CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;20 of 20 results for author: <span class="mathjax">Kuthanazhi, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Kuthanazhi%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kuthanazhi, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kuthanazhi%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kuthanazhi, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16468">arXiv:2409.16468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16468">pdf</a>, <a href="https://arxiv.org/format/2409.16468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125150">10.1103/PhysRevB.110.125150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band structure and charge ordering of Dirac semimetal EuAl$_4$ at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16468v1-abstract-short" style="display: inline;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16468v1-abstract-full" style="display: none;"> EuAl$_4$ is proposed to host a topological Hall state. This material also undergoes four consecutive antiferromagnetic (AFM) transitions upon cooling below TN1 = 15.4 K in the presence of charge density wave (CDW) order that sets in below TCDW = 140 K. We use angle-resolved photoemission spectroscopy and density-functional-theory calculations to study how magnetic ordering affects the electronic properties in EuAl$_4$. We found changes in the band structure upon each of the four consecutive AFM transitions including band splitting, renormalizations, and appearance of new bands forming additional Fermi sheets. In addition we also found significant enhancement of the quasiparticles&#39; lifetime due to suppression of spin flip scattering, similar to what was previously reported for ferromagnetic EuCd$_2$As$_2$. Surprisingly, we observe that most significant changes in electronic properties occur not at TN1, but instead at the AFM3 to AFM4 transition, which coincides with the largest drop in resistivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16468v1-abstract-full').style.display = 'none'; document.getElementById('2409.16468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 125150 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08125">arXiv:2409.08125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08125">pdf</a>, <a href="https://arxiv.org/format/2409.08125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00692-0">10.1038/s43246-024-00692-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unexpected changes in the band structure within AFM1 state of CeBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08125v1-abstract-short" style="display: inline;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08125v1-abstract-full" style="display: none;"> We perform angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of CeBi upon a series of antiferromagnetic (AFM) transitions. We find evidence for a new AFM transition in addition to two previously known from transport studies. We demonstrate the development of an additional Dirac state in the (+-+-) ordered phase and a transformation of unconventional surface-state pairs in the (++--) ordered phase. This revises the phase diagram of this intriguing material, where there are now three distinct AFM states below TN in zero magnetic field instead of two as it was previously thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08125v1-abstract-full').style.display = 'none'; document.getElementById('2409.08125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 5, 245 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12039">arXiv:2406.12039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12039">pdf</a>, <a href="https://arxiv.org/format/2406.12039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115151">10.1103/PhysRevB.110.115151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range magnetic order induced surface state in GdBi and DyBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuoqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P">Paul. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12039v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12039v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface-state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered rare-earth monopnictides attracted the interest in these materials. We use angle-resolved photoemission spectroscopy (ARPES) measurements in conjunction with density functional theory (DFT) calculations to investigate the evolution of the electronic structure of GdBi and DyBi. We find that new surface states, including a Dirac cone, emerge in the AFM state. However, they are located along a direction in momentum space that is different than what was found in NdSb, NdBi, and CeBi. The observed changes in the electronic structure are consistent with the presence of AFM-II-A type order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12039v1-abstract-full').style.display = 'none'; document.getElementById('2406.12039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115151 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03600">arXiv:2308.03600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03600">pdf</a>, <a href="https://arxiv.org/format/2308.03600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single crystal growth and characterization of antiferromagnetically ordering EuIn$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riberolles%2C+S+X+M">Simon X. M. Riberolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+D+H">Dominic H. