CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 75 results for author: <span class="mathjax">Shanahan, P E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shanahan, P E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shanahan%2C+P+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shanahan, P E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02185">arXiv:2411.02185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02185">pdf</a>, <a href="https://arxiv.org/ps/2411.02185">ps</a>, <a href="https://arxiv.org/format/2411.02185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Small-scale Hamiltonian optimization of interpolating operators for Lagrangian lattice quantum field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avkhadiev%2C+A">Artur Avkhadiev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%BChn%2C+S">Stefan K眉hn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02185v1-abstract-short" style="display: inline;"> Lattice quantum field theory calculations may potentially combine the advantages of Hamiltonian formulations with the scalability and control of conventional Lagrangian frameworks. However, such hybrid approaches need to consider (1) the differences in renormalized coupling values between the two formulations, and (2) finite-volume and discretization effects when the Hamiltonian component of the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02185v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02185v1-abstract-full" style="display: none;"> Lattice quantum field theory calculations may potentially combine the advantages of Hamiltonian formulations with the scalability and control of conventional Lagrangian frameworks. However, such hybrid approaches need to consider (1) the differences in renormalized coupling values between the two formulations, and (2) finite-volume and discretization effects when the Hamiltonian component of the calculation is characterized by a smaller volume or coarser lattice spacing than the Lagrangian component. This work investigates the role of both factors in the application of Hamiltonian-optimized interpolating operator constructions for the conventional Lagrangian framework. The numerical investigation is realized for the pseudoscalar meson in the Schwinger model, using tensor-network and Monte-Carlo calculations. It is demonstrated that tensor-network-optimized constructions are robust to both (1) and (2). In particular, accurate optimized constructions for the pseudoscalar meson can be obtained from calculations with a smaller number of Hamiltonian lattice sites, even when the meson mass itself receives significant finite-volume corrections. To the extent that these results generalize to theories with more complicated spectra, the method holds promise for near-term applications in large-scale calculations of lattice quantum field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02185v1-abstract-full').style.display = 'none'; document.getElementById('2411.02185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5745 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03602">arXiv:2410.03602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03602">pdf</a>, <a href="https://arxiv.org/format/2410.03602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Exploring gauge-fixing conditions with gradient-based optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03602v1-abstract-short" style="display: inline;"> Lattice gauge fixing is required to compute gauge-variant quantities, for example those used in RI-MOM renormalization schemes or as objects of comparison for model calculations. Recently, gauge-variant quantities have also been found to be more amenable to signal-to-noise optimization using contour deformations. These applications motivate systematic parameterization and exploration of gauge-fixi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03602v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03602v1-abstract-full" style="display: none;"> Lattice gauge fixing is required to compute gauge-variant quantities, for example those used in RI-MOM renormalization schemes or as objects of comparison for model calculations. Recently, gauge-variant quantities have also been found to be more amenable to signal-to-noise optimization using contour deformations. These applications motivate systematic parameterization and exploration of gauge-fixing schemes. This work introduces a differentiable parameterization of gauge fixing which is broad enough to cover Landau gauge, Coulomb gauge, and maximal tree gauges. The adjoint state method allows gradient-based optimization to select gauge-fixing schemes that minimize an arbitrary target loss function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03602v1-abstract-full').style.display = 'none'; document.getElementById('2410.03602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures; Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5786 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09273">arXiv:2406.09273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09273">pdf</a>, <a href="https://arxiv.org/format/2406.09273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD constraints on isospin-dense matter and the nuclear equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09273v2-abstract-short" style="display: inline;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodyn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09273v2-abstract-full" style="display: none;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodynamic quantities and the equation of state of QCD over a wide range of isospin chemical potentials. Agreement is seen with chiral perturbation theory predictions when the chemical potential is small. Comparison to perturbative QCD calculations at large chemical potential allows for an estimate of the gap in the superconducting phase, and this quantity is seen to agree with perturbative determinations. Since the partition function for an isospin chemical potential, $渭_I$, bounds the partition function for a baryon chemical potential $渭_B=3渭_I/2$, these calculations also provide rigorous non-perturbative QCD bounds on the symmetric nuclear matter equation of state over a wide range of baryon densities for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'none'; document.getElementById('2406.09273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures, updated with supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5730,FERMILAB-PUB-24-0333-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12039">arXiv:2404.12039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12039">pdf</a>, <a href="https://arxiv.org/format/2404.12039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the finite volume two-nucleon spectrum at $m_蟺\approx 806$ MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12039v2-abstract-short" style="display: inline;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12039v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12039v2-abstract-full" style="display: none;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'none'; document.getElementById('2404.12039v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results, discussion, and conclusions. 46 pages, 19 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0126-T, MIT-CTP/5700 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11674">arXiv:2404.11674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11674">pdf</a>, <a href="https://arxiv.org/format/2404.11674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Practical applications of machine-learned flows on gauge fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11674v1-abstract-short" style="display: inline;"> Normalizing flows are machine-learned maps between different lattice theories which can be used as components in exact sampling and inference schemes. Ongoing work yields increasingly expressive flows on gauge fields, but it remains an open question how flows can improve lattice QCD at state-of-the-art scales. We discuss and demonstrate two applications of flows in replica exchange (parallel tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11674v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11674v1-abstract-full" style="display: none;"> Normalizing flows are machine-learned maps between different lattice theories which can be used as components in exact sampling and inference schemes. Ongoing work yields increasingly expressive flows on gauge fields, but it remains an open question how flows can improve lattice QCD at state-of-the-art scales. We discuss and demonstrate two applications of flows in replica exchange (parallel tempering) sampling, aimed at improving topological mixing, which are viable with