CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 181 results for author: <span class="mathjax">Jin, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Jin%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jin, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jin%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jin, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jin%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11549">arXiv:2502.11549</a> <span> [<a href="https://arxiv.org/pdf/2502.11549">pdf</a>, <a href="https://arxiv.org/format/2502.11549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> A Radio-Frequency Emitter Design for the Low-Frequency Regime in Atomic Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Y">Yudong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhongshu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yajing Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+Z">Zhentian Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiong-jun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11549v1-abstract-short" style="display: inline;"> Radio frequency (RF) control is a key technique in cold atom experiments. Here, we present a new design based on virtual load, where a low-frequency coil with a frequency of up to 30\,MHz, functions as both an inductor and a power-sharing element in a capacitive transformer circuit. This design enables a highly efficient RF circuit with tunable matching bandwidth. It integrates broadband and narro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11549v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11549v1-abstract-full" style="display: none;"> Radio frequency (RF) control is a key technique in cold atom experiments. Here, we present a new design based on virtual load, where a low-frequency coil with a frequency of up to 30\,MHz, functions as both an inductor and a power-sharing element in a capacitive transformer circuit. This design enables a highly efficient RF circuit with tunable matching bandwidth. It integrates broadband and narrowband coils into a compact configuration, overcoming the distance limitations of metallic chambers. The broadband RF system, tested in a 10-second evaporative cooling experiment, reduced input power from 14.7\,dBW to -3.5\,dBW due to its low-pass behavior, effectively cooling the Bose-Fermi mixture to below 10\,$渭$K. The narrowband RF system was tested in a Landau-Zener experiment and transferred 80\,\% of Rb atoms from |F=2, m_F=2> to |2, -2> in 1 second, yielding a Rabi frequency of 7.6\,kHz at 0.1\,dBW. The power-sharing properties of the virtual load ensure impedance closely matches the ideal lumped-element simulations, demonstrating the design's robustness to disturbances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11549v1-abstract-full').style.display = 'none'; document.getElementById('2502.11549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06233">arXiv:2501.06233</a> <span> [<a href="https://arxiv.org/pdf/2501.06233">pdf</a>, <a href="https://arxiv.org/format/2501.06233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mechanics and Design of Metastructured Auxetic Patches with Bio-inspired Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yingbin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Arzani%2C+M">Milad Arzani</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+X">Xuan Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sophia Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+S">Shaoping Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06233v1-abstract-short" style="display: inline;"> Metastructured auxetic patches, characterized by negative Poisson's ratios, offer unique mechanical properties that closely resemble the behavior of human tissues and organs. As a result, these patches have gained significant attention for their potential applications in organ repair and tissue regeneration. This study focuses on neural networks-based computational modeling of auxetic patches with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06233v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06233v1-abstract-full" style="display: none;"> Metastructured auxetic patches, characterized by negative Poisson's ratios, offer unique mechanical properties that closely resemble the behavior of human tissues and organs. As a result, these patches have gained significant attention for their potential applications in organ repair and tissue regeneration. This study focuses on neural networks-based computational modeling of auxetic patches with a sinusoidal metastructure fabricated from silk fibroin, a bio-inspired material known for its biocompatibility and strength. The primary objective of this research is to introduce a novel, data-driven framework for patch design. To achieve this, we conducted experimental fabrication and mechanical testing to determine material properties and validate the corresponding finite element models. Finite element simulations were then employed to generate the necessary data, while greedy sampling, an active learning technique, was utilized to reduce the computational cost associated with data labeling. Two neural networks were trained to accurately predict Poisson's ratios and stresses for strains up to 15\%, respectively. Both models achieved $R^2$ scores exceeding 0.995, which indicates highly reliable predictions. Building on this, we developed a neural network-based design model capable of tailoring patch designs to achieve specific mechanical properties. This model demonstrated superior performance when compared to traditional optimization methods, such as genetic algorithms, by providing more efficient and precise design solutions. The proposed framework represents a significant advancement in the design of bio-inspired metastructures for medical applications, paving the way for future innovations in tissue engineering and regenerative medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06233v1-abstract-full').style.display = 'none'; document.getElementById('2501.06233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16815">arXiv:2412.16815</a> <span> [<a href="https://arxiv.org/pdf/2412.16815">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of Orbital-Selective Band Reconstruction in an Anisotropic Antiferromagnetic Kagome Metal TbTi3Bi4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Renjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+B">Bocheng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Y">Yiwei Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Q">Quanxin Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuezhi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Y">Yudong Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+C">Chengnuo Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+J">Junchao Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junqin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhenhua Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+B">Baiqing Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">Hong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16815v1-abstract-short" style="display: inline;"> Orbital selectivity is pivotal in dictating the phase diagrams of multiorbital systems, with prominent examples including the orbital-selective Mott phase and superconductivity, etc. The intercalation of anisotropic layers represents an effective method for enhancing orbital selectivity and, thereby shaping the low-energy physics of multiorbital systems. Despite its potential, related experimental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16815v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16815v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16815v1-abstract-full" style="display: none;"> Orbital selectivity is pivotal in dictating the phase diagrams of multiorbital systems, with prominent examples including the orbital-selective Mott phase and superconductivity, etc. The intercalation of anisotropic layers represents an effective method for enhancing orbital selectivity and, thereby shaping the low-energy physics of multiorbital systems. Despite its potential, related experimental studies remain limited. In this work, we systematically examine the interplay between orbital selectivity and magnetism in the newly discovered anisotropic kagome TbTi3Bi4 single crystal, and report a unidirectional, orbital-selective band reconstruction within the antiferromagnetic (AFM) state. By combining soft X-ray and vacuum ultraviolet angle-resolved photoemission spectroscopy (ARPES) measurements with orbital-resolved density functional theory (DFT) calculations, we identify that the band reconstruction is a manifestation of the AFM order, driven by a 1/3 nesting instability of the intercalated Tb 5dxz orbitals. Such an orbital-selective modulation leads the unusual momentum-dependent band folding and the emergence of symmetry-protected Dirac cones only at the M1 point. More importantly, the discovery of orbital-selective 3 x 1 AFM order offers crucial insights into the underlying mechanism of the fractional magnetization plateau in this Kagome AFM metal. Our findings not only underscore the essential role of both conducting and localized electrons in determining the magnetic orders of LnTi3Bi4 (Ln = Lanthanide) kagome metals but also offer a pathway for manipulating magnetism through selective control of anisotropic electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16815v1-abstract-full').style.display = 'none'; document.getElementById('2412.16815v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11359">arXiv:2412.11359</a> <span> [<a href="https://arxiv.org/pdf/2412.11359">pdf</a>, <a href="https://arxiv.org/format/2412.11359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnon Blockade with Skyrmion Qubit-Magnon Coupling in a Hybrid Quantum System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Si-Tong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+S">Shi-Wen He</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zi-Long Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+X">Xuanxuan Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11359v2-abstract-short" style="display: inline;"> Magnon blockade is a fundamental quantum phenomenon for generating single-magnon state, which gradually becomes one of the candidates for quantum information processing. In this paper, we propose a theoretical scheme to generate the magnon blockade in a hybrid system consisting of a YIG micromagnet and a skyrmion. Considering weak probing of the magnon and driving of the skyrmion qubit, the second… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11359v2-abstract-full').style.display = 'inline'; document.getElementById('2412.11359v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11359v2-abstract-full" style="display: none;"> Magnon blockade is a fundamental quantum phenomenon for generating single-magnon state, which gradually becomes one of the candidates for quantum information processing. In this paper, we propose a theoretical scheme to generate the magnon blockade in a hybrid system consisting of a YIG micromagnet and a skyrmion. Considering weak probing of the magnon and driving of the skyrmion qubit, the second-order correlation function is analytically derived, and the optimal condition for realizing the magnon blockade is identified. Under the optimal condition, we systematically analyze the behavior of the second-order correlation function $g^{(2)}(0)$ under different parameter regimes. Our analysis shows that with appropriate driving and probing field intensities, the magnon blockade effect can be significantly enhanced, effectively suppressing multi-magnon states and facilitating the generation of high-purity single-magnon states exhibiting pronounced antibunching. Furthermore, we explore the physical mechanisms underlying the magnon blockade, revealing the coexistence and interplay of conventional and unconventional magnon blockade. This scheme provides a versatile all-magnetic platform for generating high purity single-magnon sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11359v2-abstract-full').style.display = 'none'; document.getElementById('2412.11359v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09210">arXiv:2412.09210</a> <span> [<a href="https://arxiv.org/pdf/2412.09210">pdf</a>, <a href="https://arxiv.org/format/2412.09210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-55486-2">10.1038/s41467-024-55486-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of 1/3 fractional quantum Hall physics in balanced large angle twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dohun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Seyoung Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Smet%2C+J+H">Jurgen H. Smet</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+G+Y">Gil Young Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y">Youngwook Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09210v1-abstract-short" style="display: inline;"> Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09210v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09210v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09210v1-abstract-full" style="display: none;"> Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness. Here we report the observation of fractional quantum Hall physics at 1/3 total filling for balanced layer population in this system. Monte Carlo simulations support that the ground state is also an excitonic superfluid but the excitons are composed of fractional rather than elementary charges. The observed phase transitions with an applied displacement field at this and other fractional fillings are also addressed with simulations. They reveal ground states with different topology and symmetry properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09210v1-abstract-full').style.display = 'none'; document.getElementById('2412.09210v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to Nature communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 16, 179 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01170">arXiv:2411.01170</a> <span> [<a href="https://arxiv.org/pdf/2411.01170">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Full tomography of topological Andreev bands in graphene Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jung%2C+W">Woochan Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Seyoung Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Sein Park</a>, <a href="/search/cond-mat?searchtype=author&query=Shin%2C+S">Seung-Hyun Shin</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+G+Y">Gil Young Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+G">Gil-Ho Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01170v1-abstract-short" style="display: inline;"> Multiply connected electronic networks threaded by flux tubes have been proposed as a platform for adiabatic quantum transport and topological states. Multi-terminal Josephson junction (MTJJ) has been suggested as a pathway to realize this concept. Yet, the manifestations of topology in MTJJ remain open for experimental study. Here, we investigated the artificial topological band structure of thre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01170v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01170v1-abstract-full" style="display: none;"> Multiply connected electronic networks threaded by flux tubes have been proposed as a platform for adiabatic quantum transport and topological states. Multi-terminal Josephson junction (MTJJ) has been suggested as a pathway to realize this concept. Yet, the manifestations of topology in MTJJ remain open for experimental study. Here, we investigated the artificial topological band structure of three-terminal graphene Josephson junctions. Employing tunnelling spectroscopy and magnetic flux gates, we captured the tomography of the Andreev bound state (ABS) energy spectrum as a function of two independent phase differences. This ABS spectrum exhibits the topological transition from gapped to gapless states, akin to the band structure of nodal-line semimetals. Our results show the potential of graphene-based MTJJs for engineering band