CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,005 results for author: <span class="mathjax">Liu, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Liu%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15308">arXiv:2502.15308</a> <span> [<a href="https://arxiv.org/pdf/2502.15308">pdf</a>, <a href="https://arxiv.org/format/2502.15308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional fully-compensated Ferrimagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yichen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">San-Dong Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongpan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng-Cheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15308v1-abstract-short" style="display: inline;"> Antiferromagnetic spintronics has long been a subject of intense research interest, and the recent introduction of altermagnetism has further ignited enthusiasm in the field. However, fully-compensated ferrimagnetism, which exhibits band spin splitting but zero net magnetization, has yet to receive enough attention. Since the experimental preparation of two-dimensional (2D) magnetic van der Waals… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15308v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15308v1-abstract-full" style="display: none;"> Antiferromagnetic spintronics has long been a subject of intense research interest, and the recent introduction of altermagnetism has further ignited enthusiasm in the field. However, fully-compensated ferrimagnetism, which exhibits band spin splitting but zero net magnetization, has yet to receive enough attention. Since the experimental preparation of two-dimensional (2D) magnetic van der Waals (vdW) materials in 2017, 2D magnetic materials, thanks to their super tunability, have quickly become an important playground for spintronics. Here, we extend the concept of fully-compensated ferrimagnetism (fFIM) to two dimensions and propose 2D \textit{filling-enforced} fFIM, demonstrate its stability and ease of manipulation, and present three feasible realization schemes with respective exemplary candidate materials. A simple model for 2D fully-compensated ferrimagnets (fFIMs) is developed. Further investigation of 2D fFIMs' physical properties reveals that they not only exhibit significant magneto-optical response but also show fully spin-polarized currents and the anomalous Hall effect in the half-metallic states, displaying characteristics previously almost exclusive to ferromagnetic materials, greatly broadening the research and application prospects of spintronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15308v1-abstract-full').style.display = 'none'; document.getElementById('2502.15308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. Lett. (2025); 7-page text + 7-page Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13609">arXiv:2502.13609</a> <span> [<a href="https://arxiv.org/pdf/2502.13609">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Nanodomain Superlattices in Halide Perovskites Giving Picosecond Quantum Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+D">Dengyang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Selby%2C+T+A">Thomas A. Selby</a>, <a href="/search/cond-mat?searchtype=author&query=Kahmann%2C+S">Simon Kahmann</a>, <a href="/search/cond-mat?searchtype=author&query=Gorgon%2C+S">Sebastian Gorgon</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+L">Linjie Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Dubajic%2C+M">Milos Dubajic</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T+C">Terry Chien-Jen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Fairclough%2C+S+M">Simon M. Fairclough</a>, <a href="/search/cond-mat?searchtype=author&query=Marsh%2C+T">Thomas Marsh</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobs%2C+I+E">Ian E. Jacobs</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+B">Baohu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+R">Renjun Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Nagane%2C+S">Satyawan Nagane</a>, <a href="/search/cond-mat?searchtype=author&query=Doherty%2C+T+A+S">Tiarnan A. S. Doherty</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+K">Kangyu Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+T">Taeheon Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Mamak%2C+C">Capucine Mamak</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+J">Jian Mao</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%BCller-Buschbaum%2C+P">Peter M眉ller-Buschbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Sirringhaus%2C+H">Henning Sirringhaus</a>, <a href="/search/cond-mat?searchtype=author&query=Midgley%2C+P+A">Paul A. Midgley</a>, <a href="/search/cond-mat?searchtype=author&query=Stranks%2C+S+D">Samuel D. Stranks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13609v1-abstract-short" style="display: inline;"> The high optoelectronic quality of halide perovskites lends them to be utilized in optoelectronic devices and recently in emerging quantum emission applications. Advancements in perovskite nanomaterials have led to the discovery of processes in which luminescence decay times are sub-100 picoseconds, stimulating the exploration of even faster radiative rates for advanced quantum applications, which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13609v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13609v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13609v1-abstract-full" style="display: none;"> The high optoelectronic quality of halide perovskites lends them to be utilized in optoelectronic devices and recently in emerging quantum emission applications. Advancements in perovskite nanomaterials have led to the discovery of processes in which luminescence decay times are sub-100 picoseconds, stimulating the exploration of even faster radiative rates for advanced quantum applications, which have only been prominently realised in III-V materials grown through costly epitaxial growth methods. Here, we discovered ultrafast quantum transients of time scales ~2 picoseconds at low temperature in bulk formamidinium lead iodide films grown through scalable solution or vapour approaches. Using a multimodal strategy, combining ultrafast spectroscopy, optical and electron microscopy, we show that these transients originate from quantum tunnelling in nanodomain superlattices. The outcome of the transient decays, photoluminescence, mirrors the photoabsorption of the states, with an ultra-narrow linewidth at low temperature as low as <2 nm (~4 meV). Localized correlation of the emission and structure reveals that the nanodomain superlattices are formed by alternating ordered layers of corner sharing and face sharing octahedra. This discovery opens new applications leveraging intrinsic quantum properties and demonstrates powerful multimodal approaches for quantum investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13609v1-abstract-full').style.display = 'none'; document.getElementById('2502.13609v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text and supplementary information. Main text 18 pages, 4 figures. Supplementary information 47 pages, 34 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10972">arXiv:2502.10972</a> <span> [<a href="https://arxiv.org/pdf/2502.10972">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Density-dependent spin susceptibility and effective mass in monolayer MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+T">Tongtong Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10972v1-abstract-short" style="display: inline;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10972v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10972v1-abstract-full" style="display: none;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport measurements illustrate metal-insulator transitions, and density-dependent quantum oscillation sequences. Enhanced spin susceptibility and density-dependent effective mass are observed, attributed to interaction effects and valley polarization. These findings establish monolayer MoSe2 as a versatile platform for further exploring interaction-driven quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'none'; document.getElementById('2502.10972v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10730">arXiv:2502.10730</a> <span> [<a href="https://arxiv.org/pdf/2502.10730">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Semiconducting behaviors at epitaxial Ca0.5TaO3 interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nie%2C+G">Guangdong Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+G">Guanghui Han</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Huiyin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Deshun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kangxi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">Hao Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+F">Fangdong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+L">Licong Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Dashuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Young Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changjiang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+D">Deshun Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10730v1-abstract-short" style="display: inline;"> Emergent phenomena take place in symmetry-breaking systems, notably the recently discovered two-dimensional electron gas and its tunable superconductivities near the KTaO3 interfaces. Here, we synthesized perovskite Ca0.5TaO3 films along both [001] and [111] orientations. Different from the KTaO3 system, Ca0.5TaO3 films show semiconducting behaviors when capped with LaAlO3 films in both [001] and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10730v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10730v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10730v1-abstract-full" style="display: none;"> Emergent phenomena take place in symmetry-breaking systems, notably the recently discovered two-dimensional electron gas and its tunable superconductivities near the KTaO3 interfaces. Here, we synthesized perovskite Ca0.5TaO3 films along both [001] and [111] orientations. Different from the KTaO3 system, Ca0.5TaO3 films show semiconducting behaviors when capped with LaAlO3 films in both [001] and [111] orientations. By growing films at higher temperatures, more oxygen vacancies can be introduced, and the carrier density can be tuned from ~ 1014 cm-2 to ~ 1016 cm-2. Another difference is that the superconducting transition temperature Tc in KTaO3 (111) increases linearly along with its carrier density, while the Ca0.5TaO3 (111) remains semiconducting when carrier density ranges from ~ 1014 cm-2 to ~ 1016 cm-2. Based on the density function theory calculation, Ca0.5TaO3 and KTaO3 show similar electronic band structures. According to the energy-dispersive X-ray spectroscopy, we found heavy Sr diffusion from the substrate to the Ca0.5TaO3 layer, which may destroy the interfacial conductivity. Our work demonstrates that besides the oxygen vacancies, electronic transport is sensitive to the atomic intermixing near the interface in tantulates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10730v1-abstract-full').style.display = 'none'; document.getElementById('2502.10730v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06416">arXiv:2502.06416</a> <span> [<a href="https://arxiv.org/pdf/2502.06416">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hedgehog-like spin texture in Sb-doped MnBi$_2$Te$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+M">Meng Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Shu Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+Y">Yu-Jie Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yu-Peng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+M">Ming-Yuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+S">Shiv Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Iwata%2C+T">Takuma Iwata</a>, <a href="/search/cond-mat?searchtype=author&query=Miyamoto%2C+K">Koji Miyamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Okuda%2C+T">Taichi Okuda</a>, <a href="/search/cond-mat?searchtype=author&query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&query=Kuroda%2C+K">Kenta Kuroda</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiao-Ming Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06416v1-abstract-short" style="display: inline;"> We employ spin- and angle-resolved photoemission spectroscopy and circular-dichroism ARPES to systematically investigate the spin texture of Sb-doped MnBi$_2$Te$_4$. Our results display a hedgehog-like spin texture in this system which is signified by reversed-orienting out-of-plane spins at the Dirac gap. Our finding reveals the presence of time-reversal symmetry breaking, implying the possibilit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06416v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06416v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06416v1-abstract-full" style="display: none;"> We employ spin- and angle-resolved photoemission spectroscopy and circular-dichroism ARPES to systematically investigate the spin texture of Sb-doped MnBi$_2$Te$_4$. Our results display a hedgehog-like spin texture in this system which is signified by reversed-orienting out-of-plane spins at the Dirac gap. Our finding reveals the presence of time-reversal symmetry breaking, implying the possibility for realization of high-temperature quantum anomalous Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06416v1-abstract-full').style.display = 'none'; document.getElementById('2502.06416v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01125">arXiv:2502.01125</a> <span> [<a href="https://arxiv.org/pdf/2502.01125">pdf</a>, <a href="https://arxiv.org/format/2502.01125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Binary Bosonic Mixtures with Pair Hopping in Synthetic Dimension: Phase Transitions and Demixing Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chenrong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Z">Zhi Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01125v1-abstract-short" style="display: inline;"> We employ the cluster Gutzwiller mean-field method to investigate the ground-state phase diagrams and demixing effects in binary boson mixtures with pair hopping in synthetic dimensions. Our study reveals two novel interspecies paired superfluid phases: the paired super-counter-fluid (PSCF) phase, featuring pairs of two particles of one species and two holes of the other, and the SCF* phase, which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01125v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01125v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01125v1-abstract-full" style="display: none;"> We employ the cluster Gutzwiller mean-field method to investigate the ground-state phase diagrams and demixing effects in binary boson mixtures with pair hopping in synthetic dimensions. Our study reveals two novel interspecies paired superfluid phases: the paired super-counter-fluid (PSCF) phase, featuring pairs of two particles of one species and two holes of the other, and the SCF* phase, which combines PSCF and super-counter-fluid (SCF) orders. These