3B+filename%3DA_review_on_the_thermal_hydraulic_charac.pdf\u0026Expires=1732450266\u0026Signature=cD06QERGksgk1GCGViDmGIIhJ-FgTNUDqH9c-4o9SofAGhq-A1XKy-OvoGzx4t6Cz7uLbUe8Y7r6ACDAcSsPywxGDc~wvIeYxa2lZ0Ocyi1FyQTKFULm3vQ3qYdbLsVWMFPW0IGK~lirH2zkOTkRBln-9ZCwnd0~9a-lluogjn4lFEc4FegN6KOPzLwkhngQcLm2sWUEZG7Ty2taMbogH7OmBbA4k~16q5cPKq4ZoDghDVcCOkAMfX97Jdec2a4KUyHPHsx1LZvOLZjulRU6ez7kAutAXnA6etI71mp6AO1rhij8zZ5IPaKn0swJ-f2rI4QPMIPYq8h4vFoY7K~Blw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649810"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems"><img alt="Research paper thumbnail of Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/82088485/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems">Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems</a></div><div class="wp-workCard_item"><span>Procedia Engineering</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="902ba5a1f2d58a5eb5703d340f8c121f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088485,"asset_id":73649810,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649810"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649810"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649810; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649810]").text(description); $(".js-view-count[data-work-id=73649810]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649810; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649810']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649810, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "902ba5a1f2d58a5eb5703d340f8c121f" } } $('.js-work-strip[data-work-id=73649810]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649810,"title":"Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Procedia Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems","translated_internal_url":"","created_at":"2022-03-13T03:31:23.060-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088485,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088485/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__.pdf","download_url":"https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Detachment_from_a_Steel_Ball_in_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088485/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Detachment_from_a_Steel_Ball_in_T.pdf\u0026Expires=1732450266\u0026Signature=AsOOQNPbQpHQbRwHRoF5i~l~zHlsnPrlh0OcmWqZghcJ2C-Nz3j-wkm8OPOQrHMe1HN3HaMohxNo~-gJuNKjwLEfFdIUoz2d5hXIOPJv26s5rpUtbJEsq9LQgCVDwfCixDMyTuIrcFL7i~Rw1a--mRc7-06Y9mFbIJBA1GwZqgfEH0JrTUPCMEskB5ZVfj0N-ESRakSmmWMBtO2cNCbO6qJUd3oMezqEsUnAatEX~L7i5TEmj1OL~l5FNN3g6frLWW7GMuDMPAEQPQNeNoiAMGoWlTTAUgT6AX81S58yZ6IyvxRRW75M7Ora-4Jv-84olcaphEqdiofje8z4Vyxyfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088485,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088485/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__.pdf","download_url":"https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Detachment_from_a_Steel_Ball_in_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088485/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Detachment_from_a_Steel_Ball_in_T.pdf\u0026Expires=1732450266\u0026Signature=AsOOQNPbQpHQbRwHRoF5i~l~zHlsnPrlh0OcmWqZghcJ2C-Nz3j-wkm8OPOQrHMe1HN3HaMohxNo~-gJuNKjwLEfFdIUoz2d5hXIOPJv26s5rpUtbJEsq9LQgCVDwfCixDMyTuIrcFL7i~Rw1a--mRc7-06Y9mFbIJBA1GwZqgfEH0JrTUPCMEskB5ZVfj0N-ESRakSmmWMBtO2cNCbO6qJUd3oMezqEsUnAatEX~L7i5TEmj1OL~l5FNN3g6frLWW7GMuDMPAEQPQNeNoiAMGoWlTTAUgT6AX81S58yZ6IyvxRRW75M7Ora-4Jv-84olcaphEqdiofje8z4Vyxyfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":171114,"name":"Turbulent Flow","url":"https://www.academia.edu/Documents/in/Turbulent_Flow"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649809"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers"><img alt="Research paper thumbnail of Comparison of vaporization models for feed droplet in fluid catalytic cracking risers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers">Comparison of vaporization models for feed droplet in fluid catalytic cracking risers</a></div><div class="wp-workCard_item"><span>Chemical Engineering Research and Design</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic C...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649809"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649809"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649809; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649809]").text(description); $(".js-view-count[data-work-id=73649809]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649809; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649809']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649809, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649809]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649809,"title":"Comparison of vaporization models for feed droplet in fluid catalytic cracking risers","translated_title":"","metadata":{"abstract":"ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Chemical Engineering Research and Design"},"translated_abstract":"ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.","internal_url":"https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_internal_url":"","created_at":"2022-03-13T03:31:22.940-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":228287,"name":"Fluid Catalytic Cracking","url":"https://www.academia.edu/Documents/in/Fluid_Catalytic_Cracking"},{"id":259030,"name":"Chemical Engineering Design","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649808"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB"><img alt="Research paper thumbnail of Segregation and Dispersion Studies in Binary SLFB" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB">Segregation and Dispersion Studies in Binary SLFB</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649808"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649808"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649808; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649808]").text(description); $(".js-view-count[data-work-id=73649808]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649808; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649808']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649808, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649808]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649808,"title":"Segregation and Dispersion Studies in Binary SLFB","translated_title":"","metadata":{"abstract":"ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies."},"translated_abstract":"ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies.","internal_url":"https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB","translated_internal_url":"","created_at":"2022-03-13T03:31:22.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Segregation_and_Dispersion_Studies_in_Binary_SLFB","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23020,"name":"Powder technology","url":"https://www.academia.edu/Documents/in/Powder_technology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649807"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates"><img alt="Research paper thumbnail of A method for calculating the surface area of numerically simulated aggregates" class="work-thumbnail" src="https://attachments.academia-assets.com/83842477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates">A method for calculating the surface area of numerically simulated aggregates</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="738e92b86411ffeca3aab6478d55d83e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83842477,"asset_id":73649807,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649807"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649807"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649807; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649807]").text(description); $(".js-view-count[data-work-id=73649807]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649807; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649807']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649807, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "738e92b86411ffeca3aab6478d55d83e" } } $('.js-work-strip[data-work-id=73649807]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649807,"title":"A method for calculating the surface area of numerically simulated aggregates","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates","translated_internal_url":"","created_at":"2022-03-13T03:31:22.723-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83842477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842477/thumbnails/1.jpg","file_name":"28938.pdf","download_url":"https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_calculating_the_surface_are.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842477/28938-libre.pdf?1649737191=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_calculating_the_surface_are.pdf\u0026Expires=1732450266\u0026Signature=HAD1-upNzTU5sQKZLC~OwsthY~13xwSbiSMt6PDJla62eYwwNTVc-Fjg51tcBMh7lFvZO9rgiG3jK3CM6~b~X6LMliaY8vhwhros7vrz5~R~BS5y2jsecTODNmj~7fZNe7sltCCwvswGHDPRi1nKBz3S8sLThXBLw9gt5s~jfLVrqCSm5GJsCcbWFrDicr8AgJmmgDtmop7lmGi3mKFOqtm6wCxCexJS1BJ-99ctBtZ~zhg1UT8HDyHBkPUOH-PlGCeaPo2Hd-LP9uPQXPN0lgw6BZzjzuNBgBa0NxwQ1LRC7smZyAywx0ZrU0wEtcm5p55CR67ik2WIrj1~Nq2GVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":83842477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842477/thumbnails/1.jpg","file_name":"28938.pdf","download_url":"https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_calculating_the_surface_are.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842477/28938-libre.pdf?1649737191=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_calculating_the_surface_are.pdf\u0026Expires=1732450266\u0026Signature=HAD1-upNzTU5sQKZLC~OwsthY~13xwSbiSMt6PDJla62eYwwNTVc-Fjg51tcBMh7lFvZO9rgiG3jK3CM6~b~X6LMliaY8vhwhros7vrz5~R~BS5y2jsecTODNmj~7fZNe7sltCCwvswGHDPRi1nKBz3S8sLThXBLw9gt5s~jfLVrqCSm5GJsCcbWFrDicr8AgJmmgDtmop7lmGi3mKFOqtm6wCxCexJS1BJ-99ctBtZ~zhg1UT8HDyHBkPUOH-PlGCeaPo2Hd-LP9uPQXPN0lgw6BZzjzuNBgBa0NxwQ1LRC7smZyAywx0ZrU0wEtcm5p55CR67ik2WIrj1~Nq2GVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"},{"id":721120,"name":"Coordination number","url":"https://www.academia.edu/Documents/in/Coordination_number"},{"id":890611,"name":"Fractal Dimension","url":"https://www.academia.edu/Documents/in/Fractal_Dimension"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649806"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry"><img alt="Research paper thumbnail of Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry" class="work-thumbnail" src="https://attachments.academia-assets.com/83842612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry">Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8aa8f2760f646d25bfd753fab36ec061" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83842612,"asset_id":73649806,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649806"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649806"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649806; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649806]").text(description); $(".js-view-count[data-work-id=73649806]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649806; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649806']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649806, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8aa8f2760f646d25bfd753fab36ec061" } } $('.js-work-strip[data-work-id=73649806]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649806,"title":"Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry","translated_internal_url":"","created_at":"2022-03-13T03:31:22.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83842612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842612/thumbnails/1.jpg","file_name":"Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf","download_url":"https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Turbulence_Energy_Spectrum_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842612/Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf?1649712657=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Turbulence_Energy_Spectrum_b.pdf\u0026Expires=1732450266\u0026Signature=QfK3JAunveK0OqGozsmOFqAAnos4i9qSZqSOwxX8zEsV9ccBnCB99HNnJswdl9WgFE7MUK9OMC-pLedfS5ucnNwTGBCRB7vMGBTkQ7jaLTmUE-3ZA5RAWls8fKq9Fcr-om4UT5bqXHa2Zq4Vhr4iATUbGKHOo47rwsTZyVy2nyM6lVIjM2evNKhkdbSAP0Lr40di8J1SV6ou4kkOJb53vVpp~uXDoWrbLKLMWiLxoFt4CGv~AU65K7juoO94KZttTcbA0abDVKV04u1XFnbve6CikxUHrOpu5qlethzDHEI7Xfez7p1zneBTdPXSZ~w9Z7fq1uQSHs3z7DvBXaEgDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":83842612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842612/thumbnails/1.jpg","file_name":"Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf","download_url":"https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Turbulence_Energy_Spectrum_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842612/Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf?1649712657=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Turbulence_Energy_Spectrum_b.pdf\u0026Expires=1732450266\u0026Signature=QfK3JAunveK0OqGozsmOFqAAnos4i9qSZqSOwxX8zEsV9ccBnCB99HNnJswdl9WgFE7MUK9OMC-pLedfS5ucnNwTGBCRB7vMGBTkQ7jaLTmUE-3ZA5RAWls8fKq9Fcr-om4UT5bqXHa2Zq4Vhr4iATUbGKHOo47rwsTZyVy2nyM6lVIjM2evNKhkdbSAP0Lr40di8J1SV6ou4kkOJb53vVpp~uXDoWrbLKLMWiLxoFt4CGv~AU65K7juoO94KZttTcbA0abDVKV04u1XFnbve6CikxUHrOpu5qlethzDHEI7Xfez7p1zneBTdPXSZ~w9Z7fq1uQSHs3z7DvBXaEgDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":24546,"name":"Transport phenomena","url":"https://www.academia.edu/Documents/in/Transport_phenomena"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649805"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational"><img alt="Research paper thumbnail of Stability analysis in solid–liquid fluidized beds: Experimental and computational" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational">Stability analysis in solid–liquid fluidized beds: Experimental and computational</a></div><div class="wp-workCard_item"><span>Chemical Engineering Journal</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649805"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649805"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649805; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649805]").text(description); $(".js-view-count[data-work-id=73649805]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649805; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649805']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649805, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649805]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649805,"title":"Stability analysis in solid–liquid fluidized beds: Experimental and computational","translated_title":"","metadata":{"abstract":"ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Chemical Engineering Journal"},"translated_abstract":"ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.","internal_url":"https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational","translated_internal_url":"","created_at":"2022-03-13T03:31:22.