CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 85 results for author: <span class="mathjax">Tiburzi, B C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tiburzi, B C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tiburzi%2C+B+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tiburzi, B C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09472">arXiv:2408.09472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09472">pdf</a>, <a href="https://arxiv.org/ps/2408.09472">ps</a>, <a href="https://arxiv.org/format/2408.09472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral Symmetry and Large Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Adhikari%2C+P">Prabal Adhikari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09472v1-abstract-short" style="display: inline;"> Large magnetic fields exist in magnetars and are produced in off-central heavy-ion collisions. For the latter, field strengths are estimated to be comparable to strong interaction scales. This fact has motivated many studies of QCD physics in large magnetic fields, ranging from various model studies to lattice QCD computations. We provide a selective overview of results stemming from chiral pertur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09472v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09472v1-abstract-full" style="display: none;"> Large magnetic fields exist in magnetars and are produced in off-central heavy-ion collisions. For the latter, field strengths are estimated to be comparable to strong interaction scales. This fact has motivated many studies of QCD physics in large magnetic fields, ranging from various model studies to lattice QCD computations. We provide a selective overview of results stemming from chiral perturbation theory. These results are based solely on the pattern of spontaneous and explicit symmetry breaking of QCD in a magnetic field; accordingly, they constitute low-energy theorems that must be satisfied in any approach. A few discrepancies with models and tension with lattice data are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09472v1-abstract-full').style.display = 'none'; document.getElementById('2408.09472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, talk given at the 42nd International Conference on High Energy Physics (ICHEP2024), 18-24 July 2024, Prague, Czech Republic</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00818">arXiv:2406.00818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00818">pdf</a>, <a href="https://arxiv.org/format/2406.00818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral Symmetry Breaking and Pion Decay in a Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Adhikari%2C+P">Prabal Adhikari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00818v1-abstract-short" style="display: inline;"> The pattern of chiral symmetry breaking is exploited to compute vector and axial-vector pion matrix elements in a uniform magnetic field. Our results are model independent, and thereby constitute low-energy theorems that must be obeyed by QCD in external magnetic fields. Chiral perturbation theory and lattice QCD results are compared, for which there is some tension. As an application, the matrix&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00818v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00818v1-abstract-full" style="display: none;"> The pattern of chiral symmetry breaking is exploited to compute vector and axial-vector pion matrix elements in a uniform magnetic field. Our results are model independent, and thereby constitute low-energy theorems that must be obeyed by QCD in external magnetic fields. Chiral perturbation theory and lattice QCD results are compared, for which there is some tension. As an application, the matrix elements are utilized to compute pion decay rates in a magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00818v1-abstract-full').style.display = 'none'; document.getElementById('2406.00818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09179">arXiv:2302.09179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09179">pdf</a>, <a href="https://arxiv.org/format/2302.09179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094504">10.1103/PhysRevD.107.094504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD Thermodynamics and Neutral Pion in a Uniform Magnetic Field: Finite Volume Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Adhikari%2C+P">Prabal Adhikari</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09179v1-abstract-short" style="display: inline;"> We address finite volume effects of lattice QCD calculations in background magnetic fields. Using chiral perturbation theory at next-to-leading order, volume effects are calculated for thermodynamic quantities: the chiral condensate, pressure anisotropy, and magnetization. The neutral pion effective action in a finite volume is additionally derived. For these charge neutral observables, volume and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09179v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09179v1-abstract-full" style="display: none;"> We address finite volume effects of lattice QCD calculations in background magnetic fields. Using chiral perturbation theory at next-to-leading order, volume effects are calculated for thermodynamic quantities: the chiral condensate, pressure anisotropy, and magnetization. The neutral pion effective action in a finite volume is additionally derived. For these charge neutral observables, volume and source averaging are shown to capitalize on magnetic periodicity, which is the remnant translational invariance of the finite-volume theory. For a fixed magnetic field strength, certain volume and source averaged quantities are independent of the size of the lattice transverse to the magnetic field. Despite this simplifying feature, finite volume corrections to the magnetic field dependence of the chiral condensate and neutral pion magnetic polarizability can be non-negligible. The pressure anisotropy at fixed magnetic flux, moreover, appears acutely sensitive to the lattice volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09179v1-abstract-full').style.display = 'none'; document.getElementById('2302.09179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07565">arXiv:2104.07565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.07565">pdf</a>, <a href="https://arxiv.org/format/2104.07565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136462">10.1016/j.physletb.2021.136462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Particles with Zero-Range Interaction in a Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kirscher%2C+J">Johannes Kirscher</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07565v2-abstract-short" style="display: inline;"> Energy levels are investigated for two charged particles possessing an attractive, momentum-independent, zero-range interaction in a uniform magnetic field. A transcendental equation governs the spectrum, which is characterized by a collective Landau-level quantum number incorporating both center-of-mass and relative degrees of freedom. Results are obtained for a system of one charged and one neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07565v2-abstract-full').style.display = 'inline'; document.getElementById('2104.07565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07565v2-abstract-full" style="display: none;"> Energy levels are investigated for two charged particles possessing an attractive, momentum-independent, zero-range interaction in a uniform magnetic field. A transcendental equation governs the spectrum, which is characterized by a collective Landau-level quantum number incorporating both center-of-mass and relative degrees of freedom. Results are obtained for a system of one charged and one neutral particle, with the interaction chosen to produce a bound state in vanishing magnetic field. Beyond deriving the weak-field expansion of the energy levels, we focus on non-perturbative aspects. In the strong-field limit, or equivalently for a system in the unitary limit, a single bound level with universal binding energy exists. By contrast, excited states are resonances that disappear into the continuum as the magnetic field is raised beyond critical values. A hyperbola is derived that approximates the number of bound levels as a function of the field strength remarkably well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07565v2-abstract-full').style.display = 'none'; document.getElementById('2104.07565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, v2 presentation improved, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.11127">arXiv:1812.11127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.11127">pdf</a>, <a href="https://arxiv.org/format/1812.11127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Symmetries and Interactions from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">A. Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">E. Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">H. Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D">D. Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">C. C. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C">C. Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">B. Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">T. Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.11127v1-abstract-short" style="display: inline;"> Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11127v1-abstract-full').style.display = 'inline'; document.getElementById('1812.11127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.11127v1-abstract-full" style="display: none;"> Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, $g_A$, whose precise value as predicted by the SM could help point to new physics contributions to the so-called &#34;neutron lifetime puzzle&#34;, and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11127v1-abstract-full').style.display = 'none'; document.getElementById('1812.11127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk presented CIPANP2018. 11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CIPANP2018-Nicholson, LLNL-CONF-764382, RBRC-1296, RIKEN-iTHEMS-Report-18, INT-PUB-18-063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.04997">arXiv:1709.04997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.04997">pdf</a>, <a href="https://arxiv.org/format/1709.04997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.014006">10.1103/PhysRevD.97.014006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Octet Baryons in Large Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Deshmukh%2C+A">Amol Deshmukh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.04997v1-abstract-short" style="display: inline;"> Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend non-analytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04997v1-abstract-full').style.display = 'inline'; document.getElementById('1709.04997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.04997v1-abstract-full" style="display: none;"> Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend non-analytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04997v1-abstract-full').style.display = 'none'; document.getElementById('1709.04997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 014006 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01564">arXiv:1709.01564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01564">pdf</a>, <a href="https://arxiv.org/format/1709.01564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506001">10.1051/epjconf/201817506001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryon magnetic moments: Symmetries and relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01564v1-abstract-short" style="display: inline;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'inline'; document.getElementById('1709.01564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01564v1-abstract-full" style="display: none;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spin-flavor symmetry in the large Nc limit of QCD is shared by the naive constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'none'; document.getElementById('1709.01564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, talk given at Lattice 2017, the 35th International Symposium on Lattice Field Theory, Granada, Spain, 18-24 June 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09239">arXiv:1705.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09239">pdf</a>, <a href="https://arxiv.org/format/1705.09239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Are two nucleons bound in lattice QCD for heavy quark masses? - Sanity check with L眉scher&#39;s finite volume formula -&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09239v3-abstract-short" style="display: inline;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'inline'; document.getElementById('1705.09239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09239v3-abstract-full" style="display: none;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the &#39;sanity checks&#39; introduced in arXiv:1703.07210. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'none'; document.getElementById('1705.09239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Clarifications added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-016, NT@UW-17-10, MIT-CTP-4909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02929">arXiv:1702.02929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.02929">pdf</a>, <a href="https://arxiv.org/format/1702.02929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.054505">10.1103/PhysRevD.96.054505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-$尾$ Decay Matrix Elements from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02929v1-abstract-short" style="display: inline;"> A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the $nn\to ppee\overline谓_e\overline谓_e$ transition is described in detail, expanding on the results presented in Ref. [1]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-$尾$ decay rates of nuclei. From this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02929v1-abstract-full').style.display = 'inline'; document.getElementById('1702.02929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02929v1-abstract-full" style="display: none;"> A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the $nn\to ppee\overline谓_e\overline谓_e$ transition is described in detail, expanding on the results presented in Ref. [1]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-$尾$ decay rates of nuclei. From this exploratory study, performed using unphysical values of the quark masses, the long-distance deuteron-pole contribution to the matrix element is separated from shorter-distance hadronic contributions. This polarizability, which is only accessible in double-weak processes, cannot be constrained from single-$尾$ decay of nuclei, and is found to be smaller than the long-distance contributions in this calculation, but non-negligible. In this work, technical aspects of the LQCD calculations, and of the relevant formalism in the pionless effective field theory, are described. Further calculations of the isotensor axial polarizability, in particular near and at the physical values of the light-quark masses, are required for precise determinations of both two-neutrino and neutrinoless double-$尾$ decay rates in heavy nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02929v1-abstract-full').style.display = 'none'; document.getElementById('1702.02929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-002, MIT-CTP-4871 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 054505 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01296">arXiv:1702.01296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.01296">pdf</a>, <a href="https://arxiv.org/format/1702.01296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.094510">10.1103/PhysRevD.95.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-Volume Corrections to Electromagnetic Masses for Larger-Than-Physical Electric Charges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Matzelle%2C+M+E">Matthew E. Matzelle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01296v2-abstract-short" style="display: inline;"> The numerical value of the fine-structure constant generally leads to small isospin-breaking effects due to electromagnetism in QCD. This smallness complicates determining isospin breaking from lattice QCD computations that include electromagnetism. One solution to this problem consists of performing computations using larger-than-physical values of the electric charge, and subsequently extrapolat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01296v2-abstract-full').style.display = 'inline'; document.getElementById('1702.01296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01296v2-abstract-full" style="display: none;"> The numerical value of the fine-structure constant generally leads to small isospin-breaking effects due to electromagnetism in QCD. This smallness complicates determining isospin breaking from lattice QCD computations that include electromagnetism. One solution to this problem consists of performing computations using larger-than-physical values of the electric charge, and subsequently extrapolating (or interpolating) to the physical value of the fine-structure constant. Motivated by recent lattice QCD + QED computations of electromagnetic masses employing this setup, we consider finite-volume effects arising from the use of larger-than-physical electric charges. A modified power-counting scheme, which is based on treating the fine-structure constant as larger than its physical value, is explored. Results for perturbative QED corrections, however, are surprising. Within the framework of non-relativistic QED, multi-loop diagrams exhibit a momentum factorization property that produces exact cancellations. We determine that power-law finite-volume effects vanish at the leading two- and three-loop order, as well as the next-to-leading two-loop order. For larger-than-physical charges, we consequently expect no appreciable volume corrections beyond leading-order QED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01296v2-abstract-full').style.display = 'none'; document.getElementById('1702.01296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, v2 calculations corrected and conclusions updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-030, KITP-16-141 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 094510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.03456">arXiv:1701.03456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.03456">pdf</a>, <a href="https://arxiv.org/format/1701.03456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.062003">10.1103/PhysRevLett.119.062003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The isotensor axial polarisability and lattice QCD input for nuclear double-$尾$ decay phenomenology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.03456v2-abstract-short" style="display: inline;"> The potential importance of short-distance nuclear effects in double-$尾$ decay is assessed using a lattice QCD calculation of the $nn\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03456v2-abstract-full').style.display = 'inline'; document.getElementById('1701.03456v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.03456v2-abstract-full" style="display: none;"> The potential importance of short-distance nuclear effects in double-$尾$ decay is assessed using a lattice QCD calculation of the $nn\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$尾$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$尾$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03456v2-abstract-full').style.display = 'none'; document.getElementById('1701.03456v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-056, MIT-CTP-4867 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 062003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.07733">arXiv:1612.07733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.07733">pdf</a>, <a href="https://arxiv.org/format/1612.07733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Strong isospin violation and chiral logarithms in the baryon spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D+A">David A. Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mastropas%2C+E+V">Ekaterina V. Mastropas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mereghetti%2C+E">Emanuele Mereghetti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.07733v1-abstract-short" style="display: inline;"> We present a precise lattice QCD calculation of the contribution to the neutron-proton mass splitting arising from strong isospin breaking, $m_n-m_p|_{QCD}=2.32\pm0.17$ MeV. We also determine $m_{螢^-} - m_{螢^0}|_{QCD} = 5.44\pm0.31$ MeV. The calculation is performed at three values of the pion mass, with several values of the quark mass splitting and multiple lattice volumes, but only a single lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07733v1-abstract-full').style.display = 'inline'; document.getElementById('1612.07733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.07733v1-abstract-full" style="display: none;"> We present a precise lattice QCD calculation of the contribution to the neutron-proton mass splitting arising from strong isospin breaking, $m_n-m_p|_{QCD}=2.32\pm0.17$ MeV. We also determine $m_{螢^-} - m_{螢^0}|_{QCD} = 5.44\pm0.31$ MeV. The calculation is performed at three values of the pion mass, with several values of the quark mass splitting and multiple lattice volumes, but only a single lattice spacing and an estimate of discretization errors. The calculations are performed on the anisotropic clover-Wilson ensembles generated by the Hadron Spectrum Collaboration. The omega-baryon mass is used to set the scale $a_t^{-1}=6111\pm127$ MeV, while the kaon masses are used to determine the value of the light-quark mass spitting. The nucleon mass splitting is then determined as a function of the pion mass. We observe, for the first time, conclusive evidence for non-analytic light quark mass dependence in lattice QCD calculations of the baryon spectrum. When left as a free parameter, the fits prefer a nucleon axial coupling of $g_A=1.24(56)$. To highlight the presence of this chiral logarithm in the nucleon mass splitting, we also compute the isospin splitting in the cascade-baryon system which is less sensitive to chiral dynamics. Finally, we update the best lattice QCD determination of the CP-odd pion-nucleon coupling that would arise from a non-zero QCD theta-term, $\bar{g}_0 / (\sqrt{2}f_蟺) = (14.7\pm1.8\pm1.4) \cdot 10^{-3} \bar胃$. The original lattice QCD correlation functions, analysis results and extrapolated quantities are packaged in HDF5 files made publicly available including a simple Python script to access the numerical results, construct effective mass plots along with our analysis results, and perform the extrapolations of various quantities determined in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07733v1-abstract-full').style.display = 'none'; document.getElementById('1612.07733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages including figures and tables. The original lattice QCD correlation functions and our analysis results can be found at this address http://ntc0.lbl.gov/~walkloud/mn_mns_mp/ stored in HDF5 format. Additionally, there are a number of Python files which can be used to access the original results and our analysis, see the README.txt to get started</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00344">arXiv:1611.00344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00344">pdf</a>, <a href="https://arxiv.org/format/1611.00344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Axial-Current Matrix Elements in Light Nuclei from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00344v1-abstract-short" style="display: inline;"> I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00344v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00344v1-abstract-full" style="display: none;"> I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $尾尾$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00344v1-abstract-full').style.display = 'none'; document.getElementById('1611.00344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference Proceedings from the 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04545">arXiv:1610.04545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04545">pdf</a>, <a href="https://arxiv.org/format/1610.04545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.062002">10.1103/PhysRevLett.119.