topologies in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01170v1-abstract-full').style.display = 'none'; document.getElementById('2411.01170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07480">arXiv:2410.07480</a> <span> [<a href="https://arxiv.org/pdf/2410.07480">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thermal Nanoquakes: Terahertz Frequency Surface Rayleigh Waves in Diamond Nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stamper%2C+C">Caleb Stamper</a>, <a href="/search/cond-mat?searchtype=author&query=Baggioli%2C+M">Matteo Baggioli</a>, <a href="/search/cond-mat?searchtype=author&query=Galaviz%2C+P">Pablo Galaviz</a>, <a href="/search/cond-mat?searchtype=author&query=Lewis%2C+R+A">Roger A. Lewis</a>, <a href="/search/cond-mat?searchtype=author&query=Rule%2C+K+C">Kirrily C. Rule</a>, <a href="/search/cond-mat?searchtype=author&query=Bake%2C+A">Ablikim Bake</a>, <a href="/search/cond-mat?searchtype=author&query=Portwin%2C+K+A">Kyle A. Portwin</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sha Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xue Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D+L">David L. Cortie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07480v1-abstract-short" style="display: inline;"> Mechanical THz vibrations in nanocrystals have recently been harnessed for quantum sensing and thermal management. The free boundaries of nanocrystals introduce new surface wave solutions, analogous to the seismic waves on Earth, yet the implications of these surface waves on nanocrystals have remained largely unexplored. Here, we use atomistic molecular dynamics simulations and experimental neutr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07480v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07480v1-abstract-full" style="display: none;"> Mechanical THz vibrations in nanocrystals have recently been harnessed for quantum sensing and thermal management. The free boundaries of nanocrystals introduce new surface wave solutions, analogous to the seismic waves on Earth, yet the implications of these surface waves on nanocrystals have remained largely unexplored. Here, we use atomistic molecular dynamics simulations and experimental neutron spectroscopy to elucidate these THz-scale features in nanodiamond. Our key insight is that thermally induced Rayleigh surface phonons, which have a low group velocity and an amplitude that decays exponentially away from the surface, are responsible for the previously observed but unexplained linear scaling of the low-energy vibrational density of states in nanocrystals. Large thermal atomic displacements, relative to the nanoparticle radius, induce perpetual surface quakes, even at ambient conditions. Normalised to the radius, the surface displacement ratio in diamond nanocrystals exceeds that of the largest recorded earthquakes by a factor of $10^{5\pm1}$. We explicate how these dramatic Rayleigh waves coexist with other distinctive features including confined lattice phonons, soft surface modes, the acoustic gap, Love waves, and Lamb modes, thereby offering a complete framework for the vibrational dynamics of nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07480v1-abstract-full').style.display = 'none'; document.getElementById('2410.07480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12494">arXiv:2409.12494</a> <span> [<a href="https://arxiv.org/pdf/2409.12494">pdf</a>, <a href="https://arxiv.org/format/2409.12494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.014505">10.1103/PhysRevB.111.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A unified theoretical framework for Kondo superconductors: Periodic Anderson impurities with attractive pairing and Rashba spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Foo%2C+D+C+W">Darryl C. W. Foo</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Adam%2C+S">Shaffique Adam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12494v1-abstract-short" style="display: inline;"> Magnetic superconductors manifest a fascinating interplay between their magnetic and superconducting properties. This becomes evident, for example, in the significant enhancement of the upper critical field observed in uranium-based superconductors, or the destruction of superconductivity well below the superconducting transition temperature $T_c$ in cobalt-doped NbSe$_2$. In this work, we argue t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12494v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12494v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12494v1-abstract-full" style="display: none;"> Magnetic superconductors manifest a fascinating interplay between their magnetic and superconducting properties. This becomes evident, for example, in the significant enhancement of the upper critical field observed in uranium-based superconductors, or the destruction of superconductivity well below the superconducting transition temperature $T_c$ in cobalt-doped NbSe$_2$. In this work, we argue that the Kondo interaction plays a pivotal role in governing these behaviors. By employing a periodic Anderson model, we study the Kondo effect in superconductors with either singlet or triplet pairing. In the regime of small impurity energies and high doping concentrations, we find the emergence of a Kondo resistive region below $T_c$. While a magnetic field suppresses singlet superconductivity, it stabilizes triplet pairing through the screening of magnetic impurities, inducing reentrant superconductivity at high fields. Moreover, introducing an antisymmetric spin-orbital coupling suppresses triplet superconductivity. This framework provides a unified picture to understand the observation of Kondo effect in NbSe$_2$ as well as the phase diagrams in Kondo superconductors such as UTe$_2$, and URhGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12494v1-abstract-full').style.display = 'none'; document.getElementById('2409.12494v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 014505 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09965">arXiv:2409.09965</a> <span> [<a href="https://arxiv.org/pdf/2409.09965">pdf</a>, <a href="https://arxiv.org/format/2409.09965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the question of what instantaneous normal modes tell us about liquid dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sha Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xue Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Baggioli%2C+M">Matteo Baggioli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09965v1-abstract-short" style="display: inline;"> The absence of a well-defined equilibrium reference configuration and the inevitable frequent atomic rearrangements have long obstructed the achievement of a complete atomic-level understanding of liquid dynamics and properties, a challenge that continues to be unresolved. The instantaneous normal mode (INM) approach, based on the diagonalization of the potential energy Hessian matrix in instantan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09965v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09965v1-abstract-full" style="display: none;"> The absence of a well-defined equilibrium reference configuration and the inevitable frequent atomic rearrangements have long obstructed the achievement of a complete atomic-level understanding of liquid dynamics and properties, a challenge that continues to be unresolved. The instantaneous normal mode (INM) approach, based on the diagonalization of the potential energy Hessian matrix in instantaneous liquid configurations, has been shown to be a promising starting point to predict thermodynamic and dynamical properties of liquids but presents several conceptual difficulties that remain to be addressed. More in general, due to the inability of capturing anharmonic effects, what INMs can tell us about liquid dynamics remains an open question. In this work, we provide a general set of ``experimental facts'' by performing a comprehensive INM analysis of several simulated systems, including Ar, Xe, N$_2$, CS$_2$, Ga and Pb, in a large range of temperatures from the solid to the gas phase. We first study the INM density of states (DOS) and compare it to the density of state function obtained from the velocity auto-correlation function. Secondly, we analyze the temperature dependence of the fraction of unstable modes and of the low-frequency slope of the INM DOS, in search of possible universal behaviors. We then explore the connection between INMs and other properties of liquids including the liquid-like to gas-like dynamical crossover and the momentum gap of collective shear waves. Moreover, we investigate the INM spectrum at low temperature upon approaching the solid phase, revealing the existence of a large fraction of unstable modes also in crystalline solids. Finally, we verify the existence of a recently discussed cusp-like singularity in the INM eigenvalue spectrum and reveal its complex behavior upon dialing temperature that challenges the existing theoretical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09965v1-abstract-full').style.display = 'none'; document.getElementById('2409.09965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09698">arXiv:2409.09698</a> <span> [<a href="https://arxiv.org/pdf/2409.09698">pdf</a>, <a href="https://arxiv.org/format/2409.09698">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust Coulomb Gap and Varied-temperature Study of Epitaxial 1T'-WSe$_2$ Monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zong%2C+J">Junyu Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+X">Xuedong Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Q">Qinghao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+F">Fan Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Q">Qichao Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shaoen Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X">Xiaodong Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Kaili Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Fang-Sen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09698v1-abstract-short" style="display: inline;"> The transition metal dichalcogenides (TMDCs) with a 1T' structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T'-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T'-TMDCs, our researc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09698v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09698v1-abstract-full" style="display: none;"> The transition metal dichalcogenides (TMDCs) with a 1T' structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T'-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T'-TMDCs, our research focuses on the electronic and crystal properties of the epitaxial 1T'-WSe$_2$ monolayers grown on bilayer graphene (BLG) and SrTiO$_3$(100) substrates at various temperatures. For the 1T'-WSe$_2$ grown on BLG, we observed a significant thermal expansion effect on its band structures with a thermal expansion coefficient of $\sim$60$\times$10$^{-6}$ K$^{-1}$. In contrast, the 1T'-WSe$_2$ grown on SrTiO$_3$(100) exhibits minimal changes with varied temperatures due to the enhanced strain exerted by the substrate. Besides, A significant Coulomb gap (CG) was observed pinned at the Fermi level in the angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS). The CG was founded to decrease with increasing temperatures, and can persist up to 200 K for 1T'-WSe$_2$/BLG, consistent with our Monte Carlo simulations. The robustness of the CG and the positive fundamental gap endow the epitaxial 1T'-WSe$_2$ monolayers with huge potential for realizing the quantum spin Hall devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'none'; document.getElementById('2409.09698v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07721">arXiv:2409.07721</a> <span> [<a href="https://arxiv.org/pdf/2409.07721">pdf</a>, <a href="https://arxiv.org/format/2409.07721">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A deep learning approach to search for superconductors from electronic bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+W">Wenqi Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tengdong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yanling Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07721v1-abstract-short" style="display: inline;"> Energy band theory is a foundational framework in condensed matter physics. In this work, we employ a deep learning method, BNAS, to find a direct correlation between electronic band structure and superconducting transition temperature. Our findings suggest that electronic band structures can act as primary indicators of superconductivity. To avoid overfitting, we utilize a relatively simple deep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07721v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07721v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07721v1-abstract-full" style="display: none;"> Energy band theory is a foundational framework in condensed matter physics. In this work, we employ a deep learning method, BNAS, to find a direct correlation between electronic band structure and superconducting transition temperature. Our findings suggest that electronic band structures can act as primary indicators of superconductivity. To avoid overfitting, we utilize a relatively simple deep learning neural network model, which, despite its simplicity, demonstrates predictive capabilities for superconducting properties. By leveraging the attention mechanism within deep learning, we are able to identify specific regions of the electronic band structure most correlated with superconductivity. This novel approach provides new insights into the mechanisms driving superconductivity from an alternative perspective. Moreover, we predict several potential superconductors that may serve as candidates for future experimental synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07721v1-abstract-full').style.display = 'none'; document.getElementById('2409.07721v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04727">arXiv:2409.04727</a> <span> [<a href="https://arxiv.org/pdf/2409.04727">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Powder Diffraction Crystal Structure Determination Using Generative Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+R">Rui Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liming Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+T">Tiannian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+W">Wenbing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiaolong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04727v1-abstract-short" style="display: inline;"> Accurate crystal structure determination is critical across all scientific disciplines involving crystalline materials. However, solving and refining inorganic crystal structures from powder X-ray diffraction (PXRD) data is traditionally a labor-intensive and time-consuming process that demands substantial expertise. In this work, we introduce PXRDGen, an end-to-end neural network that determines… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04727v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04727v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04727v1-abstract-full" style="display: none;"> Accurate crystal structure determination is critical across all scientific disciplines involving crystalline materials. However, solving and refining inorganic crystal structures from powder X-ray diffraction (PXRD) data is traditionally a labor-intensive and time-consuming process that demands substantial expertise. In this work, we introduce PXRDGen, an end-to-end neural network that determines crystal structures by learning joint structural distributions from experimentally stable crystals and their PXRD, producing atomically accurate structures refined through PXRD data. PXRDGen integrates a pretrained XRD encoder, a diffusion/flow-based structure generator, and a Rietveld refinement module, enabling the solution of structures with unparalleled accuracy in a matter of seconds. Evaluation on MP-20 inorganic dataset reveals a remarkable matching rate of 82% (1 sample) and 96% (20 samples) for valid compounds, with Root Mean Square Error (RMSE) approaching the precision limits of Rietveld refinement. PXRDGen effectively tackles key challenges in XRD, such as the precise localization of light atoms, differentiation of neighboring elements, and resolution of overlapping peaks. Overall, PXRDGen marks a significant advancement in the automated determination of crystal structures from powder diffraction data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04727v1-abstract-full').style.display = 'none'; document.getElementById('2409.04727v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16924">arXiv:2407.16924</a> <span> [<a href="https://arxiv.org/pdf/2407.16924">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+G">Guojing Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangcheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Songyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+Z">Zizhao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shuaizhao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16924v1-abstract-short" style="display: inline;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM).… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16924v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16924v1-abstract-full" style="display: none;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM). The skyrmion lattice is realized by specific field-cooling process, and can be further controllably erased and painted via delicate manipulation of tip stray field. The skyrmion lattice with opposite topological charges (S = +1 or -1) can be tailored at the target regions to form topological skyrmion junctions (TSJs) with specific configurations. The delicate interplay of TSJs and spin-polarized device current were finally investigated via the in-situ transport measurements, alongside the topological stability of TSJs. Our results demonstrate that Fe3GaTe2 not only serves as a potential building block for room-temperature skyrmion-based spintronic devices, but also presents promising prospects for Fe3GaTe2-based heterostructures with the engineered topological spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'none'; document.getElementById('2407.16924v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10268">arXiv:2407.10268</a> <span> [<a href="https://arxiv.org/pdf/2407.10268">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Weakly Coupled Type-II Superconductivity in a Laves compound ZrRe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yingpeng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhaoxu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yulong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+M">Munan Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yaling Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chunsheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Long Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zhenkai Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+K">Kaiyao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10268v1-abstract-short" style="display: inline;"> We present a comprehensive investigation of the superconducting properties of ZrRe2, a Re-based hexagonal Laves compounds. ZrRe2 crystallizes in a C14-type structure (space group P63/mmc), with cell parameters a=b=5.2682(5) and c=8.63045 . Resistivity and magnetic susceptibility data both suggest that ZrRe2 exhibits a sharp superconducting transition above 6.1 K. The measured lower and upper criti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10268v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10268v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10268v1-abstract-full" style="display: none;"> We present a comprehensive investigation of the superconducting properties of ZrRe2, a Re-based hexagonal Laves compounds. ZrRe2 crystallizes in a C14-type structure (space group P63/mmc), with cell parameters a=b=5.2682(5) and c=8.63045 . Resistivity and magnetic susceptibility data both suggest that ZrRe2 exhibits a sharp superconducting transition above 6.1 K. The measured lower and upper critical fields are 6.27 mT and 12.77 T, respectively, with a large upper critical field that approached the Pauli limit.Measurements of the heat capacity confirm the presence of bulk superconductivity, with a normalized specific heat change of 1.24 and an electron-phonon strength of 0.69 . DFT calculations revealed that the band structure of ZrRe2 is intricate and without van-Hove singularity. The observed large specific heat jump, combined with the electron-phonon strength , suggests that ZrRe2 is a weakly coupled type II superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10268v1-abstract-full').style.display = 'none'; document.getElementById('2407.10268v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10243">arXiv:2406.10243</a> <span> [<a href="https://arxiv.org/pdf/2406.10243">pdf</a>, <a href="https://arxiv.org/ps/2406.10243">ps</a>, <a href="https://arxiv.org/format/2406.10243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> RKKY interaction in helical higher-order topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sha Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qing-Xu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jia-Ji Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10243v1-abstract-short" style="display: inline;"> We theoretically investigate the RKKY interaction in helical higher-order topological insulators (HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy 蔚F . These interacti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10243v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10243v1-abstract-full" style="display: none;"> We theoretically investigate the RKKY interaction in helical higher-order topological insulators (HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy 蔚F . These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into the design of next-generation quantum devices based on the HOTIs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10243v1-abstract-full').style.display = 'none'; document.getElementById('2406.10243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14573">arXiv:2402.14573</a> <span> [<a href="https://arxiv.org/pdf/2402.14573">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Local Manipulation of Skyrmion Lattice in Fe3GaTe2 at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shuaizhao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shouzhe Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiting Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+K">Kun Han</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangcheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Z">Zunyi Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">Xingan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Houbing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xueyun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14573v1-abstract-short" style="display: inline;"> Motivated by advances in spintronic devices, an extensive exploration is underway to uncover materials that host topologically protected spin textures, exemplified by skyrmions. One critical challenge involved in the potential application of skyrmions in van der Waals (vdW) materials is the attainment and manipulation of skyrmions at room temperature. In this study, we report the creation of intri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14573v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14573v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14573v1-abstract-full" style="display: none;"> Motivated by advances in spintronic devices, an extensive exploration is underway to uncover materials that host topologically protected spin textures, exemplified by skyrmions. One critical challenge involved in the potential application of skyrmions in van der Waals (vdW) materials is the attainment and manipulation of skyrmions at room temperature. In this study, we report the creation of intrinsic skyrmion state in van der Waals ferromagnet Fe3GaTe2. By employing variable temperature magnetic force microscopy, the skyrmion lattice can be locally manipulated on Fe3GaTe2 flake. The ordering of skyrmion state is further analyzed. Our result suggest Fe3GaTe2 emerges as a highly promising contender for the realization of skyrmion-based layered spintronic memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14573v1-abstract-full').style.display = 'none'; document.getElementById('2402.14573v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14455">arXiv:2312.14455</a> <span> [<a href="https://arxiv.org/pdf/2312.14455">pdf</a>, <a href="https://arxiv.org/format/2312.14455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.011046">10.1103/PhysRevX.14.011046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for an Excitonic Insulator State in Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+J">Jingyu Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yupeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhenyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">Shunye Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qingming Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14455v2-abstract-short" style="display: inline;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical invest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14455v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14455v2-abstract-full" style="display: none;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical investigations, we provide evidence for the existence of an EI ground state in a van der Waals compound Ta$_2$Pd$_3$Te$_5$. Density-functional-theory calculations suggest that it is a semimetal with a small band overlap, whereas various experiments exhibit an insulating ground state with a clear band gap. Upon incorporating electron-hole Coulomb interaction into our calculations, we obtain an EI phase where the electronic symmetry breaking opens a many-body gap. Angle-resolved photoemission spectroscopy measurements exhibit that the band gap is closed with a significant change in the dispersions as the number of thermally excited charge carriers becomes sufficiently large in both equilibrium and nonequilibrium states. Structural measurements reveal a slight breaking of crystal symmetry with exceptionally small lattice distortion in the insulating state, which cannot account for the significant gap opening. Therefore, we attribute the insulating ground state with a gap opening in Ta$_2$Pd$_3$Te$_5$ to exciton condensation, where the coupling to the symmetry-breaking electronic state induces a subtle change in the crystal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'none'; document.getElementById('2312.14455v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 011046, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10954">arXiv:2312.10954</a> <span> [<a href="https://arxiv.org/pdf/2312.10954">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Opto-twistronic Hall effect in a three-dimensional spiral lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Z">Zhurun Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yuzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yicong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuhui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wenjing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Modi%2C+G">Gaurav Modi</a>, <a href="/search/cond-mat?searchtype=author&query=Mele%2C+E+J">Eugene J. Mele</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Song Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+R">Ritesh Agarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10954v1-abstract-short" style="display: inline;"> Studies of moire systems have elucidated the exquisite effect of quantum geometry on the electronic bands and their properties, leading to the discovery of new correlated phases. However, most experimental studies have been confined to a few layers in the 2D limit. The extension of twistronics to its 3D limit, where the twist is extended into the third dimension between adjacent layers, remains un… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10954v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10954v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10954v1-abstract-full" style="display: none;"> Studies of moire systems have elucidated the exquisite effect of quantum geometry on the electronic bands and their properties, leading to the discovery of new correlated phases. However, most experimental studies have been confined to a few layers in the 2D limit. The extension of twistronics to its 3D limit, where the twist is extended into the third dimension between adjacent layers, remains underexplored due to the challenges in precisely stacking layers. Here, we focus on 3D twistronics on a platform of self-assembled spiral superlattice of multilayered WS2. Our findings reveal an opto-twistronic Hall effect in the spiral superlattice. This mesoscopic response is an experimental manifestation of the noncommutative geometry that arises when translational symmetry is replaced by a non-symmorphic screw operation. We also discover signatures of altered laws of optical excitation, manifested as an unconventional photon momentum-lattice interaction owing to moire of moire modulations in the 3D twistronic system. Crucially, our findings mark the initial identification of higher-order quantum geometrical tensors in light-matter interactions. This breakthrough opens new avenues for designing quantum materials-based optical lattices with large nonlinearities, paving the way for the development of advanced quantum nanophotonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10954v1-abstract-full').style.display = 'none'; document.getElementById('2312.10954v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00300">arXiv:2308.00300</a> <span> [<a href="https://arxiv.org/pdf/2308.00300">pdf</a>, <a href="https://arxiv.org/format/2308.00300">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Determination of dynamical quantum phase transition for boson systems using the Loschmidt cumulants method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+P">Pengju Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J">Jingxin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhongshu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dingping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00300v2-abstract-short" style="display: inline;"> We study the dynamical quantum phase transition(DQPT) of the Bose-Hubbard model utilizing recently developed Loschmidt cumulants method. We determine the complex Loschmidt zeros of the Loschmidt amplitude analogous to the Lee-Yang zeros of the thermal partition function. We obtain the DQPT critical points through identifying the crossing points with the imaginary axis. The critical points show hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00300v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00300v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00300v2-abstract-full" style="display: none;"> We study the dynamical quantum phase transition(DQPT) of the Bose-Hubbard model utilizing recently developed Loschmidt cumulants method. We determine the complex Loschmidt zeros of the Loschmidt amplitude analogous to the Lee-Yang zeros of the thermal partition function. We obtain the DQPT critical points through identifying the crossing points with the imaginary axis. The critical points show high accuracy when compared to those obtained using the matrix product states method. In addition, we show that how the critical points of DQPT can be determined by analyzing the energy fluctuation of the initial state, making it a valuable tool for future studies in this area. Finally, DQPT in the extended Bose-Hubbaed model is also investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00300v2-abstract-full').style.display = 'none'; document.getElementById('2308.00300v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11429">arXiv:2307.11429</a> <span> [<a href="https://arxiv.org/pdf/2307.11429">pdf</a>, <a href="https://arxiv.org/format/2307.11429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c04729">10.1021/acsnano.4c04729 