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":13699,"name":"Particle Image Velocimetry","url":"https://www.academia.edu/Documents/in/Particle_Image_Velocimetry"},{"id":25600,"name":"Stability","url":"https://www.academia.edu/Documents/in/Stability"},{"id":25986,"name":"Discrete Element Modeling","url":"https://www.academia.edu/Documents/in/Discrete_Element_Modeling"},{"id":591436,"name":"Fluidized Beds","url":"https://www.academia.edu/Documents/in/Fluidized_Beds"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649804"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed"><img alt="Research paper thumbnail of Forces acting on a single introduced particle in a solid–liquid fluidised bed" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed">Forces acting on a single introduced particle in a solid–liquid fluidised bed</a></div><div class="wp-workCard_item"><span>Chemical Engineering Science</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) &amp;gt; 65 and d(p2)/d(p1) &amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649804"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649804"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649804; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649804]").text(description); $(".js-view-count[data-work-id=73649804]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649804; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649804']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649804, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649804]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649804,"title":"Forces acting on a single introduced particle in a solid–liquid fluidised bed","translated_title":"","metadata":{"abstract":"ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) \u0026amp;gt; 65 and d(p2)/d(p1) \u0026amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Chemical Engineering Science"},"translated_abstract":"ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) \u0026amp;gt; 65 and d(p2)/d(p1) \u0026amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.","internal_url":"https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed","translated_internal_url":"","created_at":"2022-03-13T03:31:22.258-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":11016,"name":"Discrete Element Method","url":"https://www.academia.edu/Documents/in/Discrete_Element_Method"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649803"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review"><img alt="Research paper thumbnail of Entrainment phenomenon in gas–liquid two-phase flow: A review" class="work-thumbnail" src="https://attachments.academia-assets.com/82088486/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review">Entrainment phenomenon in gas–liquid two-phase flow: A review</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a571adbeca087d15375f5fa77a6b999a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088486,"asset_id":73649803,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649803"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649803"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649803; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649803]").text(description); $(".js-view-count[data-work-id=73649803]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649803; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649803']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649803, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a571adbeca087d15375f5fa77a6b999a" } } $('.js-work-strip[data-work-id=73649803]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649803,"title":"Entrainment phenomenon in gas–liquid two-phase flow: A review","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review","translated_internal_url":"","created_at":"2022-03-13T03:31:22.094-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088486,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088486/thumbnails/1.jpg","file_name":"1173-1217.pdf","download_url":"https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entrainment_phenomenon_in_gas_liquid_two.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088486/1173-1217-libre.pdf?1647168024=\u0026response-content-disposition=attachment%3B+filename%3DEntrainment_phenomenon_in_gas_liquid_two.pdf\u0026Expires=1732450266\u0026Signature=c5~qc4L3~ApY2ciHdAXyzMEqiARNY9v-NCnWCfMOT-7~C~DMsCVebtlqLRv54AiXjxFLtXg1De73QQZH2s92TCx8e3y-GR09cUSYAHpBub6VG2yDEhNgCLEfId6ZZVuS0FNJImkl4vMmtMA1G36DCeLTKYBRaij~B1YyPJd0zofXkbRDYE1LWhZqFTzIuXJTWXVoGo5mP~SkTV7mcYe4vfBEOa9MheYCbwIVcZyczvC1eS32fvQhIXWfTW1lAVT22Z49-UqqEY~s~FPrJxcS75CCyyta0-Ye21RydJfElMlPfL5KPZssf7VGEk9xTWkQTf2mISIKrT4OVjEpX0oZJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review","translated_slug":"","page_count":45,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088486,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088486/thumbnails/1.jpg","file_name":"1173-1217.pdf","download_url":"https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entrainment_phenomenon_in_gas_liquid_two.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088486/1173-1217-libre.pdf?1647168024=\u0026response-content-disposition=attachment%3B+filename%3DEntrainment_phenomenon_in_gas_liquid_two.pdf\u0026Expires=1732450266\u0026Signature=c5~qc4L3~ApY2ciHdAXyzMEqiARNY9v-NCnWCfMOT-7~C~DMsCVebtlqLRv54AiXjxFLtXg1De73QQZH2s92TCx8e3y-GR09cUSYAHpBub6VG2yDEhNgCLEfId6ZZVuS0FNJImkl4vMmtMA1G36DCeLTKYBRaij~B1YyPJd0zofXkbRDYE1LWhZqFTzIuXJTWXVoGo5mP~SkTV7mcYe4vfBEOa9MheYCbwIVcZyczvC1eS32fvQhIXWfTW1lAVT22Z49-UqqEY~s~FPrJxcS75CCyyta0-Ye21RydJfElMlPfL5KPZssf7VGEk9xTWkQTf2mISIKrT4OVjEpX0oZJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649802"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions"><img alt="Research paper thumbnail of Core safety of Indian nuclear power plants (NPPs) under extreme conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/82088484/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions">Core safety of Indian nuclear power plants (NPPs) under extreme conditions</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0afc91bc65dc13a32e6e0368d2d68f1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088484,"asset_id":73649802,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649802"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649802"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649802; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649802]").text(description); $(".js-view-count[data-work-id=73649802]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649802; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649802']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649802, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0afc91bc65dc13a32e6e0368d2d68f1a" } } $('.js-work-strip[data-work-id=73649802]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649802,"title":"Core safety of Indian nuclear power plants (NPPs) under extreme conditions","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions","translated_internal_url":"","created_at":"2022-03-13T03:31:21.939-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088484,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088484/thumbnails/1.jpg","file_name":"0945-0970.pdf","download_url":"https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Core_safety_of_Indian_nuclear_power_plan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088484/0945-0970-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DCore_safety_of_Indian_nuclear_power_plan.pdf\u0026Expires=1732450266\u0026Signature=H6hZy3WSGsPBU8spqF5mb1hgvggPhsfWX72eCCmiq7mrBIgv7i0uMYDF~7-of~odagXp7WFzxo2RDjo2mLUUnEoxVDrWY35xDn~aY91Qw1M41QWpw2q~-SHm5pMHsScwZrZSUVHewDT6C6etLsDAYq7kvR5lGpntFqqCI-KGogODl42PuNrFW8Lylog77bHaWX~Q9VY4rwon7130b7WNKjPfZXsGKNdY3c6rL-cO1ULpzyTvHbtpe28Z9iL0BCKmAkIuVEZPkPMgjk8pnQbOvqAWcIp47hbL4FuvV~R-IvtxYLitXiglXml8B~7x5ICie8Se0aeL-YNFyrpJtsYPKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088484,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088484/thumbnails/1.jpg","file_name":"0945-0970.pdf","download_url":"https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Core_safety_of_Indian_nuclear_power_plan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088484/0945-0970-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DCore_safety_of_Indian_nuclear_power_plan.pdf\u0026Expires=1732450266\u0026Signature=H6hZy3WSGsPBU8spqF5mb1hgvggPhsfWX72eCCmiq7mrBIgv7i0uMYDF~7-of~odagXp7WFzxo2RDjo2mLUUnEoxVDrWY35xDn~aY91Qw1M41QWpw2q~-SHm5pMHsScwZrZSUVHewDT6C6etLsDAYq7kvR5lGpntFqqCI-KGogODl42PuNrFW8Lylog77bHaWX~Q9VY4rwon7130b7WNKjPfZXsGKNdY3c6rL-cO1ULpzyTvHbtpe28Z9iL0BCKmAkIuVEZPkPMgjk8pnQbOvqAWcIp47hbL4FuvV~R-IvtxYLitXiglXml8B~7x5ICie8Se0aeL-YNFyrpJtsYPKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes"><img alt="Research paper thumbnail of Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes">Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes</a></div><div class="wp-workCard_item"><span>Environmental Forensics</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649801]").text(description); $(".js-view-count[data-work-id=73649801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649801, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649801,"title":"Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes","translated_title":"","metadata":{"abstract":"ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Environmental Forensics"},"translated_abstract":"ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.","internal_url":"https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes","translated_internal_url":"","created_at":"2022-03-13T03:31:21.818-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":104009,"name":"Environmental Forensics","url":"https://www.academia.edu/Documents/in/Environmental_Forensics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet"><img alt="Research paper thumbnail of Collision behaviour of a small spherical particle on a large stationary droplet" class="work-thumbnail" src="https://attachments.academia-assets.com/82088447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet">Collision behaviour of a small spherical particle on a large stationary droplet</a></div><div class="wp-workCard_item"><span>CHEMECA 2013, Brisbane</span><span>, Oct 2, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interfac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fe1b46764d3a26eccdc627e7d9aa3e55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088447,"asset_id":73649800,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649800]").text(description); $(".js-view-count[data-work-id=73649800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649800, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fe1b46764d3a26eccdc627e7d9aa3e55" } } $('.js-work-strip[data-work-id=73649800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649800,"title":"Collision behaviour of a small spherical particle on a large stationary droplet","translated_title":"","metadata":{"abstract":"In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...","publication_date":{"day":2,"month":10,"year":2013,"errors":{}},"publication_name":"CHEMECA 2013, Brisbane"},"translated_abstract":"In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...","internal_url":"https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet","translated_internal_url":"","created_at":"2022-03-13T03:31:21.627-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088447/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088447/26990-libre.pdf?1647168029=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=erANxawpKdE8ymUqdFMyGtUAcSP6ttbTYurZfQe2DaTbrVyrgnyz7HGMfQWb3zN2qZJcDzGSsJsyHTjKdZGSDDfVb9PFRG5ZoL4W-jESa951-Ou017LxNyZiGIV-CDgMMohPdmg8-A8cZdIm~YAXH5CiiRx89exhivte9NS3UcK-Hwm9QmEMG8XpCL80n2tyety9ZZIKq5yp5NgpqNh2CEZqIQ8RhnrR0XrUiI0ufvJNnCOafCb51fijoGlj~Sjw1BBEfvUp4wksJu71kEHuF2Ayz0LBi1zsrqgxnDapWvHvQZuBRaEY67shYvMTllhQyo4rAOI2en4pF~N4w3f-Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088447/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088447/26990-libre.pdf?1647168029=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=erANxawpKdE8ymUqdFMyGtUAcSP6ttbTYurZfQe2DaTbrVyrgnyz7HGMfQWb3zN2qZJcDzGSsJsyHTjKdZGSDDfVb9PFRG5ZoL4W-jESa951-Ou017LxNyZiGIV-CDgMMohPdmg8-A8cZdIm~YAXH5CiiRx89exhivte9NS3UcK-Hwm9QmEMG8XpCL80n2tyety9ZZIKq5yp5NgpqNh2CEZqIQ8RhnrR0XrUiI0ufvJNnCOafCb51fijoGlj~Sjw1BBEfvUp4wksJu71kEHuF2Ayz0LBi1zsrqgxnDapWvHvQZuBRaEY67shYvMTllhQyo4rAOI2en4pF~N4w3f-Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":82088446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088446/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088446/download_file","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088446/26990-libre.pdf?1647168028=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=RH3UDAhIbsl-wL1dB0Hfuyb5wYfRtW76PRux8LEDA8owZI6BlfBskdfEp9DI1C0GPWNJIIa7V2N3dZ3SR7cXXExuxrtrQOgepitQoiz9K-c2N6thFDDAAzS-kLSleSvRyGhfYalkzM7pBiKwcsbB24iroXXwaJtBcPHNskxnz2bjSRsiS3QuZZ79w5tgtt2hdhyKhTFTeoLHixLP1q-Q876XGmEW6Z0dZBrYUhyd6PgcFCywOrbIvt~N1XwYx6FlPFM91XRqKIAg41I-SqJ-1I3yIp28ydpSJkLlvmKAdUeObxCstD~XJCj1wLiklKKO55S-9qg7EW~k~gsF6EJlDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"},{"id":171623,"name":"Droplets","url":"https://www.academia.edu/Documents/in/Droplets"},{"id":848110,"name":"CFD simulation","url":"https://www.academia.edu/Documents/in/CFD_simulation"}],"urls":[{"id":18465788,"url":"http://www.conference.net.au/chemeca2013/papers/26990.