CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Qu, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Qu%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Qu, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Qu%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Qu, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15679">arXiv:2411.15679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15679">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Large tuning of the optical properties of nanoscale NdNiO3 via electron doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yeonghoon Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Teng Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Siddharth Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubzdela%2C+N">Nicola Kubzdela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+C">Cheng-Chia Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Li%2C+T">Tai De Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramanathan%2C+S">Shriram Ramanathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Nanfang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kats%2C+M+A">Mikhail A. Kats</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15679v1-abstract-short" style="display: inline;"> We synthesized crystalline films of neodymium nickel oxide (NdNiO3), a perovskite quantum material, switched the films from a metal phase (intrinsic) into an insulator phase (electron-doped) by field-driven lithium-ion intercalation, and characterized their structural and optical properties. Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) showed that the intercalation process resulted in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15679v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15679v1-abstract-full" style="display: none;"> We synthesized crystalline films of neodymium nickel oxide (NdNiO3), a perovskite quantum material, switched the films from a metal phase (intrinsic) into an insulator phase (electron-doped) by field-driven lithium-ion intercalation, and characterized their structural and optical properties. Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) showed that the intercalation process resulted in a gradient of the dopant concentration along the thickness direction of the films, turning the films into insulator-metal bilayers. We used variable-angle spectroscopic ellipsometry to measure the complex refractive indices of the metallic and insulating phases of NdNiO3. The insulator phase has a refractive index of n ~ 2 and low absorption in the visible and near infrared, and analysis of the complex refractive indices indicated that the band gap of the insulating phase is roughly 3-4 eV. Electrical control of the optical band gap, with corresponding large changes to the optical refractive indices, creates new opportunities for tunable optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15679v1-abstract-full').style.display = 'none'; document.getElementById('2411.15679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text + supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14767">arXiv:2410.14767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14767">pdf</a>, <a href="https://arxiv.org/format/2410.14767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Aided Modeling of Granular Materials: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mengqi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+K">Krishna Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y+T">Y. T. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tongming Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Min Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14767v1-abstract-short" style="display: inline;"> Artificial intelligence (AI) has become a buzz word since Google&#39;s AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14767v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14767v1-abstract-full" style="display: none;"> Artificial intelligence (AI) has become a buzz word since Google&#39;s AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14767v1-abstract-full').style.display = 'none'; document.getElementById('2410.14767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Archives of Computational Methods in Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19628">arXiv:2409.19628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19628">pdf</a>, <a href="https://arxiv.org/format/2409.19628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.094206">10.1103/PhysRevB.110.094206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band alignment effect in the topological photonic alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tiantao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mudi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19628v1-abstract-short" style="display: inline;"> Recently, a photonic alloy with non-trivial topological properties has been proposed, based on the random mixing of Yttrium Iron Garnet (YIG) and magnetized YIG rods. When the doping concentration of magnetized YIG rods is less than one, a chiral edge state (CES) of the topological photonic alloy appears in the frequency range of the non-trivial topological gap of the magnetized YIG crystal. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19628v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19628v1-abstract-full" style="display: none;"> Recently, a photonic alloy with non-trivial topological properties has been proposed, based on the random mixing of Yttrium Iron Garnet (YIG) and magnetized YIG rods. When the doping concentration of magnetized YIG rods is less than one, a chiral edge state (CES) of the topological photonic alloy appears in the frequency range of the non-trivial topological gap of the magnetized YIG crystal. In this work, we surprisingly find that by randomly mixing the Perfect Electric Conductor (PEC) and magnetized YIG rods in a square lattice, the photonic alloy system with appropriate doping concentrations can present CES in special frequency intervals even when both components support the propagation of bulk states. Analyzing the band structure of two components, we noticed a shift between the first trivial bandgap for PEC and the first topological bandgap for magnetized YIG. When calculating the transmission spectrum of the photonic alloy, we discovered that the frequency range for the topological gap gradually opens from the lower limit frequency of the bandgap for PEC to the bandgap for the magnetized YIG rods. The topological gap opening occurs as the doping concentration of magnetized YIG rods increases, creating an effective band alignment effect. Moreover, the topological gap for the photonic alloy is confirmed by calculating the reflection phase winding with the scattering method. Lastly, the gradual appearance of the CES is identified by applying Fourier transformation