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton-proton fusion and tritium $尾$-decay from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04545v2-abstract-short" style="display: inline;"> The nuclear matrix element determining the $pp\to d e^+ 谓$ fusion cross section and the Gamow-Teller matrix element contributing to tritium $尾$-decay are calculated with lattice Quantum Chromodynamics (QCD) for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3)-flavor-symmetric value of the quark masses, corresponding to a pion m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04545v2-abstract-full').style.display = 'inline'; document.getElementById('1610.04545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04545v2-abstract-full" style="display: none;"> The nuclear matrix element determining the $pp\to d e^+ 谓$ fusion cross section and the Gamow-Teller matrix element contributing to tritium $尾$-decay are calculated with lattice Quantum Chromodynamics (QCD) for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3)-flavor-symmetric value of the quark masses, corresponding to a pion mass of $m_蟺$ ~ 806 MeV. The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within $2蟽$ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated $pp\to d e^+ 谓$ transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be $L_{1,A}=3.9(0.1)(1.0)(0.3)(0.9)\ {\rm fm}^3$ at a renormalization scale set by the physical pion mass, also in agreement with the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04545v2-abstract-full').style.display = 'none'; document.getElementById('1610.04545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version with supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-033, JLAB-THY-16-2362, MIT-CTP-4844, NT@UW-16-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 062002 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03985">arXiv:1609.03985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03985">pdf</a>, <a href="https://arxiv.org/format/1609.03985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114513">10.1103/PhysRevD.95.114513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Octet Baryon Magnetic Moments from Lattice QCD: Approaching Experiment from a Three-Flavor Symmetric Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03985v2-abstract-short" style="display: inline;"> Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the three-flavor symmetric point, where the pion mass is 800 MeV, and the other corresponding to a pion mass of 450 MeV. The moments are foun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03985v2-abstract-full').style.display = 'inline'; document.getElementById('1609.03985v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03985v2-abstract-full" style="display: none;"> Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the three-flavor symmetric point, where the pion mass is 800 MeV, and the other corresponding to a pion mass of 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units- the natural baryon magneton. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, a clear preference for the quark model over the large-Nc prediction is found. The magnetically coupled Lambda-Sigma system is treated in detail at the three-flavor symmetric point, with the lattice QCD results comparing favorably with predictions based on SU(3)F symmetry. This analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03985v2-abstract-full').style.display = 'none'; document.getElementById('1609.03985v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 18 figures, v2 revision corresponds to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NSF-KITP-16-140, INT-PUB-16-028, MIT-CTP-4833 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114513 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08983">arXiv:1512.08983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08983">pdf</a>, <a href="https://arxiv.org/format/1512.08983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Photon mass term as an IR regularization for QCD+QED on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endres%2C+M+G">Michael G. Endres</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shindler%2C+A">Andrea Shindler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08983v1-abstract-short" style="display: inline;"> Inclusion of QED in lattice QCD calculations can lead to power-law volume artifacts as a consequence of the long-range nature of the interaction. Such artifacts must be removed by extrapolation in order to attain reliable infinite volume estimates of observables and quantities derived from them. As an alternative to this methodology, we consider the use of a photon mass term as an infrared regulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08983v1-abstract-full').style.display = 'inline'; document.getElementById('1512.08983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08983v1-abstract-full" style="display: none;"> Inclusion of QED in lattice QCD calculations can lead to power-law volume artifacts as a consequence of the long-range nature of the interaction. Such artifacts must be removed by extrapolation in order to attain reliable infinite volume estimates of observables and quantities derived from them. As an alternative to this methodology, we consider the use of a photon mass term as an infrared regulator for QCD+QED, and explore the viability of its use in determining hadron mass shifts and splittings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08983v1-abstract-full').style.display = 'none'; document.getElementById('1512.08983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; presented at The 33rd International Symposium on Lattice Field Theory, Kobe International Conference Center, Kobe, Japan (July 14 -18, 2015)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05286">arXiv:1512.05286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05286">pdf</a>, <a href="https://arxiv.org/ps/1512.05286">ps</a>, <a href="https://arxiv.org/format/1512.05286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.034506">10.1103/PhysRevD.93.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Energy QCD in the Delta Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Matzelle%2C+M+E">Matthew E. Matzelle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05286v1-abstract-short" style="display: inline;"> We investigate properties of low-energy QCD in a finite spatial volume, but with arbitrary temperature. In the limit of small temperature and small cube size compared to the pion Compton wavelength, Leutwyler has shown that the effective theory describing low-energy QCD reduces to that of quantum mechanics on the coset manifold, which is the so-called delta regime of chiral perturbation theory. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05286v1-abstract-full').style.display = 'inline'; document.getElementById('1512.05286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05286v1-abstract-full" style="display: none;"> We investigate properties of low-energy QCD in a finite spatial volume, but with arbitrary temperature. In the limit of small temperature and small cube size compared to the pion Compton wavelength, Leutwyler has shown that the effective theory describing low-energy QCD reduces to that of quantum mechanics on the coset manifold, which is the so-called delta regime of chiral perturbation theory. We solve this quantum mechanics analytically for the case of a $U(1)_L \times U(1)_R$ subgroup of chiral symmetry, and numerically for the case of $SU(2)_L \times SU(2)_R$. We utilize the quantum mechanical spectrum to compute the mass gap and chiral condensate, and investigate symmetry restoration in a finite spatial volume as a function of temperature. Because we obtain the spectrum for non-zero values of the quark mass, we are able to interpolate between the rigid rotor limit, which emerges at vanishing quark mass, and the harmonic approximation, which is referred to as the p-regime. We find that the applicability of perturbation theory about the rotor limit largely requires lighter-than-physical quarks. As a stringent check of our results, we raise the temperature to that of the inverse cube size. When this condition is met, the quantum mechanics reduces to a matrix model. The condensate we obtain in this limit agrees with that determined analytically in the epsilon regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05286v1-abstract-full').style.display = 'none'; document.getElementById('1512.05286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 034506 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05884">arXiv:1508.05884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05884">pdf</a>, <a href="https://arxiv.org/format/1508.05884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.112301">10.1103/PhysRevLett.116.112301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05884v2-abstract-short" style="display: inline;"> Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of $m_蟺\sim 450$ and 806 MeV in uniform, time-independent magnetic fields of strength {&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05884v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05884v2-abstract-full" style="display: none;"> Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of $m_蟺\sim 450$ and 806 MeV in uniform, time-independent magnetic fields of strength {\bf B}| \sim 10^{19}$-$10^{20}$ Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05884v2-abstract-full').style.display = 'none'; document.getElementById('1508.05884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-044, NT@UW-15-10, NSF-KITP-15-119, MIT-CTP-4704 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 112301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.04165">arXiv:1508.04165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.04165">pdf</a>, <a href="https://arxiv.org/ps/1508.04165">ps</a>, <a href="https://arxiv.org/format/1508.04165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.034012">10.1103/PhysRevD.93.034012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite Volume Corrections to the Electromagnetic Mass of Composite Particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.04165v3-abstract-short" style="display: inline;"> The long-range electromagnetic interaction presents a challenge for numerical computations in QCD + QED. In addition to power-law finite volume effects, the standard lattice gauge theory approach introduces non-locality through removal of photon zero-momentum modes. The resulting finite volume effects must be quantitatively understood; and, to this end, non-relativistic effective field theories ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04165v3-abstract-full').style.display = 'inline'; document.getElementById('1508.04165v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.04165v3-abstract-full" style="display: none;"> The long-range electromagnetic interaction presents a challenge for numerical computations in QCD + QED. In addition to power-law finite volume effects, the standard lattice gauge theory approach introduces non-locality through removal of photon zero-momentum modes. The resulting finite volume effects must be quantitatively understood; and, to this end, non-relativistic effective field theories are an efficient tool, especially in the case of composite particles. Recently an oddity related to non-locality of the standard lattice approach was uncovered by the Budapest-Marseille-Wuppertal collaboration. Explicit contributions from antiparticles appear to be required so that finite volume QED results for a point-like fermion can be reproduced in the effective field theory description. We provide transparency for this argument by considering point-like scalars and spinors in finite volume QED using the method of regions. For the more germane case of composite particles, we determine that antiparticle modes contribute to the finite-volume electromagnetic mass of composite spinors through terms proportional to the squares of time-like form factors evaluated at threshold. We extend existing finite volume calculations to one order higher, which is particularly relevant for the electromagnetic mass of light nuclei. Additionally, we verify that the analogous finite volume contributions to the nucleon mass in chiral perturbation theory vanish in accordance with locality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04165v3-abstract-full').style.display = 'none'; document.getElementById('1508.04165v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, v.3 version to be published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 034012 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.00163">arXiv:1508.00163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.00163">pdf</a>, <a href="https://arxiv.org/format/1508.00163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Excited-state contamination in nucleon correlators from chiral perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.00163v1-abstract-short" style="display: inline;"> Techniques to compute hadron properties from lattice QCD rely upon the limit of long time separation. For baryons, the signal-to-noise problem often restricts one to time separations that are not ideally long, and for which couplings to excited states can obstruct the isolation of ground-state baryon properties. We consider excited-state contamination in nucleon two- and three-point functions. Usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00163v1-abstract-full').style.display = 'inline'; document.getElementById('1508.00163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.00163v1-abstract-full" style="display: none;"> Techniques to compute hadron properties from lattice QCD rely upon the limit of long time separation. For baryons, the signal-to-noise problem often restricts one to time separations that are not ideally long, and for which couplings to excited states can obstruct the isolation of ground-state baryon properties. We consider excited-state contamination in