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">Benjamin G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03600v1-abstract-short" style="display: inline;"> We report the single crystal growth and characterization of EuIn$_2$, a magnetic topological semimetal candidate according to our density functional theory (DFT) calculations. We present results from electrical resistance, magnetization, M枚ssbauer spectroscopy, and X-ray resonant magnetic scattering (XRMS) measurements. We observe three magnetic transitions at $T_{\text{N}1}\sim 14.2~$K,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03600v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03600v1-abstract-full" style="display: none;"> We report the single crystal growth and characterization of EuIn$_2$, a magnetic topological semimetal candidate according to our density functional theory (DFT) calculations. We present results from electrical resistance, magnetization, M枚ssbauer spectroscopy, and X-ray resonant magnetic scattering (XRMS) measurements. We observe three magnetic transitions at $T_{\text{N}1}\sim 14.2~$K, $T_{\text{N}2}\sim12.8~$K and $T_{\text{N}3}\sim 11~$K, signatures of which are consistently seen in anisotropic temperature dependent magnetic susceptibility and electrical resistance data. M枚ssbauer spectroscopy measurements on ground crystals suggest an incommensurate sinusoidally modulated magnetic structure below the transition at $T_{\text{N}1}\sim 14~$K, followed by the appearance of higher harmonics in the modulation on further cooling roughly below $T_{\text{N}2}\sim13~$K, before the moment distribution squaring up below the lowest transition around $T_{\text{N}3}\sim 11~$K. XRMS measurements showed the appearance of magnetic Bragg peaks below $T_{\text{N}1}\sim14~$K, with a propagation vector of $\bm蟿$ $=(蟿_h,\bar蟿_h,0)$, with $蟿_h$varying with temperature, and showing a jump at $T_{\text{N}3}\sim11$~K. The temperature dependence of $蟿_h$ between $\sim11$~K and $14$~K shows incommensurate values consistent with the M枚ssbauer data. XRMS data indicate that $蟿_h$ remains incommensurate at low temperatures and locks into $蟿_h=0.3443(1)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03600v1-abstract-full').style.display = 'none'; document.getElementById('2308.03600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17085">arXiv:2305.17085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17085">pdf</a>, <a href="https://arxiv.org/format/2305.17085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.115102">10.1103/PhysRevB.108.115102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directional effects of antiferromagnetic ordering on the electronic structure in NdSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Leary%2C+E">Evan O&#39;Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17085v1-abstract-short" style="display: inline;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17085v1-abstract-full" style="display: none;"> The recent discovery of unconventional surface state pairs, which give rise to Fermi arcs and spin textures, in antiferromagnetically ordered NdBi raised the interest in rare-earth monopnictides. Several scenarios of antiferromagnetic order have been suggested to explain the origin of these states with some of them being consistent with the presence of non-trivial topologies. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and density-functional-theory (DFT) calculations to investigate the electronic structure of NdSb. We found the presence of distinct domains that have different electronic structure at the surface. These domains correspond to different orientations of magnetic moments in the AFM state with respect to the surface. We demonstrated remarkable agreement between DFT calculations and ARPES that capture all essential changes in the band structure caused by transition to a magnetically ordered state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17085v1-abstract-full').style.display = 'none'; document.getElementById('2305.17085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 115102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09179">arXiv:2211.09179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09179">pdf</a>, <a href="https://arxiv.org/format/2211.09179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetism and $T-x$ phase diagrams of Na and Ag substituted EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joshi%2C+K+R">Kamal R. Joshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghimire%2C+S">Sunil Ghimire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timmons%2C+E">Erik Timmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">Ruslan Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09179v1-abstract-short" style="display: inline;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09179v1-abstract-full" style="display: none;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the electrical resistance and magnetic susceptibility data. We observe a splitting of the magnetic transition into two different transitions, and the gradual increase in one of the transition temperatures with Ag- and Na-substitution. The other transition remains more or less independent of doping. We further show that a magnetic state with a net ferromagnetic moment is stabilized by both Ag and Na doping and this can be explained by considering the changes in band filling due to substitution as suggested by density functional theory (DFT) calculations. We thus show that chemical substitution and the subsequent changes in band filling could be a pathway to tune the magnetic ground state and to stabilize a ferromagnetic phase in EuCd$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'none'; document.getElementById('2211.09179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03860">arXiv:2210.