to real-space electromagnetic fields. Our work broadens the possibilities for flexible topological gap engineering in the photonic alloy system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19628v1-abstract-full').style.display = 'none'; document.getElementById('2409.19628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 094206(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12494">arXiv:2409.12494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12494">pdf</a>, <a href="https://arxiv.org/format/2409.12494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A unified theoretical framework for Kondo superconductors: Periodic Anderson impurities with attractive pairing and Rashba spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foo%2C+D+C+W">Darryl C. W. Foo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+S">Shaffique Adam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12494v1-abstract-short" style="display: inline;"> Magnetic superconductors manifest a fascinating interplay between their magnetic and superconducting properties. This becomes evident, for example, in the significant enhancement of the upper critical field observed in uranium-based superconductors, or the destruction of superconductivity well below the superconducting transition temperature $T_c$ in cobalt-doped NbSe$_2$. In this work, we argue t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12494v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12494v1-abstract-full" style="display: none;"> Magnetic superconductors manifest a fascinating interplay between their magnetic and superconducting properties. This becomes evident, for example, in the significant enhancement of the upper critical field observed in uranium-based superconductors, or the destruction of superconductivity well below the superconducting transition temperature $T_c$ in cobalt-doped NbSe$_2$. In this work, we argue that the Kondo interaction plays a pivotal role in governing these behaviors. By employing a periodic Anderson model, we study the Kondo effect in superconductors with either singlet or triplet pairing. In the regime of small impurity energies and high doping concentrations, we find the emergence of a Kondo resistive region below $T_c$. While a magnetic field suppresses singlet superconductivity, it stabilizes triplet pairing through the screening of magnetic impurities, inducing reentrant superconductivity at high fields. Moreover, introducing an antisymmetric spin-orbital coupling suppresses triplet superconductivity. This framework provides a unified picture to understand the observation of Kondo effect in NbSe$_2$ as well as the phase diagrams in Kondo superconductors such as UTe$_2$, and URhGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12494v1-abstract-full').style.display = 'none'; document.getElementById('2409.12494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05168">arXiv:2406.05168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05168">pdf</a>, <a href="https://arxiv.org/format/2406.05168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.223802">10.1103/PhysRevLett.132.223802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological photonic alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tiantao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mudi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xiaoyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xiaohan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhao-Qing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+C+T">C. T. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05168v1-abstract-short" style="display: inline;"> We present the new concept of photonic alloy as a non-periodic topological material. By mixing non-magnetized and magnetized rods in a non-periodic 2D photonic crystal configuration, we realized photonic alloys in the microwave regime. Our experimental findings reveal that the photonic alloy sustains non-reciprocal chiral edge states (CESs) even at very low concentration of magnetized rods. The no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05168v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05168v1-abstract-full" style="display: none;"> We present the new concept of photonic alloy as a non-periodic topological material. By mixing non-magnetized and magnetized rods in a non-periodic 2D photonic crystal configuration, we realized photonic alloys in the microwave regime. Our experimental findings reveal that the photonic alloy sustains non-reciprocal chiral edge states (CESs) even at very low concentration of magnetized rods. The non-trivial topology and the associated edge states of these non-periodic systems can be characterized by the winding of the reflection phase. Our results indicate that the threshold concentrations for the investigated system within the first non-trivial band gap to exhibit topological behavior approach zero in the thermodynamic limit for substitutional alloys, while the threshold remains non-zero for interstitial alloys. At low concentration, the system exhibits an inhomogeneous structure characterized by isolated patches of non-percolating magnetic domains that are spaced far apart within a topologically trivial photonic crystal. Surprisingly, the system manifests CESs despite a local breakdown of time-reversal symmetry rather than a global one. Photonic alloys represent a new category of disordered topological materials, offering exciting opportunities for exploring topological materials with adjustable gaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05168v1-abstract-full').style.display = 'none'; document.getElementById('2406.05168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 223802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13337">arXiv:2308.13337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13337">pdf</a>, <a href="https://arxiv.org/format/2308.13337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.013113">10.1103/PhysRevResearch.5.013113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of the Coulomb gap in the density of states of MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Masseroni%2C+M">Michele Masseroni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ihn%2C+T">Thomas Ihn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ensslin%2C+K">Klaus Ensslin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13337v2-abstract-short" style="display: inline;"> $\mathrm{MoS_2}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13337v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13337v2-abstract-full" style="display: none;"> $\mathrm{MoS_2}$ is an emergent van der Waals material that shows promising prospects in semiconductor industry and optoelectronic applications. However, its electronic properties are not yet fully understood. In particular, the nature of the insulating state at