CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">Eaton, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Eaton%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Eaton, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Eaton%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Eaton, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16468">arXiv:2409.16468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16468">pdf</a>, <a href="https://arxiv.org/format/2409.16468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125150">10.1103/PhysRevB.110.125150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band structure and charge ordering of Dirac semimetal EuAl$_4$ at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16468v1-abstract-short" style="display: inline;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16468v1-abstract-full" style="display: none;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic properties in EuAl$_4$. We found changes in the band structure upon each of the four consecutive AFM transitions including band splitting, renormalizations, and appearance of new bands forming additional Fermi sheets. In addition we also found significant enhancement of the quasiparticles&#39; lifetime due to suppression of spin flip scattering, similar to what was previously reported for ferromagnetic EuCd$_2$As$_2$. Surprisingly, we observe that most significant changes in electronic properties occur not at TN1, but instead at the AFM3 to AFM4 transition, which coincides with the largest drop in resistivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'none'; document.getElementById('2409.16468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 125150 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08125">arXiv:2409.08125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08125">pdf</a>, <a href="https://arxiv.org/format/2409.08125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00692-0">10.1038/s43246-024-00692-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unexpected changes in the band structure within AFM1 state of CeBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08125v1-abstract-short" style="display: inline;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08125v1-abstract-full" style="display: none;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an additional Dirac state in the (+-+-) ordered phase and a transformation of unconventional surface-state pairs in the (++--) ordered phase. This revises the phase diagram of this intriguing material, where there are now three distinct AFM states below TN in zero magnetic field instead of two as it was previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'none'; document.getElementById('2409.08125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 5, 245 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20938">arXiv:2407.20938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20938">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Design and Predict Tetragonal van der Waals Layered Quantum Materials of MPd$_5$I$_2$ (M=Ga, In and 3d Transition Metals) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nepal%2C+N+K">Niraj K. Nepal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blawat%2C+J+M">Joanna M. Blawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmstrom%2C+J+C">Johanna C. Palmstrom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">Benjamin G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonald%2C+R+D">Ross D. McDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20938v2-abstract-short" style="display: inline;"> Quantum materials with stacked van der Waals (vdW) layers hosting non-trivial band structure topology and magnetism have shown many interesting properties. Using high-throughput density functional theory calculations, we design and predict tetragonal vdW-layered quantum materials in the MPd$_5$I$_2$ structure (M=Ga, In and 3d transition metals). We show that besides the known AlPd$_5$I$_2$, the -M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20938v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20938v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20938v2-abstract-full" style="display: none;"> Quantum materials with stacked van der Waals (vdW) layers hosting non-trivial band structure topology and magnetism have shown many interesting properties. Using high-throughput density functional theory calculations, we design and predict tetragonal vdW-layered quantum materials in the MPd$_5$I$_2$ structure (M=Ga, In and 3d transition metals). We show that besides the known AlPd$_5$I$_2$, the -MPd$_5$- structural motif of three-atomic-layer slabs separated by two I layers can accommodate a variety of metal atoms giving arise to topologically non-trivial features and highly tunable magnetic properties in both bulk and single layer 2D structures. Among them, TiPd$_5$I$_2$ and InPd$_5$I$_2$ host a pair of Dirac points and likely an additional strong topological insulator state for the band manifolds just above and below the top valence band, respectively, with their single layers hosting or near quantum spin Hall states. CrPd$_5$I$_2$ is a ferromagnet with a large out-of-plane magneto-anisotropy energy, desirable for rare-earth-free permanent magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20938v2-abstract-full').style.display = 'none'; document.getElementById('2407.20938v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12039">arXiv:2406.12039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12039">pdf</a>, <a href="https://arxiv.org/format/2406.12039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115151">10.1103/PhysRevB.110.115151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range magnetic order induced surface state in GdBi and DyBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuoqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P">Paul. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12039v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12039v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of GdBi and DyBi. We find that new surface states, including a Dirac cone, emerge in the AFM state. However, they are located along a direction in momentum space that is different than what was found in NdSb, NdBi, and CeBi. The observed changes in the electronic structure are consistent with the presence of AFM-II-A type order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'none'; document.getElementById('2406.12039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115151 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17824">arXiv:2403.17824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17824">pdf</a>, <a href="https://arxiv.org/format/2403.17824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.035145">10.1103/PhysRevB.110.035145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band Structure and Fermi Surface Nesting in $LaSb_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Ben Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrera-Siklody%2C+P">Paula Herrera-Siklody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17824v1-abstract-short" style="display: inline;"> We use high-resolution angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) to investigate the electronic structure of the charge density wave (CDW) system LaSb$_2$. This compound is among an interesting group of materials that manifests both a CDW transition and lower temperature superconductivity. We find the DFT calculations to be in good agreement with our ARPE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17824v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17824v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17824v1-abstract-full" style="display: none;"> We use high-resolution angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) to investigate the electronic structure of the charge density wave (CDW) system LaSb$_2$. This compound is among an interesting group of materials that manifests both a CDW transition and lower temperature superconductivity. We find the DFT calculations to be in good agreement with our ARPES data. The Fermi surface of LaSb$_2$ consists of two small hole pockets close to $螕$ and four larger pockets near the Brillouin zone (BZ) boundary. The overall features of the Fermi surface do not vary with temperature. A saddle point is present at -0.19 $eV$ below the Fermi level at $螕$. Critical points in band structure have more pronounced effects on a materials properties when they are located closer to the Fermi level, making doped LaSb$_2$ compounds a potential interesting subject of future research. Multiple peaks are present in the generalized, electronic susceptibility calculations indicating the presence of possible nesting vectors. We were not able to detect any signatures of the CDW transition at 355 K, pointing to the subtle nature of this transition. This is unusual, given that such a high transition temperature is expected to be associated with the presence of a large CDW gap. This is confirmed through investigation of the Fermi surface and through analysis of momentum distribution curves (MDC). It is possible that changes are subtle and occur below current sensitivity of our measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17824v1-abstract-full').style.display = 'none'; document.getElementById('2403.17824v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06650">arXiv:2403.06650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06650">pdf</a>, <a href="https://arxiv.org/format/2403.06650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Magnetic signatures of multicomponent superconductivity in pressurized UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zheyu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiasheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">Theodore. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">Andrej Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">Vladimir Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">Michal Valiska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alireza%2C+P+L">Patricia L. Alireza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">Alexander G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. Malte Grosche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06650v1-abstract-short" style="display: inline;"> The heavy fermion material UTe$_2$ possesses a rich phase diagram with multiple superconducting phases, several of which exhibit characteristics of odd-parity pairing. Here, we report on the pressure dependence of signatures of the superconducting transition in the temperature dependent ac magnetic susceptibility $蠂(T)$ in high quality UTe$_2$ single crystals. We resolve a single superconducting t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06650v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06650v1-abstract-full" style="display: none;"> The heavy fermion material UTe$_2$ possesses a rich phase diagram with multiple superconducting phases, several of which exhibit characteristics of odd-parity pairing. Here, we report on the pressure dependence of signatures of the superconducting transition in the temperature dependent ac magnetic susceptibility $蠂(T)$ in high quality UTe$_2$ single crystals. We resolve a single superconducting transition in $蠂(T)$ at low pressures $&lt;$ 0.3 GPa. At higher pressure, however, a second feature emerges in $蠂(T)$, which is located at the thermodynamic phase boundary between two separate superconducting states previously identified by specific heat studies. The observation of a two-step transition in $蠂(T)$ can be understood as a consequence of the change in the London penetration depth, when UTe$_2$ switches from one superconducting phase into another. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06650v1-abstract-full').style.display = 'none'; document.getElementById('2403.06650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04550">arXiv:2403.04550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04550">pdf</a>, <a href="https://arxiv.org/format/2403.04550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electrical transport signatures of metallic surface state formation in the strongly-correlated insulator FeSb2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">Alexander G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popiel%2C+N+J+M">Nicholas J. M. Popiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">Alexander J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hsu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+G+F">Gunnar F. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04550v1-abstract-short" style="display: inline;"> We present local and nonlocal electrical transport measurements of the correlated insulator FeSb$_2$. By employing wiring configurations that delineate between bulk- and surface-dominated conduction, we reveal the formation of a metallic surface state in FeSb$_2$ for temperatures $\lessapprox 5$~K. This result is corroborated by an angular rotation study of this material&#39;s magnetotransport, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04550v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04550v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04550v1-abstract-full" style="display: none;"> We present local and nonlocal electrical transport measurements of the correlated insulator FeSb$_2$. By employing wiring configurations that delineate between bulk- and surface-dominated conduction, we reveal the formation of a metallic surface state in FeSb$_2$ for temperatures $\lessapprox 5$~K. This result is corroborated by an angular rotation study of this material&#39;s magnetotransport, which also shows signatures of the transition from bulk- to surface-dominated conduction over the same temperature interval as the local/nonlocal transport divergence. Notable similarities with the topological Kondo insulator candidate SmB$_6$ are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04550v1-abstract-full').style.display = 'none'; document.getElementById('2403.04550v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03946">arXiv:2403.03946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03946">pdf</a>, <a href="https://arxiv.org/format/2403.03946">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-enhanced $f$-electron orbital weighting in UTe2 mapped by quantum interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">T. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D+E">D. E. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">P. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">A. Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+J">J. Pu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">V. Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">M. Valiska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. M. Grosche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03946v1-abstract-short" style="display: inline;"> The phase landscape of UTe$_2$ features a remarkable diversity of superconducting phases under applied pressure and magnetic field. Recent quantum oscillation studies at ambient pressure have revealed the quasi-2D Fermi surface of this material. However, the pressure-dependence of the Fermi surface remains an open question. Here we track the evolution of the UTe$_2$ Fermi surface as a function of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03946v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03946v1-abstract-full" style="display: none;"> The phase landscape of UTe$_2$ features a remarkable diversity of superconducting phases under applied pressure and magnetic field. Recent quantum oscillation studies at ambient pressure have revealed the quasi-2D Fermi surface of this material. However, the pressure-dependence of the Fermi surface remains an open question. Here we track the evolution of the UTe$_2$ Fermi surface as a function of pressure up to 19.5 kbar by measuring quantum interference oscillations. We find that in sufficient magnetic field to suppress both superconductivity at low pressures and incommensurate antiferromagnetism at higher pressures, the quasi-2D Fermi surface found at ambient pressure smoothly connects to that at 19.5 kbar, with no signs of a reconstruction over this pressure interval. The warping of the cylindrical Fermi sheets continuously increases with pressure, which is consistent with increased $f$-orbital contribution at the Fermi level, up to and beyond the critical pressure at which superconductivity is truncated. These findings highlight the value of high pressure quantum interference measurements as a new probe of the electronic structure in heavy fermion materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03946v1-abstract-full').style.display = 'none'; document.getElementById('2403.03946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02535">arXiv:2403.02535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02535">pdf</a>, <a href="https://arxiv.org/format/2403.02535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional quantum criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">T. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chichinadze%2C+D+V">D. V. Chichinadze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaffer%2C+D">D. Shaffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">A. Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+M">M. Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brumm%2C+T+J">T. J. Brumm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Y. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D+E">D. E. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">V. Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">M. Valiska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. M. Grosche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02535v2-abstract-short" style="display: inline;"> Quantum critical phenomena are widely studied across various materials families, from high temperature superconductors to magnetic insulators. They occur when a thermodynamic phase transition is suppressed to zero temperature as a function of some tuning parameter such as pressure or magnetic field. This generally yields a point of instability - a so-called quantum critical point - at which the ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02535v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02535v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02535v2-abstract-full" style="display: none;"> Quantum critical phenomena are widely studied across various materials families, from high temperature superconductors to magnetic insulators. They occur when a thermodynamic phase transition is suppressed to zero temperature as a function of some tuning parameter such as pressure or magnetic field. This generally yields a point of instability - a so-called quantum critical point - at which the phase transition is driven exclusively by quantum mechanical fluctuations. Here we show that the heavy fermion metamagnet UTe$_2$ possesses a quantum phase transition at extreme magnetic field strengths of over 70 T. Surprisingly, rather than terminating at one singular point, we find that the phase boundary is sensitive to magnetic field components in each of the three cartesian axes of magnetic field space. This results in the three-dimensional transition surface being bounded by a continuous ring of quantum critical points, the locus of which forms an extended line of quantum criticality - a novel form of quantum critical phase boundary. Within this quantum critical line sits an intensely field-resilient superconducting state in a striking toroidal shape, persisting to fields over 70 T. We model our data by a phenomenological free energy expansion, and show how a three-dimensional quantum critical phase boundary - rather than a more conventional singular point of instability - anchors the remarkable high magnetic field phase landscape of UTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02535v2-abstract-full').style.display = 'none'; document.getElementById('2403.02535v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03013">arXiv:2401.03013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03013">pdf</a>, <a href="https://arxiv.org/format/2401.03013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Impact of a Lifshitz Transition on the onset of spontaneous coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Adam Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+D">Dibya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fertig%2C+H">Herbert Fertig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03013v1-abstract-short" style="display: inline;"> Lifshitz transitions are topological transitions of a Fermi surface, whose signatures typically appear in the conduction properties of a host metal. Here, we demonstrate, using an extended Falicov- Kimball model of a two-flavor fermion system, that a Lifshitz transition which occurs in the noninteracting limit impacts interaction-induced insulating phases, even though they do not host Fermi surfac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03013v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03013v1-abstract-full" style="display: none;"> Lifshitz transitions are topological transitions of a Fermi surface, whose signatures typically appear in the conduction properties of a host metal. Here, we demonstrate, using an extended Falicov- Kimball model of a two-flavor fermion system, that a Lifshitz transition which occurs in the noninteracting limit impacts interaction-induced insulating