phases provide new insights into XY ferromagnet states from a pseudo-spin perspective, with SCF* and PSCF states corresponding to different XY ferromagnet phases depending on particle filling. We also identify a quantum quadruple critical point in the interexchange asymmetric case. Importantly, we demonstrate that the mixed-demixed critical point is phase-dependent due to pairing hopping, differing from normal two-component bosonic systems. Experimental schemes to observe these novel phases are proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01125v1-abstract-full').style.display = 'none'; document.getElementById('2502.01125v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00836">arXiv:2502.00836</a> <span> [<a href="https://arxiv.org/pdf/2502.00836">pdf</a>, <a href="https://arxiv.org/format/2502.00836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Doped resonating valence bond states: How robust are the spin ice phases in 3D Rydberg arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jingya Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yan-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00836v1-abstract-short" style="display: inline;"> Rydberg blockade effect provides a convenient platform for simulating locally constrained many-body systems, such as quantum dimer models and quantum loop models, especially their novel phases like topological orders and gapless quantum spin ice (QSI) phases. To discuss the possible phase diagram containing different QSIs in 3D Rydberg arrays, here, we have constructed an extended Rokhsar-Kivelson… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00836v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00836v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00836v1-abstract-full" style="display: none;"> Rydberg blockade effect provides a convenient platform for simulating locally constrained many-body systems, such as quantum dimer models and quantum loop models, especially their novel phases like topological orders and gapless quantum spin ice (QSI) phases. To discuss the possible phase diagram containing different QSIs in 3D Rydberg arrays, here, we have constructed an extended Rokhsar-Kivelson (RK) Hamiltonian with equal-weight-superposition ground state in different fillings at the RK point. Therefore, both the perfect QSIs with fixed local dimer filling and their monomer-doped states can be simulated directly by Monte Carlo sampling. Using single mode approximation, the excitations of dimers and monomers have also been explored in different fillings. We find that, in the thermodynamical limit, even doping a small amount of monomers can disrupt the topological structure and lead to the existence of off-diagonal long-range order. However, in a finite size (as in cold-atom experiment), the property of QSI will be kept in a certain region like a crossover after doping. The phase diagram containing different QSIs and off-diagonal order phases is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00836v1-abstract-full').style.display = 'none'; document.getElementById('2502.00836v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19216">arXiv:2501.19216</a> <span> [<a href="https://arxiv.org/pdf/2501.19216">pdf</a>, <a href="https://arxiv.org/format/2501.19216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> E2Former: A Linear-time Efficient and Equivariant Transformer for Scalable Molecular Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhihao Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+X">Xinran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+P">Peiran Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gerstein%2C+M">Mark Gerstein</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+T">Tao Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19216v2-abstract-short" style="display: inline;"> Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19216v2-abstract-full').style.display = 'inline'; document.getElementById('2501.19216v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19216v2-abstract-full" style="display: none;"> Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(|\mathcal{E}|)$ to $ O(| \mathcal{V}|)$ while preserving both the model's expressive power and rotational equivariance. We show that this approach achieves a 7x-30x speedup compared to conventional $\mathrm{SO}(3)$ convolutions. Furthermore, our empirical results demonstrate that the derived E2Former mitigates the computational challenges of existing approaches without compromising the ability to capture detailed geometric information. This development could suggest a promising direction for scalable and efficient molecular modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19216v2-abstract-full').style.display = 'none'; document.getElementById('2501.19216v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17052">arXiv:2501.17052</a> <span> [<a href="https://arxiv.org/pdf/2501.17052">pdf</a>, <a href="https://arxiv.org/format/2501.17052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.054427">10.1103/PhysRevB.111.054427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature magnetic behaviour on the triangular lattice in hexagonal Ba$_3$Tb(BO$_3$)$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kelly%2C+N">Nicola Kelly</a>, <a href="/search/cond-mat?searchtype=author&query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Tacconis%2C+C">Camilla Tacconis</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Stenning%2C+G">Gavin Stenning</a>, <a href="/search/cond-mat?searchtype=author&query=Baker%2C+P">Peter Baker</a>, <a href="/search/cond-mat?searchtype=author&query=Dutton%2C+S">Si芒n Dutton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17052v1-abstract-short" style="display: inline;"> The hexagonal polymorph of Ba$_3$Tb(BO$_3$)$_3$ contains Tb$^{3+}$ ions on a quasi-2D triangular lattice, resulting in geometric magnetic frustration. Powder samples of Ba$_3$Tb(BO$_3$)$_3$ have been investigated using specific heat, powder neutron diffraction (PND), inelastic neutron scattering (INS) and muon-spin relaxation spectroscopy ($渭$SR). No long-range magnetic ordering is observed down t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17052v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17052v1-abstract-full" style="display: none;"> The hexagonal polymorph of Ba$_3$Tb(BO$_3$)$_3$ contains Tb$^{3+}$ ions on a quasi-2D triangular lattice, resulting in geometric magnetic frustration. Powder samples of Ba$_3$Tb(BO$_3$)$_3$ have been investigated using specific heat, powder neutron diffraction (PND), inelastic neutron scattering (INS) and muon-spin relaxation spectroscopy ($渭$SR). No long-range magnetic ordering is observed down to the lowest measured temperatures of 75 mK in PND and specific heat data and 1.5 K in the $渭$SR data. Modelling the INS spectrum using a point charge model suggests that the ground state is a singlet with a low-lying doublet on each of the two crystallographically independent Tb$^{3+}$ sites and that both the Tb ions display weak XY single-ion anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17052v1-abstract-full').style.display = 'none'; document.getElementById('2501.17052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 111, 054427 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16056">arXiv:2501.16056</a> <span> [<a href="https://arxiv.org/pdf/2501.16056">pdf</a>, <a href="https://arxiv.org/format/2501.16056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Braiding Majoranas in a linear quantum dot-superconductor array: Mitigating the errors from Coulomb repulsion and residual tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Miles%2C+S">Sebastian Miles</a>, <a href="/search/cond-mat?searchtype=author&query=Zatelli%2C+F">Francesco Zatelli</a>, <a href="/search/cond-mat?searchtype=author&query=Bozkurt%2C+A+M">A. Mert Bozkurt</a>, <a href="/search/cond-mat?searchtype=author&query=Wimmer%2C+M">Michael Wimmer</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chun-Xiao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16056v1-abstract-short" style="display: inline;"> Exchanging the positions of two non-Abelian anyons transforms between many-body wavefunctions within a degenerate ground-state manifold. This behavior is fundamentally distinct from fermions, bosons and Abelian anyons. Recently, quantum dot-superconductor arrays have emerged as a promising platform for creating topological Kitaev chains that can host non-Abelian Majorana zero modes. In this work,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16056v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16056v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16056v1-abstract-full" style="display: none;"> Exchanging the positions of two non-Abelian anyons transforms between many-body wavefunctions within a degenerate ground-state manifold. This behavior is fundamentally distinct from fermions, bosons and Abelian anyons. Recently, quantum dot-superconductor arrays have emerged as a promising platform for creating topological Kitaev chains that can host non-Abelian Majorana zero modes. In this work, we propose a minimal braiding setup in a linear array of quantum dots consisting of two minimal Kitaev chains coupled through an ancillary, normal quantum dot. We focus on the physical effects that are peculiar to quantum dot devices, such as interdot Coulomb repulsion and residual single electron tunneling. We find that the errors caused by either of these effects can be efficiently mitigated by optimal control of the ancillary quantum dot that mediates the exchange of the non-Abelian anyons. Moreover, we propose experimentally accessible methods to find this optimal operating regime and predict signatures of a successful Majorana braiding experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16056v1-abstract-full').style.display = 'none'; document.getElementById('2501.16056v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15989">arXiv:2501.15989</a> <span> [<a href="https://arxiv.org/pdf/2501.15989">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic coupling in the stretched diamond lattice of TbTaO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaotian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kelly%2C+N">Nicola Kelly</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+S">Shiyu Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Saxena%2C+S">Siddharth Saxena</a>, <a href="/search/cond-mat?searchtype=author&query=Dutton%2C+S">Si芒n Dutton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15989v1-abstract-short" style="display: inline;"> The magnetic structure of diamond-like lattice has been studied extensively in terms of the magnetic frustration. Here we report the distortion of stretched diamond lattice of Tb$^{3+}$ (4$f^8$) in M-TbTaO$_4$ on application of a magnetic field. We have investigated the structural and magnetic properties of M phase terbium tantalate M-TbTaO$_4$ as a function of temperature and magnetic field using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15989v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15989v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15989v1-abstract-full" style="display: none;"> The magnetic structure of diamond-like lattice has been studied extensively in terms of the magnetic frustration. Here we report the distortion of stretched diamond lattice of Tb$^{3+}$ (4$f^8$) in M-TbTaO$_4$ on application of a magnetic field. We have investigated the structural and magnetic properties of M phase terbium tantalate M-TbTaO$_4$ as a function of temperature and magnetic field using magnetometry and powder neutron diffraction. Sharp $位$-shape transitions in $d(蠂T)/dT$, $dM/dH$ and specific heat data confirm the previously reported three-dimensional (3D) antiferromagnetic ordering at $T_N \approx 2.25$ K. On application of a magnetic field the N茅el temperature is found to decrease and variable field neutron diffraction experiments below $T_N$ at 1.6 K show an increase in both the bond and angle distortion of the stretched diamond lattice with magnetic field, indicating a potential magneto-elastic coupling effect. By combining our magnetometry, heat capacity and neutron diffraction results we generate a magnetic phase diagram for M-TbTaO$_4$ as a function of temperature and field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15989v1-abstract-full').style.display = 'none'; document.getElementById('2501.15989v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages main text plus 12 pages supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15350">arXiv:2501.15350</a> <span> [<a href="https://arxiv.org/pdf/2501.15350">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pyrochlore NaYbO2: A potential Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+L">Longlong Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+X">Xiaoran Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shi-lei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+C">Chengwang Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+X">Xutang Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15350v1-abstract-short" style="display: inline;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15350v1-abstract-full" style="display: none;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the first time. Synchrotron X-ray single crystal diffraction unambiguously determined that the newfound beta-NaYbO2 belongs to the three-dimensional pyrochlore structure characterized by the R-3m space group, corroborated by synchrotron X-ray and neutron powder diffraction and pair distribution function. Magnetic measurements revealed no long-range magnetic order or spin glass behavior down to 0.4 K with a low boundary spin frustration factor of 17.5, suggesting a potential QSL ground state. Under high magnetic fields, the potential QSL state was broken and spins order. Our findings reveal that NaYbO2 is a fertile playground for studying novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'none'; document.getElementById('2501.15350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14584">arXiv:2501.14584</a> <span> [<a href="https://arxiv.org/pdf/2501.14584">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ambient pressure growth of bilayer nickelate single crystals with superconductivity over 90 K under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+D">Di Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Dou%2C+J">Jie Dou</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+N">Ning Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+L">Liang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lingzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yulin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+W">Weizhao Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qiaoshi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+X">Xutang Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14584v1-abstract-short" style="display: inline;"> Recently, the Ruddlesden-Popper bilayer nickelate La3Ni2O7 has been discovered as a high temperature superconductor with Tc near 80 K above 14 GPa.