nucleon two- and three-point functions. Using chiral perturbation theory, we determine couplings to pion-nucleon and pion-delta excited states. In two-point functions, these contributions are small, in accordance with general properties of the spectral weights on a torus. For the axial-current correlation function in the nucleon, the sign of excited-state contributions suggests overestimation of the nucleon axial charge. Thus contamination from pion-nucleon excited states will not likely explain the trend in lattice QCD data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00163v1-abstract-full').style.display = 'none'; document.getElementById('1508.00163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, PoS.cls. Talk given at the 8th International Workshop on Chiral Dynamics, 29 June 2015 - 03 July 2015, Pisa, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.08916">arXiv:1507.08916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.08916">pdf</a>, <a href="https://arxiv.org/format/1507.08916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.072002">10.1103/PhysRevLett.117.072002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive photons: an infrared regularization scheme for lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endres%2C+M+G">Michael G. Endres</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shindler%2C+A">Andrea Shindler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.08916v3-abstract-short" style="display: inline;"> Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08916v3-abstract-full').style.display = 'inline'; document.getElementById('1507.08916v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.08916v3-abstract-full" style="display: none;"> Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08916v3-abstract-full').style.display = 'none'; document.getElementById('1507.08916v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables; significant revisions to abstract and main text; revised presentation of results for clarity (results unchanged); acknowledgements updated; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/4691, JLAB-THY-15-2112, NT@WM-15-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 072002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.05518">arXiv:1506.05518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.05518">pdf</a>, <a href="https://arxiv.org/format/1506.05518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114502">10.1103/PhysRevD.92.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Magnetic Structure of Light Nuclei from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.05518v1-abstract-short" style="display: inline;"> Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\le4$, along with the cross-section for the $M1$ transition $np\rightarrow d纬$, at the flavor SU(3)-symmetric point where the pion mass is $m_蟺\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05518v1-abstract-full').style.display = 'inline'; document.getElementById('1506.05518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.05518v1-abstract-full" style="display: none;"> Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\le4$, along with the cross-section for the $M1$ transition $np\rightarrow d纬$, at the flavor SU(3)-symmetric point where the pion mass is $m_蟺\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $尾_p=5.22(+0.66/-0.45)(0.23) \times 10^{-4}$ fm$^3$ and $尾_n=1.253(+0.056/-0.067)(0.055) \times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $尾_{nn}=1.872(+0.121/-0.113)(0.082) \times 10^{-4}$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $j_z=\pm 1$ deuteron states, and is found to be $尾_{d,\pm 1}=4.4(+1.6/-1.5)(0.2) \times 10^{-4}$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $尾_{^{3}\rm He}=5.4(+2.2/-2.1)(0.2) \times 10^{-4}$ fm$^3$, $尾_{^{3}\rm H}=2.6(1.7)(0.1) \times 10^{-4}$ fm$^3$, $尾_{^{4}\rm He}=3.4(+2.0/-1.9)(0.2) \times 10^{-4}$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, ${\bar L}_1$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current contribution in nuclear potential models), that dictates the cross-section for the $np\to d纬$ process near threshold. Combined with previous determinations of NN scattering parameters, this enables an ab initio determination of the threshold cross-section at these unphysical masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05518v1-abstract-full').style.display = 'none'; document.getElementById('1506.05518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 24 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-011, NT@UW-15-03, ICC@UB-15-016, MIT-CTP-4667 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02422">arXiv:1505.02422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02422">pdf</a>, <a href="https://arxiv.org/format/1505.02422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.132001">10.1103/PhysRevLett.115.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the $np \to d 纬$ radiative capture process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02422v1-abstract-short" style="display: inline;"> Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \to d纬$, and the photo-disintegration processes $纬^{(\ast)} d \to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02422v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02422v1-abstract-full" style="display: none;"> Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \to d纬$, and the photo-disintegration processes $纬^{(\ast)} d \to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $m_蟺\sim 450$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $蟽^{lqcd}(np\to d纬)=332.4({\tiny \begin{array}{l}+5.4 \\ - 4.7\end{array}})\ mb$ is obtained at an incident neutron speed of $v=2,200\ m/s$, consistent with the experimental value of $蟽^{expt}(np \to d纬) = 334.2(0.5)\ mb$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02422v1-abstract-full').style.display = 'none'; document.getElementById('1505.02422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-010, NT@UW-15-02, MIT-CTP-4666 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 132001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.06329">arXiv:1503.06329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.06329">pdf</a>, <a href="https://arxiv.org/ps/1503.06329">ps</a>, <a href="https://arxiv.org/format/1503.06329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.094510">10.1103/PhysRevD.91.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Corrections to Nucleon Two- and Three-Point Correlation Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.06329v3-abstract-short" style="display: inline;"> We consider multi-particle contributions to nucleon two- and three-point functions from the perspective of chiral dynamics. Lattice nucleon interpolating operators, which have definite chiral transformation properties, can be mapped into chiral perturbation theory. Using the most common of such operators, we determine pion-nucleon and pion-delta couplings to nucleon two- and three-point correlatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06329v3-abstract-full').style.display = 'inline'; document.getElementById('1503.06329v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.06329v3-abstract-full" style="display: none;"> We consider multi-particle contributions to nucleon two- and three-point functions from the perspective of chiral dynamics. Lattice nucleon interpolating operators, which have definite chiral transformation properties, can be mapped into chiral perturbation theory. Using the most common of such operators, we determine pion-nucleon and pion-delta couplings to nucleon two- and three-point correlation functions at leading order in the low-energy expansion. The couplings of pions to nucleons and deltas in two-point functions are consistent with simple phase-space considerations, in accordance with the Lehmann spectral representation. An argument based on available phase space on a torus is utilized to derive the scaling of multiple-pion couplings. While multi-pion states are indeed suppressed, this suppression scales differently with particle number compared to that in infinite volume. For nucleon three-point correlation functions, we investigate the axial-vector current at vanishing momentum transfer. The effect of pion-nucleon and pion-delta states on the extraction of the nucleon axial charge is assessed. We show that couplings to finite volume multi-particle states could potentially lead to overestimation of the axial charge. Hence pion-nucleon excited states cannot explain the trend seen in lattice QCD calculations of the nucleon axial charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06329v3-abstract-full').style.display = 'none'; document.getElementById('1503.06329v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, v.2 comparison with arXiv:1503.03649 added, v.3 phase-space argument corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 094510 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8445">arXiv:1410.8445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8445">pdf</a>, <a href="https://arxiv.org/ps/1410.8445">ps</a>, <a href="https://arxiv.org/format/1410.8445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Background field method and nonrelativistic QED matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8445v2-abstract-short" style="display: inline;"> We discuss the resolution of an inconsistency between lattice background field methods and nonrelativistic QED matching conditions. In particular, we show that lack of on-shell conditions in lattice QCD with time-dependent background fields generally requires that certain operators related by equations of motion should be retained in an effective field theory to correctly describe the behavior of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8445v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8445v2-abstract-full" style="display: none;"> We discuss the resolution of an inconsistency between lattice background field methods and nonrelativistic QED matching conditions. In particular, we show that lack of on-shell conditions in lattice QCD with time-dependent background fields generally requires that certain operators related by equations of motion should be retained in an effective field theory to correctly describe the behavior of Green&#39;s functions. The coefficients of such operators in a nonrelativistic hadronic theory are determined by performing a robust nonrelativistic expansion of QED for relativistic scalar and spin-half hadrons including nonminimal electromagnetic couplings. Provided that nonrelativistic QED is augmented with equation-of-motion operators, we find that the background field method can be reconciled with the nonrelativistic QED matching conditions without any inconsistency. We further investigate whether nonrelativistic QED can be employed in the analysis of lattice QCD correlation function in background fields, but we are confronted with difficulties. Instead, we argue that the most desirable approach is a hybrid one which relies on a relativistic hadronic theory with operators chosen based on their relevance in the nonrelativistic limit. Using this hybrid framework, we obtain practically useful forms of correlation functions for scalar and spin-half hadrons in uniform electric and magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8445v2-abstract-full').style.display = 'none'; document.getElementById('1410.8445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, The 32nd International Symposium on Lattice Field Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC1098 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5769">arXiv:1409.5769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5769">pdf</a>, <a href="https://arxiv.org/ps/1409.5769">ps</a>, <a href="https://arxiv.org/format/1409.5769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Volume Effects on the Method of Extracting Form Factors at Zero Momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5769v2-abstract-short" style="display: inline;"> The Rome method allows one to extract form factors using lattice computations performed strictly at zero momentum. We investigate the size of finite volume effects resulting from this method. As a test case, we focus on the pion charge radius and show how to ascertain the finite volume effect with the aid of chiral perturbation theory. The framework developed can easily be generalized to account f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5769v2-abstract-full').style.display = 'inline'; document.getElementById('1409.5769v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5769v2-abstract-full" style="display: none;"> The Rome method allows one to extract form factors using lattice computations performed strictly at zero momentum. We investigate the size of finite volume effects resulting from this method. As a test case, we focus on the pion charge radius and show how to ascertain the finite volume effect with the aid of chiral perturbation theory. The framework developed can easily be generalized to account for modified infrared physics of other low-energy matrix elements extracted at zero momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5769v2-abstract-full').style.display = 'none'; document.getElementById('1409.5769v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, talk given at the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1094 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3556">arXiv:1409.3556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.3556">pdf</a>, <a href="https://arxiv.org/format/1409.3556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.252001">10.1103/PhysRevLett.113.