phases, even though they do not host Fermi surfaces. For strong interactions we find a first order transition between states of different polarization This transition line ends in a very unusual quantum critical endpoint, whose presence is stabilized by the onset of inter-flavor coherence. We demonstrate that the surfaces of maximum coherence in these states reflect the distinct Fermi surface topologies of the states separated by the non-interacting Lifshitz transition. The phenomenon is shown to be independent of the band topologies involved. Experimental realizations of our results are discussed for both electronic and optical lattice systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03013v1-abstract-full').style.display = 'none'; document.getElementById('2401.03013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00568">arXiv:2307.00568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00568">pdf</a>, <a href="https://arxiv.org/format/2307.00568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.266503">10.1103/PhysRevLett.132.266503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum interference between quasi-2D Fermi surface sheets in UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">T. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D+E">D. E. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">A. Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pospisil%2C+J">J. Pospisil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokleska%2C+J">J. Prokleska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haidamak%2C+T">T. Haidamak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastien%2C+G">G. Bastien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">V. Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">M. Valiska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. M. Grosche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00568v2-abstract-short" style="display: inline;"> UTe$_2$ is a spin-triplet superconductor candidate for which high quality samples with long mean free paths have recently become available, enabling quantum oscillation measurements to probe its Fermi surface and effective carrier masses. It has recently been reported that UTe$_2$ possesses a 3D Fermi surface component [Phys. Rev. Lett. 131, 036501 (2023)]. The distinction between 2D and 3D Fermi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00568v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00568v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00568v2-abstract-full" style="display: none;"> UTe$_2$ is a spin-triplet superconductor candidate for which high quality samples with long mean free paths have recently become available, enabling quantum oscillation measurements to probe its Fermi surface and effective carrier masses. It has recently been reported that UTe$_2$ possesses a 3D Fermi surface component [Phys. Rev. Lett. 131, 036501 (2023)]. The distinction between 2D and 3D Fermi surface sections in triplet superconductors can have important implications regarding the topological properties of the superconductivity. Here we report the observation of oscillatory components in the magnetoconductance of UTe$_2$ at high magnetic fields. We find that these oscillations are well described by quantum interference between quasiparticles traversing semiclassical trajectories spanning magnetic breakdown networks. Our observations are consistent with a quasi-2D model of this material&#39;s Fermi surface based on prior dHvA-effect measurements. Our results strongly indicate that UTe$_2$ -- which exhibits a multitude of complex physical phenomena -- possesses a remarkably simple Fermi surface consisting exclusively of two quasi-2D cylindrical sections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00568v2-abstract-full').style.display = 'none'; document.getElementById('2307.00568v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 266503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19033">arXiv:2305.19033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2403067121">10.1073/pnas.2403067121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced triplet superconductivity in next generation ultraclean UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">T. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">J. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">A. Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chichinadze%2C+D+V">D. V. Chichinadze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaffer%2C+D">D. Shaffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pospisil%2C+J">J. Pospisil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokleska%2C+J">J. Prokleska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haidamak%2C+T">T. Haidamak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastien%2C+G">G. Bastien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">V. Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mancera-Ugarte%2C+M+J">M. J. Mancera-Ugarte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benjamin%2C+S">S. Benjamin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D+E">D. E. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">M. Valiska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. M. Grosche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19033v3-abstract-short" style="display: inline;"> The unconventional superconductor UTe$_2$ exhibits numerous signatures of spin-triplet superconductivity -- a rare state of matter which could enable quantum computation protected against decoherence. UTe$_2$ possesses a complex phase landscape comprising two magnetic field-induced superconducting phases, a metamagnetic transition to a field-polarised state, along with pair- and charge-density wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19033v3-abstract-full').style.display = 'inline'; document.getElementById('2305.19033v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19033v3-abstract-full" style="display: none;"> The unconventional superconductor UTe$_2$ exhibits numerous signatures of spin-triplet superconductivity -- a rare state of matter which could enable quantum computation protected against decoherence. UTe$_2$ possesses a complex phase landscape comprising two magnetic field-induced superconducting phases, a metamagnetic transition to a field-polarised state, along with pair- and charge-density wave orders. However, contradictory reports between studies performed on UTe$_2$ specimens of varying quality have severely impeded theoretical efforts to understand the microscopic origins of the exotic superconductivity. Here, we report a comprehensive suite of high magnetic field measurements on a new generation of pristine quality UTe$_2$ crystals. Our experiments reveal a significantly revised high magnetic field superconducting phase diagram in the ultraclean limit, showing a pronounced sensitivity of field-induced superconductivity to the presence of crystalline disorder. We employ a Ginzburg-Landau model that excellently captures this acute dependence on sample quality. Our results suggest that in close proximity to a field--induced metamagnetic transition the enhanced role of magnetic fluctuations -- that are