[1-3] The search for nickelate superconductors with higher Tc, the preparation of high-quality single crystals, and the removal of high-pressure conditions including single crystal growth under high gas pressure and achievement of high Tc superconductiv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14584v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14584v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14584v1-abstract-full" style="display: none;"> Recently, the Ruddlesden-Popper bilayer nickelate La3Ni2O7 has been discovered as a high temperature superconductor with Tc near 80 K above 14 GPa.[1-3] The search for nickelate superconductors with higher Tc, the preparation of high-quality single crystals, and the removal of high-pressure conditions including single crystal growth under high gas pressure and achievement of high Tc superconductivity under high pressure, are the most challenging tasks. Here, we present ambient pressure flux growth of high-quality bilayer nickelate single crystals with superconductivity up to 91 K under high pressure. Single crystals of bilayer La3-xRxNi2O7-y with dimensions up to 220 um on the edge were successfully grown using flux method at atmosphere conditions. Single crystal X-ray diffraction, nuclear quadrupole resonance, energy dispersion spectroscopy and scanning transmission electron microscopy measurements evidenced high quality of bilayer La2SmNi2O7-y single crystals in average structure and local structure. Superconductivity has been observed in high pressure resistivity measurements of annealed La2SmNi2O7-y single crystals with Tc onset up to 91 K, which is the highest among the known superconducting nickelates. Our results not only demonstrate a new and easy-to-access method for synthesizing high-quality bilayer nickelate single crystals, but also providing a direction for discovering superconducting nickelates with higher Tc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14584v1-abstract-full').style.display = 'none'; document.getElementById('2501.14584v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13654">arXiv:2501.13654</a> <span> [<a href="https://arxiv.org/pdf/2501.13654">pdf</a>, <a href="https://arxiv.org/format/2501.13654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterizing phase transitions and criticality in non-Hermitian extensions of the XY model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+D+C">D. C. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Batchelor%2C+M+T">Murray T. Batchelor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13654v1-abstract-short" style="display: inline;"> In this work we study non-Hermitian extensions of the paradigmatic spin-1/2 XY chain in a magnetic field. Using the mapping of the model to free fermion form, we provide analytical insights into the energy spectrum of the non-Hermitian model and establish an intrinsic connection between the quasienergies and topological invariants. We also use exact diagonalization as a supplementary method to exa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13654v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13654v1-abstract-full" style="display: none;"> In this work we study non-Hermitian extensions of the paradigmatic spin-1/2 XY chain in a magnetic field. Using the mapping of the model to free fermion form, we provide analytical insights into the energy spectrum of the non-Hermitian model and establish an intrinsic connection between the quasienergies and topological invariants. We also use exact diagonalization as a supplementary method to examine the performance of biorthogonal-based expectation values. Our results confirm that the theoretical analysis is consistent with the numerical results, with the extended phase diagram determined via the analytical solution and the critical behavior of the fidelity and entanglement. The entanglement transition goes hand in hand with the non-Hermitian topological phase transition. Like the Hermitian case, we analyze the critical behavior using finite-size scaling. Our results show that non-Hermiticity can induce the system into a new universality class with unusual critical exponent. We also emphasize the ability of the Loschmidt echo to characterize potential phase transitions and introduce the average of the Loschmidt echo to describe phase transitions in non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13654v1-abstract-full').style.display = 'none'; document.getElementById('2501.13654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13635">arXiv:2501.13635</a> <span> [<a href="https://arxiv.org/pdf/2501.13635">pdf</a>, <a href="https://arxiv.org/format/2501.13635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent Polar Metal Phase in a Van der Waals Mott Magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+S">Shiyu Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Coak%2C+M+J">Matthew J. Coak</a>, <a href="/search/cond-mat?searchtype=author&query=Haines%2C+C+R+S">Charles R. S. Haines</a>, <a href="/search/cond-mat?searchtype=author&query=Hamidov%2C+H">Hayrullo Hamidov</a>, <a href="/search/cond-mat?searchtype=author&query=Lampronti%2C+G+I">Giulio I. Lampronti</a>, <a href="/search/cond-mat?searchtype=author&query=Jarvis%2C+D+M">David M. Jarvis</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaotian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Daisenberger%2C+D">Dominik Daisenberger</a>, <a href="/search/cond-mat?searchtype=author&query=Warren%2C+M+R">Mark R. Warren</a>, <a href="/search/cond-mat?searchtype=author&query=Hansen%2C+T+C">Thomas C Hansen</a>, <a href="/search/cond-mat?searchtype=author&query=Klotz%2C+S">Stefan Klotz</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Saxena%2C+S+S">Siddharth S Saxena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13635v1-abstract-short" style="display: inline;"> We report the emergence of a polar metal phase in layered van der Waals compound FePSe$_3$. This Mott insulator with antiferromagnetic order offers a unique opportunity to fully tune an insulator into a polar metal state with pressure, without doping-induced disorder or impurities. Our synchrotron and neutron diffraction data unambiguously show a structural transition and loss of the inversion sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13635v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13635v1-abstract-full" style="display: none;"> We report the emergence of a polar metal phase in layered van der Waals compound FePSe$_3$. This Mott insulator with antiferromagnetic order offers a unique opportunity to fully tune an insulator into a polar metal state with pressure, without doping-induced disorder or impurities. Our synchrotron and neutron diffraction data unambiguously show a structural transition and loss of the inversion symmetry. We also observed the suppression of magnetic ordering and an insulator-to-metal transition correspondent with this structural transformation. The loss of the inversion symmetry combined with the pressure-induced metallicity in FePSe$_3$ offers a new platform to investigate polar metallicity at accessible pressures. Moreover, the high-pressure metallic phase shows unconventional resistivity deviating from the Fermi-liquid description, close to the magnetic critical transition pressure at sufficiently low temperatures, which strongly suggests underlying quantum criticality. Our work not only explores the comprehensive temperature-pressure phase diagram of FePSe$_3$ but also provides insights for further investigation of van der Waals strongly correlated magnetic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13635v1-abstract-full').style.display = 'none'; document.getElementById('2501.13635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01622">arXiv:2501.01622</a> <span> [<a href="https://arxiv.org/pdf/2501.01622">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Visualization of intervalley coherent phase in PtSe2/HOPG heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+K">Kai Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bohao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+W">Wen-Xuan Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+T">Ting-Fei Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jian-Wang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wen-Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Y">Ying-Shuang Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01622v1-abstract-short" style="display: inline;"> Intervalley coherent (IVC) phase in graphene systems arises from the coherent superposition of wave functions of opposite valleys, whose direct microscopic visualization provides pivotal insight into the emergent physics but remains elusive. Here, we successfully visualize the IVC phase in a heterostructure of monolayer PtSe2 on highly oriented pyrolytic graphite. Using spectroscopic imaging scann… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01622v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01622v1-abstract-full" style="display: none;"> Intervalley coherent (IVC) phase in graphene systems arises from the coherent superposition of wave functions of opposite valleys, whose direct microscopic visualization provides pivotal insight into the emergent physics but remains elusive. Here, we successfully visualize the IVC phase in a heterostructure of monolayer PtSe2 on highly oriented pyrolytic graphite. Using spectroscopic imaging scanning tunneling microscopy, we observe a Root3 by Root3 modulation pattern superimposed on the higher-order moire superlattice of the heterostructure, which correlates with a small gap opening around the Fermi level and displays an anti-phase real-space conductance distribution of the two gap edges. Such modulation pattern and small-gap vanish on the heterostructure of monolayer PtSe2 on bilayer-graphene-covered SiC substrate, due to the increased carrier density in the bilayer graphene. We provide a theoretical mechanism that the Root3 by Root3 modulation pattern originates from the IVC phase of few-layer graphene, which is magnified by the higher-order moire superlattice. Our work achieves visualization of the IVC phase, and develops an avenue for its generation and amplification via a moir茅 interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01622v1-abstract-full').style.display = 'none'; document.getElementById('2501.01622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06476">arXiv:2412.06476</a> <span> [<a href="https://arxiv.org/pdf/2412.06476">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space study of zero-field correlation in tetralayer rhombohedral graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Shudan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Min Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06476v1-abstract-short" style="display: inline;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06476v1-abstract-full" style="display: none;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ scanning probe microscopy and spectroscopy to probe the intrinsic electronic states in trilayer and tetralayer RG. We identify a correlated insulating state with a 17 meV gap at the charge neutrality point in tetralayer RG, which is absent in the trilayer configuration. This gap is suppressed by applying a perpendicular magnetic field or doping the charge carrier density and does not exhibit inter-valley coherence patterns. We attribute this phenomenon to a symmetry-broken layer antiferromagnetic state, characterized by ferrimagnetic ordering in the outermost layers and antiferromagnetic coupling between them. To further investigate this magnetic correlated state, we conduct local scattering experiments. Within the correlated regime, a bound state emerges around a non-magnetic impurity but is absent near magnetic impurities, suggesting that non-magnetic doping induces a spin texture in the ferrimagnetic surface layers. Outside the correlated regime, Friedel oscillations are observed, allowing precise determination of the band dispersion in tetralayer RG. These findings provide atomic-scale evidences of zero-field correlations in RG and may be extended to study other exotic phases in RG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'none'; document.getElementById('2412.06476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03830">arXiv:2412.03830</a> <span> [<a href="https://arxiv.org/pdf/2412.03830">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Confined Magnetization at the Sublattice-Matched Ruthenium Oxide Heterointerface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+Y">Yiyan Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+T">Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+H">He Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Huo%2C+C">Chuanrui Huo</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+T">Tielong Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Songhee Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+T">Ting Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qianying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03830v1-abstract-short" style="display: inline;"> Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO3 and recently discovered altermagnet RuO2 solely. Here, we engineered an ultrasharp sublattice-matched het… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03830v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03830v1-abstract-full" style="display: none;"> Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO3 and recently discovered altermagnet RuO2 solely. Here, we engineered an ultrasharp sublattice-matched heterointerface using pseudo-cubic SrRuO3 and rutile RuO2, conducting an in-depth analysis of their spin interactions. Structurally, to accommodate the lattice symmetry mismatch, the inverted RuO2 layer undergoes an in-plane rotation of 18 degrees during epitaxial growth on SrRuO3 layer, resulting in an interesting and rotational interface with perfect crystallinity and negligible chemical intermixing. Performance-wise, the interfacial layer of 6 nm in RuO2 adjacent to SrRuO3 exhibits a nonzero magnetic moment, contributing to an enhanced anomalous Hall effect (AHE) at low temperatures. Furthermore, our observations indicate that, in contrast to SrRuO3 single layers, the AHE of [(RuO2)15/(SrRuO3)n] heterostructures shows nonlinear behavior and reaches its maximum when the SrRuO3 thickness reaches tens of nm. These results suggest that the interfacial magnetic interaction surpasses that of all-perovskite oxides (~5-unit cells). This study underscores the significance and potential applications of magnetic interactions based on the crystallographic asymmetric interfaces in the design of spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03830v1-abstract-full').style.display = 'none'; document.getElementById('2412.03830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages/5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01851">arXiv:2412.01851</a> <span> [<a href="https://arxiv.org/pdf/2412.01851">pdf</a>, <a href="https://arxiv.org/format/2412.01851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Generalized Loschmidt echo and information scrambling in open systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yi-Neng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01851v1-abstract-short" style="display: inline;"> Quantum information scrambling, typically explored in closed quantum systems, describes