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle"><img alt="Research paper thumbnail of Droplet impact dynamics on a spherical particle" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle">Droplet impact dynamics on a spherical particle</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649799]").text(description); $(".js-view-count[data-work-id=73649799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649799,"title":"Droplet impact dynamics on a spherical particle","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle","translated_internal_url":"","created_at":"2022-03-13T03:31:21.504-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Droplet_impact_dynamics_on_a_spherical_particle","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":7114,"name":"Multiphase Flow","url":"https://www.academia.edu/Documents/in/Multiphase_Flow"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":171623,"name":"Droplets","url":"https://www.academia.edu/Documents/in/Droplets"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"},{"id":618981,"name":"High speed imaging","url":"https://www.academia.edu/Documents/in/High_speed_imaging"},{"id":799602,"name":"DROP","url":"https://www.academia.edu/Documents/in/DROP"},{"id":1826850,"name":"Nova","url":"https://www.academia.edu/Documents/in/Nova"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors"><img alt="Research paper thumbnail of Axial mixing in annular centrifugal extractors" class="work-thumbnail" src="https://attachments.academia-assets.com/82088481/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors">Axial mixing in annular centrifugal extractors</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="467338f7bf2911d5ba41dccd09dcd48f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088481,"asset_id":73649797,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649797]").text(description); $(".js-view-count[data-work-id=73649797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649797, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "467338f7bf2911d5ba41dccd09dcd48f" } } $('.js-work-strip[data-work-id=73649797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649797,"title":"Axial mixing in annular centrifugal extractors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors","translated_internal_url":"","created_at":"2022-03-13T03:31:21.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088481/thumbnails/1.jpg","file_name":"50_tamhane.pdf","download_url":"https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Axial_mixing_in_annular_centrifugal_extr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088481/50_tamhane-libre.pdf?1647168021=\u0026response-content-disposition=attachment%3B+filename%3DAxial_mixing_in_annular_centrifugal_extr.pdf\u0026Expires=1732450267\u0026Signature=BnIW6WtqOZSDc43L1nGU9uGQSg2w-MZFcF5qTqWxBBforbYxG3NH93aJKX1fy1uxiyRi~ydTYd6xXXFyb3ieaOYX1MAw-3N1KV1bKROGZkZqbEwWlX-f6hAqVMYjl9Cal~Hwe7aWltEC8XJMz5Yg8Kt9QnNjdxBomH5kR1-mqLpD8yuZ67mT-HaobhAsdRZ-kOHsC~PfMrIog4dmHWktmwPG9iTDT3qk3Rb3hFimUlXkGfaa5HQtjRRFcyFaAOOQ1J1-Fzsb3yZ9DBE-gBnoVwagL4qh-HGc~xEBVnuIzSxwaA0hOoiCQyeaGuretnlZC-UsxCDOrNi~ByovUQKg0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Axial_mixing_in_annular_centrifugal_extractors","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088481/thumbnails/1.jpg","file_name":"50_tamhane.pdf","download_url":"https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Axial_mixing_in_annular_centrifugal_extr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088481/50_tamhane-libre.pdf?1647168021=\u0026response-content-disposition=attachment%3B+filename%3DAxial_mixing_in_annular_centrifugal_extr.pdf\u0026Expires=1732450267\u0026Signature=BnIW6WtqOZSDc43L1nGU9uGQSg2w-MZFcF5qTqWxBBforbYxG3NH93aJKX1fy1uxiyRi~ydTYd6xXXFyb3ieaOYX1MAw-3N1KV1bKROGZkZqbEwWlX-f6hAqVMYjl9Cal~Hwe7aWltEC8XJMz5Yg8Kt9QnNjdxBomH5kR1-mqLpD8yuZ67mT-HaobhAsdRZ-kOHsC~PfMrIog4dmHWktmwPG9iTDT3qk3Rb3hFimUlXkGfaa5HQtjRRFcyFaAOOQ1J1-Fzsb3yZ9DBE-gBnoVwagL4qh-HGc~xEBVnuIzSxwaA0hOoiCQyeaGuretnlZC-UsxCDOrNi~ByovUQKg0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649796/Design_of_gas_inducing_reactors"><img alt="Research paper thumbnail of Design of gas-inducing reactors" class="work-thumbnail" src="https://attachments.academia-assets.com/82088483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649796/Design_of_gas_inducing_reactors">Design of gas-inducing reactors</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec47fe07423ab7f3981a148ff80f8ae4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088483,"asset_id":73649796,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649796]").text(description); $(".js-view-count[data-work-id=73649796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649796, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec47fe07423ab7f3981a148ff80f8ae4" } } $('.js-work-strip[data-work-id=73649796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649796,"title":"Design of gas-inducing reactors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649796/Design_of_gas_inducing_reactors","translated_internal_url":"","created_at":"2022-03-13T03:31:21.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088483/thumbnails/1.jpg","file_name":"7xe7YoC5R4y.pdf","download_url":"https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_gas_inducing_reactors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088483/7xe7YoC5R4y-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_gas_inducing_reactors.pdf\u0026Expires=1732450267\u0026Signature=N~2CPLgP3jQMyjZL5uaVe0ygZcs6b8E~u-xqOeXh1AGGyKPGDlS3EeHpfSsxOAvLUqjTSFwNhNEwHmEYwSH5uihmxtAhxd~4M9TvejvAQIqrJWwRSM73ssK9PWkVTssCsGs~AkULw0vaeyNmhYkwdVcIe3AFnHMMOXrcEuBwhurUlPFt-hmgHJfgLMmKPZbLnSkXE1gjnyTFT3fH0fKEHKfKZerbOiBE3Os4iGLGXycAM1w1-DOUUg-oYL6obpW84Eeqct-opc0R9lj5qe79duh4F9PoKD77XVyAEs0gMBRq2Y3jz~vY7ISep8GO~6NseAtSEOXwn0Z7lZJb2JxtZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_gas_inducing_reactors","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088483/thumbnails/1.jpg","file_name":"7xe7YoC5R4y.pdf","download_url":"https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_gas_inducing_reactors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088483/7xe7YoC5R4y-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_gas_inducing_reactors.pdf\u0026Expires=1732450267\u0026Signature=N~2CPLgP3jQMyjZL5uaVe0ygZcs6b8E~u-xqOeXh1AGGyKPGDlS3EeHpfSsxOAvLUqjTSFwNhNEwHmEYwSH5uihmxtAhxd~4M9TvejvAQIqrJWwRSM73ssK9PWkVTssCsGs~AkULw0vaeyNmhYkwdVcIe3AFnHMMOXrcEuBwhurUlPFt-hmgHJfgLMmKPZbLnSkXE1gjnyTFT3fH0fKEHKfKZerbOiBE3Os4iGLGXycAM1w1-DOUUg-oYL6obpW84Eeqct-opc0R9lj5qe79duh4F9PoKD77XVyAEs0gMBRq2Y3jz~vY7ISep8GO~6NseAtSEOXwn0Z7lZJb2JxtZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"},{"id":6962,"name":"Energy Conservation","url":"https://www.academia.edu/Documents/in/Energy_Conservation"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":11397,"name":"Energy Consumption","url":"https://www.academia.edu/Documents/in/Energy_Consumption"},{"id":93836,"name":"Economic analysis","url":"https://www.academia.edu/Documents/in/Economic_analysis"},{"id":99040,"name":"Process Design","url":"https://www.academia.edu/Documents/in/Process_Design"},{"id":123710,"name":"Power Consumption","url":"https://www.academia.edu/Documents/in/Power_Consumption"},{"id":161282,"name":"Scaling up","url":"https://www.academia.edu/Documents/in/Scaling_up"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":327320,"name":"Chemical reactors","url":"https://www.academia.edu/Documents/in/Chemical_reactors"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":850827,"name":"Optimum Design","url":"https://www.academia.edu/Documents/in/Optimum_Design"},{"id":891612,"name":"Flow Pattern","url":"https://www.academia.edu/Documents/in/Flow_Pattern"},{"id":1117546,"name":"Industrial Chemistry/Chemical Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Chemistry_Chemical_Engineering"},{"id":1356442,"name":"Mass Transfer Coefficient","url":"https://www.academia.edu/Documents/in/Mass_Transfer_Coefficient"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling"><img alt="Research paper thumbnail of CFD simulation of bubble columns incorporating population balance modeling" class="work-thumbnail" src="https://attachments.academia-assets.com/82088508/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling">CFD simulation of bubble columns incorporating population balance modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4dc546eefe38c734a5d78de2bc43bfda" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088508,"asset_id":73649795,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649795]").text(description); $(".js-view-count[data-work-id=73649795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4dc546eefe38c734a5d78de2bc43bfda" } } $('.js-work-strip[data-work-id=73649795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649795,"title":"CFD simulation of bubble columns incorporating population balance modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling","translated_internal_url":"","created_at":"2022-03-13T03:31:21.198-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088508,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088508/thumbnails/1.jpg","file_name":"f53768eb05dc42d93c186216ca6077fe029b.pdf","download_url":"https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CFD_simulation_of_bubble_columns_incorpo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088508/f53768eb05dc42d93c186216ca6077fe029b-libre.pdf?1647168018=\u0026response-content-disposition=attachment%3B+filename%3DCFD_simulation_of_bubble_columns_incorpo.pdf\u0026Expires=1732450267\u0026Signature=Gbq2g3DIvwG~OtHf9t8OzbQTmz-hcYUAtPlTXGfKLNpuLzZjtOFf1y4x8R2OgWeE8j8stEzhp4I52CP55UGreilLQHJguZCljC7oCuY4WwYzs89di9RTVaAIsfjNEeqjpI~aTXbLItzcPNwzPxfCW6cI1F-iYK4VZvovp3r6iAajAF8AemEqwzS-~YnziXWHS5Tt-p8ovygS8Dr3byxttqgFWtd07e3o2F-d2jo3Vdw-bljHD~rQzI~bTdAYYX72208AKCb9ieVvwhRrG21QLCYQHetRcTsDmTz325uw8FwjaOXrI2qgIEAkz~Y7HG-TgebVNLXt8RNkE65DanVgZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088508,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088508/thumbnails/1.jpg","file_name":"f53768eb05dc42d93c186216ca6077fe029b.pdf","download_url":"https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CFD_simulation_of_bubble_columns_incorpo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088508/f53768eb05dc42d93c186216ca6077fe029b-libre.pdf?1647168018=\u0026response-content-disposition=attachment%3B+filename%3DCFD_simulation_of_bubble_columns_incorpo.pdf\u0026Expires=1732450267\u0026Signature=Gbq2g3DIvwG~OtHf9t8OzbQTmz-hcYUAtPlTXGfKLNpuLzZjtOFf1y4x8R2OgWeE8j8stEzhp4I52CP55UGreilLQHJguZCljC7oCuY4WwYzs89di9RTVaAIsfjNEeqjpI~aTXbLItzcPNwzPxfCW6cI1F-iYK4VZvovp3r6iAajAF8AemEqwzS-~YnziXWHS5Tt-p8ovygS8Dr3byxttqgFWtd07e3o2F-d2jo3Vdw-bljHD~rQzI~bTdAYYX72208AKCb9ieVvwhRrG21QLCYQHetRcTsDmTz325uw8FwjaOXrI2qgIEAkz~Y7HG-TgebVNLXt8RNkE65DanVgZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering"},{"id":17726,"name":"Density","url":"https://www.academia.edu/Documents/in/Density"},{"id":57608,"name":"Dispersion","url":"https://www.academia.edu/Documents/in/Dispersion"},{"id":91603,"name":"Computation Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computation_Fluid_Dynamics"},{"id":126982,"name":"Drag","url":"https://www.academia.edu/Documents/in/Drag"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":162985,"name":"Bubble Column","url":"https://www.academia.edu/Documents/in/Bubble_Column"},{"id":171868,"name":"COLLISION","url":"https://www.academia.edu/Documents/in/COLLISION"},{"id":172421,"name":"Discretization","url":"https://www.academia.edu/Documents/in/Discretization"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":568612,"name":"Finite Volume Method","url":"https://www.academia.edu/Documents/in/Finite_Volume_Method"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"},{"id":848110,"name":"CFD simulation","url":"https://www.academia.edu/Documents/in/CFD_simulation"},{"id":898070,"name":"Experimental Measurement","url":"https://www.academia.edu/Documents/in/Experimental_Measurement"},{"id":990815,"name":"Coalescence","url":"https://www.academia.edu/Documents/in/Coalescence"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1233265,"name":"Cfd","url":"https://www.academia.edu/Documents/in/Cfd"},{"id":3135864,"name":"Euler Equation","url":"https://www.academia.edu/Documents/in/Euler_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations"><img alt="Research paper thumbnail of Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/82088482/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations">Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="79dea8c3d8eda512a0dee8daabd24cf4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088482,"asset_id":73649794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649794]").text(description); $(".js-view-count[data-work-id=73649794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "79dea8c3d8eda512a0dee8daabd24cf4" } } $('.js-work-strip[data-work-id=73649794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649794,"title":"Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations","translated_internal_url":"","created_at":"2022-03-13T03:31:21.100-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088482/thumbnails/1.jpg","file_name":"712986.pdf","download_url":"https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Dynamics_of_a_Single_Condensing_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088482/712986-libre.pdf?1647168019=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Dynamics_of_a_Single_Condensing_V.pdf\u0026Expires=1732450267\u0026Signature=daNiA8wKJaEtZXVwe9MfN~op2Qp9OU-mpGaEWEmRn2BPQxYwmjm1HqGpW9jpldGOfI7WpiITktBz0pcxn7d8paBzBOfnANoJsTaPR9YgOCpXzjVtFXVACvcbyy04Pi5tVwbnmDoKaAQYRs~gHEwOX~vbgvOtBJIN8zSWXBl0pZokB7sVo4~s6pTOTRSr1ukNjVH8AM~~Dgnx0MwkILO8byqvZPvIhUmM40WFJH5JrLnF8WwwZZ1Jw6POXOZ3oh4z8R9D6tFhh8TSit3x9P3p9BL-b4ecdnFkThwXGkIz2EzTZ89NQY4J5QoqdfZVQ~JkrOCNxfemQXhW1RkkHwW3cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088482/thumbnails/1.jpg","file_name":"712986.pdf","download_url":"https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Dynamics_of_a_Single_Condensing_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088482/712986-libre.pdf?1647168019=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Dynamics_of_a_Single_Condensing_V.pdf\u0026Expires=1732450267\u0026Signature=daNiA8wKJaEtZXVwe9MfN~op2Qp9OU-mpGaEWEmRn2BPQxYwmjm1HqGpW9jpldGOfI7WpiITktBz0pcxn7d8paBzBOfnANoJsTaPR9YgOCpXzjVtFXVACvcbyy04Pi5tVwbnmDoKaAQYRs~gHEwOX~vbgvOtBJIN8zSWXBl0pZokB7sVo4~s6pTOTRSr1ukNjVH8AM~~Dgnx0MwkILO8byqvZPvIhUmM40WFJH5JrLnF8WwwZZ1Jw6POXOZ3oh4z8R9D6tFhh8TSit3x9P3p9BL-b4ecdnFkThwXGkIz2EzTZ89NQY4J5QoqdfZVQ~JkrOCNxfemQXhW1RkkHwW3cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5571721" id="papers"><div class="js-work-strip profile--work_container" data-work-id="73649814"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation"><img alt="Research paper thumbnail of Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation" class="work-thumbnail" src="https://attachments.academia-assets.com/82088450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation">Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 & 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f9f8db4b77e980b0d9334a5345f08d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088450,"asset_id":73649814,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649814"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649814"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649814; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649814]").text(description); $(".js-view-count[data-work-id=73649814]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649814; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649814']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649814, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f9f8db4b77e980b0d9334a5345f08d8" } } $('.js-work-strip[data-work-id=73649814]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649814,"title":"Bed Expansion Behaviour in a Binary Solid-Liquid Fluidised Bed with Different Initial Solid Loading-CFD Simulation and Validation","translated_title":"","metadata":{"abstract":"Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 \u0026 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Expansion behaviour of a binary solid-liquid fluidised bed (SLFB) system with different initial mass of solids was studied both experimentally and numerically. Three different sizes (3, 5 \u0026 8 mm diameter) of borosilicate glass beads of equal density (2230 kgm-3) were used as fluidised particles. Three different combinations of particle size pairs of both equal and unequal mass ratios were used using a constant liquid (water) superficial velocity of 0.17 ms-1 in all the cases. Numerically, a two dimensional Eulerian-Eulerian (E-E) CFD model incorporating kinetic theory of granular flow (KTGF) was developed to predict the bed expansion behaviour. It was observed that complete bed segregation occurred when the difference between the solid particle diameters was higher while lower difference in particle diameters led to partial bed segregation. The CFD model also predicted these behaviours which were in good agreement with the experimental data.","internal_url":"https://www.academia.edu/73649814/Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation","translated_internal_url":"","created_at":"2022-03-13T03:31:24.480-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088450/thumbnails/1.jpg","file_name":"041KHA.pdf","download_url":"https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bed_Expansion_Behaviour_in_a_Binary_Soli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088450/041KHA-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DBed_Expansion_Behaviour_in_a_Binary_Soli.pdf\u0026Expires=1732450266\u0026Signature=e6jAOFqg2A00lcPU4pdeVv1W28VvEooG5c1wGYkBvLcuxJ1Qbp-K1Jnme-mI3iGlT~OtRMP-VXCO3TTVX4AB45MPdHl3ZyfbOVwuTDfVx9nlrWLvjijA0Z84Javkv0i9qjpFXWQvF4vaVX7LJSuC2pQmMZMfoH25oxATNGgAfIkLaujvQqY~n1j1zV14bmL-v3q4IFjLqhXV0Eh6AZFktxg0ZAsy7WD7PxZKTAzpIagD4xRCayTUktP2OGuzefzUUkVElh-aQoQrm9AdF9KFNvgAxLwgKbNAkkW6F1v7edQ4M5fzkyZxFi4mA~QseUzc5pBKcM3RoVS95cUE2EZdKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bed_Expansion_Behaviour_in_a_Binary_Solid_Liquid_Fluidised_Bed_with_Different_Initial_Solid_Loading_CFD_Simulation_and_Validation","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088450/thumbnails/1.jpg","file_name":"041KHA.pdf","download_url":"https://www.academia.edu/attachments/82088450/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bed_Expansion_Behaviour_in_a_Binary_Soli.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088450/041KHA-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DBed_Expansion_Behaviour_in_a_Binary_Soli.pdf\u0026Expires=1732450266\u0026Signature=e6jAOFqg2A00lcPU4pdeVv1W28VvEooG5c1wGYkBvLcuxJ1Qbp-K1Jnme-mI3iGlT~OtRMP-VXCO3TTVX4AB45MPdHl3ZyfbOVwuTDfVx9nlrWLvjijA0Z84Javkv0i9qjpFXWQvF4vaVX7LJSuC2pQmMZMfoH25oxATNGgAfIkLaujvQqY~n1j1zV14bmL-v3q4IFjLqhXV0Eh6AZFktxg0ZAsy7WD7PxZKTAzpIagD4xRCayTUktP2OGuzefzUUkVElh-aQoQrm9AdF9KFNvgAxLwgKbNAkkW6F1v7edQ4M5fzkyZxFi4mA~QseUzc5pBKcM3RoVS95cUE2EZdKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18465791,"url":"https://web.archive.org/web/20180413100315/http://www.cfd.com.au/cfd_conf15/PDFs/041KHA.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers"><img alt="Research paper thumbnail of Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers">Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649813]").text(description); $(".js-view-count[data-work-id=73649813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649813, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649813,"title":"Comparison of vaporisation models for feed droplet in fluid catalytic cracking risers","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649813/Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_internal_url":"","created_at":"2022-03-13T03:31:24.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_vaporisation_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"}],"urls":[{"id":18465790,"url":"http://search.informit.com.au/documentSummary;dn=700385940259087;res=IELENG"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649812"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film"><img alt="Research paper thumbnail of Interaction dynamics of a spherical particle with a suspended liquid film" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film">Interaction dynamics of a spherical particle with a suspended liquid film</a></div><div class="wp-workCard_item"><span>AIChE Journal</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hydrodynamics of collision interactions between a particle and gas-liquid interface such as dropl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649812"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649812"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649812; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649812]").text(description); $(".js-view-count[data-work-id=73649812]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649812; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649812']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649812, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649812]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649812,"title":"Interaction dynamics of a spherical particle with a suspended liquid film","translated_title":"","metadata":{"abstract":"Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016","publisher":"Wiley-Blackwell","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"AIChE Journal"},"translated_abstract":"Hydrodynamics of collision interactions between a particle and gas-liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( We = ρlvp2dp/σ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch-off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( Bo = ρlgdp2/σ) was obtained which indicated a dependency of Bo1.72. Computationally, a three-dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016","internal_url":"https://www.academia.edu/73649812/Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film","translated_internal_url":"","created_at":"2022-03-13T03:31:24.152-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interaction_dynamics_of_a_spherical_particle_with_a_suspended_liquid_film","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2820942,"name":"Aiche","url":"https://www.academia.edu/Documents/in/Aiche"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649811"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection"><img alt="Research paper thumbnail of A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection" class="work-thumbnail" src="https://attachments.academia-assets.com/82088487/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection">A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4541db7d67ce796cd1fd2030f00aa689" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088487,"asset_id":73649811,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649811"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649811"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649811; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649811]").text(description); $(".js-view-count[data-work-id=73649811]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649811; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649811']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649811, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4541db7d67ce796cd1fd2030f00aa689" } } $('.js-work-strip[data-work-id=73649811]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649811,"title":"A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649811/A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection","translated_internal_url":"","created_at":"2022-03-13T03:31:23.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088487/thumbnails/1.jpg","file_name":"0673-0755.pdf","download_url":"https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_review_on_the_thermal_hydraulic_charac.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088487/0673-0755-libre.pdf?1647168025=\u0026response-content-disposition=attachment%3B+filename%3DA_review_on_the_thermal_hydraulic_charac.pdf\u0026Expires=1732450266\u0026Signature=cD06QERGksgk1GCGViDmGIIhJ-FgTNUDqH9c-4o9SofAGhq-A1XKy-OvoGzx4t6Cz7uLbUe8Y7r6ACDAcSsPywxGDc~wvIeYxa2lZ0Ocyi1FyQTKFULm3vQ3qYdbLsVWMFPW0IGK~lirH2zkOTkRBln-9ZCwnd0~9a-lluogjn4lFEc4FegN6KOPzLwkhngQcLm2sWUEZG7Ty2taMbogH7OmBbA4k~16q5cPKq4ZoDghDVcCOkAMfX97Jdec2a4KUyHPHsx1LZvOLZjulRU6ez7kAutAXnA6etI71mp6AO1rhij8zZ5IPaKn0swJ-f2rI4QPMIPYq8h4vFoY7K~Blw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_review_on_the_thermal_hydraulic_characteristics_of_the_air_cooled_heat_exchangers_in_forced_convection","translated_slug":"","page_count":83,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088487,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088487/thumbnails/1.jpg","file_name":"0673-0755.pdf","download_url":"https://www.academia.edu/attachments/82088487/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_review_on_the_thermal_hydraulic_charac.