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of light nuclei from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S">S. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3556v2-abstract-short" style="display: inline;"> We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ${}^3$He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to $m_蟺\sim 800$ MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3556v2-abstract-full').style.display = 'inline'; document.getElementById('1409.3556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3556v2-abstract-full" style="display: none;"> We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ${}^3$He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to $m_蟺\sim 800$ MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of ${}^3$He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, $渭_{{}^3{\rm H}} \sim 渭_p$. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3556v2-abstract-full').style.display = 'none'; document.getElementById('1409.3556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NT@UW-14-19, INT-14-038, MIT-CTP-4586, RBRC-1090 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 252001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.8159">arXiv:1407.8159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.8159">pdf</a>, <a href="https://arxiv.org/ps/1407.8159">ps</a>, <a href="https://arxiv.org/format/1407.8159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.074036">10.1103/PhysRevD.90.074036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconciling the lattice background field method with nonrelativistic QED: Spinor case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.8159v2-abstract-short" style="display: inline;"> We show that inconsistency between background field methods, which are relevant for lattice QCD spectroscopy, and effective field theory matching conditions, which are obtained from scattering amplitudes, can be resolved by augmenting nonrelativistic QED with operators related by the equations of motion. To determine the coefficients of such operators, we perform the nonrelativistic expansion of Q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8159v2-abstract-full').style.display = 'inline'; document.getElementById('1407.8159v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.8159v2-abstract-full" style="display: none;"> We show that inconsistency between background field methods, which are relevant for lattice QCD spectroscopy, and effective field theory matching conditions, which are obtained from scattering amplitudes, can be resolved by augmenting nonrelativistic QED with operators related by the equations of motion. To determine the coefficients of such operators, we perform the nonrelativistic expansion of QED for a spin-half hadron including non-minimal electromagnetic couplings. As an effective field theory framework could provide a valuable tool to analyze lattice QCD correlation functions in external fields, we investigate whether nonrelativistic QED can be used to this end. We argue, however, that the most desirable approach is a hybrid one, which combines a relativistic hadron theory with operator selection based on nonrelativistic QED power counting. In this hybrid framework, new results are obtained for charged spin-half hadrons in uniform magnetic fields, including a proper treatment of Landau levels both in infinite volume and on a torus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8159v2-abstract-full').style.display = 'none'; document.getElementById('1407.8159v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1082 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 074036 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.4059">arXiv:1407.4059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.4059">pdf</a>, <a href="https://arxiv.org/ps/1407.4059">ps</a>, <a href="https://arxiv.org/format/1407.4059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.054508">10.1103/PhysRevD.90.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite Volume Effects on the Extraction of Form Factors at Zero Momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.4059v1-abstract-short" style="display: inline;"> Hadronic matrix elements that depend on momentum are required for numerous phenomenological applications. Probing the low-momentum regime is often problematic for lattice QCD computations on account of the restriction to periodic momentum modes. Recently a novel method has been proposed to compute matrix elements at zero momentum, for which straightforward evaluation of the matrix elements would o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4059v1-abstract-full').style.display = 'inline'; document.getElementById('1407.4059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.4059v1-abstract-full" style="display: none;"> Hadronic matrix elements that depend on momentum are required for numerous phenomenological applications. Probing the low-momentum regime is often problematic for lattice QCD computations on account of the restriction to periodic momentum modes. Recently a novel method has been proposed to compute matrix elements at zero momentum, for which straightforward evaluation of the matrix elements would otherwise yield a vanishing result. We clarify an assumption underlying this method, and thereby establish the theoretical framework required to address the associated finite volume effects. Using the pion electromagnetic form factor as an example, we show how the charge radius and two higher moments can be calculated at zero momentum transfer, and determine the corresponding finite volume effects. These computations are performed using chiral perturbation theory to account for modified infrared physics, and can be generalized to ascertain finite volume effects for other hadronic matrix elements extracted at zero momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4059v1-abstract-full').style.display = 'none'; document.getElementById('1407.4059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1083 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 054508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.0878">arXiv:1403.0878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.0878">pdf</a>, <a href="https://arxiv.org/ps/1403.0878">ps</a>, <a href="https://arxiv.org/format/1403.0878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.074019">10.1103/PhysRevD.89.074019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron in a Strong Magnetic Field: Finite Volume Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.0878v1-abstract-short" style="display: inline;"> We investigate the neutron&#39;s response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from non-vanishing holonomies. The determination of such effects necessitates non-perturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0878v1-abstract-full').style.display = 'inline'; document.getElementById('1403.0878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.0878v1-abstract-full" style="display: none;"> We investigate the neutron&#39;s response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from non-vanishing holonomies. The determination of such effects necessitates non-perturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coordinate-dependent effective potential that we obtain by integrating out charged pions winding around the torus. Knowledge of these finite volume effects will aid in the extraction of neutron properties from lattice QCD computations in external magnetic fields. In particular, we obtain finite volume corrections to the neutron magnetic moment and magnetic polarizability. These quantities have not been computed correctly in the literature. In addition to effects from non-vanishing holonomies, finite volume corrections depend on the magnetic flux quantum through an Aharonov-Bohm effect. We make a number of observations that demonstrate the importance of non-perturbative effects from strong magnetic fields currently employed in lattice QCD calculations. These observations concern neutron physics in both finite and infinite volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0878v1-abstract-full').style.display = 'none'; document.getElementById('1403.0878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1061 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 074019 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3969">arXiv:1312.3969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3969">pdf</a>, <a href="https://arxiv.org/ps/1312.3969">ps</a>, <a href="https://arxiv.org/format/1312.3969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.054017">10.1103/PhysRevD.89.054017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Electromagnetic Fields and NRQED Matching: Scalar Case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3969v1-abstract-short" style="display: inline;"> The low-energy structure of hadrons can be described systematically using effective field theory, and the parameters of the effective theory can be determined from lattice QCD computations. Recent work, however, points to inconsistencies between the background field method in lattice QCD and effective field theory matching conditions. We show that the background field problem necessitates inclusio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3969v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3969v1-abstract-full" style="display: none;"> The low-energy structure of hadrons can be described systematically using effective field theory, and the parameters of the effective theory can be determined from lattice QCD computations. Recent work, however, points to inconsistencies between the background field method in lattice QCD and effective field theory matching conditions. We show that the background field problem necessitates inclusion of operators related by equations of motion. In the presence of time-dependent electromagnetic fields, for example, such operators modify Green&#39;s functions, thereby complicating the isolation of hadronic parameters which enter on-shell scattering amplitudes. The particularly simple case of a scalar hadron coupled to uniform electromagnetic fields is investigated in detail. At the level of the relativistic effective theory, operators related by equations of motion are demonstrated to be innocuous. The same result does not hold in the non-relativistic effective theory, and inconsistencies in matching are resolved by carefully treating operators related by equations of motion. As uniform external fields potentially allow for surface terms, the problem is additionally analyzed on a torus where such terms are absent. Finite-size corrections are derived for charged scalar correlation functions in uniform electric fields as a useful byproduct. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3969v1-abstract-full').style.display = 'none'; document.getElementById('1312.3969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1054 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 054017 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2243">arXiv:1308.2243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.2243">pdf</a>, <a href="https://arxiv.org/ps/1308.2243">ps</a>, <a href="https://arxiv.org/format/1308.2243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Restoration of Chiral Symmetry from a Boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2243v1-abstract-short" style="display: inline;"> The imposition of Dirichlet boundary conditions in lattice computations obstructs the formation of a chiral condensate. We use chiral perturbation theory and meson models to address the effect of a Dirichlet boundary on chiral symmetry breaking. While pions are the longest-range modes in QCD, the restoration of chiral symmetry due to a boundary is shown not to depend upon the pion Compton waveleng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2243v1-abstract-full').style.display = 'inline'; document.getElementById('1308.2243v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2243v1-abstract-full" style="display: none;"> The imposition of Dirichlet boundary conditions in lattice computations obstructs the formation of a chiral condensate. We use chiral perturbation theory and meson models to address the effect of a Dirichlet boundary on chiral symmetry breaking. While pions are the longest-range modes in QCD, the restoration of chiral symmetry due to a boundary is shown not to depend upon the pion Compton wavelength but rather on that of the sigma meson. Power-law finite size corrections are exposed, and require prohibitively large lattices to overcome. We further speculate on the frustration of the chiral condensate for the case of confinement to the surface of a sphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2243v1-abstract-full').style.display = 'none'; document.getElementById('1308.2243v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, talk presented at 31st International Symposium on Lattice Field Theory, July 29 - August 3, 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.6645">arXiv:1302.6645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.6645">pdf</a>, <a href="https://arxiv.org/ps/1302.6645">ps</a>, <a href="https://arxiv.org/format/1302.6645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.034027">10.1103/PhysRevD.88.034027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Symmetry Restoration from a Boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.6645v2-abstract-short" style="display: inline;"> The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are sometimes employed in lattice gauge theory computations, for example, when incl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.6645v2-abstract-full').style.display = 'inline'; document.getElementById('1302.6645v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.6645v2-abstract-full" style="display: none;"> The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are sometimes employed in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. We show the restoration of chiral symmetry due to a boundary is a non-perturbative phenomenon depending upon the mechanism of spontaneous symmetry breaking, and utilize the sigma model to exemplify the issues. Within this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral condensate forms centered about the midpoint of the compact direction. While the volume-averaged condensate approaches the infinite volume value as the compact direction becomes very long, the finite-size corrections are shown to be power law rather than exponential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.6645v2-abstract-full').style.display = 'none'; document.getElementById('1302.6645v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, v2 refs added, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1009, NSF-KITP-13-034 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 034027 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4622">arXiv:1301.4622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4622">pdf</a>, <a href="https://arxiv.org/ps/1301.4622">ps</a>, <a href="https://arxiv.org/format/1301.4622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Methods for Hadronic Polarizabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4622v1-abstract-short" style="display: inline;"> Chiral dynamics makes definitive predictions for the electromagnetic polarizabilities of hadrons near the chiral limit; but, agreement with experiment is tenuous in some cases. We provide an overview of lattice QCD methods to compute the electric and magnetic polarizabilities of hadrons. Central to these methods is the lattice simulation of quarks in uniform, classical electromagnetic fields. A lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4622v1-abstract-full').style.display = 'inline'; document.getElementById('1301.4622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4622v1-abstract-full" style="display: none;"> Chiral dynamics makes definitive predictions for the electromagnetic polarizabilities of hadrons near the chiral limit; but, agreement with experiment is tenuous in some cases. We provide an overview of lattice QCD methods to compute the electric and magnetic polarizabilities of hadrons. Central to these methods is the lattice simulation of quarks in uniform, classical electromagnetic fields. A long-term goal is the determination of polarizabilities directly from lattice computations, however, in the near term, one may need to rely on partially quenched chiral perturbation theory. Nonetheless the same striking predictions for the pion mass dependence of electric and magnetic polarizabilities can be made from chiral dynamics, and tested with lattice QCD. A particular focus is a novel new method to handle charged particle correlation functions in magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4622v1-abstract-full').style.display = 'none'; document.getElementById('1301.4622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, talk given at the 7th International Workshop on Chiral Dynamics, August 6-10, 2012, Jefferson Lab, Newport News, VA, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC 1002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.4464">arXiv:1210.4464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.4464">pdf</a>, <a href="https://arxiv.org/ps/1210.4464">ps</a>, <a href="https://arxiv.org/format/1210.4464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.054507">10.1103/PhysRevD.87.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Method to Extract Charged Hadron Properties from Lattice QCD in Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vayl%2C+S+O">S. O. Vayl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.4464v2-abstract-short" style="display: inline;"> By analyzing the external field dependence of correlation functions, the magnetic properties of hadrons can be determined using lattice QCD in magnetic fields. To compute the magnetic moments and polarizabilities of charged hadrons, for example, one requires sufficiently weak magnetic fields. Such field strengths, however, lead to closely spaced Landau levels that are not straightforwardly resolve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.4464v2-abstract-full').style.display = 'inline'; document.getElementById('1210.4464v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.4464v2-abstract-full" style="display: none;"> By analyzing the external field dependence of correlation functions, the magnetic properties of hadrons can be determined using lattice QCD in magnetic fields. To compute the magnetic moments and polarizabilities of charged hadrons, for example, one requires sufficiently weak magnetic fields. Such field strengths, however, lead to closely spaced Landau levels that are not straightforwardly resolved using standard lattice spectroscopy. Focusing on charged spinless hadrons, we introduce a simple projection technique that can be used to isolate the lowest Landau level. As the technique requires the explicit coordinate-space wave-function, we investigate the extent to which the continuum, infinite volume wave-function can be employed. We find that, in practice, the effects of discretization can be handled using a perturbative expansion about the continuum. Finite volume corrections are taken into account by using the discrete magnetic translational invariance of the torus. We show that quantized magnetic fields can lead to pernicious volume effects which depend on the magnetic flux quantum, rather than on the lattice volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.4464v2-abstract-full').style.display = 'none'; document.getElementById('1210.4464v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures, v.2 clarifications made, numerical section added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-963 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.4852">arXiv:1201.4852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.4852">pdf</a>, <a href="https://arxiv.org/ps/1201.4852">ps</a>, <a href="https://arxiv.org/format/1201.4852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.054020">10.1103/PhysRevD.85.054020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic Parity Violation at Next-to-Leading Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.4852v2-abstract-short" style="display: inline;"> The flavor-conserving non-leptonic weak interaction can be studied experimentally through the observation of parity violation in nuclear and few-body systems. At hadronic scales, matrix elements of parity-violating four-quark operators ultimately give rise to the parity violating couplings between hadrons, and such matrix elements can be calculated non-perturbatively using lattice QCD. In this wor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4852v2-abstract-full').style.display = 'inline'; document.getElementById('1201.4852v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.4852v2-abstract-full" style="display: none;"> The flavor-conserving non-leptonic weak interaction can be studied experimentally through the observation of parity violation in nuclear and few-body systems. At hadronic scales, matrix elements of parity-violating four-quark operators ultimately give rise to the parity violating couplings between hadrons, and such matrix elements can be calculated non-perturbatively using lattice QCD. In this work, we investigate the running of isovector parity-violating operators from the weak scale down to hadronic scales using the renormalization group. We work at next-to-leading order in the QCD coupling, and include both neutral-current and charged-current interactions. At this order, results are renormalization scheme dependent, and we utilize &#39;t Hooft-Veltman dimensional regularization. The evolution of Wilson coefficients at leading and next-to-leading order is compared. Next-to-leading order effects are shown to be non-negligible at hadronic scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4852v2-abstract-full').style.display = 'none'; document.getElementById('1201.4852v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures, v2: statements pertaining to isovector parity violation corrected, refs added, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC 940 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.6842">arXiv:1110.6842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.6842">pdf</a>, <a href="https://arxiv.org/format/1110.6842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD with Classical and Quantum Electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.6842v2-abstract-short" style="display: inline;"> We are doubtlessly familiar with some edition of Jackson&#39;s tome on electrodynamics, and Schwinger&#39;s calculation of the anomalous magnetic moment of the electron in QED. From the perspective of strong interactions, however, electromagnetic effects usually amount to negligible contributions. Despite this fact, electromagnetic probes have always been a fundamental source for our knowledge of QCD expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6842v2-abstract-full').style.display = 'inline'; document.getElementById('1110.6842v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.6842v2-abstract-full" style="display: none;"> We are doubtlessly familiar with some edition of Jackson&#39;s tome on electrodynamics, and Schwinger&#39;s calculation of the anomalous magnetic moment of the electron in QED. From the perspective of strong interactions, however, electromagnetic effects usually amount to negligible contributions. Despite this fact, electromagnetic probes have always been a fundamental source for our knowledge of QCD experimentally. Elastic scattering of electrons off nucleons provides us a window to their distributions of charge and magnetism. To account for the spectrum of QCD at the percent level, moreover, we need isospin breaking introduced from both quark masses and electric charges. This overview concerns some of the prospects and progress of studying electromagnetic effects in QCD. Our focus is divided between classical and quantum effects. In classical electromagnetic fields, the dynamical response of QCD to external conditions can be investigated. The vacuum and hadrons alike should be viewed as media which respond to external fields: both magnetize and polarize in magnetic fields, for example. At the quantum level, electromagnetism and QCD renormalize each other. In the era of high precision lattice computations, both strong and electromagnetic contributions must be accounted for to make predictions at the percent level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6842v2-abstract-full').style.display = 'none'; document.getElementById('1110.6842v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, talk given at the XXIX International Symposium on Lattice Field Theory, July 10-16, 2011, Squaw Valley, Lake Tahoe, v2. refs. added, some improved discussion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 4314; RBRC 926 