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Debye scaling in the density of states of liquids under nanoconfinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yuanxi Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sha Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xue Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Sarter%2C+M">Mona Sarter</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+L">Liang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Baggioli%2C+M">Matteo Baggioli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11429v3-abstract-short" style="display: inline;"> In the realm of nanoscience, the dynamic behaviors of liquids at scales beyond the conventional structural relaxation time, $蟿$, unfold a fascinating blend of solid-like characteristics, including the propagation of collective shear waves and the emergence of elasticity. However, in classical bulk liquids, where $蟿$ is typically of the order of 1 ps or less, this solid-like behavior remains elusiv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11429v3-abstract-full').style.display = 'inline'; document.getElementById('2307.11429v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11429v3-abstract-full" style="display: none;"> In the realm of nanoscience, the dynamic behaviors of liquids at scales beyond the conventional structural relaxation time, $蟿$, unfold a fascinating blend of solid-like characteristics, including the propagation of collective shear waves and the emergence of elasticity. However, in classical bulk liquids, where $蟿$ is typically of the order of 1 ps or less, this solid-like behavior remains elusive in the low-frequency region of the density of states (DOS). Here, we provide evidence for the emergent solid-like nature of liquids at short distances through inelastic neutron scattering measurements of the low-frequency DOS in liquid water and glycerol confined within graphene oxide membranes. In particular, upon increasing the strength of confinement, we observe a transition from a liquid-like DOS (linear in the frequency $蠅$) to a solid-like behavior (Debye law, $\sim蠅^2$) in the range of $1$-$4$ meV. Molecular dynamics simulations confirm these findings and reveal additional solid-like features, including propagating collective shear waves and a reduction in the self-diffusion constant. Finally, we show that the onset of solid-like dynamics is pushed towards low frequency along with the slowing-down of the relaxation processes upon confinement. This nanoconfinement-induced transition, aligning with k-gap theory, underscores the potential of leveraging liquid nanoconfinement in advancing nanoscale science and technology, building more connections between fluid dynamics and materials engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11429v3-abstract-full').style.display = 'none'; document.getElementById('2307.11429v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: matching the published version in ACS Nano</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2024, 18, 36, 24829 - 24841 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06659">arXiv:2306.06659</a> <span> [<a href="https://arxiv.org/pdf/2306.06659">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Superconductivity in Two-dimensional Niobium Diselenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+F">Fuchen Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+D">Deyi Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Junye Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+D+F+C">Darryl Foo Chuan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+X">Xiao Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Junhao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Adam%2C+S">Shaffique Adam</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06659v1-abstract-short" style="display: inline;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally ident… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06659v1-abstract-full" style="display: none;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally identified as potential hosts. Here, we show that atomically-thin niobium diselenide (NbSe$_2$) intercalated with dilute cobalt atoms spontaneously displays ferromagnetism below the superconducting transition temperature ($T_c$). We elucidate the origin of this phase by constructing a magnetic tunnel junction that consists of cobalt and cobalt-doped niobium diselenide (Co-NbSe$_2$) as the two ferromagnetic electrodes, with an ultra-thin boron nitride as the tunnelling barrier. At a temperature well below $T_c$, the tunnelling magnetoresistance shows a bistable state, suggesting a ferromagnetic order in Co-NbSe$_2$. We propose a RKKY exchange coupling mechanism based on the spin-triplet superconducting order parameter to mediate such ferromagnetism. We further perform non-local lateral spin valve measurements to confirm the origin of the ferromagnetism. The observation of Hanle precession signals show spin diffusion length up to micrometres below Tc, demonstrating an intrinsic spin-triplet nature in superconducting NbSe$_2$. Our discovery of superconductivity-mediated ferromagnetism opens the door to an alternative design of ferromagnetic superconductors <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'none'; document.getElementById('2306.06659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04477">arXiv:2306.04477</a> <span> [<a href="https://arxiv.org/pdf/2306.04477">pdf</a>, <a href="https://arxiv.org/format/2306.04477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of 2D Mott insulator and $蟺$-superfluid quantum phase transition in shaking optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J">Jingxin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+P">Pengju Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhongshu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+R">Ren Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04477v1-abstract-short" style="display: inline;"> The Mott insulator and superfluid phase transition is one of the most prominent phenomena in ultracold atoms. In this work, we report the observation of a novel 2D quantum phase transition between Mott insulator and $蟺$ superfluid in a shaking optical lattice. In the deep optical lattice regime, the lowest $s$-band can be tuned to Mott phase, while the higher $p_{x,y}$ bands are itinerant for havi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04477v1-abstract-full').style.display = 'inline'; document.getElementById('2306.04477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04477v1-abstract-full" style="display: none;"> The Mott insulator and superfluid phase transition is one of the most prominent phenomena in ultracold atoms. In this work, we report the observation of a novel 2D quantum phase transition between Mott insulator and $蟺$ superfluid in a shaking optical lattice. In the deep optical lattice regime, the lowest $s$-band can be tuned to Mott phase, while the higher $p_{x,y}$ bands are itinerant for having larger bandwidth. Through a shaking technique coupling the $s$ orbital to $p_{x,y}$ orbital states, we experimentally observe the transition between the states of the $s$ and $p_{x,y}$ bands, leading to a quantum phase transition from 2D $s$-orbital Mott phase to the $p_{x,y}$-orbital superfluid which condensed at $(蟺,蟺)$ momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04477v1-abstract-full').style.display = 'none'; document.getElementById('2306.04477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05263">arXiv:2305.05263</a> <span> [<a href="https://arxiv.org/pdf/2305.05263">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence of a hydrated mineral enriched in water and ammonium molecules in the Chang'e-5 lunar sample </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+M">Munan Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhongnan Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+B">Bohao Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yuxin Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+L">Lijun Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yanpeng Song</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+C">Cheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yunqi Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiaolong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05263v2-abstract-short" style="display: inline;"> The presence and distribution of water on the Moon are fundamental to our understanding of the Earth-Moon system. Despite extensive research and remote detection, the origin and chemical form of lunar water (H2O) have remained elusive. In this study, we present the discovery of a hydrated mineral, (NH4)MgCl3*6H2O, in lunar soil samples returned by the Chang'e-5 mission, containing approximately 41… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05263v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05263v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05263v2-abstract-full" style="display: none;"> The presence and distribution of water on the Moon are fundamental to our understanding of the Earth-Moon system. Despite extensive research and remote detection, the origin and chemical form of lunar water (H2O) have remained elusive. In this study, we present the discovery of a hydrated mineral, (NH4)MgCl3*6H2O, in lunar soil samples returned by the Chang'e-5 mission, containing approximately 41 wt% H2O. The mineral's structure and composition closely resemble novograblenovite, a terrestrial fumarole mineral formed through the reaction of hot basalt with water-rich volcanic gases, and carnallite, an earth evaporite mineral. We rule out terrestrial contamination or rocket exhaust as the origin of this hydrate, based on its chemical and isotopic compositions and formation conditions. The presence of ammonium indicates a more complex lunar degassing history and highlights its potential as a resource for lunar habitation. Our findings also suggest that water molecules can persist in sunlit areas of the Moon as hydrated salt, providing crucial constraints to the fugacity of water and ammonia vapor in lunar volcanic gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05263v2-abstract-full').style.display = 'none'; document.getElementById('2305.05263v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14609">arXiv:2304.14609</a> <span> [<a href="https://arxiv.org/pdf/2304.14609">pdf</a>, <a href="https://arxiv.org/format/2304.14609">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-024-69504-2">10.1038/s41598-024-69504-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the temperature dependence of the density of states of liquids at low energies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sha Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+X">Xue Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Stamper%2C+C">Caleb Stamper</a>, <a href="/search/cond-mat?searchtype=author&query=Mole%2C+R+A">Richard A. Mole</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yuanxi Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+L">Liang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Baggioli%2C+M">Matteo Baggioli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14609v3-abstract-short" style="display: inline;"> We report neutron-scattering measurements of the density of states (DOS) of water and liquid Fomblin in a wide range of temperatures. In the liquid phase, we confirm the presence of a universal low-energy linear scaling of the experimental DOS as a function of the frequency, $g(蠅)= a(T) 蠅$, which persists at all temperatures. The low-frequency scaling of the DOS exhibits a sharp jump at the meltin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14609v3-abstract-full').style.display = 'inline'; document.getElementById('2304.14609v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14609v3-abstract-full" style="display: none;"> We report neutron-scattering measurements of the density of states (DOS) of water and liquid Fomblin in a wide range of temperatures. In the liquid phase, we confirm the presence of a universal low-energy linear scaling of the experimental DOS as a function of the frequency, $g(蠅)= a(T) 蠅$, which persists at all temperatures. The low-frequency scaling of the DOS exhibits a sharp jump at the melting point of water, below which the standard Debye's law, $g(蠅) \propto 蠅^2$, is recovered. On the contrary, in Fomblin, we observe a continuous transition between the two exponents reflecting its glassy dynamics, which is confirmed by structure measurements. More importantly, in both systems, we find that the slope $a(T)$ grows with temperature following an exponential Arrhenius-like form, $a(T) \propto \exp(-\langle E \rangle /T)$. We confirm this experimental trend using molecular dynamics simulations and show that the prediction of instantaneous normal mode (INM) theory for $a(T)$ is in qualitative agreement with the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14609v3-abstract-full').style.display = 'none'; document.getElementById('2304.14609v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: revised manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports volume 14, Article number: 18805 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08433">arXiv:2304.08433</a> <span> [<a href="https://arxiv.org/pdf/2304.08433">pdf</a>, <a href="https://arxiv.org/format/2304.08433">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013158">10.1103/PhysRevResearch.6.013158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Multi-Purpose Platform for Analog Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shuwei Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+K">Kunlun Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Verstraten%2C+J">Joris Verstraten</a>, <a href="/search/cond-mat?searchtype=author&query=Dixmerias%2C+M">Maxime Dixmerias</a>, <a href="/search/cond-mat?searchtype=author&query=Alhyder%2C+R">Ragheed Alhyder</a>, <a href="/search/cond-mat?searchtype=author&query=Salomon%2C+C">Christophe Salomon</a>, <a href="/search/cond-mat?searchtype=author&query=Peaudecerf%2C+B">Bruno Peaudecerf</a>, <a href="/search/cond-mat?searchtype=author&query=de+Jongh%2C+T">Tim de Jongh</a>, <a href="/search/cond-mat?searchtype=author&query=Yefsah%2C+T">Tarik Yefsah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08433v3-abstract-short" style="display: inline;"> Atom-based quantum simulators have had tremendous success in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problems. Here, we present the design and implementation of a $^6$Li-based quantum gas platform that provides wide-ranging capabilitie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08433v3-abstract-full').style.display = 'inline'; document.getElementById('2304.08433v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08433v3-abstract-full" style="display: none;"> Atom-based quantum simulators have had tremendous success in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problems. Here, we present the design and implementation of a $^6$Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust and easy-to-implement combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Secondly, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08433v3-abstract-full').style.display = 'none'; document.getElementById('2304.08433v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00558">arXiv:2304.00558</a> <span> [<a href="https://arxiv.org/pdf/2304.00558">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2171-8">10.1007/s11433-023-2171-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Percolation-induced resistivity drop in cold-pressed LuH2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+J">Jun Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shan%2C+P">Pengfei Shan</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+Y">Youwen Long</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xiaoli Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00558v1-abstract-short" style="display: inline;"> The stoichiometric bulk LuH2 is a paramagnetic metal with high electrical conductivity comparable to simple metals. Here we