strongly suppressed by disorder -- is likely responsible for tuning UTe$_2$ between two distinct spin-triplet superconducting phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19033v3-abstract-full').style.display = 'none'; document.getElementById('2305.19033v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 121 (37) e2403067121 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17085">arXiv:2305.17085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17085">pdf</a>, <a href="https://arxiv.org/format/2305.17085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.115102">10.1103/PhysRevB.108.115102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directional effects of antiferromagnetic ordering on the electronic structure in NdSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17085v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17085v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and density-functional-theory (DFT) calculations to investigate the electronic structure of NdSb. We found the presence of distinct domains that have different electronic structure at the surface. These domains correspond to different orientations of magnetic moments in the AFM state with respect to the surface. We demonstrated remarkable agreement between DFT calculations and ARPES that capture all essential changes in the band structure caused by transition to a magnetically ordered state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'none'; document.getElementById('2305.17085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 115102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04758">arXiv:2302.04758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04758">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-44110-4">10.1038/s41467-023-44110-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi-2D Fermi surface in the anomalous superconductor UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weinberger%2C+T+I">T. I. Weinberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popiel%2C+N+J+M">N. J. M. Popiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabala%2C+A">A. Cabala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pospisil%2C+J">J. Pospisil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokleska%2C+J">J. Prokleska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haidamak%2C+T">T. Haidamak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastien%2C+G">G. Bastien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opletal%2C+P">P. Opletal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakai%2C+H">H. Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haga%2C+Y">Y. Haga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nowell%2C+R">R. Nowell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benjamin%2C+S+M">S. M. Benjamin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sechovsky%2C+V">V. Sechovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosche%2C+F+M">F. M. Grosche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valiska%2C+M">M. Valiska</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04758v3-abstract-short" style="display: inline;"> The heavy fermion paramagnet UTe$_2$ exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe$_2$ by measuring magnetic quantum oscillations in pristine quality crystals. We find an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04758v3-abstract-full').style.display = 'inline'; document.getElementById('2302.04758v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04758v3-abstract-full" style="display: none;"> The heavy fermion paramagnet UTe$_2$ exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe$_2$ by measuring magnetic quantum oscillations in pristine quality crystals. We find an angular profile of quantum oscillatory frequency and amplitude that is characteristic of a quasi-2D Fermi surface, which we find is well described by two cylindrical Fermi sheets of electron- and hole-type respectively. Additionally, we find that both cylindrical Fermi sheets possess considerable undulation but negligible small-scale corrugation, which may allow for their near-nesting and therefore promote magnetic fluctuations that enhance the triplet pairing mechanism. Importantly, we find no evidence for the presence of any 3D Fermi surface sections. Our results place strong constraints on the possible symmetry of the superconducting order parameter in UTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04758v3-abstract-full').style.display = 'none'; document.getElementById('2302.04758v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 223 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11374">arXiv:2211.11374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.11374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ashoka%2C+A">Arjun Ashoka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+A+J">Adam J. Clancy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panjwani%2C+N+A">Naitik A. Panjwani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popiel%2C+N+J+M">Nicholas J. M. Popiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Alex Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parton%2C+T+G">Thomas G. Parton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picco%2C+L">Loren Picco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldmann%2C+S">Sascha Feldmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shutt%2C+R+R+C">Rebecca R. C. Shutt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carey%2C+R">Remington Carey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aw%2C+E+S+Y">Eva S. Y. Aw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macdonald%2C+T+J">Thomas J. Macdonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Severijnen%2C+M+E">Marion E. Severijnen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleuskens%2C+S">Sandra Kleuskens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Aguiar%2C+H+B">Hilton Barbosa de Aguiar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friend%2C+R+H">Richard H. Friend</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behrends%2C+J">Jan Behrends</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianen%2C+P+C+M">Peter C. M. Christianen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Howard%2C+C+A">Christopher A. Howard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+A">Akshay Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandya%2C+R">Raj Pandya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11374v1-abstract-short" style="display: inline;"> Nanoribbons - nanometer wide strips of a two-dimensional material - are a unique system in condensed matter physics. They combine the exotic electronic structures of low-dimensional materials with an enhanced number of exposed edges, where phenomena including ultralong spin coherence times, quantum confinement and topologically protected states can emerge. An exciting prospect for this new materia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11374v1-abstract-full').style.display = 'inline'; document.getElementById('2211.11374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11374v1-abstract-full" style="display: none;"> Nanoribbons - nanometer wide strips of