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.3093">arXiv:1109.3093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.3093">pdf</a>, <a href="https://arxiv.org/format/1109.3093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The Fermion Sign Problem at Finite Density, and Large Nc Orbifold Equivalence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cherman%2C+A">Aleksey Cherman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.3093v1-abstract-short" style="display: inline;"> The study of QCD at finite baryon density is severely hampered by the so-called fermion sign problem. As a result, we have no known first principles approach to study nuclear matter, or neutron stars from QCD. On the surface, the large Nc limit does not seem to simplify matters. In this limit, however, one can exploit dualities that exist between strongly coupled gauge theories. Our focus will be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3093v1-abstract-full').style.display = 'inline'; document.getElementById('1109.3093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.3093v1-abstract-full" style="display: none;"> The study of QCD at finite baryon density is severely hampered by the so-called fermion sign problem. As a result, we have no known first principles approach to study nuclear matter, or neutron stars from QCD. On the surface, the large Nc limit does not seem to simplify matters. In this limit, however, one can exploit dualities that exist between strongly coupled gauge theories. Our focus will be on some rather novel orbifold equivalences that have recently been discovered at finite density. These equivalences relate strongly coupled theories plagued by a sign problem, to strongly coupled theories free of sign problems. As a result, such dualities give deeper insight into the nature of the sign problem and possibly provide a way to simulate QCD at finite density in the large Nc limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.3093v1-abstract-full').style.display = 'none'; document.getElementById('1109.3093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, talk given by BCT at DPF 2011, Providence, Rhode Island, USA, 9-13 Aug 2011</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 4296, RBRC 925 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.1698">arXiv:1108.1698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.1698">pdf</a>, <a href="https://arxiv.org/ps/1108.1698">ps</a>, <a href="https://arxiv.org/format/1108.1698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3700501">10.1063/1.3700501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic Polarizabilities: Lattice QCD in Background Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.1698v1-abstract-short" style="display: inline;"> Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-roo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1698v1-abstract-full').style.display = 'inline'; document.getElementById('1108.1698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.1698v1-abstract-full" style="display: none;"> Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI纬S. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1698v1-abstract-full').style.display = 'none'; document.getElementById('1108.1698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, talk given by B. C. Tiburzi at PANIC 2011</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 4286, UCB-NPAT-11-011, NT-LBNL-11-015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.1639">arXiv:1103.1639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.1639">pdf</a>, <a href="https://arxiv.org/format/1103.1639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2011)034">10.1007/JHEP06(2011)034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbifold equivalence for finite density QCD and effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cherman%2C+A">Aleksey Cherman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.1639v2-abstract-short" style="display: inline;"> In the large N_c limit, some apparently different gauge theories turn out to be equivalent due to large N_c orbifold equivalence. We use effective field theory techniques to explore orbifold equivalence, focusing on the specific case of a recently discovered relation between an SO(2N_c) gauge theory and QCD. The equivalence to QCD has been argued to hold at finite baryon chemical potential, 渭_B, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.1639v2-abstract-full').style.display = 'inline'; document.getElementById('1103.1639v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.1639v2-abstract-full" style="display: none;"> In the large N_c limit, some apparently different gauge theories turn out to be equivalent due to large N_c orbifold equivalence. We use effective field theory techniques to explore orbifold equivalence, focusing on the specific case of a recently discovered relation between an SO(2N_c) gauge theory and QCD. The equivalence to QCD has been argued to hold at finite baryon chemical potential, 渭_B, so long as one deforms the SO(2N_c) theory by certain &#34;double-trace&#34; terms. The deformed SO(2N_c) theory can be studied without a sign problem in the chiral limit, in contrast to SU(N_c) QCD at finite 渭_B. The purpose of the double-trace deformation in the SO(2N_c) theory is to prevent baryon number symmetry from breaking spontaneously at finite density, which is necessary for the equivalence to large N_c QCD to be valid. The effective field theory analysis presented here clarifies the physical significance of double-trace deformations, and strongly supports the proposed equivalence between the deformed SO(2N_c) theory and large N_c QCD at finite density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.1639v2-abstract-full').style.display = 'none'; document.getElementById('1103.1639v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 5 figures, 2 tables. v2: Minor typo fixes and clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DAMTP-2011-14, MIT-CTP-4225 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1106:034,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.1302">arXiv:1011.1302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.1302">pdf</a>, <a href="https://arxiv.org/ps/1011.1302">ps</a>, <a href="https://arxiv.org/format/1011.1302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Axial and electromagnetic observables of hyperons in 2-flavor chiral perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+F+-">F. -J. Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.1302v1-abstract-short" style="display: inline;"> Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although in principle one can formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of such two-flavor theories in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.1302v1-abstract-full').style.display = 'inline'; document.getElementById('1011.1302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.1302v1-abstract-full" style="display: none;"> Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although in principle one can formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of such two-flavor theories in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their isovector axial charges and electromagnetic observables. In particular we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is under theoretical control. As a result, the virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of $SU(2)$ chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. We find that, despite the fact that higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative, there is a useful perturbative expansion for isovector axial charges and magnetic moments of both spin-half and spin three-half hyperons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.1302v1-abstract-full').style.display = 'none'; document.getElementById('1011.1302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, talk given at the XXVIII International Symposium on Lattice Filed Theory, June 14-19,2010, Villasimius, Sardinia Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:086,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.2011">arXiv:1008.2011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.2011">pdf</a>, <a href="https://arxiv.org/format/1008.2011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Magnetic Moments and Electric Polarizabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.2011v1-abstract-short" style="display: inline;"> Electromagnetic properties of the nucleon are explored with lattice QCD using a novel technique. Focusing on background electric fields, we show how the electric polarizability can be extracted from nucleon correlation functions. A crucial step concerns addressing contributions from the magnetic moment, which affects the relativistic propagation of nucleons in electric fields. By properly handing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.2011v1-abstract-full').style.display = 'inline'; document.getElementById('1008.2011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.2011v1-abstract-full" style="display: none;"> Electromagnetic properties of the nucleon are explored with lattice QCD using a novel technique. Focusing on background electric fields, we show how the electric polarizability can be extracted from nucleon correlation functions. A crucial step concerns addressing contributions from the magnetic moment, which affects the relativistic propagation of nucleons in electric fields. By properly handing these contributions, we can determine both magnetic moments and electric polarizabilities. Lattice results from anisotropic clover lattices are presented. Our method is not limited to the neutron; we show results for the proton as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.2011v1-abstract-full').style.display = 'none'; document.getElementById('1008.2011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, talk given at the XXVIII International Symposium on Lattice Field Theory, Villasimius, Italy, June 14-19, 2010</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-10-1210, UMD-40762-486 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:161,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.0172">arXiv:1006.0172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.0172">pdf</a>, <a href="https://arxiv.org/ps/1006.0172">ps</a>, <a href="https://arxiv.org/format/1006.0172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.034511">10.1103/PhysRevD.82.034511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Lattice Fermions, Minimal Doubling, and the Axial Anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.0172v3-abstract-short" style="display: inline;"> Exact chiral symmetry at finite lattice spacing would preclude the axial anomaly. In order to describe a continuum quantum field theory of Dirac fermions, lattice actions with purported exact chiral symmetry must break the flavor-singlet axial symmetry. We demonstrate that this is indeed the case by using a minimally doubled fermion action. For simplicity we consider the Abelian axial anomaly in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0172v3-abstract-full').style.display = 'inline'; document.getElementById('1006.0172v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.0172v3-abstract-full" style="display: none;"> Exact chiral symmetry at finite lattice spacing would preclude the axial anomaly. In order to describe a continuum quantum field theory of Dirac fermions, lattice actions with purported exact chiral symmetry must break the flavor-singlet axial symmetry. We demonstrate that this is indeed the case by using a minimally doubled fermion action. For simplicity we consider the Abelian axial anomaly in two dimensions. At finite lattice spacing and with gauge interactions, the axial anomaly arises from non-conservation of the flavor-singlet current. Similar non-conservation also leads to the axial anomaly in the case of the naive lattice action. For minimally doubled actions, however, fine tuning of the action and axial current is necessary to arrive at the anomaly. Conservation of the flavor non-singlet vector current additionally requires the current to be fine tuned. Finally we determine that the chiral projection of a minimally doubled fermion action can be used to arrive at a lattice theory with an undoubled Dirac fermion possessing the correct anomaly in the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0172v3-abstract-full').style.display = 'none'; document.getElementById('1006.0172v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 1 figure, symmetries corrected, Symanzik analysis for currents added, marginal operators exposed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-40762-479, INT-PUB-10-023 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:034511,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.1131">arXiv:1001.1131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.1131">pdf</a>, <a href="https://arxiv.org/ps/1001.1131">ps</a>, <a href="https://arxiv.org/format/1001.1131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.054502">10.1103/PhysRevD.81.