show that the resistivity of cold-pressed (CP) LuH2 samples varies sensitively upon modifying the grain size or surface conditions via the grinding process, i.e., the CP pellets made of commercially purchased LuH2 powder remain metallic but exhibit thousands of times higher r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00558v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00558v1-abstract-full" style="display: none;"> The stoichiometric bulk LuH2 is a paramagnetic metal with high electrical conductivity comparable to simple metals. Here we show that the resistivity of cold-pressed (CP) LuH2 samples varies sensitively upon modifying the grain size or surface conditions via the grinding process, i.e., the CP pellets made of commercially purchased LuH2 powder remain metallic but exhibit thousands of times higher resistivity, while additional grinding of LuH2 powders in air further enhances the resistivity and even results in weakly localized behaviors. For these CP samples, interestingly, we can occasionally observe abrupt resistivity drops at high temperatures, which also show dependences on magnetic fields and electrical current. Measurements of variable-temperature XRD, magnetic susceptibility, and specific heat exclude the possibilities of structural, magnetic, and superconducting transitions for the observed resistivity drops. Instead, we tentatively attribute these above observations to the presence of insulating layers on the grain surface due to the modification of hydrogen stoichiometry or the pollution by oxygen/nitrogen. Percolation of the metallic grains through the insulating surfaces can explain the sudden drop in resistivity. The present results thus call for caution in asserting the resistivity drops as superconductivity and invalidate the background subtraction in analyzing the resistivity data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00558v1-abstract-full').style.display = 'none'; document.getElementById('2304.00558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 66, 297412 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05191">arXiv:2303.05191</a> <span> [<a href="https://arxiv.org/pdf/2303.05191">pdf</a>, <a href="https://arxiv.org/format/2303.05191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.023719">10.1103/PhysRevA.108.023719 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A two-dimensional magneto-optical trap of dysprosium atoms as a compact source for efficient loading of a narrow-line three-dimensional magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shuwei Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jianshun Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chandrashekara%2C+K">Karthik Chandrashekara</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%B6lzh%C3%A4user%2C+C">Christian G枚lzh盲user</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%B6ner%2C+J">Joschka Sch枚ner</a>, <a href="/search/cond-mat?searchtype=author&query=Chomaz%2C+L">Lauriane Chomaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05191v2-abstract-short" style="display: inline;"> We report on a scheme for loading dysprosium atoms into a narrow-line three-dimensional magneto-optical trap (3D MOT). Our innovative approach replaces the conventional Zeeman slower with a 2D MOT operating on the broad 421-nm line to create a high-flux beam of slow atoms. Even in the absence of a push beam, we demonstrate efficient loading of the 3D MOT, which operates on the narrower 626-nm inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05191v2-abstract-full').style.display = 'inline'; document.getElementById('2303.05191v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05191v2-abstract-full" style="display: none;"> We report on a scheme for loading dysprosium atoms into a narrow-line three-dimensional magneto-optical trap (3D MOT). Our innovative approach replaces the conventional Zeeman slower with a 2D MOT operating on the broad 421-nm line to create a high-flux beam of slow atoms. Even in the absence of a push beam, we demonstrate efficient loading of the 3D MOT, which operates on the narrower 626-nm intercombination line. Adding push beams working at either 421 nm or 626 nm, significant enhancement of the loading rate is achieved. We reach the best performance, with an enhancement factor of $3.6$, using a push beam red-detuned to the 626-nm line. With loading rates greater than $10^8$ atoms/s achieved at a moderate oven reservoir temperature of $800\,^{\circ}$C, our method offers similar or greater performance than Zeeman-slower-based systems. Our 2D-MOT-based approach constitutes a promising first step for state-of-the-art quantum gas experiments with several advantages over the Zeeman-slower-based setup and is readily adaptable to other open-shell lanthanides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05191v2-abstract-full').style.display = 'none'; document.getElementById('2303.05191v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 023719 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06642">arXiv:2302.06642</a> <span> [<a href="https://arxiv.org/pdf/2302.06642">pdf</a>, <a href="https://arxiv.org/format/2302.06642">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184402">10.1103/PhysRevB.107.184402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman scattering study of multimagnon (bi- and tri-magnon) excitations and rotonlike points in the distorted triangular lattice antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junli Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06642v1-abstract-short" style="display: inline;"> We investigate the experimental signatures of Raman spectroscopy of bi- and tri-magnon excitations in the distorted triangular lattice antiferromagnets alpha-LCr2O4 (L=Sr, Ca). We utilize spin wave theory to analyze the nearly 120 degree spin-3/2 spiral ordered antiferromagnetic ground state to compute the single-magnon density of states, single-magnon dispersion, and bimagnon and trimagnon Raman… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06642v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06642v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06642v1-abstract-full" style="display: none;"> We investigate the experimental signatures of Raman spectroscopy of bi- and tri-magnon excitations in the distorted triangular lattice antiferromagnets alpha-LCr2O4 (L=Sr, Ca). We utilize spin wave theory to analyze the nearly 120 degree spin-3/2 spiral ordered antiferromagnetic ground state to compute the single-magnon density of states, single-magnon dispersion, and bimagnon and trimagnon Raman spectra (polarized and unpolarized). It is found that Raman scattering is capable of capturing the effect of the rotonlike M and M' points on the bimagnon Raman spectrum. Our calculation confirms the connection between single-magnon rotonlike excitation energy and bimagnon Raman excitation spectrum observed experimentally. The roton energy minimum in momentum space is half of the energy of a bimagnon excitation signal. The experimental magnetic Raman scattering result displays two peaks which have a Raman shift of 15 meV and 40 meV, respectively. Theoretical modeling and analysis of the experimental spectrum of alpha-SrCr2O4 within our distorted Heisenberg Hamiltonian lattice suggests that the low-energy peak at 15 meV is associated with the bimagnon excitation, whereas the high-energy peak around 40 meV is primarily a trimagnon excitation. Based on our fitting procedure we propose a new set of magnetic interaction parameters for alpha-SrCr2O4. These parameters reproduce not only the experimental Raman spectrum, but also the inelastic neutron scattering response (including capturing high energy magnon branches). We also compute the unpolarized bimagnon and trimagnon Raman spectra for alpha-CaCr2O4. Furhtermore, we found that the polarization sensitivity of Raman spectrum can be utilized to distinguish the bi- and tri-magnon excitation channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06642v1-abstract-full').style.display = 'none'; document.getElementById('2302.06642v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 184402 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13688">arXiv:2212.13688</a> <span> [<a href="https://arxiv.org/pdf/2212.13688">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c05100">10.1021/acs.nanolett.2c05100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically Sharp Internal Interface in a Chiral Weyl Semimetal Nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mathur%2C+N">Nitish Mathur</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Kaushik%2C+S">Sahal Kaushik</a>, <a href="/search/cond-mat?searchtype=author&query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Song Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13688v1-abstract-short" style="display: inline;"> Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate hidden topological states buried inside the material. He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13688v1-abstract-full').style.display = 'inline'; document.getElementById('2212.13688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13688v1-abstract-full" style="display: none;"> Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate hidden topological states buried inside the material. Here, we study a unique internal interface known as merohedral twin boundary in chemically synthesized single-crystal nanowires (NWs) of CoSi, a chiral WSM of space group P213 (No. 198). High resolution scanning transmission electron microscopy reveals that this internal interface is (001) twin plane and connects two enantiomeric counterparts at an atomically sharp interface with inversion twinning. Ab-initio calculations show localized internal Fermi arcs at the (001) twin boundary that can be clearly distinguished from both external Fermi arcs and bulk states. These merohedrally twinned CoSi NWs provide an ideal material system to probe unexplored topological properties associated with internal interfaces in WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13688v1-abstract-full').style.display = 'none'; document.getElementById('2212.13688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04038">arXiv:2211.04038</a> <span> [<a href="https://arxiv.org/pdf/2211.04038">pdf</a>, <a href="https://arxiv.org/format/2211.04038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.474257">10.1364/OE.474257 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic Ramsey interferometry with S- and D-band in a triangular optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xiangyu Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chengyang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zhongcheng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+J">Jinyuan Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhongkai Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04038v1-abstract-short" style="display: inline;"> Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04038v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04038v1-abstract-full" style="display: none;"> Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first time. The key to realizing this interferometer in two-dimensionally coupled lattice is that we use the shortcut method to construct $蟺/2$ pulse. We observe clear Ramsey fringes and analyze the decoherence mechanism of fringes. Further, we design an echo $蟺$ pulse between S- and D-band, which significantly improves the coherence time. This Ramsey interferometer in the dimensionally coupled lattice has potential applications in the quantum simulations of topological physics, frustrated effects, and motional qubits manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04038v1-abstract-full').style.display = 'none'; document.getElementById('2211.04038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 30, 41437-41446 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07268">arXiv:2208.07268</a> <span> [<a href="https://arxiv.org/pdf/2208.07268">pdf</a>, <a href="https://arxiv.org/format/2208.07268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> The manipulation of ultracold atoms of high orbitals in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07268v1-abstract-short" style="display: inline;"> Ultracold atoms in optical lattices are a powerful tool for quantum simulation, precise measurement, and quantum computation. A fundamental problem in applying this quantum system is how to manipulate the higher bands or orbitals in Bloch states effectively. Here we mainly review our methods for manipulating high orbital ultracold atoms in optical lattices with different configurations. Based on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07268v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07268v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07268v1-abstract-full" style="display: none;"> Ultracold atoms in optical lattices are a powerful tool for quantum simulation, precise measurement, and quantum computation. A fundamental problem in applying this quantum system is how to manipulate the higher bands or orbitals in Bloch states effectively. Here we mainly review our methods for manipulating high orbital ultracold atoms in optical lattices with different configurations. Based on these methods, we construct the atom-orbital qubit under nonadiabatic holonomic quantum control and Ramsey interferometry with trapped motional quantum states. Then we review the observation of the novel quantum states and the study of the dynamical evolution of the high orbital atoms in optical lattices. The effective manipulation of the high orbitals provides strong support for applying ultracold atoms in the optical lattice in many fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07268v1-abstract-full').style.display = 'none'; document.getElementById('2208.07268v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01438">arXiv:2208.01438</a> <span> [<a href="https://arxiv.org/pdf/2208.01438">pdf</a>, <a href="https://arxiv.org/format/2208.01438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.125151">10.1103/PhysRevB.106.125151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-gap quantum anomalous Hall states induced by functionalizing buckled Bi-III monolayer/Al$_{2}$O$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Suhua Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yunyouyou Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+W">Wujun Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiayu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&query=Hanke%2C+W">Werner Hanke</a>, <a href="/search/cond-mat?