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03860">pdf</a>, <a href="https://arxiv.org/format/2210.03860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.014402">10.1103/PhysRevB.107.014402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valence and magnetism in $\rm EuPd_3S_4$ and $\rm (Y,La)_xEu_{1-x}Pd_3S_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+D+H">D. H. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03860v1-abstract-short" style="display: inline;"> $^{151}$Eu M枚ssbauer spectroscopy shows that yttrium substitution in mixed-valent $\rm EuPd_3S_4$ drives the initial 50:50 mix of Eu$^{3+}$ and Eu$^{2+}$ towards pure Eu$^{2+}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03860v1-abstract-full').style.display = 'inline'; document.getElementById('2210.03860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03860v1-abstract-full" style="display: none;"> $^{151}$Eu M枚ssbauer spectroscopy shows that yttrium substitution in mixed-valent $\rm EuPd_3S_4$ drives the initial 50:50 mix of Eu$^{3+}$ and Eu$^{2+}$ towards pure Eu$^{2+}$, whereas lanthanum substitution has the opposite effect, but only for substitution levels above 50\%. We find that total valence electron count and chemical pressure effects cannot account for the observed behaviour, however conserving the cell volume provides a consistent description of the changes in the Eu$^{2+}$:Eu$^{3+}$ ratio. Remarkably, lanthanum substitution also leads to a clear transition from static mixed-valent behavior at lower temperatures to dynamic mixed valent behavior at higher temperatures, with the onset temperature monotonically increasing with Eu content and extrapolating to a value of $\sim$340~K for the pure $\rm EuPd_3S_4$ compound. Magnetic order persists at least as far as x=0.875 in both series, despite the drastic reduction in the amount of moment-carrying Eu$^{2+}$ ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03860v1-abstract-full').style.display = 'none'; document.getElementById('2210.03860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 26 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06693">arXiv:2205.06693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.06693">pdf</a>, <a href="https://arxiv.org/format/2205.06693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115112">10.1103/PhysRevB.106.115112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rare-earth monopnoctides -- family of antiferromagnets hosting magnetic Fermi arcs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%60ko%2C+S+L">S. L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06693v1-abstract-short" style="display: inline;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'inline'; document.getElementById('2205.06693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06693v1-abstract-full" style="display: none;"> Since the discovery of topological insulators a lot of research effort has been devoted to magnetic topological materials, in which non-trivial spin properties can be controlled by magnetic fields, culminating in a wealth of fundamental phenomena and possible applications. The main focus was on ferromagnetic materials that can host Weyl fermions and therefore spin textured Fermi arcs. The recent discovery of Fermi arcs and new magnetic bands splitting in antiferromagnet (AFM) NdBi has opened up new avenues for exploration. Here we show that these uncharted effects are not restricted to this specific compound, but rather emerge in CeBi, NdBi, and NdSb when they undergo paramagnetic to AFM transition. Our data show that the Fermi arcs in NdSb have 2-fold symmetry, leading to strong anisotropy that may enhance effects of spin textures on transport properties. Our findings thus demonstrate that the RBi and RSb series are materials that host magnetic Fermi arcs and may be a potential platform for modern spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06693v1-abstract-full').style.display = 'none'; document.getElementById('2205.06693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, five figures, supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 106, 115112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12541">arXiv:2203.12541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01180-6">10.1038/s42005-023-01180-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Surface State Pairs in a High-Symmetry Lattice with Anti-ferromagnetic Band-folding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+-">L. -L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">J. Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R+-">R. -J. Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">B. Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">B. Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">A. Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12541v2-abstract-short" style="display: inline;"> Many complex magnetic structures in a high-symmetry lattice can arise from a superposition of well-defined magnetic wave vectors. These &#34;multi-q&#34; structures have garnered much attention because of interesting real-space spin textures such as skyrmions. However, the role multi-q structures play in the topology of electronic bands in momentum space has remained rather elusive. Here we show that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12541v2-abstract-full').style.display = 'inline'; document.getElementById('2203.12541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12541v2-abstract-full" style="display: none;"> Many complex magnetic structures in a high-symmetry lattice can arise from a superposition of well-defined magnetic wave vectors. These &#34;multi-q&#34; structures have garnered much attention because of interesting real-space spin textures such as skyrmions. However, the role multi-q structures play in the topology of electronic bands in momentum space has remained rather elusive. Here we show that the type-I anti-ferromagnetic 1q, 2q and 3q structures in an face-centered cubic sublattice with band inversion, such as NdBi, can induce unconventional surface state pairs inside the band-folding hybridization bulk gap. Our density functional theory calculations match well with the recent experimental observation of unconventional surface states with hole Fermi arc-like features and electron pockets below the Neel temperature. We further show that these multi-q structures have Dirac and Weyl nodes. Our work reveals the special role that band-folding from anti-ferromagnetism and multi-q structures can play in developing new types of surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12541v2-abstract-full').style.display = 'none'; document.getElementById('2203.12541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 6, 78 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12511">arXiv:2203.12511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12511">pdf</a>, <a href="https://arxiv.org/format/2203.12511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04412-x">10.1038/s41586-022-04412-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Fermi arcs and novel magnetic splitting in an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%60Leary%2C+E">Evan O`Leary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A">Andrew Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Barriga%2C+J">Jaime Sanchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%60ko%2C+S+L">Sergey L. Bud`ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12511v1-abstract-short" style="display: inline;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can resu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12511v1-abstract-full" style="display: none;"> The Fermi arcs are signatures of exotic states in solids because they defy conventional concept of Fermi surfaces as closed contours in momentum space. Fermi arcs were first discovered in cuprates, and caused by the pseudogap. Weyl semimetals provided another way to generate Fermi arcs by breaking either the time reversal symmetry (TRS) or inversion symmetry of a 3D Dirac semimetal, which can result in a Weyl semimetal with pairs of Weyl nodes that have opposite chirality. The bulk-boundary correspondence associated with the Chern number leads to the emergence of Fermi arcs on the boundary. Here, we present experimental evidence that pairs of magnetically split hole- and electron-like Fermi arcs emerge below the Neel temperature, in the antiferromagnetic (AFM) state of cubic NdBi due to a novel band splitting effect. Whereas TRS is broken by the AFM order, both inversion and nonsymmorphic TRS are preserved in the bulk, precluding the possibility of a Weyl semimetal. The observed magnetic splitting is highly unusual, as it creates bands of opposing curvature, that changes with temperature and follows the antiferromagnetic order parameter. This is completely different from previously reported cases of magnetic splittings such as traditional Zeeman and Rashba, where the curvature of the bands is preserved. Therefore, our finding represents a new Fermionic state created by new type of magnetic band splitting in the presence of a long-range AFM order that are not readily explained by existing theoretical ideas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12511v1-abstract-full').style.display = 'none'; document.getElementById('2203.12511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures main text and 20 pages, 12 figures supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The version of record of this article, first published in Nature, is available online at Publisher`s website: https://www.nature.com/articles/s41586-022-04412-x (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08538">arXiv:2109.08538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08538">pdf</a>, <a href="https://arxiv.org/format/2109.08538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27277-6">10.1038/s41467-021-27277-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing band selective enhancement of quasiparticle lifetime in a metallic ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08538v1-abstract-short" style="display: inline;"> Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08538v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08538v1-abstract-full" style="display: none;"> Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08538v1-abstract-full').style.display = 'none'; document.getElementById('2109.08538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures + supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01871">arXiv:2108.01871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01871">pdf</a>, <a