low carrier density deserves further investigation, as it is important for fundamental research and applications. In this study, we investigate the insulating state of a dual-gated exfoliated bilayer $\mathrm{MoS_2}$ field-effect transistor by performing magnetotransport experiments. We observe positive and non-saturating magnetoresistance, in a regime where only one band contributes to electron transport. At low electron density ($\sim 1.4\times 10^{12}~\mathrm{cm^{-2}}$) and a perpendicular magnetic field of 7 Tesla, the resistance exceeds by more than one order of magnitude the zero field resistance and exponentially drops with increasing temperature. We attribute this observation to strong electron localization. Both temperature and magnetic field dependence can, at least qualitatively, be described by the Efros-Shklovskii law, predicting the formation of a Coulomb gap in the density of states due to Coulomb interactions. However, the localization length obtained from fitting the temperature dependence exceeds by more than one order of magnitude the one obtained from the magnetic field dependence. We attribute this discrepancy to the presence of a nearby metallic gate, which provides electrostatic screening and thus reduces long-range Coulomb interactions. The result of our study suggests that the insulating state of $\mathrm{MoS_2}$ originates from a combination of disorder-driven electron localization and Coulomb interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13337v2-abstract-full').style.display = 'none'; document.getElementById('2308.13337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data repository: https://doi.org/10.3929/ethz-b-000592153</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 013113 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12513">arXiv:2308.12513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12513">pdf</a>, <a href="https://arxiv.org/format/2308.12513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L081110">10.1103/PhysRevB.108.L081110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Anderson amorphous insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xiaoyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tiantao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12513v1-abstract-short" style="display: inline;"> The topological phase in amorphous systems adds a new dimension to the topological states of matter. Here, we present an interesting phenomenon dubbed the topological Anderson amorphous insulator (TAAI). Anderson disorder can drive topologically trivial amorphous systems with structural disorders into noncrystalline topological insulators. The gap closing and reopening, spin Bott index, robust edg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12513v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12513v1-abstract-full" style="display: none;"> The topological phase in amorphous systems adds a new dimension to the topological states of matter. Here, we present an interesting phenomenon dubbed the topological Anderson amorphous insulator (TAAI). Anderson disorder can drive topologically trivial amorphous systems with structural disorders into noncrystalline topological insulators. The gap closing and reopening, spin Bott index, robust edge states, and quantized conductance characterize the Anderson disorder-induced nontrivial topology in amorphous systems. More importantly, phase diagrams are given for the topological phase transition (TPT). It is found that amorphous structural disorder and Anderson disorder are synergistic to drive the s-p band inversion of the system and hence the TPT, which is further confirmed by the effective medium theory. Our findings report a disorder-induced topological phenomenon in noncrystalline systems and shed light on the physical understanding of the interplay between the coexistence of two types of disorder effects and topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12513v1-abstract-full').style.display = 'none'; document.getElementById('2308.12513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 108, L081110 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06659">arXiv:2306.06659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Superconductivity in Two-dimensional Niobium Diselenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+F">Fuchen Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+D">Deyi Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D+F+C">Darryl Foo Chuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+X">Xiao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Junhao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+S">Shaffique Adam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06659v1-abstract-short" style="display: inline;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally ident&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06659v1-abstract-full" style="display: none;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally identified as potential hosts. Here, we show that atomically-thin niobium diselenide (NbSe$_2$) intercalated with dilute cobalt atoms spontaneously displays ferromagnetism below the superconducting transition temperature ($T_c$). We elucidate the origin of this phase by constructing a magnetic tunnel junction that consists of cobalt and cobalt-doped niobium diselenide (Co-NbSe$_2$) as the two ferromagnetic electrodes, with an ultra-thin boron nitride as the tunnelling barrier. At a temperature well below $T_c$, the tunnelling magnetoresistance shows a bistable state, suggesting a ferromagnetic order in Co-NbSe$_2$. We propose a RKKY exchange coupling mechanism based on the spin-triplet superconducting order parameter to mediate such ferromagnetism. We further perform non-local lateral spin valve measurements to confirm the origin of the ferromagnetism. The observation of Hanle precession signals show spin diffusion length up to micrometres below Tc, demonstrating an intrinsic spin-triplet nature in superconducting NbSe$_2$. Our discovery of superconductivity-mediated ferromagnetism opens the door to an alternative design of ferromagnetic superconductors <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'none'; document.getElementById('2306.06659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05603">arXiv:2306.05603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202406772">10.1002/adma.202406772 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Hall Switching by Surface-State-Mediated Spin-Orbit Torque in a Hard Ferromagnetic Topological Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Haoran He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+S+K">Su Kong