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01438v1-abstract-short" style="display: inline;"> Chiral edge modes inherent to the topological quantum anomalous Hall (QAH) effect are a pivotal topic of contemporary condensed matter research aiming at future quantum technology and application in spintronics. A large topological gap is vital to protecting against thermal fluctuations and thus enabling a higher operating temperature. From first-principle calculations, we propose Al$_{2}$O$_{3}$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01438v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01438v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01438v1-abstract-full" style="display: none;"> Chiral edge modes inherent to the topological quantum anomalous Hall (QAH) effect are a pivotal topic of contemporary condensed matter research aiming at future quantum technology and application in spintronics. A large topological gap is vital to protecting against thermal fluctuations and thus enabling a higher operating temperature. From first-principle calculations, we propose Al$_{2}$O$_{3}$ as an ideal substrate for atomic monolayers consisting of Bi and group-III elements, in which a large-gap quantum spin Hall effect can be realized. Additional half-passivation with nitrogen then suggests a topological phase transition to a large-gap QAH insulator. By effective tight-binding modelling, we demonstrate that Bi-III monolayer/Al$_{2}$O$_{3}$ is dominated by $p_{x}, p_{y}$ orbitals, with subdominant $p_z$ orbital contributions. The topological phase transition into the QAH is induced by Zeeman splitting, where the off-diagonal spin exchange does not play a significant role. The effective model analysis promises utility far beyond Bi-III monolayer/Al$_{2}$O$_{3}$, as it should generically apply to systems dominated by $p_{x}, p_{y}$ orbitals with a band inversion at $螕$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01438v1-abstract-full').style.display = 'none'; document.getElementById('2208.01438v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages with 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14109">arXiv:2207.14109</a> <span> [<a href="https://arxiv.org/pdf/2207.14109">pdf</a>, <a href="https://arxiv.org/format/2207.14109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transport signatures of Fermi arcs at twin boundaries in Weyl materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kaushik%2C+S">Sahal Kaushik</a>, <a href="/search/cond-mat?searchtype=author&query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&query=Mathur%2C+N">Nitish Mathur</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Song Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&query=Cano%2C+J">Jennifer Cano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14109v1-abstract-short" style="display: inline;"> One of the most striking signatures of Weyl fermions is their surface Fermi arcs. Less known is that Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these "internal Fermi arcs." We show that internal Fermi arcs can exhibit transport signatures and propose two pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14109v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14109v1-abstract-full" style="display: none;"> One of the most striking signatures of Weyl fermions is their surface Fermi arcs. Less known is that Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these "internal Fermi arcs." We show that internal Fermi arcs can exhibit transport signatures and propose two probes: quantum oscillations and a quantized chiral magnetic current. We propose merohedrally twinned B20 materials as candidates to host internal Fermi arcs, verified through both model and ab initio calculations. Our theoretical investigation sheds lights on the topological features and motivates experimental studies into the intriguing physics of internal Fermi arcs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14109v1-abstract-full').style.display = 'none'; document.getElementById('2207.14109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06491">arXiv:2207.06491</a> <span> [<a href="https://arxiv.org/pdf/2207.06491">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of the lithium metal electrodeposition: Effects of a gas bubble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shoutong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+L">Linming Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yongjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+S">Shang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuhui Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+Z">Zijian Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06491v1-abstract-short" style="display: inline;"> Rechargeable lithium metal batteries have been widely investigated recently, driven by the global trend for the electrification of transportation. Understanding the dynamics of lithium metal electrodeposition is crucial to design safe and reliable lithium metal anodes. In this study, we developed a grand potential-based phase-field model to investigate the effect of a static gas bubble, which form… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06491v1-abstract-full').style.display = 'inline'; document.getElementById('2207.06491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06491v1-abstract-full" style="display: none;"> Rechargeable lithium metal batteries have been widely investigated recently, driven by the global trend for the electrification of transportation. Understanding the dynamics of lithium metal electrodeposition is crucial to design safe and reliable lithium metal anodes. In this study, we developed a grand potential-based phase-field model to investigate the effect of a static gas bubble, which forms due to the complicated internal side reactions, on the dynamics of the dendrite growth during electrodeposition. It is observed that with the presence of a gas bubble, the dendrite growth is largely accelerated, due to the accumulation of lithium ions on the far side of the bubble away from the anode surface, which could serve as an ion "reservoir" for the dendrite growth, leading to the bending/tilting of the lithium dendrites toward the bubble. Meanwhile, the effects of the bubble size and distance to the anode are further studied, demonstrating that the larger the bubble size and the closer to the anode, the longer the lithium dendrites grow. We hope this study could serve as an example to exploit the effect of extrinsic factors on the dendrite growth dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06491v1-abstract-full').style.display = 'none'; document.getElementById('2207.06491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03671">arXiv:2207.03671</a> <span> [<a href="https://arxiv.org/pdf/2207.03671">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.2c15573">10.1021/acsami.2c15573 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Daytime sub-ambient radiative cooling with vivid structural colors mediated by coupled nanocavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shenghao Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+M">Ming Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenbin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Boxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+C">Changying Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03671v1-abstract-short" style="display: inline;"> Daytime radiative cooling is a promising passive cooling technology for combating global warming. Existing daytime radiative coolers usually show whitish colors due to their broadband high solar reflectivity, which severely impedes applications in real-life situations with aesthetic demands and effective display. However, there is a trade-off between vivid colors and high cooling performance becau… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03671v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03671v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03671v1-abstract-full" style="display: none;"> Daytime radiative cooling is a promising passive cooling technology for combating global warming. Existing daytime radiative coolers usually show whitish colors due to their broadband high solar reflectivity, which severely impedes applications in real-life situations with aesthetic demands and effective display. However, there is a trade-off between vivid colors and high cooling performance because colors are often produced by absorption of visible light, decreasing net cooling power. To break this trade-off, we design multilayered structures with coupled nanocavities and produce structural colors with high cooling performance. Using this design, we can obtain colorful radiative coolers which show a larger color gamut (occupying 17.7% sRGB area) than reported ones. We further fabricate colorful multilayered radiative coolers (CMRCs) and demonstrate they have temperature drops of 3.4 - 4.4 degrees on average based on outdoor experiments. These CMRCs are promising in thermal management of electronic/optoelectronic devices and outdoor facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03671v1-abstract-full').style.display = 'none'; document.getElementById('2207.03671v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures. Comments are welcome. Supporting Material is available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08609">arXiv:2203.08609</a> <span> [<a href="https://arxiv.org/pdf/2203.08609">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abq6321">10.1126/sciadv.abq6321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Sabatier principle for Battery Anodes: Chemical Kinetics and Reversible Electrodeposition at Heterointerfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+J">Jingxu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yue Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wenzao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jiefu Yin</a>, <a href="/search/cond-mat?searchtype=author&query=West%2C+P+J">Patrick J. West</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+T">Tian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+X">Xiao Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Bock%2C+D+C">David C. Bock</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shuo Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qing Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia-Mendez%2C+R">Regina Garcia-Mendez</a>, <a href="/search/cond-mat?searchtype=author&query=Takeuchi%2C+K+J">Kenneth J. Takeuchi</a>, <a href="/search/cond-mat?searchtype=author&query=Takeuchi%2C+E+S">Esther S. Takeuchi</a>, <a href="/search/cond-mat?searchtype=author&query=Marschilok%2C+A+C">Amy C. Marschilok</a>, <a href="/search/cond-mat?searchtype=author&query=Archer%2C+L+A">Lynden A. Archer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08609v3-abstract-short" style="display: inline;"> How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest for centuries. Recently, it has re-emerged as a critical question in a subdiscipline of chemistry - electrochemistry at heterointerphases, where the answers have implications for both how, and in what forms, humanity stores the rising quantities of renewab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08609v3-abstract-full').style.display = 'inline'; document.getElementById('2203.08609v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08609v3-abstract-full" style="display: none;"> How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest for centuries. Recently, it has re-emerged as a critical question in a subdiscipline of chemistry - electrochemistry at heterointerphases, where the answers have implications for both how, and in what forms, humanity stores the rising quantities of renewable electric power generated from solar and wind installations world-wide. Here we consider the relation between the surface chemistry at such interphases and the reversibility of electrochemical transformations at a rechargeable battery electrode. Conventional wisdom holds that stronger chemical interaction between the metal deposits and electrode promotes reversibility. We report instead that a moderate strength of chemical interaction between the deposit and the substrate, neither too weak nor too strong, enables highest reversibility and stability of the plating/stripping redox processes at a battery anode. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our finding arises from the confluence of competing processes - one driven by electrochemistry and the other by chemical alloying. Based on experimental evaluation of metal plating/stripping systems in battery anodes of contemporary interest, we show that such knowledge provides a powerful tool for designing key materials in highly reversible electrochemical energy storage technologies based on earth-abundant, low-cost metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08609v3-abstract-full').style.display = 'none'; document.getElementById('2203.08609v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted at Science Advances, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13483">arXiv:2112.13483</a> <span> [<a href="https://arxiv.org/pdf/2112.13483">pdf</a>, <a href="https://arxiv.org/format/2112.13483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-temperature quantum spin Hall states in buckled III-V-monolayer/SiO$_{2} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yunyouyou Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Suhua Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hanke%2C+W">Werner Hanke</a>, <a href="/search/cond-mat?searchtype=author&query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13483v1-abstract-short" style="display: inline;"> After establishing the fundamental understanding and the high throughput topological characterization of nearly all inorganic three-dimensional materials, the general interest and the demand of functional applications drive the research of topological insulators to the exploration of systems with a more robust topological nature and fewer fabrication challenges. The successful demonstration of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13483v1-abstract-full').style.display = 'inline'; document.getElementById('2112.13483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13483v1-abstract-full" style="display: none;"> After establishing the fundamental understanding and the high throughput topological characterization of nearly all inorganic three-dimensional materials, the general interest and the demand of functional applications drive the research of topological insulators to the exploration of systems with a more robust topological nature and fewer fabrication challenges. The successful demonstration of the room-temperature quantum spin Hall (QSH) states in bismuthene/SiC(0001), thus, triggers the search of two-dimensional topological systems that are experimentally easy to access and of even larger topological gaps. In this work, we propose a family of III-V honeycomb monolayers on SiO$_{2}$ to be the next generation of large gap QSH systems, based on which a spintronic device may potentially operate at room temperature due to its enlarged topological gap ($\sim$ 900 meV) as compared to bismuthene/SiC(0001). Fundamentally, this also realizes a band-inversion type QSH insulator that is distinct to the Kane-Mele type bismuthene/SiC(0001). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13483v1-abstract-full').style.display = 'none'; document.getElementById('2112.13483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures. Report on missing references is welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10944">arXiv:2105.10944</a> <span> [<a href="https://arxiv.org/pdf/2105.10944">pdf</a>, <a href="https://arxiv.org/format/2105.10944">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.033326">10.1103/PhysRevA.104.033326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The dominant scattering channel induced by two-body collision of D-band atoms in triangular optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xinxin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zhongcheng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+P">Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Guoling Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10944v2-abstract-short" style="display: inline;"> The mechanism of atomic collisions in excited bands plays an important role in the study of the orbital physics in optical lattices and simulation of condensed matter physics. Atoms distributing in one excited bands of an optical lattice would collide and decay to other bands through different scattering channels. In excited bands of one dimensional lattice, due to lack of geometry, there is no si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10944v2-abstract-full').style.display = 'inline'; document.getElementById('2105.10944v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10944v2-abstract-full" style="display: none;"> The mechanism of atomic collisions in excited bands plays an important role in the study of the orbital physics in optical lattices and simulation of condensed matter physics. Atoms distributing in one excited bands of an optical lattice would collide and decay to other bands through different scattering channels. In excited bands of one dimensional lattice, due to lack of geometry, there is no significant difference between cross section of scattering channels. Here, we investigate the collisional scattering channels for atoms in the excited bands of a triangular optical lattice and demonstrate a dominant scattering channel in the experiment. A shortcut method is utilized to load Bose-Einstein condensates of $^{87} {\rm Rb}$ atoms into the first D band with zero quasi-momentum. After some time for evolution, the number of atoms scattering to S band due to two-body collisions is around four times more than that to the second most band. We reveal that the scattering channel to $ss$ band is dominant by theoretical calculation, which agrees with experimental measurements. The appearance of dominant scattering channels in triangular optical lattice is owing to geometric dimension coupling. This work is helpful for the study of many-body systems and directional enhancement in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10944v2-abstract-full').style.display = 'none'; document.getElementById('2105.10944v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 033326 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.12930">arXiv:2104.12930</a> <span> [<a href="https://arxiv.org/pdf/2104.12930">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Composition and hydrogen storage structure of Ti2CTx MXene with ultrahigh hydrogen storage capacity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Sen Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Q">Qianku Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+A">Aiguo Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.12930v1-abstract-short" style="display: inline;"> Recently, Liu et al. reported that Ti2CTx MXene have ultra-high hydrogen storage capacity (8.8 wt.