href="https://arxiv.org/format/2108.01871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.155124">10.1103/PhysRevB.104.155124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced ferromagnetism in the topological semimetal EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valadkhani%2C+A">Adrian Valadkhani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">Ritu Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">Aashish Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01871v1-abstract-short" style="display: inline;"> The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is predicted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01871v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01871v1-abstract-full" style="display: none;"> The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is predicted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effects of hydrostatic pressure in EuCd$_2$As$_2$. For that, we present specific heat, transport and $渭$SR measurements under hydrostatic pressure up to $\sim\,2.5\,$GPa, combined with {\it ab initio} density functional theory (DFT) calculations. Experimentally, we establish that the ground state of EuCd$_2$As$_2$ changes from in-plane antiferromagnetic (AFM$_{ab}$) to ferromagnetic at a critical pressure of $\,\approx\,$2\,GPa, which is likely characterized by the moments dominantly lying within the $ab$ plane (FM$_{ab}$). The AFM$_{ab}$-FM$_{ab}$ transition at such a relatively low pressure is supported by our DFT calculations. Furthermore, our experimental and theoretical results indicate that EuCd$_2$As$_2$ moves closer to the sought-for FM$_c$ state (moments $\parallel$ $c$) with increasing pressure further. We predict that a pressure of $\approx$\,23\,GPa will stabilize the FM$_c$ state, if Eu remains in a 2+ valence state. Thus, our work establishes hydrostatic pressure as a key tuning parameter that (i) allows for a continuous tuning between magnetic ground states in a single sample of EuCd$_2$As$_2$ and (ii) enables the exploration of the interplay between magnetism and topology and thereby motivates a series of future experiments on this magnetic Weyl semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01871v1-abstract-full').style.display = 'none'; document.getElementById('2108.01871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures in main text, 6 figures in Appendix; 14 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14911">arXiv:2012.14911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14911">pdf</a>, <a href="https://arxiv.org/format/2012.14911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.085134">10.1103/PhysRevB.105.085134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-polarized imaging of strongly interacting fermions in the ferrimagnetic state of Weyl candidate CeBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">Christian E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pirie%2C+H">Harris Pirie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drucker%2C+N+C">Nathan C. Drucker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lane%2C+C">Christopher Lane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+E">Jennifer E. Hoffman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14911v2-abstract-short" style="display: inline;"> CeBi has an intricate magnetic phase diagram whose fully-polarized state has recently been suggested as a Weyl semimetal, though the role of $f$ states in promoting strong interactions has remained elusive. Here we focus on the less-studied, but also time-reversal symmetry-breaking ferrimagnetic phase of CeBi, where our density functional theory (DFT) calculations predict additional Weyl nodes nea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14911v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14911v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14911v2-abstract-full" style="display: none;"> CeBi has an intricate magnetic phase diagram whose fully-polarized state has recently been suggested as a Weyl semimetal, though the role of $f$ states in promoting strong interactions has remained elusive. Here we focus on the less-studied, but also time-reversal symmetry-breaking ferrimagnetic phase of CeBi, where our density functional theory (DFT) calculations predict additional Weyl nodes near the Fermi level $E_\mathrm{F}$. We use spin-polarized scanning tunneling microscopy and spectroscopy to image the surface ferrimagnetic order on the itinerant Bi $p$ states, indicating their orbital hybridization with localized Ce $f$ states. We observe suppression of this spin-polarized signature at $E_\mathrm{F}$, coincident with a Fano line shape in the conductance spectra, suggesting the Bi $p$ states partially Kondo screen the $f$ magnetic moments, and this $p-f$ hybridization causes strong Fermi-level band renormalization. The $p$ band flattening is supported by our quasiparticle interference (QPI) measurements, which also show band splitting in agreement with DFT, painting a consistent picture of a strongly interacting magnetic Weyl semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14911v2-abstract-full').style.display = 'none'; document.getElementById('2012.14911v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 085134 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12502">arXiv:2009.12502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12502">pdf</a>, <a href="https://arxiv.org/format/2009.12502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22136-w">10.1038/s41467-021-22136-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a weak topological insulating state and van Hove singularity in triclinic RhBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+G+F">Gunnar F. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">Thais V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">Peter P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12502v1-abstract-short" style="display: inline;"> Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected &#39;strong&#39; TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12502v1-abstract-full').style.display = 'inline'; document.getElementById('2009.12502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12502v1-abstract-full" style="display: none;"> Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected &#39;strong&#39; TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P1, which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy. Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12502v1-abstract-full').style.display = 'none'; document.getElementById('2009.12502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages plus supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 1855 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10628">arXiv:2008.10628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.10628">pdf</a>, <a href="https://arxiv.org/format/2008.10628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.235167">10.1103/PhysRevB.102.235167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Spin Polarized Fermi Arcs in Quasiparticle Interference of CeBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lane%2C+C+A">Christopher A. Lane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+G">Guo-Xiang Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C">Christian Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yarotski%2C+D">Dmitry Yarotski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+A+J">A. J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jian-Xin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10628v3-abstract-short" style="display: inline;"> We predict that CeBi in the ferromagnetic state is a Weyl semimetal. Our calculations within density functional theory show the existence of two pairs of Weyl nodes on the momentum path $(0, 0, k_z)$ at $15$ meV} above and $100$ meV below the Fermi level. Two corresponding Fermi arcs are obtained on surfaces of mirror-symmetric (010)-oriented slabs at $E=15$ meV and both arcs are interrupted into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10628v3-abstract-full').style.display = 'inline'; document.getElementById('2008.10628v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10628v3-abstract-full" style="display: none;"> We predict that CeBi in the ferromagnetic state is a Weyl semimetal. Our calculations within density functional theory show the existence of two pairs of Weyl nodes on the momentum path $(0, 0, k_z)$ at $15$ meV} above and $100$ meV below the Fermi level. Two corresponding Fermi arcs are obtained on surfaces of mirror-symmetric (010)-oriented slabs at $E=15$ meV and both arcs are interrupted into three segments due to hybridization with a set of trivial surface bands. By studying the spin texture of surface states, we find the two Fermi arcs are strongly spin-polarized but in opposite directions, which can be detected by spin-polarized ARPES measurements. Our theoretical study of quasiparticle interference (QPI) for a nonmagnetic impurity at the Bi site also reveals several features related to the Fermi arcs. Specifically, we predict that the spin polarization of the Fermi arcs leads to a bifurcation-shaped feature only in the spin-dependent QPI spectrum, serving as a fingerprint of the Weyl nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10628v3-abstract-full').style.display = 'none'; document.getElementById('2008.10628v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages with 9 embedded figures. Supplemental material shortened</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-20-26486 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 235167 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12758">arXiv:2007.12758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.12758">pdf</a>, <a href="https://arxiv.org/format/2007.12758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21154-y">10.1038/s41467-021-21154-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riberolles%2C+S+X+M">S. X. M. Riberolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trevisan%2C+T+V">T. V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">B. Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heitmann%2C+T+W">T. W. Heitmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">F. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+D+C">D. C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+D+H">D. H. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vishwanath%2C+A">A. Vishwanath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+-">L. -L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">B. G. Ueland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12758v2-abstract-short" style="display: inline;"> Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn$_{2}$As$_{2}$ is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12758v2-abstract-full').style.display = 'inline'; document.getElementById('2007.12758v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12758v2-abstract-full" style="display: none;"> Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn$_{2}$As$_{2}$ is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn$_{2}$As$_{2}$ actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180$^{\circ}$ rotation and time-reversal symmetries: $C_{2}\times\mathcal{T}=2^{\prime}$. Surfaces protected by $2^{\prime}$ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of $H\approx1$ to $2$ T can tune between gapless and gapped surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12758v2-abstract-full').style.display = 'none'; document.getElementById('2007.12758v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 26 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 12, Article number: 999 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.05236">arXiv:2004.05236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.05236">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.247203">10.1103/PhysRevLett.125.247203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely Weakly Interacting $螖S_z = 0$ and $螖S_z = 1$ Excitations and Evidence for Fractional Quantization in a Magnetization Plateau: CeSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LaBarre%2C+P+G">Patrick G. LaBarre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abel%2C+C">Caiden Abel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+A+P">Arthur P. Ramirez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.05236v3-abstract-short" style="display: inline;"> The plateau at 1/3 of the saturation magnetization, $M_s$, in the metamagnet CeSb is accompanied by a state of ferromagnetic layers of spins in an up-up-down sequence. We measured $M$ and the specific heat, $C$, in the plateau, spin wave analyses of which reveal two distinct branches of excitations. Those with $螖S_z = 1$ as measured by $M$, coexist with a much larger population of $螖S_z = 0$ excit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05236v3-abstract-full').style.display = 'inline'; document.getElementById('2004.05236v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.05236v3-abstract-full" style="display: none;"> The plateau at 1/3 of the saturation magnetization, $M_s$, in the metamagnet CeSb is accompanied by a state of ferromagnetic layers of spins in an up-up-down sequence. We measured $M$ and the specific heat, $C$, in the plateau, spin wave analyses of which reveal two distinct branches of excitations. Those with $螖S_z = 1$ as measured by $M$, coexist with a much larger population of $螖S_z = 0$ excitations measured by $C$ but invisible to $M$. The large density of $螖S_z = 0$ excitations, their energy gap, and their seeming lack of interaction with $螖S_z = 1$ excitations suggest an analogy with astrophysical dark matter. Additionally, in the middle of the plateau three sharp jumps in $M(H)$ are seen, the size of which, $0.15 $%$M_s$, is consistent with fractional quantization of magnetization-per-site in the down-spin layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05236v3-abstract-full').style.display = 'none'; document.getElementById('2004.05236v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures. Supplemental Information 4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 247203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10485">arXiv:2002.10485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10485">pdf</a>, <a href="https://arxiv.org/format/2002.10485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.140402">10.1103/PhysRevB.101.140402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating of magnetism in the topological semimetal EuCd2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timmons%2C+E">Erik Timmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Tae-Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueland%2C+B+G">Benjamin G. Ueland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palasyuk%2C+A">Andriy Palasyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+D+H">Dominic H. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkov%2C+A+A">Anton A. Burkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">Ruslan Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10485v1-abstract-short" style="display: inline;"> Magnetic Weyl semimetals are expected to have extraordinary physical properties such as a chiral anomaly and large anomalous Hall effects that may be useful for future, potential, spintronics applications. However, in most known host materials, multiple pairs of Weyl points prevent a clear manifestation of the intrinsic topological effects. Our recent density functional theory (DFT) calculations s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10485v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10485v1-abstract-full" style="display: none;"> Magnetic Weyl semimetals are expected to have extraordinary physical properties such as a chiral anomaly and large anomalous Hall effects that may be useful for future, potential, spintronics applications. However, in most known host materials, multiple pairs of Weyl points prevent a clear manifestation of the intrinsic topological effects. Our recent density functional theory (DFT) calculations study suggest that EuCd$_{2}$As$_{2}$ can host Dirac fermions in an antiferromagnetically (AFM) ordered state or a single pair of Weyl fermions in a ferromagnetically (FM) ordered state. Unfortunately, previously synthesized crystals ordered antiferromagnetically with $T_{\textrm{N}}$\,$\simeq$\,9.5\,K. Here, we report