CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–25 of 25 results for author: <span class="mathjax">Kushnirenko, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Kushnirenko%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kushnirenko, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kushnirenko%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kushnirenko, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16468">arXiv:2409.16468</a> <span> [<a href="https://arxiv.org/pdf/2409.16468">pdf</a>, <a href="https://arxiv.org/format/2409.16468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125150">10.1103/PhysRevB.110.125150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band structure and charge ordering of Dirac semimetal EuAl$_4$ at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Leary%2C+E">Evan O'Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16468v1-abstract-short" style="display: inline;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16468v1-abstract-full" style="display: none;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic properties in EuAl$_4$. We found changes in the band structure upon each of the four consecutive AFM transitions including band splitting, renormalizations, and appearance of new bands forming additional Fermi sheets. In addition we also found significant enhancement of the quasiparticles' lifetime due to suppression of spin flip scattering, similar to what was previously reported for ferromagnetic EuCd$_2$As$_2$. Surprisingly, we observe that most significant changes in electronic properties occur not at TN1, but instead at the AFM3 to AFM4 transition, which coincides with the largest drop in resistivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'none'; document.getElementById('2409.16468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 125150 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08125">arXiv:2409.08125</a> <span> [<a href="https://arxiv.org/pdf/2409.08125">pdf</a>, <a href="https://arxiv.org/format/2409.08125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00692-0">10.1038/s43246-024-00692-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unexpected changes in the band structure within AFM1 state of CeBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Leary%2C+E">Evan O'Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08125v1-abstract-short" style="display: inline;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an add… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08125v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08125v1-abstract-full" style="display: none;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an additional Dirac state in the (+-+-) ordered phase and a transformation of unconventional surface-state pairs in the (++--) ordered phase. This revises the phase diagram of this intriguing material, where there are now three distinct AFM states below TN in zero magnetic field instead of two as it was previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'none'; document.getElementById('2409.08125v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 5, 245 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12039">arXiv:2406.12039</a> <span> [<a href="https://arxiv.org/pdf/2406.12039">pdf</a>, <a href="https://arxiv.org/format/2406.12039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115151">10.1103/PhysRevB.110.115151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range magnetic order induced surface state in GdBi and DyBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhuoqi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Leary%2C+E">Evan O'Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P">Paul. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12039v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12039v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of GdBi and DyBi. We find that new surface states, including a Dirac cone, emerge in the AFM state. However, they are located along a direction in momentum space that is different than what was found in NdSb, NdBi, and CeBi. The observed changes in the electronic structure are consistent with the presence of AFM-II-A type order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'none'; document.getElementById('2406.12039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115151 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17824">arXiv:2403.17824</a> <span> [<a href="https://arxiv.org/pdf/2403.17824">pdf</a>, <a href="https://arxiv.org/format/2403.17824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.035145">10.1103/PhysRevB.110.035145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band Structure and Fermi Surface Nesting in $LaSb_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=O%27Leary%2C+E">Evan O'Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Ben Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Herrera-Siklody%2C+P">Paula Herrera-Siklody</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17824v1-abstract-short" style="display: inline;"> We use high-resolution angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) to investigate the electronic structure of the charge density wave (CDW) system LaSb$_2$. This compound is among an interesting group of materials that manifests both a CDW transition and lower temperature superconductivity. We find the DFT calculations to be in good agreement with our ARPE… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17824v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17824v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17824v1-abstract-full" style="display: none;"> We use high-resolution angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) to investigate the electronic structure of the charge density wave (CDW) system LaSb$_2$. This compound is among an interesting group of materials that manifests both a CDW transition and lower temperature superconductivity. We find the DFT calculations to be in good agreement with our ARPES data. The Fermi surface of LaSb$_2$ consists of two small hole pockets close to $螕$ and four larger pockets near the Brillouin zone (BZ) boundary. The overall features of the Fermi surface do not vary with temperature. A saddle point is present at -0.19 $eV$ below the Fermi level at $螕$. Critical points in band structure have more pronounced effects on a materials properties when they are located closer to the Fermi level, making doped LaSb$_2$ compounds a potential interesting subject of future research. Multiple peaks are present in the generalized, electronic susceptibility calculations indicating the presence of possible nesting vectors. We were not able to detect any signatures of the CDW transition at 355 K, pointing to the subtle nature of this transition. This is unusual, given that such a high transition temperature is expected to be associated with the presence of a large CDW gap. This is confirmed through investigation of the Fermi surface and through analysis of momentum distribution curves (MDC). It is possible that changes are subtle and occur below current sensitivity of our measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17824v1-abstract-full').style.display = 'none'; document.getElementById('2403.17824v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17085">arXiv:2305.17085</a> <span> [<a href="https://arxiv.org/pdf/2305.17085">pdf</a>, <a href="https://arxiv.org/format/2305.17085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.115102">10.1103/PhysRevB.108.115102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directional effects of antiferromagnetic ordering on the electronic structure in NdSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Leary%2C+E">Evan O'Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17085v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17085v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17085v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and density-functional-theory (DFT) calculations to investigate the electronic structure of NdSb. We found the presence of distinct domains that have different electronic structure at the surface. These domains correspond to different orientations of magnetic moments in the AFM state with respect to the surface. We demonstrated remarkable agreement between DFT calculations and ARPES that capture all essential changes in the band structure caused by transition to a magnetically ordered state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'none'; document.getElementById('2305.17085v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 115102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09211">arXiv:2205.09211</a> <span> [<a href="https://arxiv.org/pdf/2205.09211">pdf</a>, <a href="https://arxiv.org/format/2205.09211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/acc629">10.1088/1361-648X/acc629 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic signatures of successive itinerant, magnetic transitions in hexagonal La2Ni7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Ben Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09211v1-abstract-short" style="display: inline;"> We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic and magnetic properties of La2Ni7, an itinerant magnetic system with a series of three magnetic transition temperatures upon cooling, which end in a weak itinerant antiferromagnetic (wAFM) ground state. Our APRES data reveal several electron and hole poc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09211v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09211v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09211v1-abstract-full" style="display: none;"> We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic and magnetic properties of La2Ni7, an itinerant magnetic system with a series of three magnetic transition temperatures upon cooling, which end in a weak itinerant antiferromagnetic (wAFM) ground state. Our APRES data reveal several electron and hole pockets that have hexagonal symmetry near the $螕$ point. We observe significant reconstruction of the band structure upon successive magnetic transitions at T1 = 61 K, T2 = 57 K and T3 = 42 K. The experimental data are in a reasonable agreement with DFT calculations, demonstrating their applicability to itinerant antiferromagnet systems. Our results detail the effects of magnetic ordering on the electronic structure in a Ni-based weak antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09211v1-abstract-full').style.display = 'none'; document.getElementById('2205.09211v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06693">arXiv:2205.06693</a> <span> [<a href="https://arxiv.org/pdf/2205.06693">pdf</a>, <a href="https://arxiv.org/format/2205.06693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115112">10.1103/PhysRevB.106.115112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rare-earth monopnoctides -- family of antiferromagnets hosting magnetic Fermi arcs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Bud%60ko%2C+S+L">S. L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06693v1-abstract-short" style="display: inline;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'inline'; document.getElementById('2205.06693v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06693v1-abstract-full" style="display: none;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent discovery of Fermi arcs and new magnetic bands splitting in antiferromagnet (AFM) NdBi has opened up new avenues for exploration. Here we show that these uncharted effects are not restricted to this specific compound, but rather emerge in CeBi, NdBi, and NdSb when they undergo paramagnetic to AFM transition. Our data show that the Fermi arcs in NdSb have 2-fold symmetry, leading to strong anisotropy that may enhance effects of spin textures on transport properties. Our findings thus demonstrate that the RBi and RSb series are materials that host magnetic Fermi arcs and may be a potential platform for modern spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'none'; document.getElementById('2205.06693v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, five figures, supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 106, 115112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12541">arXiv:2203.12541</a> <span> [<a href="https://arxiv.org/pdf/2203.12541">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01180-6">10.1038/s42005-023-01180-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Surface State Pairs in a High-Symmetry Lattice with Anti-ferromagnetic Band-folding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L+-">L. -L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+J">J. Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Slager%2C+R+-">R. -J. Slager</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Ueland%2C+B+G">B. G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">B. Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">B. Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">A. Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12541v2-abstract-short" style="display: inline;"> Many complex magnetic structures in a high-symmetry lattice can arise from a superposition of well-defined magnetic wave vectors. These "multi-q" structures have garnered much attention because of interesting real-space spin textures such as skyrmions. However, the role multi-q structures play in the topology of electronic bands in momentum space has remained rather elusive. Here we show that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12541v2-abstract-full').style.display = 'inline'; document.getElementById('2203.12541v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12541v2-abstract-full" style="display: none;"> Many complex magnetic structures in a high-symmetry lattice can arise from a superposition of well-defined magnetic wave vectors. These "multi-q" structures have garnered much attention because of interesting real-space spin textures such as skyrmions. However, the role multi-q structures play in the topology of electronic bands in momentum space has remained rather elusive. Here we show that the type-I anti-ferromagnetic 1q, 2q and 3q structures in an face-centered cubic sublattice with band inversion, such as NdBi, can induce unconventional surface state pairs inside the band-folding hybridization bulk gap. Our density functional theory calculations match well with the recent experimental observation of unconventional surface states with hole Fermi arc-like features and electron pockets below the Neel temperature. We further show that these multi-q structures have Dirac and Weyl nodes. Our work reveals the special role that band-folding from anti-ferromagnetism and multi-q structures can play in developing new types of surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12541v2-abstract-full').style.display = 'none'; document.getElementById('2203.12541v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 6, 78 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12511">arXiv:2203.12511</a> <span> [<a href="https://arxiv.org/pdf/2203.12511">pdf</a>, <a href="https://arxiv.org/format/2203.12511">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04412-x">10.1038/s41586-022-04412-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Fermi