the spread of initially localized information throughout a system and can be quantified by measures such as the Loschmidt echo (LE) and out-of-time-order correlator (OTOC). In this paper, we explore information scrambling in the presence of dissipation by generalizing the concepts of LE and OTOC to open quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01851v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01851v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01851v1-abstract-full" style="display: none;"> Quantum information scrambling, typically explored in closed quantum systems, describes the spread of initially localized information throughout a system and can be quantified by measures such as the Loschmidt echo (LE) and out-of-time-order correlator (OTOC). In this paper, we explore information scrambling in the presence of dissipation by generalizing the concepts of LE and OTOC to open quantum systems governed by Lindblad dynamics. We investigate the universal dynamics of the generalized LE across regimes of weak and strong dissipation. In the weak dissipation regime, we identify a universal structure, while in the strong dissipation regime, we observe a distinctive two-local-minima structure, which we interpret through an analysis of the Lindblad spectrum. Furthermore, we establish connections between the thermal averages of LE and OTOC and prove a general relation between OTOC and R茅nyi entropy in open systems. Finally, we propose an experimental protocol for measuring OTOC in open systems. These findings provide deeper insights into information scrambling under dissipation and pave the way for experimental studies in open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01851v1-abstract-full').style.display = 'none'; document.getElementById('2412.01851v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,4 figures, one Appendix(3 pages,10 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00757">arXiv:2412.00757</a> <span> [<a href="https://arxiv.org/pdf/2412.00757">pdf</a>, <a href="https://arxiv.org/format/2412.00757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Theory of rare-earth Kramers magnets on a Shastry-Sutherland lattice: dimer phases in presence of strong spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+G">Guijing Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00757v2-abstract-short" style="display: inline;"> Shastry-Sutherland magnet is a typical frustrated spin system particularly known for the exact solvability of the singlet dimer phase as well as nearly flat triplon excitations in the Heisenberg limit, while the situation in the presence of strong spin-orbit coupling is not well explored. Motivated by the recently discovered rare-earth Shastry-Sutherland magnets, we derive a generic effective-spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00757v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00757v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00757v2-abstract-full" style="display: none;"> Shastry-Sutherland magnet is a typical frustrated spin system particularly known for the exact solvability of the singlet dimer phase as well as nearly flat triplon excitations in the Heisenberg limit, while the situation in the presence of strong spin-orbit coupling is not well explored. Motivated by the recently discovered rare-earth Shastry-Sutherland magnets, we derive a generic effective-spin model that describes the interactions between Kramers doublet local moments on a Shastry-Sutherland lattice. Because of the strong spin-orbit coupling, the effective model turns out to be an extended XYZ model on both intra- and inter-dimer bonds. We focus on the dimer phase and show that, in addition to the conventional "singlet" dimer phase in the Heisenberg limit, peculiar "triplet" dimer phases can be stabilized by the strong spin-orbit coupling. While the "singlet" dimer phase, at certain conditions, could still exhibit exact solvability and nearly flat excitations analogous to that in the isotropic Heisenberg model, these "triplet" dimer phases are generally not exactly solvable and exhibit stronger dispersive excitations. We further discuss the thermodynamical and spectral signatures of these "triplet" dimer phases that can be experimentally probed, and illustrate that the recently discovered Shastry-Sutherland magnet Yb$_{2}$Be$_{2}$GeO$_{7}$ hosts a triplet dimer ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00757v2-abstract-full').style.display = 'none'; document.getElementById('2412.00757v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures. Supplemented discussions on the Yb2Be2GeO7 compound</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14732">arXiv:2411.14732</a> <span> [<a href="https://arxiv.org/pdf/2411.14732">pdf</a>, <a href="https://arxiv.org/ps/2411.14732">ps</a>, <a href="https://arxiv.org/format/2411.14732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constant-Potential Machine Learning Molecular Dynamics Simulations Reveal Potential-Regulated Cu Cluster Formation on MoS$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingwen Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Y">Yunsong Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Ling Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chungen Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14732v1-abstract-short" style="display: inline;"> Electrochemical processes play a crucial role in energy storage and conversion systems, yet their computational modeling remains a significant challenge. Accurately incorporating the effects of electric potential has been a central focus in theoretical electrochemistry. Although constant-potential ab initio molecular dynamics (CP-AIMD) has provided valuable insights, it is limited by its substanti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14732v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14732v1-abstract-full" style="display: none;"> Electrochemical processes play a crucial role in energy storage and conversion systems, yet their computational modeling remains a significant challenge. Accurately incorporating the effects of electric potential has been a central focus in theoretical electrochemistry. Although constant-potential ab initio molecular dynamics (CP-AIMD) has provided valuable insights, it is limited by its substantial computational demands. Here, we introduce the Explicit Electric Potential Machine Learning Force Field (EEP-MLFF) model. Our model integrates the electric potential as an explicit input parameter along with the atom-centered descriptors in the atomic neural network. This approach enables the evaluation of nuclear forces under arbitrary electric potentials, thus facilitating molecular dynamics simulations at a specific potential. By applying the proposed machine learning method to the Cu/1T$^{\prime}$-MoS$_{2}$ system, molecular dynamics simulations reveal that the potential-modulated Cu atom migration and aggregation lead to the formation of small steric Cu clusters (Single Clusters, SCs) at potentials below -0.1 V. The morphological transformations of adsorbed Cu atoms are elucidated through electronic structure analyses, which demonstrates that both Cu-S and Cu-Cu bonding can be effectively tuned by the applied electric potential. Our findings present an opportunity for the convenient manufacture of single metal cluster catalysts through potential modulation. Moreover, this theoretical framework facilitates the exploration of potential-regulated processes and helps investigate the mechanisms of electrochemical reactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14732v1-abstract-full').style.display = 'none'; document.getElementById('2411.14732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08596">arXiv:2411.08596</a> <span> [<a href="https://arxiv.org/pdf/2411.08596">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.4c01195">10.1021/acs.cgd.4c01195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08596v1-abstract-short" style="display: inline;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08596v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08596v1-abstract-full" style="display: none;"> Quasi-two-dimensional averievites with triangle-kagome-triangle trilayers are of interest due to their rich structural and magnetic transitions and strong spin frustration that are expected to host quantum spin liquid ground state with suitable substitution or doping. Herein, we report growth of bulk single crystals of averievite CsClCu5V2O10 with dimensions of several millimeters on edge in order to (1) address the open question whether the room temperature crystal structure is P-3m1, P-3, P21/c or else, (2) to elucidate the nature of phase transitions, and (3) to study direction-dependent physical properties. Single-crystal-to-single-crystal structural transitions at ~305 K and ~127 K were observed in the averievite CsClCu5V2O10 single crystals. The nature of the transition at ~305 K, which was reported as P-3m1-P21/c transition, was found to be a structural transition from high temperature P-3m1 to low temperature P-3 by combining variable temperature synchrotron X-ray single crystal and high-resolution powder diffraction. In-plane and out-of-plane magnetic susceptibility and heat capacity measurements confirm a first-order transition at 305 K, a structural transition at 127 K and an antiferromagnetic transition at 24 K. These averievites are thus ideal model systems for a deeper understanding of structural transitions and magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08596v1-abstract-full').style.display = 'none'; document.getElementById('2411.08596v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystal Growth & Design (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00301">arXiv:2411.00301</a> <span> [<a href="https://arxiv.org/pdf/2411.00301">pdf</a>, <a href="https://arxiv.org/format/2411.00301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin excitations of the Shastry-Sutherland model -- altermagnetism and proximate deconfined quantum criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+G">Guijing Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00301v1-abstract-short" style="display: inline;"> Symmetry plays a crucial role in condensed matter physics. In quantum magnetism, it dictates a number of exotic phenomena, including deconfined quantum criticality and altermagnetism. Here, by studying the spin excitations of the $S=1/2$ antiferromagnetic Shastry-Sutherland model, we show that the N茅el antiferromagnetic state in this model is an altermagnet featuring a non-relativistic splitting b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00301v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00301v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00301v1-abstract-full" style="display: none;"> Symmetry plays a crucial role in condensed matter physics. In quantum magnetism, it dictates a number of exotic phenomena, including deconfined quantum criticality and altermagnetism. Here, by studying the spin excitations of the $S=1/2$ antiferromagnetic Shastry-Sutherland model, we show that the N茅el antiferromagnetic state in this model is an altermagnet featuring a non-relativistic splitting between two chiral magnon bands. Moreover, we identify a Higgs mode in the longitudinal excitation channel, whose gap softens when approaching the antiferromagnetic to plaquette valence bond solid transition, implying the appearance of nearly deconfined excitations. However, the splitting between the two magnon bands (Goldstone modes) remains finite at the transition. These results indicate that the transition is weakly first-order and proximate to a putative deconfined quantum critical point. We find that the altermagnetism provides a sensitive means to probe the deconfined quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00301v1-abstract-full').style.display = 'none'; document.getElementById('2411.00301v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+7 pages, 4+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22156">arXiv:2410.22156</a> <span> [<a href="https://arxiv.org/pdf/2410.22156">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological surface state dominated nonlinear transverse response and microwave rectification at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+Y">Yaqi Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+X">Xianfa Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cong%2C+L">Longqing Cong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22156v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22156v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk inversion symmetry, the coexistence of bulk and surface conducting channels often leads to a suppressed NLHE and complex thickness-dependent behavior. Here, we report the observation of room-temperature nonlinear transverse response in 3D topological insulator Bi2Te3 thin films, whose electrical transport properties are dominated by topological surface state (TSS). By varying the thickness of Bi2Te3 epitaxial films from 7 nm to 50 nm, we found that the nonlinear transverse response increases with thickness from 7 nm to 25 nm and remains almost constant above 25 nm. This is consistent with the thickness-dependent basic transport properties, including conductance, carrier density, and mobility, indicating a pure and robust TSS-dominated linear and nonlinear transport in thick (>25 nm) Bi2Te3 films. The weaker nonlinear transverse response in Bi2Te3 below 25 nm was attributed to Te deficiency and poorer crystallinity. By utilizing the TSS-dominated electrical second harmonic generation, we successfully achieved the microwave rectification from 0.01 to 16.6 GHz in 30 nm and bulk Bi2Te3. Our work demonstrated the room temperature nonlinear transverse response in a paradigm topological insulator, addressing the tunability of the topological second harmonic response by thickness engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'none'; document.getElementById('2410.22156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19369">arXiv:2410.19369</a> <span> [<a href="https://arxiv.org/pdf/2410.19369">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable topological edge states in black phosphorus-like Bi(110) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+S">Shengdan Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guanyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+B">Bing Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yunhao Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jin-feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19369v1-abstract-short" style="display: inline;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have obse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19369v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19369v1-abstract-full" style="display: none;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have observed robust unreconstructed edge states at the edges of both 3-bilayer (BL) and 4-BL Bi(110) films, with the 4-BL film displaying stronger edge state intensity and a smaller degree of atomic buckling. First-principle calculations further substantiate these findings, demonstrating a gradual reduction in buckling as the