%) at room temperature. For the purpose to clearly understand the hydrogen storage (H-storage), the composition of studied samples should be clearly characterized and the H-storage structure need be explored. To achieve 8.8 wt.% capacity, 3 layers of H2 molecules need be stored in the interlayer space… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12930v1-abstract-full').style.display = 'inline'; document.getElementById('2104.12930v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.12930v1-abstract-full" style="display: none;"> Recently, Liu et al. reported that Ti2CTx MXene have ultra-high hydrogen storage capacity (8.8 wt.%) at room temperature. For the purpose to clearly understand the hydrogen storage (H-storage), the composition of studied samples should be clearly characterized and the H-storage structure need be explored. To achieve 8.8 wt.% capacity, 3 layers of H2 molecules need be stored in the interlayer space of MXene with the structure of Ti2CF2H14. The H2 layers with graphene-like 2D structure are in solid/liquid state at room temperature, which is significant in the explore new materials with surprising properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12930v1-abstract-full').style.display = 'none'; document.getElementById('2104.12930v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.08794">arXiv:2104.08794</a> <span> [<a href="https://arxiv.org/pdf/2104.08794">pdf</a>, <a href="https://arxiv.org/format/2104.08794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.L060601">10.1103/PhysRevA.104.L060601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atom-Orbital Qubits under Holonomic Quantum Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shui%2C+H">Hongmian Shui</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhihan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+F">Fansu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaopeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.08794v2-abstract-short" style="display: inline;"> Quantum computing has been attracting tremendous efforts in recent years. One prominent application is to perform quantum simulations of electron correlations in large molecules and solid-state materials, where orbital degrees of freedom are crucial to quantitatively model electronic properties. Electron orbitals unlike quantum spins obey crystal symmetries, making the atomic orbital in optical la… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.08794v2-abstract-full').style.display = 'inline'; document.getElementById('2104.08794v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.08794v2-abstract-full" style="display: none;"> Quantum computing has been attracting tremendous efforts in recent years. One prominent application is to perform quantum simulations of electron correlations in large molecules and solid-state materials, where orbital degrees of freedom are crucial to quantitatively model electronic properties. Electron orbitals unlike quantum spins obey crystal symmetries, making the atomic orbital in optical lattices a natural candidate to emulate electron orbitals. Here, we construct atom-orbital qubits by manipulating $s$- and $d$-orbitals of atomic Bose-Einstein condensation in an optical lattice. Noise-resilient quantum gate operations are achieved by performing holonomic quantum control, which admits geometrical protection. We find it is critical to eliminate the orbital leakage error in the system. The gate robustness is tested by varying the intensity of the laser forming the lattice. Our work opens up wide opportunities for atom-orbital based quantum information processing, of vital importance to programmable quantum simulations of multi-orbital physics in molecules and quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.08794v2-abstract-full').style.display = 'none'; document.getElementById('2104.08794v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, L060601 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.08801">arXiv:2102.08801</a> <span> [<a href="https://arxiv.org/pdf/2102.08801">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced Superconductivity in dual-topological semimetal Pt2HgSe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Suhua Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+P">Peihao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Vymazalova%2C+A">Anna Vymazalova</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+L">Lingling Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Nemes-Incze%2C+P">Peter Nemes-Incze</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.08801v1-abstract-short" style="display: inline;"> Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a few known dual-topological insulators which may host different surface states protected by symmetries. In this work, we systematically investigate bot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08801v1-abstract-full').style.display = 'inline'; document.getElementById('2102.08801v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.08801v1-abstract-full" style="display: none;"> Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a few known dual-topological insulators which may host different surface states protected by symmetries. In this work, we systematically investigate both structure and electronic evolution of bulk Pt2HgSe3 under high pressure up to 96 GPa. The nontrivial topology persists up to the structural phase transition observed in the high-pressure regime. Interestingly, we found that this phase transition is accompanied by the appearance of superconductivity at around 55 GPa and the critical transition temperature Tc increases with applied pressure. Our results demonstrate that Pt2HgSe3 with nontrivial topology of electronic states displays new ground states upon compression and raises potentials in application to the next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08801v1-abstract-full').style.display = 'none'; document.getElementById('2102.08801v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04839">arXiv:2102.04839</a> <span> [<a href="https://arxiv.org/pdf/2102.04839">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient electrochemical reduction of CO2 to CO by soft functional materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Y">Yanjie Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J">Jiaqi Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiangping Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Hongshuai Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Saimeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+W">Weifeng Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04839v1-abstract-short" style="display: inline;"> Electrochemical reduction of CO2 to CO is a promising strategy. However, achieving high Faradaic efficiency with high current density using ILs electrolyte remains a challenge. In this study, the IL N octyltrimethyl 1,2,4 triazole ammonium shows outstanding performance for electrochemical reduction of CO2 to CO on the commercial Ag electrode, and the current density can be up to 50.8 mA cm-2 with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04839v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04839v1-abstract-full" style="display: none;"> Electrochemical reduction of CO2 to CO is a promising strategy. However, achieving high Faradaic efficiency with high current density using ILs electrolyte remains a challenge. In this study, the IL N octyltrimethyl 1,2,4 triazole ammonium shows outstanding performance for electrochemical reduction of CO2 to CO on the commercial Ag electrode, and the current density can be up to 50.8 mA cm-2 with a Faradaic efficiency of 90.6%. The current density of CO is much higher than those reported in the ILs electrolyte. In addition, the density functional theory calculation further proved that IL interacts with CO2 to form IL CO2 complex which played a key role in reducing the activation energy of CO2. According to the molecular orbital theory, the electrons obtained from ILs was filled in the anti bonding orbit of the CO2, resulting in reducing the C=O bond energy. This work provides a new strategy to design novel ILs for high efficiency electrochemical reduction of CO2 to CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04839v1-abstract-full').style.display = 'none'; document.getElementById('2102.04839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08953">arXiv:2101.08953</a> <span> [<a href="https://arxiv.org/pdf/2101.08953">pdf</a>, <a href="https://arxiv.org/format/2101.08953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/abcf33">10.1088/1674-1056/abcf33 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study to improve the performance of interferometer with ultra-cold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xiangyu Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengjie Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Shui%2C+H">Hongmian Shui</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+P">Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08953v1-abstract-short" style="display: inline;"> Ultra-cold atoms provide ideal platforms for interferometry. The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time, which enable high accuracy and sensitivity to measurement. Here, we review our efforts to improve the performance of the interferometer. We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08953v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08953v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08953v1-abstract-full" style="display: none;"> Ultra-cold atoms provide ideal platforms for interferometry. The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time, which enable high accuracy and sensitivity to measurement. Here, we review our efforts to improve the performance of the interferometer. We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice. Compared with traditional ones, this shortcut method can reduce manipulation time by up to three orders of magnitude. We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method. Efforts have also been made to enhance the resolution by multimode scheme. Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes, which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer. With the shortcut method mentioned above, improvement of the momentum resolution could also be fulfilled, which leads to atomic momentum patterns less than 0.6 $\hbar k_L$. To identify and remove systematic noises, we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the $1/\sqrt{2}$ of the photon-shot noise and separate and identify or even eliminate noises. Furthermore, we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08953v1-abstract-full').style.display = 'none'; document.getElementById('2101.08953v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B, 2021, Vol. 30(1): 014210 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03491">arXiv:2009.03491</a> <span> [<a href="https://arxiv.org/pdf/2009.03491">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c04169">10.1021/acs.nanolett.0c04169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zone-folded longnitude acoustic phonons driving self-trapped state emission in colloidal CdSe nanoplate superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sui%2C+X">Xinyu Sui</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xiaoqing Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xuekang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+W">Wenna Du</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhengping Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shengye Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+K">Kaifeng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Sum%2C+T+C">Tze Chien Sum</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zhiyong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xinfeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03491v1-abstract-short" style="display: inline;"> Colloidal cadmium chalcogenide nanoplates are two-dimensional semiconductors that have shown great application prospect for light-emitting technologies. Self-trapped state (STS), a special localized state originated from strong electron-phonon coupling (EPC), has great potential in one-step white light luminance owing to its broadband emission linewidth. However, achieving STS in cadmium chalcogen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03491v1-abstract-full').style.display = 'inline'; document.getElementById('2009.03491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03491v1-abstract-full" style="display: none;"> Colloidal cadmium chalcogenide nanoplates are two-dimensional semiconductors that have shown great application prospect for light-emitting technologies. Self-trapped state (STS), a special localized state originated from strong electron-phonon coupling (EPC), has great potential in one-step white light luminance owing to its broadband emission linewidth. However, achieving STS in cadmium chalcogenide nanocrystals is extremely challenging due to their intrinic weak EPC nature. By building hybrid superlattice (SL) structures via self-assembly of colloidal CdSe nanoplates (NPLs), we demonstrated an emergence of zone-folded longnitude acoustic phonons (ZFLAP) differ from monodispersed NPLs, and observed a broadband STS emission in spectra range of 450-600 nm. Through femtosecond transient absorption and impulsive vibrational spectroscopy, we revealed that STS is generated in time scale of ~500 fs and is driven by strong coupling of excitons and ZFLAPs with Huang-Rhys parameter as large as ~22.7. Our findings provide a new avenue for generating and manipulating STS emission by artificially designing and building hybrid periodic structures superior to single material optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03491v1-abstract-full').style.display = 'none'; document.getElementById('2009.03491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09620">arXiv:2008.09620</a> <span> [<a href="https://arxiv.org/pdf/2008.09620">pdf</a>, <a href="https://arxiv.org/format/2008.09620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.174509">10.1103/PhysRevB.102.174509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure, magnetism and high-temperature superconductivity in the multi-layer octagraphene and octagraphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09620v1-abstract-short" style="display: inline;"> We systematically investigate the electronic structure, magnetism and high-temperature superconductivity (SC) in the multi-layer octagraphene and octagraphite (bulk octagraphene). A tight binding model is used to fit the electronic structures of single-layer, multi-layer octagraphenes and octagraphite. We find that the multi-layer octagraphene and octagraphite follow a simple A-A