Chong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huairuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hanshen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+G">Gang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaochen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hung-Yu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Ting-Hsun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xiang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yuxing Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+B">Bingqian Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+Q">Qingyuan Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Q">Quanjun Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davydov%2C+A+V">Albert V. Davydov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05603v4-abstract-short" style="display: inline;"> Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states with ultra-high efficiency. Here, we demonstrate efficient SOT switching of a hard MTI, V-doped (Bi,Sb)2Te3 (VBST) with a large coercive field that can prevent the influence of an external magnetic fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05603v4-abstract-full').style.display = 'inline'; document.getElementById('2306.05603v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05603v4-abstract-full" style="display: none;"> Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states with ultra-high efficiency. Here, we demonstrate efficient SOT switching of a hard MTI, V-doped (Bi,Sb)2Te3 (VBST) with a large coercive field that can prevent the influence of an external magnetic field. A giant switched anomalous Hall resistance of 9.2 $k惟$ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to $2.8\times10^5 A/cm^2$. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge-state-mediated to surface-state-mediated transport, thus enhancing the SOT effective field to $1.56\pm 0.12 T/ (10^6 A/cm^2)$ and the interfacial charge-to-spin conversion efficiency to $3.9\pm 0.3 nm^{-1}$. The findings establish VBST as an extraordinary candidate for energy-efficient magnetic memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05603v4-abstract-full').style.display = 'none'; document.getElementById('2306.05603v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03078">arXiv:2301.03078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03078">pdf</a>, <a href="https://arxiv.org/format/2301.03078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural tuning magnetism and topology in a magnetic topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eckberg%2C+C">Christopher Eckberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+G">Gang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+S+K">Su Kong Chong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+K+L">Kin L. Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupane%2C+M+R">Mahesh R. Neupane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03078v1-abstract-short" style="display: inline;"> To date, the most widely-studied quantum anomalous Hall insulator (QAHI) platform is achieved by dilute doping of magnetic ions into thin films of the alloyed tetradymite topological insulator (TI) (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST). In these films, long-range magnetic ordering of the transition metal substituants opens an exchange gap $螖$ in the topological surface states, stabilizing spin-polari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03078v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03078v1-abstract-full" style="display: none;"> To date, the most widely-studied quantum anomalous Hall insulator (QAHI) platform is achieved by dilute doping of magnetic ions into thin films of the alloyed tetradymite topological insulator (TI) (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST). In these films, long-range magnetic ordering of the transition metal substituants opens an exchange gap $螖$ in the topological surface states, stabilizing spin-polarized, dissipationless edge channels with a nonzero Chern number $\mathcal{C}$. The long-range ordering of the spatially separated magnetic ions is itself mediated by electronic states in the host TI, leading to a sophisticated feedback between magnetic and electronic properties. Here we present a study of the electronic and magnetic response of a BST-based QAHI system to structural tuning via hydrostatic pressure. We identify a systematic closure of the topological gap under compressive strain accompanied by a simultaneous enhancement in the magnetic ordering strength. Combining these experimental results with first-principle calculations we identify structural deformation as a strong tuning parameter to traverse a rich topological phase space and modify magnetism in the magnetically doped BST system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03078v1-abstract-full').style.display = 'none'; document.getElementById('2301.03078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10988">arXiv:2205.10988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10988">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c03062">10.1021/acs.nanolett.0c03062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heteromoir茅 Engineering on Magnetic Bloch Transport in Twisted Graphene Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Fanrong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Jiabin Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+D">Deyi Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayorov%2C+A+S">Alexander S. Mayorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+P">Paromita Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sow%2C+C+H">Chorng Haur Sow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10988v1-abstract-short" style="display: inline;"> Localized electrons subject to applied magnetic fields can restart to propagate freely through the lattice in delocalized magnetic Bloch states (MBSs) when the lattice periodicity is commensurate with the magnetic length. Twisted graphene superlattices with moir茅 wavelength tunability enable experimental access to the unique delocalization in a controllable fashion. Here we report the observation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10988v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10988v1-abstract-full" style="display: none;"> Localized electrons subject to applied magnetic fields can restart to propagate freely through the lattice in delocalized magnetic Bloch states (MBSs) when the lattice periodicity is commensurate with the magnetic length. Twisted graphene superlattices with moir茅 wavelength tunability enable experimental access to the unique delocalization in a controllable fashion. Here we report the observation and characterization of high-temperature Brown-Zak (BZ) oscillations which come in two types, 1/B and B periodicity, originating from the generation of integer and fractional MBSs, in the twisted bilayer and trilayer graphene superlattices, respectively. Coexisting periodic-in-1/B oscillations assigned to different moir茅 wavelengths, are dramatically