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088487/0673-0755-libre.pdf?1647168025=\u0026response-content-disposition=attachment%3B+filename%3DA_review_on_the_thermal_hydraulic_charac.pdf\u0026Expires=1732450266\u0026Signature=cD06QERGksgk1GCGViDmGIIhJ-FgTNUDqH9c-4o9SofAGhq-A1XKy-OvoGzx4t6Cz7uLbUe8Y7r6ACDAcSsPywxGDc~wvIeYxa2lZ0Ocyi1FyQTKFULm3vQ3qYdbLsVWMFPW0IGK~lirH2zkOTkRBln-9ZCwnd0~9a-lluogjn4lFEc4FegN6KOPzLwkhngQcLm2sWUEZG7Ty2taMbogH7OmBbA4k~16q5cPKq4ZoDghDVcCOkAMfX97Jdec2a4KUyHPHsx1LZvOLZjulRU6ez7kAutAXnA6etI71mp6AO1rhij8zZ5IPaKn0swJ-f2rI4QPMIPYq8h4vFoY7K~Blw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649810"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems"><img alt="Research paper thumbnail of Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems" class="work-thumbnail" src="https://attachments.academia-assets.com/82088485/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems">Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems</a></div><div class="wp-workCard_item"><span>Procedia Engineering</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="902ba5a1f2d58a5eb5703d340f8c121f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088485,"asset_id":73649810,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649810"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649810"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649810; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649810]").text(description); $(".js-view-count[data-work-id=73649810]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649810; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649810']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649810, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "902ba5a1f2d58a5eb5703d340f8c121f" } } $('.js-work-strip[data-work-id=73649810]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649810,"title":"Bubble Detachment from a Steel Ball in Turbulent Field: Application to Mineral Flotation Systems","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Procedia Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649810/Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems","translated_internal_url":"","created_at":"2022-03-13T03:31:23.060-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088485,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088485/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__.pdf","download_url":"https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Detachment_from_a_Steel_Ball_in_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088485/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Detachment_from_a_Steel_Ball_in_T.pdf\u0026Expires=1732450266\u0026Signature=AsOOQNPbQpHQbRwHRoF5i~l~zHlsnPrlh0OcmWqZghcJ2C-Nz3j-wkm8OPOQrHMe1HN3HaMohxNo~-gJuNKjwLEfFdIUoz2d5hXIOPJv26s5rpUtbJEsq9LQgCVDwfCixDMyTuIrcFL7i~Rw1a--mRc7-06Y9mFbIJBA1GwZqgfEH0JrTUPCMEskB5ZVfj0N-ESRakSmmWMBtO2cNCbO6qJUd3oMezqEsUnAatEX~L7i5TEmj1OL~l5FNN3g6frLWW7GMuDMPAEQPQNeNoiAMGoWlTTAUgT6AX81S58yZ6IyvxRRW75M7Ora-4Jv-84olcaphEqdiofje8z4Vyxyfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bubble_Detachment_from_a_Steel_Ball_in_Turbulent_Field_Application_to_Mineral_Flotation_Systems","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088485,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088485/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__.pdf","download_url":"https://www.academia.edu/attachments/82088485/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Detachment_from_a_Steel_Ball_in_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088485/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NzcwNTgxNTAwMjQ2NQ__-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Detachment_from_a_Steel_Ball_in_T.pdf\u0026Expires=1732450266\u0026Signature=AsOOQNPbQpHQbRwHRoF5i~l~zHlsnPrlh0OcmWqZghcJ2C-Nz3j-wkm8OPOQrHMe1HN3HaMohxNo~-gJuNKjwLEfFdIUoz2d5hXIOPJv26s5rpUtbJEsq9LQgCVDwfCixDMyTuIrcFL7i~Rw1a--mRc7-06Y9mFbIJBA1GwZqgfEH0JrTUPCMEskB5ZVfj0N-ESRakSmmWMBtO2cNCbO6qJUd3oMezqEsUnAatEX~L7i5TEmj1OL~l5FNN3g6frLWW7GMuDMPAEQPQNeNoiAMGoWlTTAUgT6AX81S58yZ6IyvxRRW75M7Ora-4Jv-84olcaphEqdiofje8z4Vyxyfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":171114,"name":"Turbulent Flow","url":"https://www.academia.edu/Documents/in/Turbulent_Flow"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649809"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers"><img alt="Research paper thumbnail of Comparison of vaporization models for feed droplet in fluid catalytic cracking risers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers">Comparison of vaporization models for feed droplet in fluid catalytic cracking risers</a></div><div class="wp-workCard_item"><span>Chemical Engineering Research and Design</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic C...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649809"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649809"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649809; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649809]").text(description); $(".js-view-count[data-work-id=73649809]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649809; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649809']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649809, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649809]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649809,"title":"Comparison of vaporization models for feed droplet in fluid catalytic cracking risers","translated_title":"","metadata":{"abstract":"ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Chemical Engineering Research and Design"},"translated_abstract":"ABSTRACT Vaporization of atomised feedstock is one of the critical processes in Fluid Catalytic Cracking (FCC) risers; which is more often ignored in most of the FCC riser modelling studies. In this study, two different vaporization mechanisms of feedstock namely homogeneous mode and heterogeneous mode were studied. Different homogeneous models duly validated for various pure component droplets were applied to predict the vaporization time of the feed droplets typically expected in FCC feed vaporization zone. A new physical model for heterogeneous vaporization considering droplet-particle collision mechanics was also developed in the present study which compared well with the other existing heterogeneous modelling approaches. Comparison of the two vaporization modes indicates that under typical operating conditions of FCC riser, vaporization time of feed droplets predicted by heterogeneous mode is always lower than the homogeneous mode at least by an order of magnitude due to significant increase in heat transfer coefficient which accounts for droplet-particle contact. It is expected that actual vaporization time of feed droplets in an industrial FCC riser should lie in the range predicted by these two vaporization mechanisms which actually set the two limiting modes of vaporization. Obtained results predicted by the models could be used to aid design of the FCC feed vaporization zone.","internal_url":"https://www.academia.edu/73649809/Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_internal_url":"","created_at":"2022-03-13T03:31:22.940-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_of_vaporization_models_for_feed_droplet_in_fluid_catalytic_cracking_risers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":228287,"name":"Fluid Catalytic Cracking","url":"https://www.academia.edu/Documents/in/Fluid_Catalytic_Cracking"},{"id":259030,"name":"Chemical Engineering Design","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649808"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB"><img alt="Research paper thumbnail of Segregation and Dispersion Studies in Binary SLFB" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB">Segregation and Dispersion Studies in Binary SLFB</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649808"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649808"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649808; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649808]").text(description); $(".js-view-count[data-work-id=73649808]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649808; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649808']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649808, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649808]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649808,"title":"Segregation and Dispersion Studies in Binary SLFB","translated_title":"","metadata":{"abstract":"ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies."},"translated_abstract":"ABSTRACT Solid-liquid fluidized beds (SLFB) are of high industrial importance due to higher heat and mass transfer rates. In many industrial fluidizations, different types of particles (having different size or density or both) are involved in the process. In the design of such multiphase fluidized beds, it is important to understand the bed expansion, as well as the spatial distribution of phase volume fractions, segregation and intermixing of the two solid phases. These characteristics govern the equipment volume and the flow pattern of solid and liquid phases thereby indirectly affecting the rates of mass and momentum transfer and the reactor performance. Detailed information about the phase voidage distribution throughout the bed at different operating conditions is important for design and scale up of the system. In literature, various correlations have been published for the dispersion coefficient based on the empirical studies or theoretical framework. It was thought desirable to compare the relative predictive capabilities of so far proposed correlations. The dispersion coefficients for the phases involved are correlated with the energy dissipation rate within the system. The computational fluid dynamics (CFD) simulations of binary SLFB with particles of different size and/or density have been performed. The segregation and intermixing of the solid phases involved have been studied. It was observed that the CFD predictions show good agreement with the published experimental studies.","internal_url":"https://www.academia.edu/73649808/Segregation_and_Dispersion_Studies_in_Binary_SLFB","translated_internal_url":"","created_at":"2022-03-13T03:31:22.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Segregation_and_Dispersion_Studies_in_Binary_SLFB","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":23020,"name":"Powder technology","url":"https://www.academia.edu/Documents/in/Powder_technology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649807"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates"><img alt="Research paper thumbnail of A method for calculating the surface area of numerically simulated aggregates" class="work-thumbnail" src="https://attachments.academia-assets.com/83842477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates">A method for calculating the surface area of numerically simulated aggregates</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="738e92b86411ffeca3aab6478d55d83e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83842477,"asset_id":73649807,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649807"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649807"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649807; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649807]").text(description); $(".js-view-count[data-work-id=73649807]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649807; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649807']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649807, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "738e92b86411ffeca3aab6478d55d83e" } } $('.js-work-strip[data-work-id=73649807]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649807,"title":"A method for calculating the surface area of numerically simulated aggregates","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649807/A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates","translated_internal_url":"","created_at":"2022-03-13T03:31:22.723-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83842477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842477/thumbnails/1.jpg","file_name":"28938.pdf","download_url":"https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_calculating_the_surface_are.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842477/28938-libre.pdf?1649737191=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_calculating_the_surface_are.pdf\u0026Expires=1732450266\u0026Signature=HAD1-upNzTU5sQKZLC~OwsthY~13xwSbiSMt6PDJla62eYwwNTVc-Fjg51tcBMh7lFvZO9rgiG3jK3CM6~b~X6LMliaY8vhwhros7vrz5~R~BS5y2jsecTODNmj~7fZNe7sltCCwvswGHDPRi1nKBz3S8sLThXBLw9gt5s~jfLVrqCSm5GJsCcbWFrDicr8AgJmmgDtmop7lmGi3mKFOqtm6wCxCexJS1BJ-99ctBtZ~zhg1UT8HDyHBkPUOH-PlGCeaPo2Hd-LP9uPQXPN0lgw6BZzjzuNBgBa0NxwQ1LRC7smZyAywx0ZrU0wEtcm5p55CR67ik2WIrj1~Nq2GVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_method_for_calculating_the_surface_area_of_numerically_simulated_aggregates","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":83842477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842477/thumbnails/1.jpg","file_name":"28938.pdf","download_url":"https://www.academia.edu/attachments/83842477/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_method_for_calculating_the_surface_are.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842477/28938-libre.pdf?1649737191=\u0026response-content-disposition=attachment%3B+filename%3DA_method_for_calculating_the_surface_are.pdf\u0026Expires=1732450266\u0026Signature=HAD1-upNzTU5sQKZLC~OwsthY~13xwSbiSMt6PDJla62eYwwNTVc-Fjg51tcBMh7lFvZO9rgiG3jK3CM6~b~X6LMliaY8vhwhros7vrz5~R~BS5y2jsecTODNmj~7fZNe7sltCCwvswGHDPRi1nKBz3S8sLThXBLw9gt5s~jfLVrqCSm5GJsCcbWFrDicr8AgJmmgDtmop7lmGi3mKFOqtm6wCxCexJS1BJ-99ctBtZ~zhg1UT8HDyHBkPUOH-PlGCeaPo2Hd-LP9uPQXPN0lgw6BZzjzuNBgBa0NxwQ1LRC7smZyAywx0ZrU0wEtcm5p55CR67ik2WIrj1~Nq2GVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"},{"id":721120,"name":"Coordination number","url":"https://www.academia.edu/Documents/in/Coordination_number"},{"id":890611,"name":"Fractal Dimension","url":"https://www.academia.edu/Documents/in/Fractal_Dimension"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649806"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry"><img alt="Research paper thumbnail of Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry" class="work-thumbnail" src="https://attachments.academia-assets.com/83842612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry">Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8aa8f2760f646d25bfd753fab36ec061" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83842612,"asset_id":73649806,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649806"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649806"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649806; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649806]").text(description); $(".js-view-count[data-work-id=73649806]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649806; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649806']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649806, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8aa8f2760f646d25bfd753fab36ec061" } } $('.js-work-strip[data-work-id=73649806]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649806,"title":"Analysis of Turbulence Energy Spectrum by Using Particle Image Velocimetry","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649806/Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry","translated_internal_url":"","created_at":"2022-03-13T03:31:22.