a two-dimensional material - are a unique system in condensed matter physics. They combine the exotic electronic structures of low-dimensional materials with an enhanced number of exposed edges, where phenomena including ultralong spin coherence times, quantum confinement and topologically protected states can emerge. An exciting prospect for this new material concept is the potential for both a tunable semiconducting electronic structure and magnetism along the nanoribbon edge. This combination of magnetism and semiconducting properties is the first step in unlocking spin-based electronics such as non-volatile transistors, a route to low-energy computing, and has thus far typically only been observed in doped semiconductor systems and/or at low temperatures. Here, we report the magnetic and semiconducting properties of phosphorene nanoribbons (PNRs). Static (SQUID) and dynamic (EPR) magnetization probes demonstrate that at room temperature, films of PNRs exhibit macroscopic magnetic properties, arising from their edge, with internal fields of ~ 250 to 800 mT. In solution, a giant magnetic anisotropy enables the alignment of PNRs at modest sub-1T fields. By leveraging this alignment effect, we discover that upon photoexcitation, energy is rapidly funneled to a dark-exciton state that is localized to the magnetic edge and coupled to a symmetry-forbidden edge phonon mode. Our results establish PNRs as a unique candidate system for studying the interplay of magnetism and semiconducting ground states at room temperature and provide a stepping-stone towards using low-dimensional nanomaterials in quantum electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11374v1-abstract-full').style.display = 'none'; document.getElementById('2211.11374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06693">arXiv:2205.06693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.06693">pdf</a>, <a href="https://arxiv.org/format/2205.06693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115112">10.1103/PhysRevB.106.115112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rare-earth monopnoctides -- family of antiferromagnets hosting magnetic Fermi arcs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%60ko%2C+S+L">S. L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06693v1-abstract-short" style="display: inline;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'inline'; document.getElementById('2205.06693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06693v1-abstract-full" style="display: none;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent discovery of Fermi arcs and new magnetic bands splitting in antiferromagnet (AFM) NdBi has opened up new avenues for exploration. Here we show that these uncharted effects are not restricted to this specific compound, but rather emerge in CeBi, NdBi, and NdSb when they undergo paramagnetic to AFM transition. Our data show that the Fermi arcs in NdSb have 2-fold symmetry, leading to strong anisotropy that may enhance effects of spin textures on transport properties. Our findings thus demonstrate that the RBi and RSb series are materials that host magnetic Fermi arcs and may be a potential platform for modern spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'none'; document.getElementById('2205.06693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, five figures, supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 106, 115112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12511">arXiv:2203.12511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12511">pdf</a>, <a href="https://arxiv.org/format/2203.12511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04412-x">10.1038/s41586-022-04412-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Fermi arcs and novel magnetic splitting in an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Barriga%2C+J">Jaime Sanchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%60ko%2C+S+L">Sergey L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12511v1-abstract-short" style="display: inline;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can resu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12511v1-abstract-full" style="display: none;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can result in a Weyl semimetal with pairs of Weyl nodes that have opposite chirality. The bulk-boundary correspondence associated with the Chern number leads to the emergence of Fermi arcs on the boundary. Here, we present experimental evidence that pairs of magnetically split hole- and electron-like Fermi arcs emerge below the Neel temperature, in the antiferromagnetic (AFM) state of cubic NdBi due to a novel band splitting effect. Whereas TRS is broken by the AFM order, both inversion and nonsymmorphic TRS are preserved in the bulk, precluding the possibility of a Weyl semimetal. The observed magnetic splitting is highly unusual, as it creates bands of opposing curvature, that changes with temperature and follows the antiferromagnetic order parameter. This is completely different from previously reported cases of magnetic splittings such as traditional Zeeman and Rashba, where the curvature of the bands is preserved. Therefore, our finding represents a new Fermionic state created by new type of magnetic band splitting in the presence of a long-range AFM order that are not readily explained by existing theoretical ideas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'none'; document.getElementById('2203.12511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures main text and 20 pages, 12 figures supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The version of record of this article, first published in Nature, is available online at Publisher`s website: https://www.nature.com/articles/s41586-022-04412-x (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12502">arXiv:2202.12502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12502">pdf</a>, <a href="https://arxiv.org/format/2202.12502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045117">10.1103/PhysRevB.106.045117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalized Magic Angles in Asymmetric Twisted Graphene Multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Adam Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yantao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fertig%2C+H">Herbert Fertig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seradjeh%2C+B">Babak Seradjeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12502v2-abstract-short" style="display: inline;"> Stacked graphene multilayers with a small relative twist angle between each of the layers have been found to host flat bands at a series of magic angles. We consider the effect that Dirac point asymmetry between the layers, and in particular different Fermi velocities in each layer, may have on this phenomenon. Such asymmetry may be introduced by unequal Fermi velocity renormalizations through Cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12502v2-abstract-full').style.display = 'inline'; document.getElementById('2202.12502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12502v2-abstract-full" style="display: none;"> Stacked graphene multilayers with a small relative twist angle between each of the layers have been found to host flat bands at a series of magic angles. We consider the effect that Dirac point asymmetry between the layers, and in particular different Fermi velocities in each layer, may have on this phenomenon. Such asymmetry may be introduced by unequal Fermi velocity renormalizations through Coulomb interactions with a dielectric substrate. It also arises in an approximate way in tetralayer systems, in which the outer twist angles are large enough that there is a dominant moire periodicity from the stacking of the inner two layers. We find in such models that the flat band phenomenon persists in spite of this asymmetry, and that the magic angles acquire a degree of tunability through either controlling the screening in the bilayer system or the twist angles of the outer layers in the tetralayer system. Notably, we find in our models that the quantitative values of the magic angles are increased. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12502v2-abstract-full').style.display = 'none'; document.getElementById('2202.12502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 045117 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10687">arXiv:2107.10687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10687">pdf</a>, <a href="https://arxiv.org/format/2107.10687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.026404">10.1103/PhysRevLett.128.026404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dirac Magic and Lifshitz Transitions in AA-Stacked Twisted Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yantao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Adam Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fertig%2C+H+A">H. A. Fertig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seradjeh%2C+B">Babak Seradjeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10687v1-abstract-short" style="display: inline;"> We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted relative to another graphene system with band touching. In the simplest case this constitutes a trilayer system formed by an AA-stacked bilayer twisted relative to a single layer of graphene. We find multiple anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10687v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10687v1-abstract-full" style="display: none;"> We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted relative to another graphene system with band touching. In the simplest case this constitutes a trilayer system formed by an AA-stacked bilayer twisted relative to a single layer of graphene. We find multiple anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which we call &#34;Dirac magic.&#34; We trace the origin of Dirac magic angles to the geometric structure of the twisted AA-bilayer Dirac cones relative to the other band-touching spectrum in the moir茅 reciprocal lattice. The anisotropy of the Dirac cones and a concomitant cascade of saddle points induce a series of topological Lifshitz transitions that can be tuned by the twist angle and perpendicular electric field. We discuss the possibility of direct observation of Dirac magic as well as its consequences for the correlated states of electrons in this moir茅 system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10687v1-abstract-full').style.display = 'none'; document.getElementById('2107.10687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+蔚 pages (exclusive of references), 4 figures, 7 supplemental figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 128, 026404 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09545">arXiv:2102.09545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.09545">pdf</a>, <a href="https://arxiv.org/format/2102.09545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00413-7">10.1038/s41535-021-00413-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $f$-electron hybridised metallic Fermi surface in magnetic field-induced metallic YbB$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartstein%2C+M">M. Hartstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davies%2C+A+J">A. J. Davies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elvin%2C+T">T. Elvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polyakov%2C+E">E. Polyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vu%2C+T+H">T. H. Vu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wichitwechkarn%2C+V">V. Wichitwechkarn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">T. F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T+P">T. P. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N">N. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09545v2-abstract-short" style="display: inline;"> The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscillations between the high magnetic field-induced metallic regime in YbB$_{12}$ and the unconventional insulating regime. In the field-induced metallic r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09545v2-abstract-full').style.display = 'inline'; document.getElementById('2102.09545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09545v2-abstract-full" style="display: none;"> The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscillations between the high magnetic field-induced metallic regime in YbB$_{12}$ and the unconventional insulating regime. In the field-induced metallic regime beyond 47 T, we find prominent quantum oscillations in the contactless resistivity characterised by multiple frequencies up to at least 3000 T and heavy effective masses up to at least 17 $m_\text{e}$, characteristic of an $f$-electron hybridised metallic Fermi surface. The growth of quantum oscillation amplitude at low temperatures in electrical transport and magnetic torque in insulating YbB$_{12}$ is closely similar to the Lifshitz-Kosevich low temperature growth of quantum oscillation amplitude in field-induced metallic YbB$_{12}$, pointing to an origin of quantum oscillations in insulating YbB$_{12}$ from in-gap neutral low energy excitations. The field-induced metallic regime of YbB$_{12}$ is characterised by more Fermi surface sheets of heavy quasiparticle effective mass that emerge in addition to the heavy Fermi surface sheets yielding multiple quantum oscillation frequencies below 1000 T observed in both insulating and metallic regimes. We thus observe a heavy multi-component Fermi surface in which $f$-electron hybridisation persists from the unconventional insulating to the field-induced metallic regime of YbB$_{12}$, which is in distinct contrast to the unhybridised conduction electron Fermi surface observed in the case of the unconventional insulator SmB$_6$. Our findings require a different theoretical model of neutral in-gap low energy excitations in which the $f$-electron hybridisation is retained in the case of the unconventional insulator YbB$_{12}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09545v2-abstract-full').style.display = 'none'; document.getElementById('2102.09545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 7, 12 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04927">arXiv:2102.04927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.04927">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2021216118">10.1073/pnas.2021216118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional quantum vortex matter state hosts quantum oscillations in the underdoped high-temperature cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartstein%2C+M">M谩t茅 Hartstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davies%2C+A+J">Alexander J. Davies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">Alexander J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K">Mun K. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porras%2C+J">Juan Porras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loew%2C+T">Toshinao Loew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+S+V">Sofia V. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hsu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">Alexander G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">Matthieu Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">Gilbert G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">Neil Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04927v2-abstract-short" style="display: inline;"> A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here we use low applied measurement currents and millikelvin temperatures on ultra-pure single crystals of unde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04927v2-abstract-full').style.display = 'inline'; document.getElementById('2102.04927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04927v2-abstract-full" style="display: none;"> A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here we use low applied measurement currents and millikelvin temperatures on ultra-pure single crystals of underdoped YBa$_2$Cu$_3$O$_{6+x}$ to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and non-ohmic electrical transport characteristics beyond the highest laboratory accessible static fields. A new model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizeable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04927v2-abstract-full').style.display = 'none'; document.getElementById('2102.04927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PNAS Commentary &#39;Fragile superconductivity at high magnetic fields&#39; by Michael R. Norman, PNAS February 16, 2021 118 (7) e2100372118; https://doi.org/10.1073/pnas.2100372118</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS February 16, 2021 118 (7) e2021216118 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03138">arXiv:1904.03138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03138">pdf</a>, <a href="https://arxiv.org/format/1904.03138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.161113">10.1103/PhysRevB.99.161113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fragility of Fermi arcs in Dirac semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+C+A">Connor A. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neilson%2C+K+M">Kathryn M. Neilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swatek%2C+P">Przemyslaw Swatek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03138v1-abstract-short" style="display: inline;"> We use tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic properties of Dirac semimetal candidate cubic PtBi${}_{2}$. In addition to bulk electronic states we also find surface states in PtBi${}_{2}$ which is expected as PtBi${}_{2}$ was theoretical predicated to be a candidate Dirac semimetal. The su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03138v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03138v1-abstract-full" style="display: none;"> We use tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic properties of Dirac semimetal candidate cubic PtBi${}_{2}$. In addition to bulk electronic states we also find surface states in PtBi${}_{2}$ which is expected as PtBi${}_{2}$ was theoretical predicated to be a candidate Dirac semimetal. The surface states are also well reproduced from DFT band calculations. Interestingly, the topological surface states form Fermi contours rather than double Fermi arcs that were observed in Na$_3$Bi. The surface bands forming the Fermi contours merge with bulk bands in proximity of the Dirac points projections, as expected. Our data confirms existence of Dirac states in PtBi${}_{2}$ and reveals the fragility of the Fermi arcs in Dirac semimetals. Because the Fermi arcs are not topologically protected in general, they can be deformed into Fermi contours, as proposed by [Kargarian {\it et al.}, PNAS \textbf{113}, 8648 (2016)]. Our results demonstrate validity of this theory in PtBi${}_{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03138v1-abstract-full').style.display = 'none'; document.getElementById('1904.03138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 161113(R) 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07231">arXiv:1603.07231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.07231">pdf</a>, <a href="https://arxiv.org/format/1603.07231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.94.032207">10.1103/PhysRevE.94.032207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Criterion for noise-induced synchronization: application to colloidal alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+J+A">Jonah A. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moths%2C+B">Brian Moths</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Witten%2C+T+A">Thomas A. Witten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07231v1-abstract-short" style="display: inline;"> Colloidal bodies of irregular shape rotate as they descend under gravity in solution. This rotational response provides a means of bringing a dispersion of identical bodies into a synchronized rotation with the same orientation using programmed forcing. We use the notion of statistical entropy to derive bounds on the rate of synchronization. These bounds apply generally to dynamical systems with s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07231v1-abstract-full').style.display = 'inline'; document.getElementById('1603.07231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07231v1-abstract-full" style="display: none;"> Colloidal bodies of irregular shape rotate as they descend under gravity in solution. This rotational response provides a means of bringing a dispersion of identical bodies into a synchronized rotation with the same orientation using programmed forcing. We use the notion of statistical entropy to derive bounds on the rate of synchronization. These bounds apply generally to dynamical systems with stable periodic motion with a phase $蠁(t)$, when subjected to an impulsive perturbation. The impulse causes a change of phase expressible as a phase map $蠄(蠁)$. We derive an upper limit on the average change of entropy $\left&lt;螖H\right&gt;$ in terms of this phase map; when this limit is negative, alignment must occur. For systems that have achieved a low entropy, the $\left&lt;螖H\right&gt;$ approaches this upper limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07231v1-abstract-full').style.display = 'none'; document.getElementById('1603.07231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 94, 032207 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10