arcs and novel magnetic splitting in an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez-Barriga%2C+J">Jaime Sanchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&query=Bud%60ko%2C+S+L">Sergey L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12511v1-abstract-short" style="display: inline;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can resu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12511v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12511v1-abstract-full" style="display: none;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can result in a Weyl semimetal with pairs of Weyl nodes that have opposite chirality. The bulk-boundary correspondence associated with the Chern number leads to the emergence of Fermi arcs on the boundary. Here, we present experimental evidence that pairs of magnetically split hole- and electron-like Fermi arcs emerge below the Neel temperature, in the antiferromagnetic (AFM) state of cubic NdBi due to a novel band splitting effect. Whereas TRS is broken by the AFM order, both inversion and nonsymmorphic TRS are preserved in the bulk, precluding the possibility of a Weyl semimetal. The observed magnetic splitting is highly unusual, as it creates bands of opposing curvature, that changes with temperature and follows the antiferromagnetic order parameter. This is completely different from previously reported cases of magnetic splittings such as traditional Zeeman and Rashba, where the curvature of the bands is preserved. Therefore, our finding represents a new Fermionic state created by new type of magnetic band splitting in the presence of a long-range AFM order that are not readily explained by existing theoretical ideas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'none'; document.getElementById('2203.12511v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures main text and 20 pages, 12 figures supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The version of record of this article, first published in Nature, is available online at Publisher`s website: https://www.nature.com/articles/s41586-022-04412-x (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10325">arXiv:2201.10325</a> <span> [<a href="https://arxiv.org/pdf/2201.10325">pdf</a>, <a href="https://arxiv.org/format/2201.10325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> KCo$_2$As$_2$: A New Portal for the Physics of High-Purity Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pandey%2C+A">Abhishek Pandey</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Samal%2C+S+L">Saroj L. Samal</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kaminski%2C+A">A. Kaminski</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+D+J">D. J. Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Johnston%2C+D+C">D. C. Johnston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10325v1-abstract-short" style="display: inline;"> High-quality single crystals of KCo$_2$As$_2$ with the body-centered tetragonal ThCr$_2$Si$_2$ structure were grown using KAs self flux. Structural, magnetic, thermal, and electrical transport were investigated. No clear evidence for any phase transitions was found in the temperature range 2 to 300 K. The in-plane electrical resistivity $蟻$ versus temperature $T$ is highly unusual, showing a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10325v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10325v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10325v1-abstract-full" style="display: none;"> High-quality single crystals of KCo$_2$As$_2$ with the body-centered tetragonal ThCr$_2$Si$_2$ structure were grown using KAs self flux. Structural, magnetic, thermal, and electrical transport were investigated. No clear evidence for any phase transitions was found in the temperature range 2 to 300 K. The in-plane electrical resistivity $蟻$ versus temperature $T$ is highly unusual, showing a $T^4$ behavior below 30 K and an anomalous positive curvature up to 300 K which is different from the linear behavior expected from the Bloch-Gr眉neisen theory for electron scattering by acoustic phonons. This positive curvature has been previously observed in the in-plane resistivity of high-conductivity layered delafossites such as PdCoO$_2$ and PtCoO$_2$. The in-plane $蟻(T\to0) = 0.36~渭惟$ cm of KCo$_2$As$_2$ is exceptionally small for this class of compounds. The material also exhibits a nearly linear magnetoresistance at low $T$ which attains a value of about 40% at $T=2$K and magnetic field $H= 80$ kOe. The magnetic susceptibility $蠂$ of KCo$_2$As$_2$ is isotropic and about an order of magnitude smaller than the values for the related compounds SrCo$_2$As$_2$ and BaCo$_2$As$_2$. The $蠂$ increases above 100 K which is found from our first-principles calculations to arise from a sharp peak in the electronic density of states just above the Fermi energy $E_{\rm F}$. Heat capacity $C_{\rm p}(T)$ data at low $T$ yield an electronic density of states $N(E_{\rm F})$ that is about 36% larger than predicted by the first-principles theory. The $C_{\rm p}(T)$ data near room temperature suggest the presence of excited optic vibration modes which may also be the source of the positive curvature in $蟻(T)$. Our results show that KCo$_2$As$_2$ provides a new avenue for investigating the physics of high-purity metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10325v1-abstract-full').style.display = 'none'; document.getElementById('2201.10325v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.15055">arXiv:2105.15055</a> <span> [<a href="https://arxiv.org/pdf/2105.15055">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-31841-z">10.1038/s41467-022-31841-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi surface tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&query=Bianchi%2C+M">Marco Bianchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bezguba%2C+V">Volodymyr Bezguba</a>, <a href="/search/cond-mat?searchtype=author&query=Majchrzak%2C+P">Paulina Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&query=Hofmann%2C+P">Philip Hofmann</a>, <a href="/search/cond-mat?searchtype=author&query=Baumg%C3%A4rtel%2C+P">Peter Baumg盲rtel</a>, <a href="/search/cond-mat?searchtype=author&query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Sanches-Barriga%2C+J">Jaime Sanches-Barriga</a>, <a href="/search/cond-mat?searchtype=author&query=Varykhalov%2C+A">Andrey Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&query=Ovsyannikov%2C+R">Ruslan Ovsyannikov</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+I">Igor Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Feya%2C+O">Oleg Feya</a>, <a href="/search/cond-mat?searchtype=author&query=Harnagea%2C+L">Luminita Harnagea</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=Kordyuk%2C+A">Alexander Kordyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&query=Berger%2C+H">Helmuth Berger</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">Bernd B眉chner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.15055v1-abstract-short" style="display: inline;"> Fermi surfaces, three-dimensional (3D) abstract interfaces that define the occupied energies of electrons in a solid, are important for characterizing and predicting the thermal, electrical, magnetic, and optical properties of crystalline metals and semiconductors [1]. Angle-resolved photoemission spectroscopy (ARPES) is the only technique directly probing the Fermi surface by measuring the Fermi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15055v1-abstract-full').style.display = 'inline'; document.getElementById('2105.15055v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.15055v1-abstract-full" style="display: none;"> Fermi surfaces, three-dimensional (3D) abstract interfaces that define the occupied energies of electrons in a solid, are important for characterizing and predicting the thermal, electrical, magnetic, and optical properties of crystalline metals and semiconductors [1]. Angle-resolved photoemission spectroscopy (ARPES) is the only technique directly probing the Fermi surface by measuring the Fermi momenta (kF) from energy and angular distribution of photoelectrons dislodged by monochromatic light [2]. Existing electron analyzers are able to determine a number of kF-vectors simultaneously, but current technical limitations prohibit a direct high-resolution 3D Fermi surface mapping. As a result, no such datasets exist, strongly limiting our knowledge about the Fermi surfaces and restricting a detailed comparison with the widely available nowadays calculated 3D Fermi surfaces. Here we show that using a simpler instrumentation, based on the Fourier electron optics combined with a retardation field of the detector, it is possible to perform 3D-mapping within a very short time interval and with very high resolution. We present the first detailed experimental 3D Fermi surface recorded in the full Brillouin zone along the kz-direction as well as other experimental results featuring multiple advantages of our technique. In combination with various light sources, including synchrotron radiation, our methodology and instrumentation offer new opportunities for high-resolution ARPES in the physical and life sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.15055v1-abstract-full').style.display = 'none'; document.getElementById('2105.15055v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 13, 4132 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00987">arXiv:2009.00987</a> <span> [<a href="https://arxiv.org/pdf/2009.00987">pdf</a>, <a href="https://arxiv.org/format/2009.00987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.0c10517">10.1021/acs.jpcc.0c10517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence of Stable 2$H$ Phase on the Surface of Layered 1$T'$-TaTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kar%2C+I">Indrani Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Dolui%2C+K">Kapildeb Dolui</a>, <a href="/search/cond-mat?searchtype=author&query=Harnagea%2C+L">Luminita Harnagea</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Shipunov%2C+G">G. Shipunov</a>, <a href="/search/cond-mat?searchtype=author&query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00987v2-abstract-short" style="display: inline;"> We report on the low-energy electronic structure of Tantalum ditelluride (1$T'$-TaTe$_2$), one of the charge density wave (CDW) materials from the group V transition metal dichalcogenides using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). We find that the Fermi surface topology of TaTe$_2$ is quite complicated compared to its isovalent compounds such as Ta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00987v2-abstract-full').style.display = 'inline'; document.getElementById('2009.00987v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00987v2-abstract-full" style="display: none;"> We report on the low-energy electronic structure of Tantalum ditelluride (1$T'$-TaTe$_2$), one of the charge density wave (CDW) materials from the group V transition metal dichalcogenides using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). We find that the Fermi surface topology of TaTe$_2$ is quite complicated compared to its isovalent compounds such as TaS$_2$, TaSe$_2$, and isostructural compound NbTe$_2$. More importantly, we discover that the surface electronic structure of 1$T'$-TaTe$_2$ has more resemblance to the 2$H$-TaTe$_2$, while the bulk electronic structure has more resemblance to the hypothetical 1$T$-TaTe$_2$. These experimental observations are thoroughly compared with our DFT calculations performed on 1$T$-, 2$H$- and 2$H$ (monolayer)/1$T$- TaTe$_2$. We further notice that the Fermi surface topology is temperature independent up to 180 K, confirming that the 2$H$ phase on the surface is stable up to 180 K and the CDW order is not due to the Fermi surface nesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00987v2-abstract-full').style.display = 'none'; document.getElementById('2009.00987v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 22 pages, Accepted for publication in JPCC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 125, 1150 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.04796">arXiv:1912.04796</a> <span> [<a href="https://arxiv.org/pdf/1912.04796">pdf</a>, <a href="https://arxiv.org/format/1912.04796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235105">10.1103/PhysRevB.101.235105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Structure Studies of FeSi: A Chiral Topological System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Changdar%2C+S">Susmita Changdar</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Bose%2C+A">Anumita Bose</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Shipunov%2C+G">G. Shipunov</a>, <a href="/search/cond-mat?searchtype=author&query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.04796v1-abstract-short" style="display: inline;"> Most recent observation of topological Fermi arcs on the surface of manyfold degenerate B20 systems, CoSi and RhSi, have attracted enormous research interests. Although an another isostructural system, FeSi, has been predicted to show bulk chiral fermions, it is yet to be clear theoretically and as well experimentally that whether FeSi possesses the topological surface Fermi arcs associated with t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04796v1-abstract-full').style.display = 'inline'; document.getElementById('1912.04796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.04796v1-abstract-full" style="display: none;"> Most recent observation of topological Fermi arcs on the surface of manyfold degenerate B20 systems, CoSi and RhSi, have attracted enormous research interests. Although an another isostructural system, FeSi, has been predicted to show bulk chiral fermions, it is yet to be clear theoretically and as well experimentally that whether FeSi possesses the topological surface Fermi arcs associated with the exotic chiral fermions in vicinity of the Fermi level. In this contribution, using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), we present the low-energy electronic structure of FeSi. We further report the surface state calculations to provide insights into the surface band structure of FeSi near the Fermi level. Unlike in CoSi or RhSi, FeSi has no topological Fermi arcs near the Fermi level as confirmed both from ARPES and surface state calculations. Further, the ARPES data show spin-orbit coupling (SOC) band splitting of 40 meV, which is in good agreement with bulk band structure calculations. We noticed an anomalous temperature dependent resistivity in FeSi which can be understood through the electron-phonon interactions as we find a Debye energy of 80 meV from the ARPES data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04796v1-abstract-full').style.display = 'none'; document.getElementById('1912.04796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 235105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.10806">arXiv:1909.10806</a> <span> [<a href="https://arxiv.org/pdf/1909.10806">pdf</a>, <a href="https://arxiv.org/format/1909.10806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-020-00268-4">10.1038/s41535-020-00268-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly correlated superconductor with polytypic 3D Dirac