film thickness increases, with average height differences between two Bi atoms of approximately 0.19 脜, 0.10 脜, 0.05 脜, and 0.00 脜 for the 1-BL, 2-BL, 3-BL, and 4-BL Bi(110) films, respectively. When Bi films are larger than 2 layers, the system changes from a trivial to a non-trivial phase. This research sets the stage for the controlled realization of topological superconductors through the superconducting proximity effect, providing a significant platform for investigating Majorana zero modes and fabricating quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'none'; document.getElementById('2410.19369v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19124">arXiv:2410.19124</a> <span> [<a href="https://arxiv.org/pdf/2410.19124">pdf</a>, <a href="https://arxiv.org/format/2410.19124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetic-resonance-induced nonlinear current response in magnetic Weyl semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mei%2C+R">Ruobing Mei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao-Xing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19124v1-abstract-short" style="display: inline;"> In this work, we propose a geometric nonlinear current response induced by magnetic resonance in magnetic Weyl semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect previously proposed for Weyl semimetal phases of chiral crystals. However, the nonlinear current response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19124v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19124v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19124v1-abstract-full" style="display: none;"> In this work, we propose a geometric nonlinear current response induced by magnetic resonance in magnetic Weyl semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect previously proposed for Weyl semimetal phases of chiral crystals. However, the nonlinear current response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system with ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19124v1-abstract-full').style.display = 'none'; document.getElementById('2410.19124v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13327">arXiv:2410.13327</a> <span> [<a href="https://arxiv.org/pdf/2410.13327">pdf</a>, <a href="https://arxiv.org/format/2410.13327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic Digital Image Correlation as a Probe of Strain in Iron-Based Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mo%2C+Z">Ziye Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chunyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenting Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yongxin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ruixian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xingye Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13327v1-abstract-short" style="display: inline;"> Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors. However, accurately characterizing anisotropic strain can be challenging and complex. Here, we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13327v1-abstract-full" style="display: none;"> Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors. However, accurately characterizing anisotropic strain can be challenging and complex. Here, we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method. Compared with other methods such as high-resolution X-ray diffraction, strain gauge, and capacitive sensor, digital image correlation offers a non-contact, full-field measurement approach, acting as an optical virtual strain gauge that provides high spatial resolution. The results measured on detwinned {\BFA} are quantitatively consistent with the distortion measured by X-ray diffraction and neutron Larmor diffraction. These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains, facilitating the application of uniaxial strain tuning in the study of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13327v1-abstract-full').style.display = 'none'; document.getElementById('2410.13327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Published online in Chinese Physics Letters. DOI 10.1088/0256-307X/41/10/107102</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13319">arXiv:2410.13319</a> <span> [<a href="https://arxiv.org/pdf/2410.13319">pdf</a>, <a href="https://arxiv.org/format/2410.13319">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evolution of pairing symmetry in FeSe$_{1-x}$S$_x$ as probed by uniaxial-strain tuning of $T_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ruixian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Q">Qi Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chunyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+K">Kaijuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qiaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xingye Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13319v2-abstract-short" style="display: inline;"> In iron-based superconductors (FeSCs), the interplay between electronic nematicity and superconductivity is essential for understanding the exotic superconducting ground state. In the nematic regime, uniaxial-strain ($\varepsilon$) tuning of the superconducting transition temperature $T_c$ [$螖T_c(\varepsilon)=伪\varepsilon+尾\varepsilon^2$] offers a unique approach to investigating the evolution of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13319v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13319v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13319v2-abstract-full" style="display: none;"> In iron-based superconductors (FeSCs), the interplay between electronic nematicity and superconductivity is essential for understanding the exotic superconducting ground state. In the nematic regime, uniaxial-strain ($\varepsilon$) tuning of the superconducting transition temperature $T_c$ [$螖T_c(\varepsilon)=伪\varepsilon+尾\varepsilon^2$] offers a unique approach to investigating the evolution of pairing symmetry if both $s$ and $d$ wave pairing instabilities are relevant. Here, we employ uniaxial strain to tune the $T_c$ of FeSe$_{1-x}$S$_x$, in which both nematicity and superconductivity undergo significant changes with doping. While $T_c$ is usually suppressed quadratically with $\varepsilon$ in optimally doped BaFe$_2$As$_2$, $螖T_c(\varepsilon)$ in FeSe$_{1-x}$S$_x$ dominated by $螖T_c(\varepsilon)=尾\varepsilon^2$ changes its sign from $尾$ < $0$ in FeSe to $尾$ > $0$ in FeSe$_{1-x}$S$_x$ ($x\gtrsim0.10$), indicating an evolution of the pairing symmetry from an $s_{\pm}$ state towards an $s+d$ wave state. These findings highlight the $螖T_c(\varepsilon)$ as a powerful probe for elucidating the superconducting pairing symmetry in the nematic regime of FeSCs and provide new insights into the evolution of pairing symmetry in FeSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13319v2-abstract-full').style.display = 'none'; document.getElementById('2410.13319v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplementary is available upon reasonable request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12252">arXiv:2410.12252</a> <span> [<a href="https://arxiv.org/pdf/2410.12252">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matt.2024.09.018">10.1016/j.matt.2024.09.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Enhancement of Properties in Strained Lead-free Multiferroic Solid Solutions with Strong Deviation from Vegard's Law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+M">Mingjie Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Dehe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ku%2C+Y">Yu-Chieh Ku</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yawen Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+S">Shen Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zhongqi Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zedong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y">Yunlong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng-En Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+C">Chun-Fu Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Bellaiche%2C+L">Laurent Bellaiche</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yurong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiuliang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xingjun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zuhuang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12252v1-abstract-short" style="display: inline;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12252v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12252v1-abstract-full" style="display: none;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation from the Vegard law accompanying with enhanced multiferroism is observed in the strained solid solution epitaxial films, where we achieve a pronounced tetragonality, enhanced saturated magnetization, substantial polarization, high ferroelectric Curie temperature, all while maintaining impressively low leakage current. These characteristics surpass the properties of their parent BiFeO3 and BaTiO3 films. Moreover, the superior ferroelectricity has never been reported in corresponding bulks. These findings underscore the potential of strained BiFeO3 BaTiO3 films as lead-free, room-temperature multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'none'; document.getElementById('2410.12252v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Matter 8, 1-11, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10175">arXiv:2410.10175</a> <span> [<a href="https://arxiv.org/pdf/2410.10175">pdf</a>, <a href="https://arxiv.org/format/2410.10175">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Tensor-involved peridynamics: A unified framework for isotropic and anisotropic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Hao Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+J">Jinlong Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chenguang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shuo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10175v4-abstract-short" style="display: inline;"> In this paper, we introduce tensor involved peridynamics, a unified framework for simulating both isotropic and anisotropic materials. While traditional peridynamics models effectively simulate isotropic materials, they face challenges with anisotropic materials and are prone to instability caused by zero energy modes. Our novel model extend the linear bond based peridynamics framework by incorpor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10175v4-abstract-full').style.display = 'inline'; document.getElementById('2410.10175v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10175v4-abstract-full" style="display: none;"> In this paper, we introduce tensor involved peridynamics, a unified framework for simulating both isotropic and anisotropic materials. While traditional peridynamics models effectively simulate isotropic materials, they face challenges with anisotropic materials and are prone to instability caused by zero energy modes. Our novel model extend the linear bond based peridynamics framework by incorporating the elastic tensor into the micrmodulus function, thereby ensuring stability for anisotropic materials without the need for additional corrections. For isotropic materials. the model mantains compatibility with conventional bond based peridynamics, assuming Possion's rations of 1/4 in 3D and 1/3 in 2D.Numerical experiments confirm the model's stability and accuracy across various scenarios. Additionally, we introduce a damage model for isotropic materials. validating its performance in predicting crack propagation paths in a 2D plate. The results show superior alignment with experimental date compared to traditional model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10175v4-abstract-full').style.display = 'none'; document.getElementById('2410.10175v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Peridynamics; Anisotropic materials; Elastic tensor; Zero-energy mode</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09391">arXiv:2410.09391</a> <span> [<a href="https://arxiv.org/pdf/2410.09391">pdf</a>, <a href="https://arxiv.org/format/2410.09391">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Measurable geometric indicators of local plasticity in glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+A+C+Y">Amelia C. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pham%2C+H">Huyen Pham</a>, <a href="/search/cond-mat?searchtype=author&query=Bera%2C+A">Arabinda Bera</a>, <a href="/search/cond-mat?searchtype=author&query=Petersen%2C+T+C">Timothy C. Petersen</a>, <a href="/search/cond-mat?searchtype=author&query=Sirk%2C+T+W">Timothy W. Sirk</a>, <a href="/search/cond-mat?searchtype=author&query=Mudie%2C+S+T">Stephen T. Mudie</a>, <a href="/search/cond-mat?searchtype=author&query=Tabor%2C+R+F">Rico F. Tabor</a>, <a href="/search/cond-mat?searchtype=author&query=Nunez-Iglesias%2C+J">Juan Nunez-Iglesias</a>, <a href="/search/cond-mat?searchtype=author&query=Zaccone%2C+A">Alessio Zaccone</a>, <a href="/search/cond-mat?searchtype=author&query=Baggioli%2C+M">Matteo Baggioli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09391v1-abstract-short" style="display: inline;"> The notion of defects in crystalline phases of matter has been extremely powerful for understanding crystal growth, deformation and melting. These discontinuities in the periodic order of crystals are mathematically described by the Burgers vector, derived from the particle displacements, which encapsulates the direction and magnitude of slip relative to the undeformed state. Since the reference s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09391v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09391v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09391v1-abstract-full" style="display: none;"> The notion of defects in crystalline phases of matter has been extremely powerful for understanding crystal growth, deformation and melting. These discontinuities in the periodic order of crystals are mathematically described by the Burgers vector, derived from the particle displacements, which encapsulates the direction and magnitude of slip relative to the undeformed state. Since the reference structure of the crystal is known a priori, the Burgers vector can be determined experimentally using both imaging and diffraction methods to measure the lattice distortion, and thus infer the particle displacements. Glasses have structures that lack the periodicity of crystals, and thus a well-defined reference state. Yet, measurable structural parameters can still be obtained from diffraction from a glass. Here we examine the usefulness of these parameters to probe deformation in glasses. We find that coordinated transformations in the centrosymmetry of local particle arrangements are a strong marker of plastic events. Moreover, we investigate two geometric indicators that can be derived from distortions in local diffraction patterns, namely the continuous Burgers vector and the quadrupolar strain. We find that the Burgers vector again emerges as a robust and sensitive metric for understanding local structural transformations due to mechanical deformation, even in structural glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09391v1-abstract-full').style.display = 'none'; document.getElementById('2410.09391v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04321">arXiv:2410.04321</a> <span> [<a href="https://arxiv.org/pdf/2410.04321">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.4c01342">10.1021/acs.chemmater.4c01342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascade of phase transitions and large magnetic anisotropy in a triangle-kagome-triangle trilayer antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shilei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shun Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoli Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04321v1-abstract-short" style="display: inline;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04321v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04321v1-abstract-full" style="display: none;"> Spins in strongly frustrated systems are of intense interest due to the emergence of intriguing quantum states including superconductivity and quantum spin liquid. Herein we report the discovery of cascade of phase transitions and large magnetic anisotropy in the averievite CsClCu5P2O10 single crystals. Under zero field, CsClCu5P2O10 undergoes a first-order structural transition at around 225 K from high temperature centrosymmetric P-3m1 to low temperature noncentrosymmetric P321, followed by an AFM transition at 13.6 K, another structural transition centering at ~3 K, and another AFM transition at ~2.18 K. Based upon magnetic susceptibility and magnetization data with magnetic fields perpendicular to the ab plane, a phase diagram, consisting of a paramagnetic state, two AFM states and four field-induced states including two magnetization plateaus, has been constructed. Our findings demonstrate that the quasi-2D CsClCu5P2O10 exhibits rich structural and metamagnetic transitions and the averievite family is a fertile platform for exploring novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04321v1-abstract-full').style.display = 'none'; document.getElementById('2410.04321v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials 36, 9516-9525 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03607">arXiv:2410.03607</a> <span> [<a href="https://arxiv.org/pdf/2410.03607">pdf</a>, <a href="https://arxiv.org/format/2410.03607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Crystallography, Group Cohomology, and Lieb-Schultz-Mattis Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chunxiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+W">Weicheng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03607v2-abstract-short" style="display: inline;"> We compute the mod-2 cohomology ring for three-dimensional (3D) space groups and establish a connection between them and the lattice structure of crystals with space group symmetry. This connection allows us to obtain a complete set of Lieb-Schultz-Mattis constraints, specifying the conditions under which a unique, symmetric, gapped ground state cannot exist in 3D lattice magnets. We associate eac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03607v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03607v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03607v2-abstract-full" style="display: none;"> We compute the mod-2 cohomology ring for three-dimensional (3D) space groups and establish a connection between them and the lattice structure of crystals with space group symmetry. This connection allows us to obtain a complete set of Lieb-Schultz-Mattis constraints, specifying the conditions under which a unique, symmetric, gapped ground state cannot exist in 3D lattice magnets. We associate each of these constraints with an element in the third mod-2 cohomology of the space group, when the internal symmetry acts on-site and its projective representations are classified by powers of $\mathbb{Z}_2$. We demonstrate the relevance of our results to the study of $\mathrm{U}(1)$ quantum spin liquids on the 3D pyrochlore lattice. We determine, through anomaly matching, the symmetry fractionalization patterns of both electric and magnetic charges, extending previous results from projective symmetry group classifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03607v2-abstract-full').style.display = 'none'; document.getElementById('2410.03607v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28+145 pages, 3 figures, mod-2 cohomology ring for 230 space groups given in Appendix F</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02413">arXiv:2410.02413</a> <span> [<a href="https://arxiv.org/pdf/2410.02413">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrathin BIC metasurfaces based on ultralow-loss Sb2Se3 phase-change material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zhaoyang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Murali%2C+K">Krishna Murali</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+H">Haoyi Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changxu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yiqing Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/cond-mat?searchtype=author&query=Bhaskaran%2C+M">Madhu Bhaskaran</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+H">Haoran Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02413v1-abstract-short" style="display: inline;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photoni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02413v1-abstract-full" style="display: none;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs such as GST, GSST, VO2, and In3SbTe2, despite optimisation for tunable meta-optics, suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (Q-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultralow-loss PCM Sb2Se3. Our BIC metasurfaces, only 25 nm thick, achieve high modulation depth and broad resonance tuning in the NIR with high Q-factors up to 130, without the need for additional materials. Experimentally, we employ these BIC metasurfaces to modulate photoluminescence in rare earth-doped upconversion nanoparticles, reducing the excitation power for multiphoton photoluminescence and enabling emission polarisation manipulation. This work offers a promising platform for developing active resonant metasurfaces in the NIR region, with broad applications including super resolution imaging, optical modulation, ultrafast switches, harmonic generation, colour filtering, and optical sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'none'; document.getElementById('2410.02413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00658">arXiv:2410.00658</a> <span> [<a href="https://arxiv.org/pdf/2410.00658">pdf</a>, <a href="https://arxiv.org/format/2410.00658">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Edge and bulk states in a three-site Kitaev chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Haaf%2C+S+L+D+t">Sebastiaan L. D. ten Haaf</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yining Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qingzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bordin%2C+A">Alberto Bordin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chun-Xiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kulesh%2C+I">Ivan Kulesh</a>, <a href="/search/cond-mat?searchtype=author&query=Sietses%2C+V+P+M">Vincent P. M. Sietses</a>, <a href="/search/cond-mat?searchtype=author&query=Prosko%2C+C+G">Christian G. Prosko</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+C">Candice Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Manfra%2C+M+J">Michael J. Manfra</a>, <a href="/search/cond-mat?searchtype=author&query=Wimmer%2C+M">Michael Wimmer</a>, <a href="/search/cond-mat?searchtype=author&query=Goswami%2C+S">Srijit Goswami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00658v1-abstract-short" style="display: inline;"> A chain of quantum dots (QDs) coupled via semiconductor-superconductor hybrid regions can form an artificial Kitaev chain hosting Majorana bound states (MBSs). These zero-energy states are expected to be localised on the edges of the chain, at the outermost QDs. The remaining QDs, comprising the bulk, are predicted to host an excitation gap that protects the MBSs at the edges from local on-site pe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00658v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00658v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00658v1-abstract-full" style="display: none;"> A chain of quantum dots (QDs) coupled via semiconductor-superconductor hybrid regions can form an artificial Kitaev chain hosting Majorana bound states (MBSs). These zero-energy states are expected to be localised on the edges of the chain, at the outermost QDs. The remaining QDs, comprising the bulk, are predicted to host an excitation gap that protects the MBSs at the edges from local on-site perturbations. In this work, we demonstrate this connection between the bulk and edges in a minimal system, by engineering a three-site Kitaev chain in a two-dimensional electron gas. Through direct tunneling spectroscopy on each site, we show that the appearance of stable zero-bias conductance peaks at the outer QDs is correlated with the presence of an excitation gap in the middle QD. Furthermore, we show that this gap can be controlled by applying a superconducting phase difference between the two hybrid segments, and that the MBSs are robust only when the excitation gap is present. We find a close agreement between experiments and the original Kitaev model, thus confirming key predictions for MBSs in a three-site chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00658v1-abstract-full').style.display = 'none'; document.getElementById('2410.00658v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17249">arXiv:2409.17249</a> <span> [<a href="https://arxiv.org/pdf/2409.17249">pdf</a>, <a href="https://arxiv.org/format/2409.17249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Semiconducting Electrides Derived From Sodalite: A First-principles Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mukta%2C+M">Mahfuza Mukta</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+B">Byungkyun Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Q">Qiang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17249v1-abstract-short" style="display: inline;"> Electrides are ionic crystals with electrons acting as anions occupying well-defined lattice sites. These exotic materials have attracted considerable attention in recent years for potential applications in catalysis, rechargeable batteries, and display technology. Among this class of materials, electride semiconductors can further expand the horizon of potential applications due to the presence o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17249v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17249v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17249v1-abstract-full" style="display: none;"> Electrides are ionic crystals with electrons acting as anions occupying well-defined lattice sites. These exotic materials have attracted considerable attention in recent years for potential applications in catalysis, rechargeable batteries, and display technology. Among this class of materials, electride semiconductors can further expand the horizon of potential applications due to the presence of a band gap. However, there are only limited reports on semiconducting electrides, hindering the understanding of their physical and chemical properties. In a recent work, we initiated an approach to derive potential electrides via selective removal of symmetric Wyckoff sites of anions from existing complex minerals. Herein, we present a follow-up effort to design the semiconducting electrides from parental complex sodalites. Among four candidate compounds, we found that a cubic Ca$_4$Al$_6$O$_{12}$ structure with the $I$-43$m$ space group symmetry exhibits perfect electron localization at the sodalite cages, with a narrow electronic band gap of 1.2 eV, making it suitable for use in photocatalysis. Analysis of the electronic structures reveals that a lower electronegativity of surrounding cations drives greater electron localization and promotes the formation of an electride band near the Fermi level. Our work proposes an alternative approach for designing new semiconducting electrides under ambient conditions and offers guidelines for further experimental exploration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17249v1-abstract-full').style.display = 'none'; document.getElementById('2409.17249v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12534">arXiv:2409.12534</a> <span> [<a href="https://arxiv.org/pdf/2409.12534">pdf</a>, <a href="https://arxiv.org/format/2409.12534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Theory of magnetism for rare-earth magnets on the Shastry-Sutherland lattice with non-Kramers ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Duan%2C+G">Guijing Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changle Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12534v2-abstract-short" style="display: inline;"> Motivated by the rapid experimental progress on the rare-earth Shastry-Sutherland lattice magnets, we propose a generic effective spin model that describes interacting non-Kramers local moments on the Shastry-Sutherland lattice. We point out that the local moments consist of both magnetic dipole and quadrupole components and the effective model turns out to be an extended XYZ model with an intrins… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12534v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12534v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12534v2-abstract-full" style="display: none;"> Motivated by the rapid experimental progress on the rare-earth Shastry-Sutherland lattice magnets, we propose a generic effective spin model that describes interacting non-Kramers local moments on the Shastry-Sutherland lattice. We point out that the local moments consist of both magnetic dipole and quadrupole components and the effective model turns out to be an extended XYZ model with an intrinsic field that accounts for the crystal field splitting. We then study the ground-state phase diagram of the model and find that pure quadrupole orders, which are invisible to conventional experimental probes, can be stabilized over a broad regime. In particular, we show that a hidden ``1/3 magnetization plateau'' with quadrupole orders generally exists and discuss its experimental signatures. Finally, we discuss the relevance of our results to the rare-earth Shastry-Sutherland lattice magnets Pr$_{2}$Ga$_{2}$BeO$_{7}$ and Pr$_{2}$Be$_{2}$GeO$_{7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12534v2-abstract-full').style.display = 'none'; document.getElementById('2409.12534v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures. Published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11217">arXiv:2409.11217</a> <span> [<a href="https://arxiv.org/pdf/2409.11217">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structure evolution path of ferroelectric hafnium zirconium oxide nanocrystals under in-situ biasing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yunzhe Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+H">Heng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+T">Tianjiao Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+K">Kan-Hao Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yilin Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Z">Zhaomeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qiwendong Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yonghui Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+X">Xiangshui Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Y">Yan Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11217v1-abstract-short" style="display: inline;"> Fluorite-type $\mathrm{HfO_2}$-based ferroelectric (FE) oxides have rekindled interest in FE memories due to their compatibility with silicon processing and potential for high-density integration. The polarization characteristics of FE devices are governed by the dynamics of metastable domain structure evolution. Insightful design of FE devices for encoding and storage necessitates a comprehensive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11217v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11217v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11217v1-abstract-full" style="display: none;"> Fluorite-type $\mathrm{HfO_2}$-based ferroelectric (FE) oxides have rekindled interest in FE memories due to their compatibility with silicon processing and potential for high-density integration. The polarization characteristics of FE devices are governed by the dynamics of metastable domain structure evolution. Insightful design of FE devices for encoding and storage necessitates a comprehensive understanding of the internal structural evolution. Here, we demonstrate the evolution of domain structures through a transient polar orthorhombic (O)-$Pmn2_1$-like configuration via $in$-$situ$ biasing on $\mathrm{TiN/Hf_{0.5}Zr_{0.5}O_2/TiN}$ capacitors within spherical aberration-corrected transmission electron microscope, combined with theoretical calculations. Furthermore, it is directly evidenced that the non-FE O-$Pbca$ transforms into the FE O-$Pca2_1$ phase under electric field, with the polar axis of the FE-phase aligning towards the bias direction through ferroelastic transformation, thereby enhancing FE polarization. As cycling progresses further, however, the polar axis collapses, leading to FE degradation. These novel insights into the intricate structural evolution path under electrical field cycling facilitate optimization and design strategies for $\mathrm{HfO_2}$-based FE memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11217v1-abstract-full').style.display = 'none'; document.getElementById('2409.11217v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures for the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07987">arXiv:2409.07987</a> <span> [<a href="https://arxiv.org/pdf/2409.07987">pdf</a>, <a href="https://arxiv.org/format/2409.07987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.235410">10.1103/PhysRevB.110.235410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of flat bands in MoSe$_2$/WSe$_2$ moir茅 lattices: A study combining machine learning and band unfolding methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shengguo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07987v2-abstract-short" style="display: inline;"> Moir茅 lattices have served as the ideal quantum simulation platform for exploring novel physics due to the flat electronic bands resulting from the long wavelength moir茅 potentials. However, the large sizes of this type of system challenge the first-principles methods for full calculations of their electronic structures, thus bringing difficulties in understanding the nature and evolution of the f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07987v2-abstract-full').style.display = 'inline'; document.getElementById('2409.07987v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07987v2-abstract-full" style="display: none;"> Moir茅 lattices have served as the ideal quantum simulation platform for exploring novel physics due to the flat electronic bands resulting from the long wavelength moir茅 potentials. However, the large sizes of this type of system challenge the first-principles methods for full calculations of their electronic structures, thus bringing difficulties in understanding the nature and evolution of the flat bands. In this study, we investigate the electronic structures of moir茅 patterns of MoSe$_2$/WSe$_2$ by combining ab initio and machine learning methods. We find that a flat band with a bandwidth of about 5 meV emerges below the valence band edge at the K point for the H-stacking at a twist angle of 3.89$^{\circ}$ without spin-orbit coupling effect. Then, it shifts dramatically as the twist angle decreases and becomes about 20 meV higher than the valence band maximum for the twist angle of 3.15$^{\circ}$. Multiple ultra-flat bands emerge as the twist angle is reduced to 1.7$^{\circ}$. The spin-orbit coupling leads to a giant spin splitting comparable to that observed in the untwisted system (about 0.45 eV) and is nearly independent of twisting and stacking. As a result, the K-valley flat band remains the valence band maximum with the inclusion of spin-orbit coupling. Band unfolding reveals that the ultra-flat bands formed by the $螕$ and K valleys show distinct behaviors. The $螕$-valley flat bands are sensitive to the interlayer coupling, thus experiencing dramatic changes as the twist angle decreases. In contrast, the K-valley flat band, which shows a weak dependence on the interlayer coupling, is mainly modulated by structural reconstruction. Therefore, a relatively small angle (2.13$^{\circ}$) is required to generate the K-valley flat band, which experiences a transition from the honeycomb to the triangular lattice as the twist angle decreases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07987v2-abstract-full').style.display = 'none'; document.getElementById('2409.07987v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 235410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06686">arXiv:2409.06686</a> <span> [<a href="https://arxiv.org/pdf/2409.06686">pdf</a>, <a href="https://arxiv.org/format/2409.06686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.L041301">10.1103/PhysRevB.111.L041301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stabilization of a two-dimensional quantum electron solid in perpendicular magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D+G">D. G. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06686v2-abstract-short" style="display: inline;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06686v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06686v2-abstract-full" style="display: none;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicular-magnetic-field stabilization of the quantum electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v2-abstract-full').style.display = 'none'; document.getElementById('2409.06686v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">As published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, L041301 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04917">arXiv:2409.04917</a> <span> [<a href="https://arxiv.org/pdf/2409.04917">pdf</a>, <a href="https://arxiv.org/format/2409.04917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.L020502">10.1103/PhysRevB.111.L020502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nodal Nematic Superconductivity in Multiple-Flat-Band Land </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao-Xing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04917v1-abstract-short" style="display: inline;"> In this work, we propose a mechanism of inducing stable nodal superconductivity for multiple-flat-band systems. This mechanism is based on the degenerate flat band nature, so that not only intra-eigen-band pairing, but also inter-eigen-band pairing has a significant influence on the superconductivity properties. Based on the Bogoliubov de Gennes formalism of the heavy fermion model for the twisted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04917v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04917v1-abstract-full" style="display: none;"> In this work, we propose a mechanism of inducing stable nodal superconductivity for multiple-flat-band systems. This mechanism is based on the degenerate flat band nature, so that not only intra-eigen-band pairing, but also inter-eigen-band pairing has a significant influence on the superconductivity properties. Based on the Bogoliubov de Gennes formalism of the heavy fermion model for the twisted bilayer graphene as an example, we show that although the nodal nematic d-wave pairing has higher energy around the nodal points compared to the chiral d-wave pairing in the momentum space, the inter-eigen-band pairing can lower the energy in other momenta away from the nodes, so that the nematic d-wave pairing is energetically favored for its overall condensation energy. This type of mechanism is particular to multiple-flat-band systems with no Fermi surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04917v1-abstract-full').style.display = 'none'; document.getElementById('2409.04917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, L020502, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15957">arXiv:2408.15957</a> <span> [<a href="https://arxiv.org/pdf/2408.15957">pdf</a>, <a href="https://arxiv.org/format/2408.15957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin Excitation Continuum in the Exactly Solvable Triangular-Lattice Spin Liquid CeMgAl11O19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chunxiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Klemm%2C+M+L">Mason L. Klemm</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xianghan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Won%2C+C">Choongjae Won</a>, <a href="/search/cond-mat?searchtype=author&query=McCandless%2C+G+T">Gregory T. McCandless</a>, <a href="/search/cond-mat?searchtype=author&query=Murai%2C+N">Naoki Murai</a>, <a href="/search/cond-mat?searchtype=author&query=Ohira-Kawamura%2C+S">Seiko Ohira-Kawamura</a>, <a href="/search/cond-mat?searchtype=author&query=Moxim%2C+S+J">Stephen J. Moxim</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+J+T">Jason T. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiaozhou Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+J+Y">Julia Y. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Tchernyshyov%2C+O">Oleg Tchernyshyov</a>, <a href="/search/cond-mat?searchtype=author&query=Balents%2C+L">Leon Balents</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15957v1-abstract-short" style="display: inline;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15957v1-abstract-full" style="display: none;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from entangled quantum spins characterized by emergent gauge fields and deconfined fractionalized excitations. Comparing the spin Hamiltonian with theoretical models can unveil the microscopic origins of these zero-field spin excitation continua. Here, we use neutron scattering to study spin excitations of the two-dimensional (2D) triangular-lattice effective spin-1/2 antiferromagnet CeMgAl11O19. Analyzing the spin waves in the field-polarized ferromagnetic state, we find that the spin Hamiltonian is close to an exactly solvable 2D triangular-lattice XXZ model, where degenerate 120$^\circ$ ordered ground states - umbrella states - develop in the zero temperature limit. We then find that the observed zero-field spin excitation continuum matches the calculated ensemble of spin waves from the umbrella state manifold, and thus conclude that CeMgAl11O19 is the first example of an exactly solvable spin liquid on a triangular lattice where the spin excitation continuum arises from the ground state degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'none'; document.getElementById('2408.15957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14966">arXiv:2408.14966</a> <span> [<a href="https://arxiv.org/pdf/2408.14966">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.4c01499">10.1021/acsaelm.4c01499 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High fidelity TiN processing modes for multi-gate Ge-based quantum devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bugu%2C+S">Sinan Bugu</a>, <a href="/search/cond-mat?searchtype=author&query=Biradar%2C+S">Sheshank Biradar</a>, <a href="/search/cond-mat?searchtype=author&query=Blake%2C+A">Alan Blake</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">CheWee Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Myronovd%2C+M">Maksym Myronovd</a>, <a href="/search/cond-mat?searchtype=author&query=Duffy%2C+R">Ray Duffy</a>, <a href="/search/cond-mat?searchtype=author&query=Fagas%2C+G">Giorgos Fagas</a>, <a href="/search/cond-mat?searchtype=author&query=Petkov%2C+N">Nikolay Petkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14966v1-abstract-short" style="display: inline;"> Charge or spin-qubits can be realized by using gate-defined quantum dots (QDs) in semiconductors in a similar fashion to the processes used in CMOS for conventional field-effect transistors or more recent fin FET technology. However, to realize larger number of gate-defined qubits, multiples of gates with ultimately high resolution and fidelity is required. Electron beam lithography (EBL) offers f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14966v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14966v1-abstract-full" style="display: none;"> Charge or spin-qubits can be realized by using gate-defined quantum dots (QDs) in semiconductors in a similar fashion to the processes used in CMOS for conventional field-effect transistors or more recent fin FET technology. However, to realize larger number of gate-defined qubits, multiples of gates with ultimately high resolution and fidelity is required. Electron beam lithography (EBL) offers flexible and tunable patterning of gate-defined spin-qubit devices for studying important quantum phenomena. While such devices are commonly realized by a positive resist process using metal lift-off, there are several clear limitations related to the resolution and the fidelity of patterning. Herein, we report a systematic study of an alternative TiN multi-gates definition approach based on the highest resolution hydrogen silsesquioxane (HSQ) EBL resist and all associated processing modes. The TiN gate arrays formed show excellent fidelity, dimensions down to 15 nm, various densities, and complexities. The processing modes developed were used to demonstrate applicability of this approach to forming multi-gate architectures for two types of spin-qubit devices prototypic to i) NW/fin-type FETs and ii) planar quantum well-type devices, both utilizing epi-grown Ge device layers on Si, where GeSn or Ge are the host materials for the QDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14966v1-abstract-full').style.display = 'none'; document.getElementById('2408.14966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12705">arXiv:2408.12705</a> <span> [<a href="https://arxiv.org/pdf/2408.12705">pdf</a>, <a href="https://arxiv.org/format/2408.12705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0235084">10.1063/5.0235084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selecting