the successful synthesis of single crystals of EuCd$_{2}$As$_{2}$ that order ferromagnetically (FM) or antiferromagnetically (AFM) depending on the level of band filling, thus allowing for the use of magnetism to tune the topological properties within the same host. We explored their physical properties via magnetization, electrical transport, heat capacity, and angle resolved photoemission spectroscopy (ARPES) measurements and conclude that EuCd$_{2}$As$_{2}$ is an excellent, tunable, system for exploring the interplay of magnetic ordering and topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10485v1-abstract-full').style.display = 'none'; document.getElementById('2002.10485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 140402 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08896">arXiv:1912.08896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08896">pdf</a>, <a href="https://arxiv.org/format/1912.08896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetization and magneto-transport measurements on CeBi single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08896v2-abstract-short" style="display: inline;"> We report the synthesis of CeBi single crystals out of Bi self flux and a systematic study of the magnetic and transport properties with varying temperature and applied magnetic fields. From these $R(T,H)$ and $M(T,H)$ data we could assemble the field-temperature ($H-T$) phase diagram for CeBi and visualize the three dimensional $M-T-H$ surface. In the phase diagram, we identify regions with well&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08896v2-abstract-full').style.display = 'inline'; document.getElementById('1912.08896v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08896v2-abstract-full" style="display: none;"> We report the synthesis of CeBi single crystals out of Bi self flux and a systematic study of the magnetic and transport properties with varying temperature and applied magnetic fields. From these $R(T,H)$ and $M(T,H)$ data we could assemble the field-temperature ($H-T$) phase diagram for CeBi and visualize the three dimensional $M-T-H$ surface. In the phase diagram, we identify regions with well defined magnetization values, and identify a new phase region. The magnetoresistance (MR) in the low temperature regime shows, above $6~$T a power-law, non-saturated behavior with large MR ($\sim 3\times10^5 \%$ at $2~$K and $13.95~$T), along with Shubnikov-de Haas oscillations. With increasing temperatures, MR decreases, and then becomes negative for $T\gtrsim 10~$K. This crossover in MR seems to be unrelated to any specific magnetic or metamagnetic transitions, but rather is associated with changing from a low-temperature normal metal regime with little or no scattering from the Ce$^{3+}$ moments and an anomalously large MR, to an increased scattering from local Ce moments and a negative MR as temperature increases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08896v2-abstract-full').style.display = 'none'; document.getElementById('1912.08896v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08234">arXiv:1901.08234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08234">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.245147">10.1103/PhysRevB.99.245147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Single Pair of Weyl Fermions in Half-metallic EuCd2As2 Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaminski%2C+A">Adam Kaminski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08234v2-abstract-short" style="display: inline;"> An ideal Weyl semimetal with a single pair of Weyl points (WPs) may be generated by splitting a single Dirac point (DP) through the breaking of time-reversal symmetry by magnetic order. However, most known Dirac semimetals possess a pair of DPs along an axis that is protected by crystalline symmetry. Here, we demonstrate that a single pair of WPs may also be generated from a pair of DPs. Using fir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08234v2-abstract-full').style.display = 'inline'; document.getElementById('1901.08234v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08234v2-abstract-full" style="display: none;"> An ideal Weyl semimetal with a single pair of Weyl points (WPs) may be generated by splitting a single Dirac point (DP) through the breaking of time-reversal symmetry by magnetic order. However, most known Dirac semimetals possess a pair of DPs along an axis that is protected by crystalline symmetry. Here, we demonstrate that a single pair of WPs may also be generated from a pair of DPs. Using first-principles band structure calculations, we show that inducing ferromagnetism in the AFM Dirac semimetal EuCd2As2 generates a single pair of WPs due to its half-metallic nature. Analysis with a low-energy effective Hamiltonian shows that this ideal Weyl semimetal is obtained in EuCd2As2 because the DPs are very close to the zone center and the ferromagnetic exchange splitting is large enough to push one pair of WPs to merge and annihilate at Gamma while the other pair survives. Furthermore, we predict that alloying with Ba at the Eu site can stabilize the ferromagnetic configuration and generate a single pair of Weyl points without application of a magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08234v2-abstract-full').style.display = 'none'; document.getElementById('1901.08234v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 245147 (2019) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10