stacking structur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09620v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09620v1-abstract-full" style="display: none;"> We systematically investigate the electronic structure, magnetism and high-temperature superconductivity (SC) in the multi-layer octagraphene and octagraphite (bulk octagraphene). A tight binding model is used to fit the electronic structures of single-layer, multi-layer octagraphenes and octagraphite. We find that the multi-layer octagraphene and octagraphite follow a simple A-A stacking structure from the energy analysis. The van der Waals interaction induces $t_{\perp}\approx0.25$ eV and the hopping integrals within each layers changes little when the layer number $n$ increases. There is a well Fermi-surface nesting with nesting vector $\mathbf{Q}=(蟺,蟺)$ for the single-layer octagraphene at half-filling, which can induce a 2D N茅el antiferromagnetic order. With increasing the layer number $n\rightarrow\infty$, the Fermi-surface nesting transforms to 3D with nesting vector $\mathbf{Q}=(蟺,蟺,蟺)$ and shows the system has a 3D N茅el antiferromagnetic order. Upon doping, the multi-layer octagraphene and octagraphite can enter a high-temperature $s^{\pm}$ SC driven by spin fluctuation. We evaluate the superconducting transition temperature $T_c$ by using the random-phase approximation (RPA), which yields a high $T_c$ even if the layer number $n\geq$ 3. Our study shows that the multi-layer octagraphene and octagraphite are promising candidates for realizing the high-temperature SC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09620v1-abstract-full').style.display = 'none'; document.getElementById('2008.09620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02287">arXiv:2008.02287</a> <span> [<a href="https://arxiv.org/pdf/2008.02287">pdf</a>, <a href="https://arxiv.org/ps/2008.02287">ps</a>, <a href="https://arxiv.org/format/2008.02287">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024417">10.1103/PhysRevB.103.024417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Torque equilibrium spin wave theory of Raman scattering in an anisotropic triangular lattice antiferromagnet with Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shan%2C+C">Chao Shan</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02287v2-abstract-short" style="display: inline;"> We apply torque equilibrium spin wave theory (TESWT) to investigate an anisotropic XXZ antiferromagnetic model with Dzyaloshinskii-Moriya (DM) interaction in a triangular lattice. Considering the quasiparticle vacuum as our reference, we provide an accurate analysis of the non-collinear ground state of a frustrated triangular lattice magnet using the TESWT formalism. We elucidate the effects of qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02287v2-abstract-full').style.display = 'inline'; document.getElementById('2008.02287v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02287v2-abstract-full" style="display: none;"> We apply torque equilibrium spin wave theory (TESWT) to investigate an anisotropic XXZ antiferromagnetic model with Dzyaloshinskii-Moriya (DM) interaction in a triangular lattice. Considering the quasiparticle vacuum as our reference, we provide an accurate analysis of the non-collinear ground state of a frustrated triangular lattice magnet using the TESWT formalism. We elucidate the effects of quantum fluctuations on the ordering wave vector based on model system parameters. We study the single magnon dispersion, the two-magnon continuum using the spectral function, and the Raman spectrum of bimagnon and trimagnon excitations. We present our results for the $HH, VV$, and the $HV$ polarization Raman geometry dependence of the bimagnon and the trimagnon excitation spectrum where $H (V)$ represents horizontal (vertical) polarization. Our calculations show that both the $HH$ and the $HV$ polarization spectrum can be used to determine the degree of anisotropy of our system. We calculate the Raman spectra of Ba$_3$CoSb$_2$O$_9$ and Cs$_2$CuCl$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02287v2-abstract-full').style.display = 'none'; document.getElementById('2008.02287v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024417 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03356">arXiv:2006.03356</a> <span> [<a href="https://arxiv.org/pdf/2006.03356">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.094413">10.1103/PhysRevB.102.094413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ordering and spin dynamics in $S=5/2$ staggered triangular lattice antiferromagnet Ba$_2$MnTeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Lisi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Narayanan%2C+N">Narendirakumar Narayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+J">Jia Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zengjia Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chin-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peterson%2C+V">Vanessa Peterson</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sergey%2C+D">Danilkin Sergey</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Meng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03356v1-abstract-short" style="display: inline;"> We report studies of the magnetic properties of a staggered stacked triangular lattice Ba$_2$MnTeO$_6$ using magnetic susceptibility, specific heat, neutron powder diffraction and inelastic neutron scattering measurements, as well as first principles density functional theory calculations. Neutron diffraction measurements reveal an antiferromagnetic order with a propagated vector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03356v1-abstract-full').style.display = 'inline'; document.getElementById('2006.03356v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03356v1-abstract-full" style="display: none;"> We report studies of the magnetic properties of a staggered stacked triangular lattice Ba$_2$MnTeO$_6$ using magnetic susceptibility, specific heat, neutron powder diffraction and inelastic neutron scattering measurements, as well as first principles density functional theory calculations. Neutron diffraction measurements reveal an antiferromagnetic order with a propagated vector $\textbf{\emph{k}}=(0.5, 0.5, 0)$ and N{茅}el transition temperature of $T_\text{N}\approx20$ K. The dominant interaction derived from the Curie-Weiss fitting to the inverse DC susceptibility is antiferromagnetic. Through modelling the INS spectrum with the linear spin wave theory, the magnetic exchange interactions for the nearest intralayer, nearest interlayer, and next nearest interlayer are determined to be $J_1=0.27(3),J_2=0.27(3),$ and $J_3=-0.05(1)$ meV, respectively, and a small value of easy-axis anisotropy of $D_{zz}=-0.01$ meV is introduced. We derive a magnetic phase diagram that reveals that it is the competition between $J_1, J_2$, and $J_3$ that stabilizes the collinear stripe-type antiferromagnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03356v1-abstract-full').style.display = 'none'; document.getElementById('2006.03356v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 094413 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09588">arXiv:2001.09588</a> <span> [<a href="https://arxiv.org/pdf/2001.09588">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-Space Imaging of the Ordered Small Molecule Orientations in Porous Frameworks by Electron Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Boyuan Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+D">Dali Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+H">Hao Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shifeng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+F">Fei Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09588v1-abstract-short" style="display: inline;"> The real-space imaging of small molecules is always challenging under the electron microscopes, but highly demanded for investigating various nanoscale interactions, such as hydrogen bond and van der Waals (vdW) force. Especially, identifying the host-guest interactions in porous materials directly at the molecular level will bring a deeper insight into the behaviors of guest molecules during the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09588v1-abstract-full').style.display = 'inline'; document.getElementById('2001.09588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09588v1-abstract-full" style="display: none;"> The real-space imaging of small molecules is always challenging under the electron microscopes, but highly demanded for investigating various nanoscale interactions, such as hydrogen bond and van der Waals (vdW) force. Especially, identifying the host-guest interactions in porous materials directly at the molecular level will bring a deeper insight into the behaviors of guest molecules during the sorption, catalysis, gas separation and energy storage. In this work, we directly resolved the ordered configurations of p-xylenes (PXs) adsorbed in ZSM-5 frameworks by the scanning transmission electron microscopy (STEM) with the integrated differential phase contrast (iDPC) technique to identify the host-guest vdW interactions. Based on these observations, we revealed that the PXs in one straight channel modified the channel geometry with a coherent orientation. And the adjacent straight channels were deformed up to 8.8% along the different directions corresponding to three dominant PX configurations, resulting a negligible overall expansion of ZSM-5 lattices. Then, we could also image the disorder and desorption of PXs in ZSM-5 channels during the in situ heating. This work not only helped us to study the host-guest vdW interactions and the sorption behaviors of PXs in ZSM-5, but also provided an efficient tool for further imaging and studying other single-molecule behaviors under STEMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09588v1-abstract-full').style.display = 'none'; document.getElementById('2001.09588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09573">arXiv:2001.09573</a> <span> [<a href="https://arxiv.org/pdf/2001.09573">pdf</a>, <a href="https://arxiv.org/format/2001.09573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.014114">10.1103/PhysRevB.101.014114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-temperature magnetism and crystallography of a YCrO$_3$ single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yinghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Si Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+B">Bao Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Huq%2C+A">Ashfia Huq</a>, <a href="/search/cond-mat?searchtype=author&query=Persson%2C+J">Joerg Persson</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Haoshi Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Ouyang%2C+D">Defang Ouyang</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Z">Zhubing He</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zikang Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Feng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09573v3-abstract-short" style="display: inline;"> Magnetization measurements and time-of-flight neutron powder-diffraction studies on the high-temperature (300--980 K) magnetism and crystal structure (321--1200 K) of a pulverized YCrO$_3$ single crystal have been performed. Temperature-dependent inverse magnetic susceptibility coincides with a piecewise linear function with five regimes, with which we fit a Curie-Weiss law and calculate the frust… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09573v3-abstract-full').style.display = 'inline'; document.getElementById('2001.09573v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09573v3-abstract-full" style="display: none;"> Magnetization measurements and time-of-flight neutron powder-diffraction studies on the high-temperature (300--980 K) magnetism and crystal structure (321--1200 K) of a pulverized YCrO$_3$ single crystal have been performed. Temperature-dependent inverse magnetic susceptibility coincides with a piecewise linear function with five regimes, with which we fit a Curie-Weiss law and calculate the frustration factor $f$. The fit results indicate a formation of magnetic polarons between 300 and 540 K and a very strong magnetic frustration. By including one factor $畏$ that represents the degree of spin interactions into the Brillouin function, we can fit well the applied-magnetic-field dependence of magnetization. No structural phase transition was observed from 321 to 1200 K. The average thermal expansions of lattice configurations (\emph{a}, \emph{b}, \emph{c}, and \emph{V}) obey well the Gr$\ddot{\textrm{u}}$neisen approximations with an anomaly appearing around 900 K, implying an isosymmetric structural phase transition, and display an anisotropic character along the crystallographic \emph{a}, \emph{b}, and \emph{c} axes with the incompressibility $K^a_0 > K^c_0 > K^b_0$. It is interesting to find that at 321 K, the local distortion size $螖$(O2) $\approx$ 1.96$螖$(O1) $\approx$ 4.32$螖$(Y) $\approx$ 293.89$螖$(Cr). Based on the refined Y-O and Cr-O bond lengths, we deduce the local distortion environments and modes of Y, Cr, O1, and O2 ions. Especially, the Y and O2 ions display obvious atomic displacement and charge subduction, which may shed light on the dielectric property of the YCrO$_3$ compound. Additionally, by comparing Kramers Mn$^{3+}$ with non-Kramers Cr$^{3+}$ ions, it is noted that being a Kramers or non-Kramers ion can strongly affect the local distortion size, whereas, it may not be able to change the detailed distortion mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09573v3-abstract-full').style.display = 'none'; document.getElementById('2001.09573v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 101, 014114 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07110">arXiv:2001.07110</a> <span> [<a href="https://arxiv.org/pdf/2001.07110">pdf</a>, <a href="https://arxiv.org/format/2001.07110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic quantum spin Hall states in iron halogenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sui%2C+Q">Qian Sui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiaxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+S">Suhua Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yunyouyou Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07110v1-abstract-short" style="display: inline;"> It is widely known that quantum spin Hall (QSH) insulator can be viewed as two copies of quantum anomalous Hall (QAH) insulator with opposite local magnetic moments. However, nearly every QSH insulator discovered so far is a nonmagnetic semiconductor. Due to the vanishing local magnetic moment of each copy, the QAH states only conceptually exist in these QSH insulators. In this work, we show a rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07110v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07110v1-abstract-full" style="display: none;"> It is widely known that quantum spin Hall (QSH) insulator can be viewed as two copies of quantum anomalous Hall (QAH) insulator with opposite local magnetic moments. However, nearly every QSH insulator discovered so far is a nonmagnetic semiconductor. Due to the vanishing local magnetic moment of each copy, the QAH states only conceptually exist in these QSH insulators. In this work, we show a realistic construction of QSH states with finite local magnetic moment by staking bilayer QAH insulators. Our explicit construction benefits from an effective QAH model with a large topological gap and is further supported by a class of two-dimensional ferromagnetic materials. Our work not only validates the conceptual relationship of QSH and QAH but also provides an ideal material platform for realizing antiferromagnetic QSH state which is highly tunable between QAH and QSH states as a function of the number of layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07110v1-abstract-full').style.display = 'none'; document.getElementById('2001.07110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jin%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Jin%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>