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.1131v2-abstract-short" style="display: inline;"> Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. This is analogous to the experimental situation, for which determination of polarizabilities from the Compton amplitude requires subtraction of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.1131v2-abstract-full').style.display = 'inline'; document.getElementById('1001.1131v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.1131v2-abstract-full" style="display: none;"> Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. This is analogous to the experimental situation, for which determination of polarizabilities from the Compton amplitude requires subtraction of Born terms. With the background field method, we devise combinations of nucleon correlation functions in constant electric fields that isolate magnetic moments and electric polarizabilities. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how both observables can be determined from lattice QCD simulations in background electric fields. We obtain results for the neutron and proton, however, our study is currently limited to electrically neutral sea quarks. The value we extract for the nucleon isovector magnetic moment is comparable to those obtained from measuring lattice three-point functions at similar pion masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.1131v2-abstract-full').style.display = 'none'; document.getElementById('1001.1131v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures, v2. discussion improved, some figures updated, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-09-1111, UMD-40762-474 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:054502,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.2077">arXiv:0912.2077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.2077">pdf</a>, <a href="https://arxiv.org/ps/0912.2077">ps</a>, <a href="https://arxiv.org/format/0912.2077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.034017">10.1103/PhysRevD.81.034017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperon Electromagnetic Properties in Two-Flavor Chiral Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+F">Fu-Jiun Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.2077v3-abstract-short" style="display: inline;"> The pion mass dependence of hyperon electromagnetic properties is determined using two-flavor heavy baryon chiral perturbation theory. Specifically we compute chiral corrections to the charge radii, magnetic moments, and magnetic radii of the spin one-half hyperons, as well as the charge radii, magnetic moments, magnetic radii, electric quadrupole moments, and quadrupole radii of the spin three-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2077v3-abstract-full').style.display = 'inline'; document.getElementById('0912.2077v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.2077v3-abstract-full" style="display: none;"> The pion mass dependence of hyperon electromagnetic properties is determined using two-flavor heavy baryon chiral perturbation theory. Specifically we compute chiral corrections to the charge radii, magnetic moments, and magnetic radii of the spin one-half hyperons, as well as the charge radii, magnetic moments, magnetic radii, electric quadrupole moments, and quadrupole radii of the spin three-half hyperons. Results for the nucleon and delta are also included. Efficacy of the two-flavor theory is investigated by analyzing the role played by virtual kaons. For the electromagnetic properties of spin one-half hyperons, kaon loop contributions are shown to be well described by terms analytic in the pion mass squared. Similarly kaon contributions to the magnetic moments of spin three-half hyperons are well described in the two-flavor theory. The remaining electromagnetic properties of spin three-half resonances can be described in two-flavor chiral perturbation theory, however, this description fails just beyond the physical pion mass. For the case of experimentally known hyperon magnetic moments and charge radii, we demonstrate that chiral corrections are under reasonable control, in contrast to the behavior of these observables in the three-flavor chiral expansion. The formulae we derive are ideal for performing the pion mass extrapolation of lattice QCD data obtained at the physical strange quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2077v3-abstract-full').style.display = 'none'; document.getElementById('0912.2077v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures, v3: published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4093, UMD-40762-458 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:034017,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.4721">arXiv:0911.4721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.4721">pdf</a>, <a href="https://arxiv.org/ps/0911.4721">ps</a>, <a href="https://arxiv.org/format/0911.4721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2010.11.003">10.1016/j.physletb.2010.11.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kaon Thresholds and Two-Flavor Chiral Expansions for Hyperons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jiang%2C+F">Fu-Jiun Jiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.4721v2-abstract-short" style="display: inline;"> Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4721v2-abstract-full').style.display = 'inline'; document.getElementById('0911.4721v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.4721v2-abstract-full" style="display: none;"> Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking effects, we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half hyperons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.4721v2-abstract-full').style.display = 'none'; document.getElementById('0911.4721v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4090, UMD-40762-473 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B695:329-336,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.5148">arXiv:0910.5148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.5148">pdf</a>, <a href="https://arxiv.org/ps/0910.5148">ps</a>, <a href="https://arxiv.org/format/0910.5148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charged Hadron Properties in Background Electric Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.5148v2-abstract-short" style="display: inline;"> We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.5148v2-abstract-full" style="display: none;"> We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.5148v2-abstract-full').style.display = 'none'; document.getElementById('0910.5148v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at The XXVII International Symposium on Lattice Field Theory, July 26-31 2009, Peking University, Beijing, China: v2 typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:158,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.4595">arXiv:0910.4595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.4595">pdf</a>, <a href="https://arxiv.org/ps/0910.4595">ps</a>, <a href="https://arxiv.org/format/0910.4595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.80.114501">10.1103/PhysRevD.80.114501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson-Baryon Scattering Parameters from Lattice QCD with an Isospin Chemical Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">Paulo F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.4595v1-abstract-short" style="display: inline;"> The extraction of meson-baryon scattering parameters from lattice QCD is complicated by the necessity, in some channels, of including annihilation diagrams. We consider a strategy to avoid the need for these extremely costly and noisy contributions. The strategy is based on simulations with an isospin chemical potential which, contrary to a baryon chemical potential, has no sign problem. When th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4595v1-abstract-full').style.display = 'inline'; document.getElementById('0910.4595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.4595v1-abstract-full" style="display: none;"> The extraction of meson-baryon scattering parameters from lattice QCD is complicated by the necessity, in some channels, of including annihilation diagrams. We consider a strategy to avoid the need for these extremely costly and noisy contributions. The strategy is based on simulations with an isospin chemical potential which, contrary to a baryon chemical potential, has no sign problem. When the isospin chemical potential is larger than a critical value, a charged pion condensate forms. Baryons propagating in the pion condensate will have their masses modified by pion-baryon scattering parameters. Consequently these parameters can be extracted from lattice QCD simulations in an isospin chemical potential, and we detail precisely which low-energy constants using baryon chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.4595v1-abstract-full').style.display = 'none'; document.getElementById('0910.4595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-40762-467 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D80:114501,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.3626">arXiv:0908.3626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.3626">pdf</a>, <a href="https://arxiv.org/ps/0908.3626">ps</a>, <a href="https://arxiv.org/format/0908.3626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD in Background Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.3626v1-abstract-short" style="display: inline;"> Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.3626v1-abstract-full').style.display = 'inline'; document.getElementById('0908.3626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.3626v1-abstract-full" style="display: none;"> Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.3626v1-abstract-full').style.display = 'none'; document.getElementById('0908.3626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, talk given by B. C. Tiburzi at the 10th Workshop on Non-Perturbative QCD, June 8-12, 2009, Paris, France</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-09-1052, UMD-40762-462 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.2582">arXiv:0908.2582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.2582">pdf</a>, <a href="https://arxiv.org/ps/0908.2582">ps</a>, <a href="https://arxiv.org/format/0908.2582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-Flavor Chiral Perturbation Theory for Hyperons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.2582v1-abstract-short" style="display: inline;"> The three-flavor chiral expansion for octet baryons has well-known problems with convergence. We show that this three-flavor chiral expansion can be reorganized into a two-flavor expansion thereby eliminating large kaon and eta loop contributions. Issues of the underlying formulation are addressed by considering the effect of strangeness changing thresholds on hyperon masses. While the spin-3/2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2582v1-abstract-full').style.display = 'inline'; document.getElementById('0908.2582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.2582v1-abstract-full" style="display: none;"> The three-flavor chiral expansion for octet baryons has well-known problems with convergence. We show that this three-flavor chiral expansion can be reorganized into a two-flavor expansion thereby eliminating large kaon and eta loop contributions. Issues of the underlying formulation are addressed by considering the effect of strangeness changing thresholds on hyperon masses. While the spin-3/2 hyperon resonances are considerably more sensitive to these thresholds compared to the spin-1/2 hyperons, we demonstrate that in both cases the essential physics can be captured in the two-flavor effective theory by terms that are analytic in the pion mass squared, but non-analytic in the strange quark mass. Using the two-flavor theory of hyperons, baryon masses and axial charges are investigated. Loop contributions in the two-flavor theory appear to be perturbatively under control. A natural application for our development is to study the pion mass dependence of lattice QCD data on hyperon properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2582v1-abstract-full').style.display = 'none'; document.getElementById('0908.2582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, talk given at 6th International Workshop on Chiral Dynamics, July 6-10, 2009, Bern Switzerland</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-40762-463 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS CD09:018,2009 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tiburzi%2C+B+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10