observed in small-angle twisted bilayer graphene, which may arise from angle-disorder-induced in-plane heteromoir茅 superlattices. Moreover, the vertical stacking of heteromoir茅 supercells in double-twisted trilayer graphene results in a mega-sized superlattice. The exotic superlattice contributes to the periodic-in-B oscillation and dominates the magnetic Bloch transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10988v1-abstract-full').style.display = 'none'; document.getElementById('2205.10988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2020, 20, 10, 7572-7579 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11969">arXiv:2204.11969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11969">pdf</a>, <a href="https://arxiv.org/format/2204.11969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L060401">10.1103/PhysRevB.107.L060401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oscillations and confluence in three-magnon scattering of ferromagnetic resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamill%2C+A">Alex Hamill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Victora%2C+R+H">R. H. Victora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crowell%2C+P+A">P. A. Crowell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11969v4-abstract-short" style="display: inline;"> We have performed a time-resolved and phase-sensitive investigation of three-magnon scattering of ferromagnetic resonance (FMR) over several orders of magnitude in excitation power. We observe a regime that hosts transient oscillations of the FMR magnon population, despite higher-order magnon interactions at large powers. Also at high powers, the scattering generates $180^\circ$ phase shifts of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11969v4-abstract-full').style.display = 'inline'; document.getElementById('2204.11969v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11969v4-abstract-full" style="display: none;"> We have performed a time-resolved and phase-sensitive investigation of three-magnon scattering of ferromagnetic resonance (FMR) over several orders of magnitude in excitation power. We observe a regime that hosts transient oscillations of the FMR magnon population, despite higher-order magnon interactions at large powers. Also at high powers, the scattering generates $180^\circ$ phase shifts of the FMR magnons. These phase shifts correspond to reversals in the three-magnon scattering direction, between splitting and confluence. These scattering reversals are most directly observed after removing the microwave excitation, generating coherent oscillations of the FMR magnon population much larger than its steady-state value during the excitation. Our model is in strong agreement with these findings. These findings reveal the transient behavior of this three-magnon scattering process, and the nontrivial interplay between three-magnon scattering and the magnons&#39; phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11969v4-abstract-full').style.display = 'none'; document.getElementById('2204.11969v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09064">arXiv:2110.09064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09064">pdf</a>, <a href="https://arxiv.org/format/2110.09064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of the effect of edge cracks on critical current degradation in REBCO tapes under tensile stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhirong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+P">Peng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+M">Mingzhi Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+F">Feng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Timing Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09064v1-abstract-short" style="display: inline;"> The slitting process used for fabrication of REBa2Cu3Ox (REBCO, RE=Rare earth) tapes of required width will greatly improve production efficiency and reduce production costs. However, edge cracks induced by the slitting process of wide REBCO tapes may cause the premature degradation under a extremely high hoop (tensile) stress in high-field magnets. It is necessary to evaluate the edge cracks of R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09064v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09064v1-abstract-full" style="display: none;"> The slitting process used for fabrication of REBa2Cu3Ox (REBCO, RE=Rare earth) tapes of required width will greatly improve production efficiency and reduce production costs. However, edge cracks induced by the slitting process of wide REBCO tapes may cause the premature degradation under a extremely high hoop (tensile) stress in high-field magnets. It is necessary to evaluate the edge cracks of REBCO tapes on the critical current (Ic) degradation. This work aims to evaluate the effect of edge cracks on the Ic performance under tensile stress. Ic degradation under artificial cracks was measured to validate the applicability of linear elastic fracture mechanics for the REBCO film. Linear elastic fracture mechanics was used to get the mixed stress intensity factor of multiple edge oblique cracks. A model considering edge crack properties angle \b{eta}, spacing d, and length a is constructed to evaluate the critical load and critical cracks properties. When the stress intensity factor at the crack tip is less than K_{\rm Ic}=2.3$ $\mathrm{MPa\sqrt{m}}, edge cracks remain stable and do not propagate. Two kinds of REBCO tapes fabricated by different companies are evaluated, and cracks of these tapes will not cause premature degradation. This model could be used to evaluate the operation range of REBCO tapes and improve the manufacturing process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09064v1-abstract-full').style.display = 'none'; document.getElementById('2110.09064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07147">arXiv:1910.07147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07147">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Ultra-high frequency magnetic resonance through strain-spin coupling in perpendicular magnetic multi-layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lattery%2C+D+M">Dustin M. Lattery</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Victora%2C+R+H">R. H. Victora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaojia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07147v2-abstract-short" style="display: inline;"> The interaction between strain and spin has received intensive attention in the scientific community due to its abundant physical phenomena and huge technological impact. Until now, there is no experimental report on ultra-high frequency magnetic resonance through the strain-spin coupling for any technologically relevant perpendicular magnetic material. Here we report the experimental detection