points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&query=Bezguba%2C+V">Volodymyr Bezguba</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&query=Sturza%2C+M">Mihai Sturza</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Yaresko%2C+A">Alexander Yaresko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.10806v2-abstract-short" style="display: inline;"> Topological superconductors should be able to provide essential ingredients for quantum computing, but are very challenging to realize. Spin-orbit interaction in iron-based superconductors opens the energy gap between the $p$-states of pnictogen and $d$-states of iron very close to the Fermi level, and such $p$-states have been recently experimentally detected. Density functional theory predicts e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10806v2-abstract-full').style.display = 'inline'; document.getElementById('1909.10806v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.10806v2-abstract-full" style="display: none;"> Topological superconductors should be able to provide essential ingredients for quantum computing, but are very challenging to realize. Spin-orbit interaction in iron-based superconductors opens the energy gap between the $p$-states of pnictogen and $d$-states of iron very close to the Fermi level, and such $p$-states have been recently experimentally detected. Density functional theory predicts existence of topological surface states within this gap in FeTe$_{1-x}$Se$_x$ making it an attractive candidate material. Here we use synchrotron-based angle-resolved photoemission spectroscopy and band structure calculations to demonstrate that FeTe$_{1-x}$Se$_x$ (x=0.45) is a superconducting 3D Dirac semimetal hosting type-I and type-II Dirac points and that its electronic structure remains topologically trivial. We show that the inverted band gap in FeTe$_{1-x}$Se$_x$ can possibly be realized by further increase of Te content, but strong correlations reduce it to a sub-meV size, making the experimental detection of this gap and corresponding topological surface states very challenging, not to mention exact matching with the Fermi level. On the other hand, the $p-d$ and $d-d$ interactions are responsible for the formation of extremely flat band at the Fermi level pointing to its intimate relation with the mechanism of high-T$_c$ superconductivity in IBS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10806v2-abstract-full').style.display = 'none'; document.getElementById('1909.10806v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 28 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials volume 5, Article number: 67 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03987">arXiv:1907.03987</a> <span> [<a href="https://arxiv.org/pdf/1907.03987">pdf</a>, <a href="https://arxiv.org/format/1907.03987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.165122">10.1103/PhysRevB.101.165122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metal-chalcogen bond-length induced electronic phase transition from semiconductor to topological semimetal in ZrX$_2$ (X = Se and Te) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kar%2C+I">I. Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+J">Joydeep Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Harnagea%2C+L">Luminita Harnagea</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Shrivastava%2C+D">Deepika Shrivastava</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Mahadevan%2C+P">P. Mahadevan</a>, <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03987v1-abstract-short" style="display: inline;"> Using angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations we studied the low-energy electronic structure of bulk ZrTe$_2$. ARPES studies on ZrTe$_2$ demonstrate free charge carriers at the Fermi level, which is further confirmed by the DFT calculations. An equal number of hole and electron carrier density estimated from the ARPES data, points ZrTe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03987v1-abstract-full').style.display = 'inline'; document.getElementById('1907.03987v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03987v1-abstract-full" style="display: none;"> Using angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations we studied the low-energy electronic structure of bulk ZrTe$_2$. ARPES studies on ZrTe$_2$ demonstrate free charge carriers at the Fermi level, which is further confirmed by the DFT calculations. An equal number of hole and electron carrier density estimated from the ARPES data, points ZrTe$_2$ to a semimetal. The DFT calculations further suggest a band inversion between Te $p$ and Zr $d$ states at the $螕$ point, hinting at the non-trivial band topology in ZrTe$_2$. Thus, our studies for the first time unambiguously demonstrate that ZrTe$_2$ is a topological semimetal. Also, a comparative band structure study is done on ZrSe$_2$ which shows a semiconducting nature of the electronic structure with an indirect band gap of 0.9 eV between $螕(A) $ and $M (L)$ high symmetry points. In the below we show that the metal-chalcogen bond-length plays a critical role in the electronic phase transition from semiconductor to a topological semimetal ingoing from ZrSe$_2$ to ZrTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03987v1-abstract-full').style.display = 'none'; document.getElementById('1907.03987v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 165122 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.01668">arXiv:1812.01668</a> <span> [<a href="https://arxiv.org/pdf/1812.01668">pdf</a>, <a href="https://arxiv.org/format/1812.01668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5124563">10.1063/1.5124563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible Experimental Realization of a Basic Z2 Topological Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">Erik Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Rusinov%2C+I+P">Igor P. Rusinov</a>, <a href="/search/cond-mat?searchtype=author&query=Menshchikova%2C+T+V">Tatiana V. Menshchikova</a>, <a href="/search/cond-mat?searchtype=author&query=Duppel%2C+V">Viola Duppel</a>, <a href="/search/cond-mat?searchtype=author&query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/cond-mat?searchtype=author&query=Pielnhofer%2C+F">Florian Pielnhofer</a>, <a href="/search/cond-mat?searchtype=author&query=Weihrich%2C+R">Richard Weihrich</a>, <a href="/search/cond-mat?searchtype=author&query=Pfitzner%2C+A">Arno Pfitzner</a>, <a href="/search/cond-mat?searchtype=author&query=Zeugner%2C+A">Alexander Zeugner</a>, <a href="/search/cond-mat?searchtype=author&query=Isaeva%2C+A">Anna Isaeva</a>, <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">Setti Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T">Timur Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Chulkov%2C+E+V">Evgueni V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">Sergey V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.01668v1-abstract-short" style="display: inline;"> We report experimental and theoretical evidence that GaGeTe is a basic $Z_2$ topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the primer 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-reso… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01668v1-abstract-full').style.display = 'inline'; document.getElementById('1812.01668v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.01668v1-abstract-full" style="display: none;"> We report experimental and theoretical evidence that GaGeTe is a basic $Z_2$ topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the primer 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion in the \textit{T}-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron- and hole-like carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01668v1-abstract-full').style.display = 'none'; document.getElementById('1812.01668v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 7, 121106 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02430">arXiv:1811.02430</a> <span> [<a href="https://arxiv.org/pdf/1811.02430">pdf</a>, <a href="https://arxiv.org/format/1811.02430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.024517">10.1103/PhysRevB.100.024517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy scale of nematic ordering in the parent iron-based superconductor:BaFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">Erik Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T">Timur Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Buechner%2C+B">Bernd Buechner</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S">Sergey Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02430v2-abstract-short" style="display: inline;"> Nematicity plays an important role in the physics of iron-based superconductors (IBS). Its microscopic origin and in particular its importance for the mechanism of high-temperature superconductivity itself are highly debated. A crucial knowledge in this regard is the degree to which the nematic order influences the electronic structure of these materials. Earlier angle-resolved photoemission spect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02430v2-abstract-full').style.display = 'inline'; document.getElementById('1811.02430v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02430v2-abstract-full" style="display: none;"> Nematicity plays an important role in the physics of iron-based superconductors (IBS). Its microscopic origin and in particular its importance for the mechanism of high-temperature superconductivity itself are highly debated. A crucial knowledge in this regard is the degree to which the nematic order influences the electronic structure of these materials. Earlier angle-resolved photoemission spectroscopy (ARPES) studies found that the effect is dramatic in three families of IBS including 11, 111 and 122 compounds: energy splitting reaches 70 meV and Fermi surface becomes noticeably distorted. More recent experiments, however, reported significantly lower energy scale in 11 and 111 families, thus questioning the degree and universality of the impact of nematicity on the electronic structure of IBS. Here we revisit the electronic structure of undoped parent BaFe2As2 (122 family). Our systematic ARPES study including the detailed temperature and photon energy dependencies points to the significantly smaller energy scale also in this family of materials, thus establishing the universal scale of this phenomenon in IBS. Our results form a necessary quantitative basis for theories of high-temperature superconductivity focused on the nematicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02430v2-abstract-full').style.display = 'none'; document.getElementById('1811.02430v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 024517 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04446">arXiv:1810.04446</a> <span> [<a href="https://arxiv.org/pdf/1810.04446">pdf</a>, <a href="https://arxiv.org/format/1810.04446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.184502">10.1103/PhysRevB.102.184502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity-induced nematicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y+S">Y. S. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Evtushinsky%2C+D+V">D. V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+I+V">I. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Harnagea%2C+L">L. Harnagea</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Chubukov%2C+A+V">A. V. Chubukov</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04446v1-abstract-short" style="display: inline;"> The role of nematic order for the mechanism of high-temperature superconductivity is highly debated. In most iron-based superconductors (IBS) the tetragonal symmetry is broken already in the normal state, resulting in orthorhombic lattice distortions, static stripe magnetic order, or both. Superconductivity then emerges, at least at weak doping, already from the state with broken $C_4$ rotational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04446v1-abstract-full').style.display = 'inline'; document.getElementById('1810.04446v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04446v1-abstract-full" style="display: none;"> The role of nematic order for the mechanism of high-temperature superconductivity is highly debated. In most iron-based superconductors (IBS) the tetragonal symmetry is broken already in the normal state, resulting in orthorhombic lattice distortions, static stripe magnetic order, or both. Superconductivity then emerges, at least at weak doping, already from the state with broken $C_4$ rotational symmetry. One of the few stoichiometric IBS, lithium iron arsenide, superconducts below 18 K and does not display either structural or magnetic transition in the normal state. Here we demonstrate, using angle-resolved photoemission, that even superconducting state in LiFeAs is also a nematic one. We observe spontaneous breaking of the rotational symmetry in the gap amplitude on all Fermi surfaces, as well as unidirectional distortion of the Fermi pockets. Remarkably, these deformations disappear above superconducting $T_c$. Our results demonstrate the realization of a novel phenomenon of superconductivity-induced nematicity in IBS, emphasizing the intimate relation between them. We suggest a theoretical explanation based on the emergence of a secondary instability inside the superconducting state, which leads to the nematic order and s-d mixing in the gap function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04446v1-abstract-full').style.display = 'none'; document.getElementById('1810.04446v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 184502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07640">arXiv:1808.07640</a> <span> [<a href="https://arxiv.org/pdf/1808.07640">pdf</a>, <a href="https://arxiv.org/format/1808.07640">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.024202">10.1103/PhysRevMaterials.3.024202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive Dirac fermions in layered BaZnBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&query=Efremov%2C+D">D. Efremov</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Pienning%2C+B+R">B. R. Pienning</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07640v1-abstract-short" style="display: inline;"> Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) we study the electronic structure of layered BaZnBi$_2$. Our experimental results show no evidence of Dirac states in BaZnBi$_2$ originated either from the bulk or the surface. The calculated band structure without spin-orbit interaction shows several linear dispersive band crossing points throughout the Br… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07640v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07640v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07640v1-abstract-full" style="display: none;"> Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) we study the electronic structure of layered BaZnBi$_2$. Our experimental results show no evidence of Dirac states in BaZnBi$_2$ originated either from the bulk or the surface. The calculated band structure without spin-orbit interaction shows several linear dispersive band crossing points throughout the Brillouin zone. However, as soon as the spin-orbit interaction is turned on, the band crossing points are significantly gapped out. The experimental observations are in good agreement with our DFT calculations. These observations suggest that the Dirac fermions in BaZnBi$_2$ are trivial and massive. We also observe experimentally that the electronic structure of BaZnBi$_2$ comprises of several linear dispersive bands in the vicinity of Fermi level dispersing to a wider range of binding energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07640v1-abstract-full').style.display = 'none'; document.getElementById('1808.07640v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 024202 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08668">arXiv:1802.08668</a> <span> [<a href="https://arxiv.org/pdf/1802.08668">pdf</a>, <a href="https://arxiv.org/format/1802.08668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.180501">10.1103/PhysRevB.97.180501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D superconducting gap in FeSe from ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y+S">Y. S. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08668v1-abstract-short" style="display: inline;"> We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz-dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both, nematicity-induced pairing anisotropy and orbi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08668v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08668v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08668v1-abstract-full" style="display: none;"> We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz-dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both, nematicity-induced pairing anisotropy and orbital-selective pairing, the kz-anisotropy requires additional refinement of theoretical approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08668v1-abstract-full').style.display = 'none'; document.getElementById('1802.08668v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; Supplemental Material: 2 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 180501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04045">arXiv:1802.04045</a> <span> [<a href="https://arxiv.org/pdf/1802.04045">pdf</a>, <a href="https://arxiv.org/format/1802.04045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.085145">10.1103/PhysRevB.98.085145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic evidence of topological phase transition in 3D Dirac semimetal Cd$_3$(As$_{1-x}$P$_x$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Shipunov%2C+G">G. Shipunov</a>, <a href="/search/cond-mat?searchtype=author&query=Maksutova%2C+A">A. Maksutova</a>, <a href="/search/cond-mat?searchtype=author&query=Kataeva%2C+O">O. Kataeva</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04045v1-abstract-short" style="display: inline;"> We study the low-energy electronic structure of three-dimensional Dirac semimetal, Cd$_3$(As$_{1-x}$P$_x$)$_2$ [$x$ = 0 and 0.34(3)], by employing the angle-resolved photoemission spectroscopy (ARPES). We observe that the bulk Dirac states in Cd$_3$(As$_{0.66}$P$_{0.34}$)$_2$ are gapped out with an energy of 0.23 eV, contrary to the parent Cd$_3$As$_2$ in which the gapless Dirac states have been o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04045v1-abstract-full').style.display = 'inline'; document.getElementById('1802.04045v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04045v1-abstract-full" style="display: none;"> We study the low-energy electronic structure of three-dimensional Dirac semimetal, Cd$_3$(As$_{1-x}$P$_x$)$_2$ [$x$ = 0 and 0.34(3)], by employing the angle-resolved photoemission spectroscopy (ARPES). We observe that the bulk Dirac states in Cd$_3$(As$_{0.66}$P$_{0.34}$)$_2$ are gapped out with an energy of 0.23 eV, contrary to the parent Cd$_3$As$_2$ in which the gapless Dirac states have been observed. Thus, our results confirm the earlier predicted topological phase transition in Cd$_3$As$_2$ with perturbation. We further notice that the critical P substitution concentration, at which the two Dirac points that are spread along the $c$-axis in Cd$_3$As$_2$ form a single Dirac point at $螕$, is much lower [x$_c$(P)$<$ 0.34(3)] than the predicted value of x$_c$(P)=0.9. Therefore, our results suggest that the nontrivial band topology of Cd$_3$As$_2$ is remarkably sensitive to the P substitution and can only survive over a narrow substitution range, i.e., 0 $\leq$ x (P) $<$ 0.34(3). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04045v1-abstract-full').style.display = 'none'; document.getElementById('1802.04045v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures, 5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 085145 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03233">arXiv:1708.03233</a> <span> [<a href="https://arxiv.org/pdf/1708.03233">pdf</a>, <a href="https://arxiv.org/format/1708.03233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.035133">10.1103/PhysRevB.97.035133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Dirac surface states in the hexagonal PtBi2, a possible origin of the linear magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Yaresko%2C+A+N">A. N. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&query=Blum%2C+C+G+F">C. G. F. Blum</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03233v1-abstract-short" style="display: inline;"> The nonmagnetic compounds showing extremely large magnetoresistance are attracting a great deal of research interests due to their potential applications in the field of spintronics. PtBi$_2$ is one of such interesting compounds showing large linear magnetoresistance (MR) in its both the hexagonal and pyrite crystal structure. We use angle-resolved photoelectron spectroscopy (ARPES) and density fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03233v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03233v1-abstract-full" style="display: none;"> The nonmagnetic compounds showing extremely large magnetoresistance are attracting a great deal of research interests due to their potential applications in the field of spintronics. PtBi$_2$ is one of such interesting compounds showing large linear magnetoresistance (MR) in its both the hexagonal and pyrite crystal structure. We use angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT) calculations to understand the mechanism of liner MR observed in the hexagonal PtBi$_2$. Our results uncover for the first time linear dispersive surface Dirac states at the $\bar螕$-point, crossing Fermi level with node at a binding energy of $\approx$ 900 meV, in addition to the previously reported Dirac states at the $\bar{M}$-point in the same compound. We further notice from our dichroic measurements that these surface states show an asymmetric spectral intensity when measured with left and right circularly polarized light, hinting at a substantial spin polarization of the bands. Following these observations, we suggest that the linear dispersive Dirac states at the $\bar螕$ and $\bar{M}$-points are likely to play a crucial role for the linear field dependent magnetoresistance recorded in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03233v1-abstract-full').style.display = 'none'; document.getElementById('1708.03233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 035133 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02088">arXiv:1702.02088</a> <span> [<a href="https://arxiv.org/pdf/1702.02088">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.100504">10.1103/PhysRevB.96.100504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous temperature evolution of the electronic structure of FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kordyuk%2C+A+A">A. A. Kordyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02088v1-abstract-short" style="display: inline;"> We present ARPES data taken from the structurally simplest representative of iron-based superconductors, FeSe, in a wide temperature range. Apart from the variations related to the nematic transition, we detect very pronounced shifts of the dispersions on the scale of hundreds of kelvins. Remarkably, upon warming the sample up, the band structure has a tendency to relax to the one predicted by con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02088v1-abstract-full').style.display = 'inline'; document.getElementById('1702.02088v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02088v1-abstract-full" style="display: none;"> We present ARPES data taken from the structurally simplest representative of iron-based superconductors, FeSe, in a wide temperature range. Apart from the variations related to the nematic transition, we detect very pronounced shifts of the dispersions on the scale of hundreds of kelvins. Remarkably, upon warming the sample up, the band structure has a tendency to relax to the one predicted by conventional band structure calculations, right opposite to what is intuitively expected. Our findings shed light on the origin of the dominant interaction shaping the electronic states responsible for high-temperature superconductivity in iron-based materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02088v1-abstract-full').style.display = 'none'; document.getElementById('1702.02088v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, PDF only</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 100504 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09549">arXiv:1609.09549</a> <span> [<a href="https://arxiv.org/pdf/1609.09549">pdf</a>, <a href="https://arxiv.org/format/1609.09549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.241108">10.1103/PhysRevB.95.241108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental realization of type-II Weyl state in non-centrosymmetric TaIrTe$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&query=Koepernik%2C+K">K. Koepernik</a>, <a href="/search/cond-mat?searchtype=author&query=Efremov%2C+D">D. Efremov</a>, <a href="/search/cond-mat?searchtype=author&query=Khim%2C+S">S. Khim</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+J+v+d">J. van den Brink</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=B%7Fuchner%2C+B">B. Buchner</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&query=Sumida%2C+K">K. Sumida</a>, <a href="/search/cond-mat?searchtype=author&query=Taguchi%2C+K">K. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+T">T. Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Kimura%2C+A">A. Kimura</a>, <a href="/search/cond-mat?searchtype=author&query=Okuda%2C+T">T. Okuda</a>, <a href="/search/cond-mat?searchtype=author&query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09549v1-abstract-short" style="display: inline;"> Recent breakthrough in search for the analogs of fundamental particles in condensed matter systems lead to experimental realizations of 3D Dirac and Weyl semimetals. Weyl state can be hosted either by non-centrosymmetric or magnetic materials and can be of the first or the second type. Several non-centrosymmetric materials have been proposed to be type-II Weyl semimetals, but in all of them the Fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09549v1-abstract-full').style.display = 'inline'; document.getElementById('1609.09549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09549v1-abstract-full" style="display: none;"> Recent breakthrough in search for the analogs of fundamental particles in condensed matter systems lead to experimental realizations of 3D Dirac and Weyl semimetals. Weyl state can be hosted either by non-centrosymmetric or magnetic materials and can be of the first or the second type. Several non-centrosymmetric materials have been proposed to be type-II Weyl semimetals, but in all of them the Fermi arcs between projections of multiple Weyl points either have not been observed directly or they were hardly distinguishable from the trivial surface states which significantly hinders the practical application of these materials. Here we present experimental evidence for type-II non-centrosymmetric Weyl state in TaIrTe$_4$ where it has been predicted theoretically. We find direct correspondence between ARPES spectra and calculated electronic structure both in the bulk and the surface and clearly observe the exotic surface states which support the quasi-1D Fermi arcs connecting only four Weyl points. Remarkably, these electronic states are spin-polarized in the direction along the arcs, thus highlighting TaIrTe$_4$ as a novel material with promising application potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09549v1-abstract-full').style.display = 'none'; document.getElementById('1609.09549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 241108 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07674">arXiv:1503.07674</a> <span> [<a href="https://arxiv.org/pdf/1503.07674">pdf</a>, <a href="https://arxiv.org/ps/1503.07674">ps</a>, <a href="https://arxiv.org/format/1503.07674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.115150">10.1103/PhysRevB.92.115150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sudden gap-closure across the topological phase transition in Bi$_{2-x}$In$_{x}$Se$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhonghao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+W">Wencan Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Z">Zhiqing Han</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Osgood%2C%2C+R+M">Richard M. Osgood, Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shancai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07674v4-abstract-short" style="display: inline;"> The phase transition from a topological insulator to a trivial band insulator is studied by angle-resoled photoemission spectroscopy on Bi$_{2-x}$In$_{x}$Se$_{3}$ single crystals. We first report the complete evolution of the bulk band structures throughout the transition. The robust surface state and the bulk gap size ($\sim$ 0.50 eV) show no significant change upon doping for $x$ = 0.05, 0.10 an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07674v4-abstract-full').style.display = 'inline'; document.getElementById('1503.07674v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07674v4-abstract-full" style="display: none;"> The phase transition from a topological insulator to a trivial band insulator is studied by angle-resoled photoemission spectroscopy on Bi$_{2-x}$In$_{x}$Se$_{3}$ single crystals. We first report the complete evolution of the bulk band structures throughout the transition. The robust surface state and the bulk gap size ($\sim$ 0.50 eV) show no significant change upon doping for $x$ = 0.05, 0.10 and 0.175. At $x$ $\geq$ 0.225, the surface state completely disappears and the bulk gap size increases, suggesting a sudden gap-closure and topological phase transition around $x \sim$ 0.175$-$0.225. We discuss the underlying mechanism of the phase transition, proposing that it is governed by the combined effect of spin-orbit coupling and interactions upon band hybridization. Our study provides a new venue to investigate the mechanism of the topological phase transition induced by non-magnetic impurities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07674v4-abstract-full').style.display = 'none'; document.getElementById('1503.07674v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 115150 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>