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83842612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842612/thumbnails/1.jpg","file_name":"Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf","download_url":"https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Turbulence_Energy_Spectrum_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842612/Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf?1649712657=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Turbulence_Energy_Spectrum_b.pdf\u0026Expires=1732450266\u0026Signature=QfK3JAunveK0OqGozsmOFqAAnos4i9qSZqSOwxX8zEsV9ccBnCB99HNnJswdl9WgFE7MUK9OMC-pLedfS5ucnNwTGBCRB7vMGBTkQ7jaLTmUE-3ZA5RAWls8fKq9Fcr-om4UT5bqXHa2Zq4Vhr4iATUbGKHOo47rwsTZyVy2nyM6lVIjM2evNKhkdbSAP0Lr40di8J1SV6ou4kkOJb53vVpp~uXDoWrbLKLMWiLxoFt4CGv~AU65K7juoO94KZttTcbA0abDVKV04u1XFnbve6CikxUHrOpu5qlethzDHEI7Xfez7p1zneBTdPXSZ~w9Z7fq1uQSHs3z7DvBXaEgDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_Turbulence_Energy_Spectrum_by_Using_Particle_Image_Velocimetry","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":83842612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83842612/thumbnails/1.jpg","file_name":"Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf","download_url":"https://www.academia.edu/attachments/83842612/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Turbulence_Energy_Spectrum_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83842612/Analysis_of_Turbulence_Energy_Spectrum_b20220411-18025-1uqjxu0.pdf?1649712657=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Turbulence_Energy_Spectrum_b.pdf\u0026Expires=1732450266\u0026Signature=QfK3JAunveK0OqGozsmOFqAAnos4i9qSZqSOwxX8zEsV9ccBnCB99HNnJswdl9WgFE7MUK9OMC-pLedfS5ucnNwTGBCRB7vMGBTkQ7jaLTmUE-3ZA5RAWls8fKq9Fcr-om4UT5bqXHa2Zq4Vhr4iATUbGKHOo47rwsTZyVy2nyM6lVIjM2evNKhkdbSAP0Lr40di8J1SV6ou4kkOJb53vVpp~uXDoWrbLKLMWiLxoFt4CGv~AU65K7juoO94KZttTcbA0abDVKV04u1XFnbve6CikxUHrOpu5qlethzDHEI7Xfez7p1zneBTdPXSZ~w9Z7fq1uQSHs3z7DvBXaEgDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":24546,"name":"Transport phenomena","url":"https://www.academia.edu/Documents/in/Transport_phenomena"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649805"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational"><img alt="Research paper thumbnail of Stability analysis in solid–liquid fluidized beds: Experimental and computational" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational">Stability analysis in solid–liquid fluidized beds: Experimental and computational</a></div><div class="wp-workCard_item"><span>Chemical Engineering Journal</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649805"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649805"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649805; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649805]").text(description); $(".js-view-count[data-work-id=73649805]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649805; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649805']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649805, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649805]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649805,"title":"Stability analysis in solid–liquid fluidized beds: Experimental and computational","translated_title":"","metadata":{"abstract":"ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Chemical Engineering Journal"},"translated_abstract":"ABSTRACT In this study the transition from homogeneous to heterogeneous flow in a solid–liquid fluidized bed (SLFB) is examined both experimentally and numerically. The experimental apparatus comprised a refractive index-matched SLFB, comprising 5 mm diameter borosilicate glass and sodium iodine solution, which allowed for both instantaneous particle image velocimetry of the liquid flow field and solids hold-up measurements to be undertaken for superficial liquid velocities in the range of 0.06–0.22 m/s. The motion of individual, spherical steel balls (with diameters 6, 7, 8, 9 mm) was then tracked as it settled through the fluidized bed for differing superficial liquid velocities. It was observed that, for all the steel balls covered in this work, there was a change in slope in their respective classification velocity curves at a superficial liquid velocity of 0.08 m/s. This value was very close to the critical velocity of 0.085 m/s predicted from 1-D linear stability analysis; and therefore deemed to be the critical condition that marked the transition from homogeneous to non-homogenous flow. It is proposed that the change in slope of the classification velocity curve is due to the encounter of the settling foreign particles with liquid bubbles whose presence marks the onset of heterogeneous flow. Additional computational analysis, involving both Eulerian–Eulerian (E–E) and Eulerian–Lagrangian (E–L) approaches, is used to confirm the presence of liquid bubbles at a critical liquid hold-up of 0.54, which corresponds to that predicted from 1-D linear stability analysis. In summary, the study has highlighted that experimentally the transition condition for a SLFB can be obtained simply by observing the behavior of the classification velocity of a single foreign particle at different superficial liquid velocities. This transition condition was found to agree with the 1D linear stability criterion, Eulerian–Eulerian CFD (3D) and Eulerian–Lagrangian DEM (3D) approaches.","internal_url":"https://www.academia.edu/73649805/Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational","translated_internal_url":"","created_at":"2022-03-13T03:31:22.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stability_analysis_in_solid_liquid_fluidized_beds_Experimental_and_computational","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":13699,"name":"Particle Image Velocimetry","url":"https://www.academia.edu/Documents/in/Particle_Image_Velocimetry"},{"id":25600,"name":"Stability","url":"https://www.academia.edu/Documents/in/Stability"},{"id":25986,"name":"Discrete Element Modeling","url":"https://www.academia.edu/Documents/in/Discrete_Element_Modeling"},{"id":591436,"name":"Fluidized Beds","url":"https://www.academia.edu/Documents/in/Fluidized_Beds"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649804"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed"><img alt="Research paper thumbnail of Forces acting on a single introduced particle in a solid–liquid fluidised bed" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed">Forces acting on a single introduced particle in a solid–liquid fluidised bed</a></div><div class="wp-workCard_item"><span>Chemical Engineering Science</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) &amp;gt; 65 and d(p2)/d(p1) &amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649804"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649804"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649804; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649804]").text(description); $(".js-view-count[data-work-id=73649804]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649804; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649804']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649804, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649804]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649804,"title":"Forces acting on a single introduced particle in a solid–liquid fluidised bed","translated_title":"","metadata":{"abstract":"ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) \u0026amp;gt; 65 and d(p2)/d(p1) \u0026amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Chemical Engineering Science"},"translated_abstract":"ABSTRACT In a liquid fluidised bed system, the motion of each phase is governed by fluid-particle and particle-particle interactions. The particle-particle collisions can significantly affect the motion of individual particles and hence the solid-liquid two phase flow characteristics. In the current work, computational fluid dynamics-discrete element method (CFD-DEM) simulations of a dense foreign particle introduced in a monodispersed solid-liquid fluidised bed (SLFB) have been carried out. The fluidisation hydrodynamics of SLFB, settling behaviour of the foreign particle, fluid-particle interactions, and particle-particle collision behaviour have been investigated. Experiments including particle classification velocity measurements and fluid turbulence characterisation by particle image velocimetry (PIV) were conducted for the validation of prediction results. Compared to those predicted by empirical correlations, the particle classification velocity predicted by CFD-DEM provided the best agreement with the experimental data (less than 10% deviation). The particle collision frequency increased monotonically with the solid fraction. The dimensionless collision frequency obtained by CFD-DEM excellently fit the data line predicted by the kinetic theory for granular flow (KTGF). The particle collision frequency increased with the particle size ratio (d(p2)/d(p1)) and became independent of the foreign particle size for high solid fractions when the fluidised particle size was kept constant. The magnitude of collision force was 10-50 times greater than that of gravitational force and maximally 9 times greater than that of drag force. A correlation describing the collision force as a function of bed voidage was developed for St(p) \u0026amp;gt; 65 and d(p2)/d(p1) \u0026amp;lt;= 2. A maximum deviation of less than 20% was obtained when the correlation was used for the prediction of particle collision force.","internal_url":"https://www.academia.edu/73649804/Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed","translated_internal_url":"","created_at":"2022-03-13T03:31:22.258-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Forces_acting_on_a_single_introduced_particle_in_a_solid_liquid_fluidised_bed","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":11016,"name":"Discrete Element Method","url":"https://www.academia.edu/Documents/in/Discrete_Element_Method"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649803"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review"><img alt="Research paper thumbnail of Entrainment phenomenon in gas–liquid two-phase flow: A review" class="work-thumbnail" src="https://attachments.academia-assets.com/82088486/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review">Entrainment phenomenon in gas–liquid two-phase flow: A review</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a571adbeca087d15375f5fa77a6b999a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088486,"asset_id":73649803,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649803"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649803"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649803; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649803]").text(description); $(".js-view-count[data-work-id=73649803]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649803; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649803']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649803, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a571adbeca087d15375f5fa77a6b999a" } } $('.js-work-strip[data-work-id=73649803]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649803,"title":"Entrainment phenomenon in gas–liquid two-phase flow: A review","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649803/Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review","translated_internal_url":"","created_at":"2022-03-13T03:31:22.094-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088486,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088486/thumbnails/1.jpg","file_name":"1173-1217.pdf","download_url":"https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entrainment_phenomenon_in_gas_liquid_two.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088486/1173-1217-libre.pdf?1647168024=\u0026response-content-disposition=attachment%3B+filename%3DEntrainment_phenomenon_in_gas_liquid_two.pdf\u0026Expires=1732450266\u0026Signature=c5~qc4L3~ApY2ciHdAXyzMEqiARNY9v-NCnWCfMOT-7~C~DMsCVebtlqLRv54AiXjxFLtXg1De73QQZH2s92TCx8e3y-GR09cUSYAHpBub6VG2yDEhNgCLEfId6ZZVuS0FNJImkl4vMmtMA1G36DCeLTKYBRaij~B1YyPJd0zofXkbRDYE1LWhZqFTzIuXJTWXVoGo5mP~SkTV7mcYe4vfBEOa9MheYCbwIVcZyczvC1eS32fvQhIXWfTW1lAVT22Z49-UqqEY~s~FPrJxcS75CCyyta0-Ye21RydJfElMlPfL5KPZssf7VGEk9xTWkQTf2mISIKrT4OVjEpX0oZJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entrainment_phenomenon_in_gas_liquid_two_phase_flow_A_review","translated_slug":"","page_count":45,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088486,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088486/thumbnails/1.jpg","file_name":"1173-1217.pdf","download_url":"https://www.academia.edu/attachments/82088486/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entrainment_phenomenon_in_gas_liquid_two.