of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07147v2-abstract-full').style.display = 'inline'; document.getElementById('1910.07147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07147v2-abstract-full" style="display: none;"> The interaction between strain and spin has received intensive attention in the scientific community due to its abundant physical phenomena and huge technological impact. Until now, there is no experimental report on ultra-high frequency magnetic resonance through the strain-spin coupling for any technologically relevant perpendicular magnetic material. Here we report the experimental detection of the acoustic strain waves that have a response time on the order of 10 picoseconds in perpendicular magnetic [Co/Pd]n multilayers via a femtosecond laser pulse excitation. Through direct measurements of acoustic strain waves, we observe an ultra-high frequency magnetic resonance up to 60 GHz in [Co/Pd]n multilayers. We further report a theoretical model of the strain-spin interaction. Our model reveals that the energy could be transferred efficiently from the strain to the spins and well explains the existence of a steady resonance state through exciting the spin system. The physical origins of the resonance between strain waves and magnetic precession and the requested conditions for obtaining magnetic resonance within thin magnetic films have also been discussed after thorough analysis. These combined results point out a potential pathway to enable an extremely high frequency (EHF) magnetic resonance through the strain-spin coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07147v2-abstract-full').style.display = 'none'; document.getElementById('1910.07147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 13 figures, conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 6, eabb4607 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02738">arXiv:1909.02738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02738">pdf</a>, <a href="https://arxiv.org/format/1909.02738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.134430">10.1103/PhysRevB.101.134430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The interplay of large two-magnon ferromagnetic resonance linewidths and low Gilbert damping in Heusler thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peria%2C+W+K">William K. Peria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+T+A">Timothy A. Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFadden%2C+A+P">Anthony P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Changjiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crowell%2C+P+A">Paul A. Crowell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02738v2-abstract-short" style="display: inline;"> We report on broadband ferromagnetic resonance linewidth measurements performed on epitaxial Heusler thin films. A large and anisotropic two-magnon scattering linewidth broadening is observed for measurements with the magnetization lying in the film plane, while linewidth measurements with the magnetization saturated perpendicular to the sample plane reveal low Gilbert damping constants of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02738v2-abstract-full').style.display = 'inline'; document.getElementById('1909.02738v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02738v2-abstract-full" style="display: none;"> We report on broadband ferromagnetic resonance linewidth measurements performed on epitaxial Heusler thin films. A large and anisotropic two-magnon scattering linewidth broadening is observed for measurements with the magnetization lying in the film plane, while linewidth measurements with the magnetization saturated perpendicular to the sample plane reveal low Gilbert damping constants of $(1.5\pm0.1)\times 10^{-3}$, $(1.8\pm0.2)\times 10^{-3}$, and $&lt;8\times 10^{-4}$ for Co$_2$MnSi/MgO, Co$_2$MnAl/MgO, and Co$_2$FeAl/MgO, respectively. The in-plane measurements are fit to a model combining Gilbert and two-magnon scattering contributions to the linewidth, revealing a characteristic disorder lengthscale of 10-100 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02738v2-abstract-full').style.display = 'none'; document.getElementById('1909.02738v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 134430 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09330">arXiv:1801.09330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09330">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Accurate evaluation of the fractal dimension based on a single morphological image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+F">Feng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Binbin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiangsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiang Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinghui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Timing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+P">Pingfa Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09330v1-abstract-short" style="display: inline;"> Fractal dimension (D) is an effective parameter to represent the irregularity and fragmental property of a self-affine surface, which is common in physical vapor deposited thin films. D could be evaluated through the scaling performance of surface roughness by using atomic force microscopy (AFM) measurements, but lots of AFM images with different scales (L) are needed. In this study, a surface rou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09330v1-abstract-full').style.display = 'inline'; document.getElementById('1801.09330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09330v1-abstract-full" style="display: none;"> Fractal dimension (D) is an effective parameter to represent the irregularity and fragmental property of a self-affine surface, which is common in physical vapor deposited thin films. D could be evaluated through the scaling performance of surface roughness by using atomic force microscopy (AFM) measurements, but lots of AFM images with different scales (L) are needed. In this study, a surface roughness prediction (SRP) method was proposed to evaluate D values of a single AFM image, in which the roughness at smaller L was estimated by image segmentation with flatten modification. Firstly, a series of artificial fractal surfaces with ideal dimension (Di) values ranging from 2.1 to 2.9 were generated through Weierstrass-Mandelbrot (W-M) function, in order to compare SRP method with traditional methods such as box counting method and power spectral density method. The calculated dimension (Dc) by SRP method was much closer to Di than the other methods, with a mean relative error of only 0.64%. Secondly, SRP method was utilized to deal with real surfaces, which were AFM images of amorphous alumina thin films with L of 1-70 渭m. Dc obtained by SRP method based on a single AFM image was