Relevant Structural Features for Glassy Dynamics by Information Imbalance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+A">Anand Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ozawa%2C+M">Misaki Ozawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12705v3-abstract-short" style="display: inline;"> We investigate numerically the identification of relevant structural features that contribute to the dynamical heterogeneity in a model glass-forming liquid. By employing the recently proposed information imbalance technique, we select these features from a range of physically motivated descriptors. This selection process is performed in a supervised manner (using both dynamical and structural dat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12705v3-abstract-full').style.display = 'inline'; document.getElementById('2408.12705v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12705v3-abstract-full" style="display: none;"> We investigate numerically the identification of relevant structural features that contribute to the dynamical heterogeneity in a model glass-forming liquid. By employing the recently proposed information imbalance technique, we select these features from a range of physically motivated descriptors. This selection process is performed in a supervised manner (using both dynamical and structural data) and an unsupervised manner (using only structural data). We then apply the selected features to predict future dynamics using a machine learning technique. Finally, we discuss the potential applications of this approach in identifying the dominant mechanisms governing the glassy slow dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12705v3-abstract-full').style.display = 'none'; document.getElementById('2408.12705v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 184506 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09814">arXiv:2408.09814</a> <span> [<a href="https://arxiv.org/pdf/2408.09814">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Rapid infrared imaging for rhombohedral graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+Y">Yilong You</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yifei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09814v1-abstract-short" style="display: inline;"> The extrinsic stacking sequence based on intrinsic crystal symmetry in multilayer two-dimensional materials plays a significant role in determining their electronic and optical properties. Compared with Bernal-stacked (ABA) multilayer graphene, rhombohedral (ABC) multilayer graphene hosts stronger electron-electron interaction due to its unique dispersion at low-energy excitations and has been uti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09814v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09814v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09814v1-abstract-full" style="display: none;"> The extrinsic stacking sequence based on intrinsic crystal symmetry in multilayer two-dimensional materials plays a significant role in determining their electronic and optical properties. Compared with Bernal-stacked (ABA) multilayer graphene, rhombohedral (ABC) multilayer graphene hosts stronger electron-electron interaction due to its unique dispersion at low-energy excitations and has been utiliazed as a unique platform to explore strongly correlated physics. However, discerning the stacking sequence has always been a quite time-consuming process by scanning mapping methods. Here, we report a rapid recognition method for ABC- stacked graphene with high accuracy by infrared imaging based on the distinct optical responses at infrared range. The optical contrast of the image between ABC and ABA stacked graphene is strikingly clear, and the discernibility is comparable to traditional optical Raman microscopy but with higher consistency and throughput. We further demonstrate that the infrared imaging technique can be integrated with dry transfer techniques commonly used in the community. This rapid and convenient infrared imaging technique will significantly improve the sorting efficiency for differently stacked multilayer graphene, thereby accelerating the exploration of the novel emergent correlated phenomena in ABC stacked graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09814v1-abstract-full').style.display = 'none'; document.getElementById('2408.09814v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08612">arXiv:2408.08612</a> <span> [<a href="https://arxiv.org/pdf/2408.08612">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic-Scale Imaging of Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-$\frac{1}{2}$ Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhangyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xin-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yashi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Ying Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Pei-Nian Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Deng-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08612v1-abstract-short" style="display: inline;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08612v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08612v1-abstract-full" style="display: none;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-$\frac{1}{2}$ chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-$\frac{1}{2}$ in accordance with Lieb's theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of $J = 45$ meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane's gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'none'; document.getElementById('2408.08612v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04521">arXiv:2408.04521</a> <span> [<a href="https://arxiv.org/pdf/2408.04521">pdf</a>, <a href="https://arxiv.org/format/2408.04521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrical resistivity, thermal conductivity, and viscosity of Fe-H alloys at Earth's core conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Cong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cohen%2C+R">Ronald Cohen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04521v2-abstract-short" style="display: inline;"> The transport properties (electrical resistivity, thermal conductivity, and viscosity) of iron-hydrogen alloy are of great significance in the stability and evolution of planetary magnetic fields. Here, we investigate the thermal transport properties of iron doped with varying hydrogen content as functions of pressure (P) and temperature (T) for the top and bottom of Earth's outer core and beyond,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04521v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04521v2-abstract-full" style="display: none;"> The transport properties (electrical resistivity, thermal conductivity, and viscosity) of iron-hydrogen alloy are of great significance in the stability and evolution of planetary magnetic fields. Here, we investigate the thermal transport properties of iron doped with varying hydrogen content as functions of pressure (P) and temperature (T) for the top and bottom of Earth's outer core and beyond, corresponding to pressures of about 130 to 300 GPa and temperatures of 4000 to 7000 K. Using first-principles density functional theory molecular dynamic simulations (FPMD), we verify that crystalline FeH$_x$ is superionic with H diffusing freely. We find a low frequency viscosity of 10-11 mPa$\cdot$s for liquid Fe-H alloys at Earth's outer core conditions by the linear response Green-Kubo formula. Using the KKR method within density functional theory (DFT) plus Dynamical mean-field Theory (DMFT), we find saturation of electrical resistivity with increasing temperatures in liquid iron at outer core conditions. The effect of H on electrical and thermal transport we find is small, so that the exact H content of the core is not needed. The primary effect of H is on the equation of state, decreasing the density at constant P and T. We find the Lorenz number is smaller than the ideal value, and obtain for X(H)= 0.20, or 0.45 wt% H , thermal conductivity $魏$ of $\sim$105 and $\sim$190 $Wm^{-1}K^{-1}$, respectively, at conditions near the core-mantle and inner-outer core boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04521v2-abstract-full').style.display = 'none'; document.getElementById('2408.04521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02892">arXiv:2408.02892</a> <span> [<a href="https://arxiv.org/pdf/2408.02892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.046503">10.1103/PhysRevLett.133.046503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local excitation of kagome spin ice magnetism in HoAgGe seen by scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+W">Wei Song</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+J">Jifeng Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y+Y">Y. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Liyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiaqing He</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02892v1-abstract-short" style="display: inline;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02892v1-abstract-full" style="display: none;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'none'; document.getElementById('2408.02892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 046503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00689">arXiv:2408.00689</a> <span> [<a href="https://arxiv.org/pdf/2408.00689">pdf</a>, <a href="https://arxiv.org/format/2408.00689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> BCS Stripe Phase in Coupled Bilayer Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nag%2C+U">Uddalok Nag</a>, <a href="/search/cond-mat?searchtype=author&query=Schirmer%2C+J">Jonathan Schirmer</a>, <a href="/search/cond-mat?searchtype=author&query=Rossi%2C+E">Enrico Rossi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C+-">C. -X. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jain%2C+J+K">J. K. Jain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00689v1-abstract-short" style="display: inline;"> As a signature of competing correlations, stripes occur in a variety of strongly correlated systems, such as high temperature superconductors (SCs) and quantum Hall effect. We study a double layer SC in the presence of a parallel magnetic field $B$ within the Bogoliubov-de Gennes framework. We find that for low $B$ the system remains in the ``Bardeen-Cooper-Schrieffer (BCS) phase" with a spatially… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00689v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00689v1-abstract-full" style="display: none;"> As a signature of competing correlations, stripes occur in a variety of strongly correlated systems, such as high temperature superconductors (SCs) and quantum Hall effect. We study a double layer SC in the presence of a parallel magnetic field $B$ within the Bogoliubov-de Gennes framework. We find that for low $B$ the system remains in the ``Bardeen-Cooper-Schrieffer (BCS) phase" with a spatially uniform gap, but with increasing $B$, a transition occurs into a phase which contains stripes of the BCS phase separated by regions where the interlayer phase difference rotates by $2蟺$ due to the presence of inter-layer vortices. This stripe phase is predicted to manifest through oscillations in the amplitude of the SC gap and an alternating pattern of supercurrents. We will comment on the relation to previous works based on the Landau-Ginzburg formalism as well as on the possible experimental realization and signature of this phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00689v1-abstract-full').style.display = 'none'; document.getElementById('2408.00689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19555">arXiv:2407.19555</a> <span> [<a href="https://arxiv.org/pdf/2407.19555">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Crystal-symmetry-paired spin-valley locking in a layered room-temperature antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fayuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+X">Xingkai Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhouyi Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changchao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+L">Liwei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+Y">Yuxi Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Z">Zheng Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuxuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Junhao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+X">Xiangyu Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Okuda%2C+T">Taichi Okuda</a>, <a href="/search/cond-mat?searchtype=author&query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Qiao%2C+S">Shan Qiao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chaoyu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19555v2-abstract-short" style="display: inline;"> Recent theoretical efforts predicted a type of unconventional antiferromagnet characterized by the crystal symmetry C (rotation or mirror), which connects antiferromagnetic sublattices in real space and simultaneously couples spin and momentum in reciprocal space. This results in a unique C-paired spin-valley locking (SVL) and corresponding novel properties such as piezomagnetism and noncollinear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19555v2-abstract-full').style.display = 'inline'; document.getElementById('2407.19555v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19555v2-abstract-full" style="display: none;"> Recent theoretical efforts predicted a type of unconventional antiferromagnet characterized by the crystal symmetry C (rotation or mirror), which connects antiferromagnetic sublattices in real space and simultaneously couples spin and momentum in reciprocal space. This results in a unique C-paired spin-valley locking (SVL) and corresponding novel properties such as piezomagnetism and noncollinear spin current even without spin-orbit coupling. However, the unconventional antiferromagnets reported thus far are not layered materials, limiting their potential in spintronic applications. Additionally, they do not meet the necessary symmetry requirements for nonrelativistic spin current. Here, we report the realization of C-paired SVL in a layered room-temperature antiferromagnetic compound, Rb1-未V2Te2O. Spin resolved photoemission measurements directly demonstrate the opposite spin splitting between C-paired valleys. Quasi-particle interference patterns reveal the suppression of inter-valley scattering due to the spin selection rules, as a direct consequence of C-paired SVL. All these experiments are well consistent with the results obtained from first-principles calculations. Our observations represent the first realization of layered antiferromagnets with C-paired SVL, enabling both the advantages of layered materials and possible control through crystal symmetry manipulation. These results hold significant promise and broad implications for advancements in magnetism, electronics, and information technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19555v2-abstract-full').style.display = 'none'; document.getElementById('2407.19555v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>