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088486/1173-1217-libre.pdf?1647168024=\u0026response-content-disposition=attachment%3B+filename%3DEntrainment_phenomenon_in_gas_liquid_two.pdf\u0026Expires=1732450266\u0026Signature=c5~qc4L3~ApY2ciHdAXyzMEqiARNY9v-NCnWCfMOT-7~C~DMsCVebtlqLRv54AiXjxFLtXg1De73QQZH2s92TCx8e3y-GR09cUSYAHpBub6VG2yDEhNgCLEfId6ZZVuS0FNJImkl4vMmtMA1G36DCeLTKYBRaij~B1YyPJd0zofXkbRDYE1LWhZqFTzIuXJTWXVoGo5mP~SkTV7mcYe4vfBEOa9MheYCbwIVcZyczvC1eS32fvQhIXWfTW1lAVT22Z49-UqqEY~s~FPrJxcS75CCyyta0-Ye21RydJfElMlPfL5KPZssf7VGEk9xTWkQTf2mISIKrT4OVjEpX0oZJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649802"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions"><img alt="Research paper thumbnail of Core safety of Indian nuclear power plants (NPPs) under extreme conditions" class="work-thumbnail" src="https://attachments.academia-assets.com/82088484/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions">Core safety of Indian nuclear power plants (NPPs) under extreme conditions</a></div><div class="wp-workCard_item"><span>Sadhana</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0afc91bc65dc13a32e6e0368d2d68f1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088484,"asset_id":73649802,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649802"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649802"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649802; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649802]").text(description); $(".js-view-count[data-work-id=73649802]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649802; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649802']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649802, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0afc91bc65dc13a32e6e0368d2d68f1a" } } $('.js-work-strip[data-work-id=73649802]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649802,"title":"Core safety of Indian nuclear power plants (NPPs) under extreme conditions","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Sadhana"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649802/Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions","translated_internal_url":"","created_at":"2022-03-13T03:31:21.939-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088484,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088484/thumbnails/1.jpg","file_name":"0945-0970.pdf","download_url":"https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Core_safety_of_Indian_nuclear_power_plan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088484/0945-0970-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DCore_safety_of_Indian_nuclear_power_plan.pdf\u0026Expires=1732450266\u0026Signature=H6hZy3WSGsPBU8spqF5mb1hgvggPhsfWX72eCCmiq7mrBIgv7i0uMYDF~7-of~odagXp7WFzxo2RDjo2mLUUnEoxVDrWY35xDn~aY91Qw1M41QWpw2q~-SHm5pMHsScwZrZSUVHewDT6C6etLsDAYq7kvR5lGpntFqqCI-KGogODl42PuNrFW8Lylog77bHaWX~Q9VY4rwon7130b7WNKjPfZXsGKNdY3c6rL-cO1ULpzyTvHbtpe28Z9iL0BCKmAkIuVEZPkPMgjk8pnQbOvqAWcIp47hbL4FuvV~R-IvtxYLitXiglXml8B~7x5ICie8Se0aeL-YNFyrpJtsYPKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Core_safety_of_Indian_nuclear_power_plants_NPPs_under_extreme_conditions","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088484,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088484/thumbnails/1.jpg","file_name":"0945-0970.pdf","download_url":"https://www.academia.edu/attachments/82088484/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Core_safety_of_Indian_nuclear_power_plan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088484/0945-0970-libre.pdf?1647168020=\u0026response-content-disposition=attachment%3B+filename%3DCore_safety_of_Indian_nuclear_power_plan.pdf\u0026Expires=1732450266\u0026Signature=H6hZy3WSGsPBU8spqF5mb1hgvggPhsfWX72eCCmiq7mrBIgv7i0uMYDF~7-of~odagXp7WFzxo2RDjo2mLUUnEoxVDrWY35xDn~aY91Qw1M41QWpw2q~-SHm5pMHsScwZrZSUVHewDT6C6etLsDAYq7kvR5lGpntFqqCI-KGogODl42PuNrFW8Lylog77bHaWX~Q9VY4rwon7130b7WNKjPfZXsGKNdY3c6rL-cO1ULpzyTvHbtpe28Z9iL0BCKmAkIuVEZPkPMgjk8pnQbOvqAWcIp47hbL4FuvV~R-IvtxYLitXiglXml8B~7x5ICie8Se0aeL-YNFyrpJtsYPKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":1009202,"name":"Sadhana","url":"https://www.academia.edu/Documents/in/Sadhana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes"><img alt="Research paper thumbnail of Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes">Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes</a></div><div class="wp-workCard_item"><span>Environmental Forensics</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649801]").text(description); $(".js-view-count[data-work-id=73649801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649801, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649801,"title":"Computational Fluid Dynamics (CFD) Simulations on the Effect of Rough Surface on Atmospheric Turbulence Flow Above Hilly Terrain Shapes","translated_title":"","metadata":{"abstract":"ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Environmental Forensics"},"translated_abstract":"ABSTRACT The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.","internal_url":"https://www.academia.edu/73649801/Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes","translated_internal_url":"","created_at":"2022-03-13T03:31:21.818-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computational_Fluid_Dynamics_CFD_Simulations_on_the_Effect_of_Rough_Surface_on_Atmospheric_Turbulence_Flow_Above_Hilly_Terrain_Shapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":104009,"name":"Environmental Forensics","url":"https://www.academia.edu/Documents/in/Environmental_Forensics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet"><img alt="Research paper thumbnail of Collision behaviour of a small spherical particle on a large stationary droplet" class="work-thumbnail" src="https://attachments.academia-assets.com/82088447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet">Collision behaviour of a small spherical particle on a large stationary droplet</a></div><div class="wp-workCard_item"><span>CHEMECA 2013, Brisbane</span><span>, Oct 2, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interfac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fe1b46764d3a26eccdc627e7d9aa3e55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088447,"asset_id":73649800,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649800]").text(description); $(".js-view-count[data-work-id=73649800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649800, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fe1b46764d3a26eccdc627e7d9aa3e55" } } $('.js-work-strip[data-work-id=73649800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649800,"title":"Collision behaviour of a small spherical particle on a large stationary droplet","translated_title":"","metadata":{"abstract":"In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...","publication_date":{"day":2,"month":10,"year":2013,"errors":{}},"publication_name":"CHEMECA 2013, Brisbane"},"translated_abstract":"In the present work, collision behaviour of a solid particle on an unconfined gas-liquid interface e.g. droplet was studied at low Weber number range. A glass ballotini particle (1.17 mm) was impacted on a stationary water droplet (3.15 mm) at the Weber number range of 0.2 to 3.6 and the collision process was captured by high speed imaging technique. It was observed, at lower to intermediate impact velocity range, that the particle was partially submerged into the droplet and slide along the convex interface whilst at higher impact velocity, the complete penetration was observed. Based on the forces acting on the particle at the interface, a simple model is proposed providing a satisfactory agreement with the experimental observations. Of all the forces involved, surface tension force was found to dominate the collision process in all the cases investigated. A 3D CFD model has also been developed incorporating the dynamic meshing technique with multiphase Volume of Fluid method whic...","internal_url":"https://www.academia.edu/73649800/Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet","translated_internal_url":"","created_at":"2022-03-13T03:31:21.627-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088447/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088447/26990-libre.pdf?1647168029=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=erANxawpKdE8ymUqdFMyGtUAcSP6ttbTYurZfQe2DaTbrVyrgnyz7HGMfQWb3zN2qZJcDzGSsJsyHTjKdZGSDDfVb9PFRG5ZoL4W-jESa951-Ou017LxNyZiGIV-CDgMMohPdmg8-A8cZdIm~YAXH5CiiRx89exhivte9NS3UcK-Hwm9QmEMG8XpCL80n2tyety9ZZIKq5yp5NgpqNh2CEZqIQ8RhnrR0XrUiI0ufvJNnCOafCb51fijoGlj~Sjw1BBEfvUp4wksJu71kEHuF2Ayz0LBi1zsrqgxnDapWvHvQZuBRaEY67shYvMTllhQyo4rAOI2en4pF~N4w3f-Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Collision_behaviour_of_a_small_spherical_particle_on_a_large_stationary_droplet","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088447/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088447/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088447/26990-libre.pdf?1647168029=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=erANxawpKdE8ymUqdFMyGtUAcSP6ttbTYurZfQe2DaTbrVyrgnyz7HGMfQWb3zN2qZJcDzGSsJsyHTjKdZGSDDfVb9PFRG5ZoL4W-jESa951-Ou017LxNyZiGIV-CDgMMohPdmg8-A8cZdIm~YAXH5CiiRx89exhivte9NS3UcK-Hwm9QmEMG8XpCL80n2tyety9ZZIKq5yp5NgpqNh2CEZqIQ8RhnrR0XrUiI0ufvJNnCOafCb51fijoGlj~Sjw1BBEfvUp4wksJu71kEHuF2Ayz0LBi1zsrqgxnDapWvHvQZuBRaEY67shYvMTllhQyo4rAOI2en4pF~N4w3f-Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":82088446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088446/thumbnails/1.jpg","file_name":"26990.pdf","download_url":"https://www.academia.edu/attachments/82088446/download_file","bulk_download_file_name":"Collision_behaviour_of_a_small_spherical.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088446/26990-libre.pdf?1647168028=\u0026response-content-disposition=attachment%3B+filename%3DCollision_behaviour_of_a_small_spherical.pdf\u0026Expires=1732450267\u0026Signature=RH3UDAhIbsl-wL1dB0Hfuyb5wYfRtW76PRux8LEDA8owZI6BlfBskdfEp9DI1C0GPWNJIIa7V2N3dZ3SR7cXXExuxrtrQOgepitQoiz9K-c2N6thFDDAAzS-kLSleSvRyGhfYalkzM7pBiKwcsbB24iroXXwaJtBcPHNskxnz2bjSRsiS3QuZZ79w5tgtt2hdhyKhTFTeoLHixLP1q-Q876XGmEW6Z0dZBrYUhyd6PgcFCywOrbIvt~N1XwYx6FlPFM91XRqKIAg41I-SqJ-1I3yIp28ydpSJkLlvmKAdUeObxCstD~XJCj1wLiklKKO55S-9qg7EW~k~gsF6EJlDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1139,"name":"Publishing","url":"https://www.academia.edu/Documents/in/Publishing"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":90962,"name":"Academic research","url":"https://www.academia.edu/Documents/in/Academic_research"},{"id":132495,"name":"Commissioning","url":"https://www.academia.edu/Documents/in/Commissioning"},{"id":171623,"name":"Droplets","url":"https://www.academia.edu/Documents/in/Droplets"},{"id":848110,"name":"CFD simulation","url":"https://www.academia.edu/Documents/in/CFD_simulation"}],"urls":[{"id":18465788,"url":"http://www.conference.net.au/chemeca2013/papers/26990.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle"><img alt="Research paper thumbnail of Droplet impact dynamics on a spherical particle" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle">Droplet impact dynamics on a spherical particle</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649799]").text(description); $(".js-view-count[data-work-id=73649799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73649799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649799,"title":"Droplet impact dynamics on a spherical particle","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649799/Droplet_impact_dynamics_on_a_spherical_particle","translated_internal_url":"","created_at":"2022-03-13T03:31:21.504-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Droplet_impact_dynamics_on_a_spherical_particle","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":7114,"name":"Multiphase Flow","url":"https://www.academia.edu/Documents/in/Multiphase_Flow"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":171623,"name":"Droplets","url":"https://www.academia.edu/Documents/in/Droplets"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"},{"id":618981,"name":"High speed imaging","url":"https://www.academia.edu/Documents/in/High_speed_imaging"},{"id":799602,"name":"DROP","url":"https://www.academia.edu/Documents/in/DROP"},{"id":1826850,"name":"Nova","url":"https://www.academia.edu/Documents/in/Nova"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors"><img alt="Research paper thumbnail of Axial mixing in annular centrifugal extractors" class="work-thumbnail" src="https://attachments.academia-assets.com/82088481/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors">Axial mixing in annular centrifugal extractors</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="467338f7bf2911d5ba41dccd09dcd48f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088481,"asset_id":73649797,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649797]").text(description); $(".js-view-count[data-work-id=73649797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649797, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "467338f7bf2911d5ba41dccd09dcd48f" } } $('.js-work-strip[data-work-id=73649797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649797,"title":"Axial mixing in annular centrifugal extractors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649797/Axial_mixing_in_annular_centrifugal_extractors","translated_internal_url":"","created_at":"2022-03-13T03:31:21.