also close to the result in our previous study by multi-image analysis at L above 10 渭m, while the larger Dc at smaller L was consisted with the actual surface feature. The validity of SRP method and the physics nature of real surfaces were discussed, which might be helpful to obtain more understandings of fractal geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09330v1-abstract-full').style.display = 'none'; document.getElementById('1801.09330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 28Axx </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.08553">arXiv:1612.08553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.08553">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Critical Current Survival in YBCO Superconducting Layer of the Delaminated Coated Conductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+F">Feng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Q">Qishu Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Timing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+C">Chen Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+Y">Yubin Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+H">Hui Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiangsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hongyuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Linli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+P">Pingfa Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.08553v1-abstract-short" style="display: inline;"> High temperature superconducting coated conductor (CC) could be practically applied in electric equipment due to its favorable mechanical properties and the critical current performance of YBCO superconducting layer. It is well known that CC could be easily delaminated because of its poor stress tolerance in thickness direction, i.e. along the c-axis of YBCO. Commonly, a stack including YBCO layer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08553v1-abstract-full').style.display = 'inline'; document.getElementById('1612.08553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.08553v1-abstract-full" style="display: none;"> High temperature superconducting coated conductor (CC) could be practically applied in electric equipment due to its favorable mechanical properties and the critical current performance of YBCO superconducting layer. It is well known that CC could be easily delaminated because of its poor stress tolerance in thickness direction, i.e. along the c-axis of YBCO. Commonly, a stack including YBCO layer and silver stabilizer could be obtained after the delamination. It would be interesting to investigate the superconducting properties of the delaminated stack, since it could also be considered as a new type of CC with the silver stabilizer as the buffer layer, which is quite different from the oxide buffer layers in the traditional CC and might lead to new applications. In this study, a CC sample was delaminated by liquid nitrogen immersing. A Hall probe scanning system was employed to measure the critical current (IC) distribution of the original sample and the obtained stack. It was found that IC could be partially preserved after the delamination. Dense and crack-free morphologies of the delaminated surfaces were observed by scanning electron microscopy, and the potential application of the obtained stack in superconducting joint technology was discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.08553v1-abstract-full').style.display = 'none'; document.getElementById('1612.08553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.6345">arXiv:1309.6345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.6345">pdf</a>, <a href="https://arxiv.org/ps/1309.6345">ps</a>, <a href="https://arxiv.org/format/1309.6345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-2048/27/5/055006">10.1088/0953-2048/27/5/055006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Low-Fluorine Solution with the F/Ba Mole Ratio of 2 for the Fabrication of YBCO Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+F">Feng Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+X">Xiao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Y">Yunran Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kai Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Rongxia Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Timing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaohao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhenghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grivel%2C+J">Jean-Claude Grivel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.6345v1-abstract-short" style="display: inline;"> In the reported low-fluorine MOD-YBCO studies, the lowest F/Ba mole ratio of the precursor solution was 4.5. However, further lowering the F/Ba ratio is important according to the researches of YBCO thick film. On the other hand, the F/Ba ratio is necessary to be at least 2 for the full conversion of the Ba precursor to BaF_2 to avoid the formation of BaCO_3, which is detrimental to the supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.6345v1-abstract-full').style.display = 'inline'; document.getElementById('1309.6345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.6345v1-abstract-full" style="display: none;"> In the reported low-fluorine MOD-YBCO studies, the lowest F/Ba mole ratio of the precursor solution was 4.5. However, further lowering the F/Ba ratio is important according to the researches of YBCO thick film. On the other hand, the F/Ba ratio is necessary to be at least 2 for the full conversion of the Ba precursor to BaF_2 to avoid the formation of BaCO_3, which is detrimental to the superconducting performance. In this study, a novel solution with the F/Ba mole ratio of 2 was developed, in which the fluorine content was only about 10.3% of that used in the conventional TFA-MOD method. Attenuated total reflectance-Fourier transformed-infrared spectra(ATR-FT-IR) revealed that BaCO_3 was remarkably suppressed in the as-pyrolyzed film and eliminated at 700 Celsius degree. Thus YBCO films with a critical current density (J_c) over 5 MA cm^{-2} (77 K, 0 T, 200 nm thickness) could be obtained on LAO single crystal substrates. In-situ FT-IR spectra showed that no obvious fluorinated gaseous by-products were detected in the pyrolysis step, which indicated that all of the F atoms might remain in the film as fluorides. X-ray diffraction (XRD) 胃/2胃-scan showed that BaF_2, but neither YF_3 nor CuF_2, was detected in the films quenched at 400 - 800 Celsius degree. The formation priority of BaF_2 over YF_3 and CuF_2 was interpreted by the chemical equilibrium of the potential reactions. Our study could enlarge the synthesis window of the precursor solution for MOD-YBCO fabrication and open a gate to study the fluorine content in the precursor solution continuously and systematically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.6345v1-abstract-full').style.display = 'none'; document.getElementById('1309.6345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0406509">arXiv:cond-mat/0406509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0406509">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0406509">ps</a>, <a href="https://arxiv.org/format/cond-mat/0406509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Direct evidence of rigidity loss and self-organisation in silicate glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaills%2C+Y">Y. Vaills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">T. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Micoulaut%2C+M">M. Micoulaut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaimbault%2C+F">F. Chaimbault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boolchand%2C+P">P. Boolchand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0406509v1-abstract-short" style="display: inline;"> The Brillouin elastic free energy change $DF$ between thermally annealed and quenched $(Na_2O)_x(SiO_2)_{1-x}$ glasses is found to decrease linearly at $x &gt; 0.23$ (floppy phase), and to nearly vanish at $x &lt; 0.18$ (stressed- rigid phase). The observed $D F(x)$ variation closely parallels the mean-field floppy mode fraction $f(x)$ in random networks, and fixes the two (floppy, stressed-rigid) e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0406509v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0406509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0406509v1-abstract-full" style="display: none;"> The Brillouin elastic free energy change $DF$ between thermally annealed and quenched $(Na_2O)_x(SiO_2)_{1-x}$ glasses is found to decrease linearly at $x &gt; 0.23$ (floppy phase), and to nearly vanish at $x &lt; 0.18$ (stressed- rigid phase). The observed $D F(x)$ variation closely parallels the mean-field floppy mode fraction $f(x)$ in random networks, and fixes the two (floppy, stressed-rigid) elastic phases. In calorimetric measurements, the non-reversing enthalpy near $T_g$ is found to be large at $x &lt; 0.18$ and at $x &gt; 0.23$, but to nearly vanish in the $0.18 &lt; x &lt; 0.23$ range, suggesting existence of an intermediate phase between the floppy and stressed-rigid phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0406509v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0406509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages RevTeX, 4 figures in EPS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0312481">arXiv:cond-mat/0312481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0312481">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Reversibility Window, Aging, and Nanoscale Phase Separation in GexAsxS1-2x Bulk Alloy Glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boolchand%2C+P">P. Boolchand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0312481v1-abstract-short" style="display: inline;"> The non-reversing enthalpy near Tg, DHnr, in bulk GexAsxS1-2x glasses is found to display a global minimum (~0) in the 0.11 &lt; x &lt; 0.15 range, the reversibility window. Furthermore, the DHnr term is found to age for glass compositions both below (x &lt; 0.11) and above (x &gt; 0.15) the window but not in the window. Glass compositions in the window are rigid but stress-free, those below the window are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312481v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0312481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0312481v1-abstract-full" style="display: none;"> The non-reversing enthalpy near Tg, DHnr, in bulk GexAsxS1-2x glasses is found to display a global minimum (~0) in the 0.11 &lt; x &lt; 0.15 range, the reversibility window. Furthermore, the DHnr term is found to age for glass compositions both below (x &lt; 0.11) and above (x &gt; 0.15) the window but not in the window. Glass compositions in the window are rigid but stress-free, those below the window are floppy, and those above the window are stressed-rigid. Raman scattering shows floppy and stressed rigid networks to consist in part of monomers. The latter aspect of structure narrows the width of the reversibility window and suppresses in part aging effects observed outside the window in contrast to those in the fully polymerized selenide counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312481v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0312481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0308051">arXiv:cond-mat/0308051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0308051">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> The Intermediate Phase in Ternary GexAsxSe1-2x Glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georgiev%2C+D+G">D. G. Georgiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boolchand%2C+P">P. Boolchand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Micoulaut%2C+M">M. Micoulaut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0308051v1-abstract-short" style="display: inline;"> Melt-quenched AsxGexSe1-2x glasses over the composition range, 0 &lt; x &lt; 0.26, are examined in Raman scattering, T-modulated Differential Scanning Calorimetry (MDSC), and 119Sn Mossbauer spectroscopy measurements. The non-reversing enthalpy near Tg, DHnr(x), accessed from MDSC shows a global minimum (~ 0) in the xc(1) = 0.09 &lt; x &lt; xc(2) = 0.16 range, and increases by an order of magnitude both at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308051v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0308051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0308051v1-abstract-full" style="display: none;"> Melt-quenched AsxGexSe1-2x glasses over the composition range, 0 &lt; x &lt; 0.26, are examined in Raman scattering, T-modulated Differential Scanning Calorimetry (MDSC), and 119Sn Mossbauer spectroscopy measurements. The non-reversing enthalpy near Tg, DHnr(x), accessed from MDSC shows a global minimum (~ 0) in the xc(1) = 0.09 &lt; x &lt; xc(2) = 0.16 range, and increases by an order of magnitude both at x &lt; xc(1) and at x &gt; xc(2). Raman mode frequency of corner-sharing Ge(Se1/2)4 tetrahedra studied as a function of x, also shows three distinct regimes (or power-laws, p) that coincide with DHnr(x) trends. These regimes are identified with mechanically floppy (x &lt; xc(1)), intermediate (xc(1) &lt; x &lt; xc(2)), and stressed-rigid (x &gt; xc(2)) phases. The Raman elasticity power-law in the intermediate phase, p1 = 1.04(3), and in the stressed rigid phase, p2= 1.52(5), suggest effective dimensionalities of d = 2 and 3 respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308051v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0308051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mater. Res. Soc. Symp. Proc. vol. 754, CC8.1.1 (2003) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10