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088481/thumbnails/1.jpg","file_name":"50_tamhane.pdf","download_url":"https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Axial_mixing_in_annular_centrifugal_extr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088481/50_tamhane-libre.pdf?1647168021=\u0026response-content-disposition=attachment%3B+filename%3DAxial_mixing_in_annular_centrifugal_extr.pdf\u0026Expires=1732450267\u0026Signature=BnIW6WtqOZSDc43L1nGU9uGQSg2w-MZFcF5qTqWxBBforbYxG3NH93aJKX1fy1uxiyRi~ydTYd6xXXFyb3ieaOYX1MAw-3N1KV1bKROGZkZqbEwWlX-f6hAqVMYjl9Cal~Hwe7aWltEC8XJMz5Yg8Kt9QnNjdxBomH5kR1-mqLpD8yuZ67mT-HaobhAsdRZ-kOHsC~PfMrIog4dmHWktmwPG9iTDT3qk3Rb3hFimUlXkGfaa5HQtjRRFcyFaAOOQ1J1-Fzsb3yZ9DBE-gBnoVwagL4qh-HGc~xEBVnuIzSxwaA0hOoiCQyeaGuretnlZC-UsxCDOrNi~ByovUQKg0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Axial_mixing_in_annular_centrifugal_extractors","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088481/thumbnails/1.jpg","file_name":"50_tamhane.pdf","download_url":"https://www.academia.edu/attachments/82088481/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Axial_mixing_in_annular_centrifugal_extr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088481/50_tamhane-libre.pdf?1647168021=\u0026response-content-disposition=attachment%3B+filename%3DAxial_mixing_in_annular_centrifugal_extr.pdf\u0026Expires=1732450267\u0026Signature=BnIW6WtqOZSDc43L1nGU9uGQSg2w-MZFcF5qTqWxBBforbYxG3NH93aJKX1fy1uxiyRi~ydTYd6xXXFyb3ieaOYX1MAw-3N1KV1bKROGZkZqbEwWlX-f6hAqVMYjl9Cal~Hwe7aWltEC8XJMz5Yg8Kt9QnNjdxBomH5kR1-mqLpD8yuZ67mT-HaobhAsdRZ-kOHsC~PfMrIog4dmHWktmwPG9iTDT3qk3Rb3hFimUlXkGfaa5HQtjRRFcyFaAOOQ1J1-Fzsb3yZ9DBE-gBnoVwagL4qh-HGc~xEBVnuIzSxwaA0hOoiCQyeaGuretnlZC-UsxCDOrNi~ByovUQKg0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649796/Design_of_gas_inducing_reactors"><img alt="Research paper thumbnail of Design of gas-inducing reactors" class="work-thumbnail" src="https://attachments.academia-assets.com/82088483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649796/Design_of_gas_inducing_reactors">Design of gas-inducing reactors</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec47fe07423ab7f3981a148ff80f8ae4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088483,"asset_id":73649796,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649796]").text(description); $(".js-view-count[data-work-id=73649796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649796, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec47fe07423ab7f3981a148ff80f8ae4" } } $('.js-work-strip[data-work-id=73649796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649796,"title":"Design of gas-inducing reactors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649796/Design_of_gas_inducing_reactors","translated_internal_url":"","created_at":"2022-03-13T03:31:21.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088483/thumbnails/1.jpg","file_name":"7xe7YoC5R4y.pdf","download_url":"https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_gas_inducing_reactors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088483/7xe7YoC5R4y-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_gas_inducing_reactors.pdf\u0026Expires=1732450267\u0026Signature=N~2CPLgP3jQMyjZL5uaVe0ygZcs6b8E~u-xqOeXh1AGGyKPGDlS3EeHpfSsxOAvLUqjTSFwNhNEwHmEYwSH5uihmxtAhxd~4M9TvejvAQIqrJWwRSM73ssK9PWkVTssCsGs~AkULw0vaeyNmhYkwdVcIe3AFnHMMOXrcEuBwhurUlPFt-hmgHJfgLMmKPZbLnSkXE1gjnyTFT3fH0fKEHKfKZerbOiBE3Os4iGLGXycAM1w1-DOUUg-oYL6obpW84Eeqct-opc0R9lj5qe79duh4F9PoKD77XVyAEs0gMBRq2Y3jz~vY7ISep8GO~6NseAtSEOXwn0Z7lZJb2JxtZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Design_of_gas_inducing_reactors","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088483/thumbnails/1.jpg","file_name":"7xe7YoC5R4y.pdf","download_url":"https://www.academia.edu/attachments/82088483/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Design_of_gas_inducing_reactors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088483/7xe7YoC5R4y-libre.pdf?1647168022=\u0026response-content-disposition=attachment%3B+filename%3DDesign_of_gas_inducing_reactors.pdf\u0026Expires=1732450267\u0026Signature=N~2CPLgP3jQMyjZL5uaVe0ygZcs6b8E~u-xqOeXh1AGGyKPGDlS3EeHpfSsxOAvLUqjTSFwNhNEwHmEYwSH5uihmxtAhxd~4M9TvejvAQIqrJWwRSM73ssK9PWkVTssCsGs~AkULw0vaeyNmhYkwdVcIe3AFnHMMOXrcEuBwhurUlPFt-hmgHJfgLMmKPZbLnSkXE1gjnyTFT3fH0fKEHKfKZerbOiBE3Os4iGLGXycAM1w1-DOUUg-oYL6obpW84Eeqct-opc0R9lj5qe79duh4F9PoKD77XVyAEs0gMBRq2Y3jz~vY7ISep8GO~6NseAtSEOXwn0Z7lZJb2JxtZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2024,"name":"Mass Transfer","url":"https://www.academia.edu/Documents/in/Mass_Transfer"},{"id":6962,"name":"Energy Conservation","url":"https://www.academia.edu/Documents/in/Energy_Conservation"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":11397,"name":"Energy Consumption","url":"https://www.academia.edu/Documents/in/Energy_Consumption"},{"id":93836,"name":"Economic analysis","url":"https://www.academia.edu/Documents/in/Economic_analysis"},{"id":99040,"name":"Process Design","url":"https://www.academia.edu/Documents/in/Process_Design"},{"id":123710,"name":"Power Consumption","url":"https://www.academia.edu/Documents/in/Power_Consumption"},{"id":161282,"name":"Scaling up","url":"https://www.academia.edu/Documents/in/Scaling_up"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":327320,"name":"Chemical reactors","url":"https://www.academia.edu/Documents/in/Chemical_reactors"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning"},{"id":850827,"name":"Optimum Design","url":"https://www.academia.edu/Documents/in/Optimum_Design"},{"id":891612,"name":"Flow Pattern","url":"https://www.academia.edu/Documents/in/Flow_Pattern"},{"id":1117546,"name":"Industrial Chemistry/Chemical Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Chemistry_Chemical_Engineering"},{"id":1356442,"name":"Mass Transfer Coefficient","url":"https://www.academia.edu/Documents/in/Mass_Transfer_Coefficient"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling"><img alt="Research paper thumbnail of CFD simulation of bubble columns incorporating population balance modeling" class="work-thumbnail" src="https://attachments.academia-assets.com/82088508/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling">CFD simulation of bubble columns incorporating population balance modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4dc546eefe38c734a5d78de2bc43bfda" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088508,"asset_id":73649795,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649795]").text(description); $(".js-view-count[data-work-id=73649795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4dc546eefe38c734a5d78de2bc43bfda" } } $('.js-work-strip[data-work-id=73649795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649795,"title":"CFD simulation of bubble columns incorporating population balance modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649795/CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling","translated_internal_url":"","created_at":"2022-03-13T03:31:21.198-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088508,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088508/thumbnails/1.jpg","file_name":"f53768eb05dc42d93c186216ca6077fe029b.pdf","download_url":"https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CFD_simulation_of_bubble_columns_incorpo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088508/f53768eb05dc42d93c186216ca6077fe029b-libre.pdf?1647168018=\u0026response-content-disposition=attachment%3B+filename%3DCFD_simulation_of_bubble_columns_incorpo.pdf\u0026Expires=1732450267\u0026Signature=Gbq2g3DIvwG~OtHf9t8OzbQTmz-hcYUAtPlTXGfKLNpuLzZjtOFf1y4x8R2OgWeE8j8stEzhp4I52CP55UGreilLQHJguZCljC7oCuY4WwYzs89di9RTVaAIsfjNEeqjpI~aTXbLItzcPNwzPxfCW6cI1F-iYK4VZvovp3r6iAajAF8AemEqwzS-~YnziXWHS5Tt-p8ovygS8Dr3byxttqgFWtd07e3o2F-d2jo3Vdw-bljHD~rQzI~bTdAYYX72208AKCb9ieVvwhRrG21QLCYQHetRcTsDmTz325uw8FwjaOXrI2qgIEAkz~Y7HG-TgebVNLXt8RNkE65DanVgZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"CFD_simulation_of_bubble_columns_incorporating_population_balance_modeling","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088508,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088508/thumbnails/1.jpg","file_name":"f53768eb05dc42d93c186216ca6077fe029b.pdf","download_url":"https://www.academia.edu/attachments/82088508/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CFD_simulation_of_bubble_columns_incorpo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088508/f53768eb05dc42d93c186216ca6077fe029b-libre.pdf?1647168018=\u0026response-content-disposition=attachment%3B+filename%3DCFD_simulation_of_bubble_columns_incorpo.pdf\u0026Expires=1732450267\u0026Signature=Gbq2g3DIvwG~OtHf9t8OzbQTmz-hcYUAtPlTXGfKLNpuLzZjtOFf1y4x8R2OgWeE8j8stEzhp4I52CP55UGreilLQHJguZCljC7oCuY4WwYzs89di9RTVaAIsfjNEeqjpI~aTXbLItzcPNwzPxfCW6cI1F-iYK4VZvovp3r6iAajAF8AemEqwzS-~YnziXWHS5Tt-p8ovygS8Dr3byxttqgFWtd07e3o2F-d2jo3Vdw-bljHD~rQzI~bTdAYYX72208AKCb9ieVvwhRrG21QLCYQHetRcTsDmTz325uw8FwjaOXrI2qgIEAkz~Y7HG-TgebVNLXt8RNkE65DanVgZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering"},{"id":17726,"name":"Density","url":"https://www.academia.edu/Documents/in/Density"},{"id":57608,"name":"Dispersion","url":"https://www.academia.edu/Documents/in/Dispersion"},{"id":91603,"name":"Computation Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computation_Fluid_Dynamics"},{"id":126982,"name":"Drag","url":"https://www.academia.edu/Documents/in/Drag"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":162985,"name":"Bubble Column","url":"https://www.academia.edu/Documents/in/Bubble_Column"},{"id":171868,"name":"COLLISION","url":"https://www.academia.edu/Documents/in/COLLISION"},{"id":172421,"name":"Discretization","url":"https://www.academia.edu/Documents/in/Discretization"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":568612,"name":"Finite Volume Method","url":"https://www.academia.edu/Documents/in/Finite_Volume_Method"},{"id":595175,"name":"Chemical Engineering Science","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Science"},{"id":848110,"name":"CFD simulation","url":"https://www.academia.edu/Documents/in/CFD_simulation"},{"id":898070,"name":"Experimental Measurement","url":"https://www.academia.edu/Documents/in/Experimental_Measurement"},{"id":990815,"name":"Coalescence","url":"https://www.academia.edu/Documents/in/Coalescence"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1233265,"name":"Cfd","url":"https://www.academia.edu/Documents/in/Cfd"},{"id":3135864,"name":"Euler Equation","url":"https://www.academia.edu/Documents/in/Euler_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73649794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations"><img alt="Research paper thumbnail of Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/82088482/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations">Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="79dea8c3d8eda512a0dee8daabd24cf4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":82088482,"asset_id":73649794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73649794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73649794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73649794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73649794]").text(description); $(".js-view-count[data-work-id=73649794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73649794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73649794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73649794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "79dea8c3d8eda512a0dee8daabd24cf4" } } $('.js-work-strip[data-work-id=73649794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73649794,"title":"Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73649794/Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations","translated_internal_url":"","created_at":"2022-03-13T03:31:21.100-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51448878,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":82088482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088482/thumbnails/1.jpg","file_name":"712986.pdf","download_url":"https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Dynamics_of_a_Single_Condensing_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088482/712986-libre.pdf?1647168019=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Dynamics_of_a_Single_Condensing_V.pdf\u0026Expires=1732450267\u0026Signature=daNiA8wKJaEtZXVwe9MfN~op2Qp9OU-mpGaEWEmRn2BPQxYwmjm1HqGpW9jpldGOfI7WpiITktBz0pcxn7d8paBzBOfnANoJsTaPR9YgOCpXzjVtFXVACvcbyy04Pi5tVwbnmDoKaAQYRs~gHEwOX~vbgvOtBJIN8zSWXBl0pZokB7sVo4~s6pTOTRSr1ukNjVH8AM~~Dgnx0MwkILO8byqvZPvIhUmM40WFJH5JrLnF8WwwZZ1Jw6POXOZ3oh4z8R9D6tFhh8TSit3x9P3p9BL-b4ecdnFkThwXGkIz2EzTZ89NQY4J5QoqdfZVQ~JkrOCNxfemQXhW1RkkHwW3cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bubble_Dynamics_of_a_Single_Condensing_Vapor_Bubble_from_Vertically_Heated_Wall_in_Subcooled_Pool_Boiling_System_Experimental_Measurements_and_CFD_Simulations","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":51448878,"first_name":"Jyeshtharaj","middle_initials":null,"last_name":"Joshi","page_name":"JyeshtharajJoshi","domain_name":"independent","created_at":"2016-07-28T05:54:55.733-07:00","display_name":"Jyeshtharaj Joshi","url":"https://independent.academia.edu/JyeshtharajJoshi"},"attachments":[{"id":82088482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/82088482/thumbnails/1.jpg","file_name":"712986.pdf","download_url":"https://www.academia.edu/attachments/82088482/download_file?st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ0NjY2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bubble_Dynamics_of_a_Single_Condensing_V.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82088482/712986-libre.pdf?1647168019=\u0026response-content-disposition=attachment%3B+filename%3DBubble_Dynamics_of_a_Single_Condensing_V.pdf\u0026Expires=1732450267\u0026Signature=daNiA8wKJaEtZXVwe9MfN~op2Qp9OU-mpGaEWEmRn2BPQxYwmjm1HqGpW9jpldGOfI7WpiITktBz0pcxn7d8paBzBOfnANoJsTaPR9YgOCpXzjVtFXVACvcbyy04Pi5tVwbnmDoKaAQYRs~gHEwOX~vbgvOtBJIN8zSWXBl0pZokB7sVo4~s6pTOTRSr1ukNjVH8AM~~Dgnx0MwkILO8byqvZPvIhUmM40WFJH5JrLnF8WwwZZ1Jw6POXOZ3oh4z8R9D6tFhh8TSit3x9P3p9BL-b4ecdnFkThwXGkIz2EzTZ89NQY4J5QoqdfZVQ~JkrOCNxfemQXhW1RkkHwW3cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "03f989ba6ffe7a1ba448986bcdb5762408a42ebc04269f0dfa5b82f78fd8a76d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/dQ2uQv7vGJ2DA6sub6Y/528HBsa4SoK3wT1K7yHgeQPvnY5p4CevkPd29x/18dhHDizG3yDGVvld97YpqMKQg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JyeshtharajJoshi" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="D2mSoqtqjhNZaOAsdiYn83LTSTbVsmLxTneZe31HMt/9A9IiBxGsz2y5NVywT3ht81fmNrPQUaB0BLKIZ2O5eQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>