iterative improvements upon presently available flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11674v1-abstract-full').style.display = 'none'; document.getElementById('2404.11674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, proceedings of the 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-24-0007-T, MIT-CTP/5669 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10819">arXiv:2404.10819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10819">pdf</a>, <a href="https://arxiv.org/format/2404.10819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Multiscale Normalizing Flows for Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10819v1-abstract-short" style="display: inline;"> Scale separation is an important physical principle that has previously enabled algorithmic advances such as multigrid solvers. Previous work on normalizing flows has been able to utilize scale separation in the context of scalar field theories, but the principle has been largely unexploited in the context of gauge theories. This work gives an overview of a new method for generating gauge fields u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10819v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10819v1-abstract-full" style="display: none;"> Scale separation is an important physical principle that has previously enabled algorithmic advances such as multigrid solvers. Previous work on normalizing flows has been able to utilize scale separation in the context of scalar field theories, but the principle has been largely unexploited in the context of gauge theories. This work gives an overview of a new method for generating gauge fields using hierarchical normalizing flow models. This method builds gauge fields from the outside in, allowing different parts of the model to focus on different scales of the problem. Numerical results are presented for $U(1)$ and $SU(3)$ gauge theories in 2, 3, and 4 spacetime dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10819v1-abstract-full').style.display = 'none'; document.getElementById('2404.10819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as a proceedings to the 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5666,FERMILAB-CONF-24-0008-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00672">arXiv:2403.00672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00672">pdf</a>, <a href="https://arxiv.org/ps/2403.00672">ps</a>, <a href="https://arxiv.org/format/2403.00672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Multi-particle interpolating operators in quantum field theories with cubic symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00672v1-abstract-short" style="display: inline;"> Numerical studies of lattice quantum field theories are conducted in finite spatial volumes, typically with cubic symmetry in the spatial coordinates. Motivated by these studies, this work presents a general algorithm to construct multi-particle interpolating operators for quantum field theories with cubic symmetry. The algorithm automates the block diagonalization required to combine multiple ope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00672v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00672v1-abstract-full" style="display: none;"> Numerical studies of lattice quantum field theories are conducted in finite spatial volumes, typically with cubic symmetry in the spatial coordinates. Motivated by these studies, this work presents a general algorithm to construct multi-particle interpolating operators for quantum field theories with cubic symmetry. The algorithm automates the block diagonalization required to combine multiple operators of definite linear momentum into irreducible representations of the appropriate little group. Examples are given for distinguishable and indistinguishable particles including cases with both zero and non-zero spin. An implementation of the algorithm is publicly available at https://github.com/latticeqcdtools/mhi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00672v1-abstract-full').style.display = 'none'; document.getElementById('2403.00672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages. An implementation of the algorithm is publicly available at https://github.com/latticeqcdtools/mhi</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5685, FERMILAB-PUB-24-0101-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09362">arXiv:2402.09362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09362">pdf</a>, <a href="https://arxiv.org/format/2402.09362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Long-Distance Nuclear Matrix Elements for Neutrinoless Double-Beta Decay from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fu%2C+Z">Zhenghao Fu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W">William Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D">David Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09362v1-abstract-short" style="display: inline;"> Neutrinoless double-beta ($0谓尾尾$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0谓尾尾$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0谓尾尾$ decay in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09362v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09362v1-abstract-full" style="display: none;"> Neutrinoless double-beta ($0谓尾尾$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0谓尾尾$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0谓尾尾$ decay in a multi-nucleon system, specifically the $nn \rightarrow pp ee$ transition, mediated by a light left-handed Majorana neutrino propagating over nuclear-scale distances. This calculation is performed with quark masses corresponding to a pion mass of $m_蟺= 806$ MeV at a single lattice spacing and volume. The statistically cleaner $危^- \rightarrow 危^+ ee$ transition is also computed in order to investigate various systematic uncertainties. The prospects for matching the results of LQCD calculations onto a nuclear effective field theory to determine a leading-order low-energy constant relevant for $0谓尾尾$ decay with a light Majorana neutrino are investigated. This work, therefore, sets the stage for future calculations at physical values of the quark masses that, combined with effective field theory and nuclear many-body studies, will provide controlled theoretical inputs to experimental searches of $0谓尾尾$ decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09362v1-abstract-full').style.display = 'none'; document.getElementById('2402.09362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0067-T, MIT-CTP/5682, UMD-PP-024-03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06725">arXiv:2402.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06725">pdf</a>, <a href="https://arxiv.org/format/2402.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Determination of the Collins-Soper kernel from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avkhadiev%2C+A">Artur Avkhadiev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06725v1-abstract-short" style="display: inline;"> This work presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06725v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06725v1-abstract-full" style="display: none;"> This work presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match lattice-calculable distributions to the corresponding TMDs. The continuum-extrapolated lattice QCD results are consistent with several recent phenomenological parameterizations of the Collins-Soper kernel and are precise enough to disfavor other parameterizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06725v1-abstract-full').style.display = 'none'; document.getElementById('2402.06725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0037-T, MIT-CTP/5677 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06607">arXiv:2402.06607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06607">pdf</a>, <a href="https://arxiv.org/format/2402.06607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2024)211">10.1007/JHEP06(2024)211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time Dynamics of the Schwinger Model as an Open Quantum System with Neural Density Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+J">Joshua Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luo%2C+D">Di Luo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yao%2C+X">Xiaojun Yao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06607v2-abstract-short" style="display: inline;"> Ab-initio simulations of multiple heavy quarks propagating in a Quark-Gluon Plasma are computationally difficult to perform due to the large dimension of the space of density matrices. This work develops machine learning algorithms to overcome this difficulty by approximating exact quantum states with neural network parametrisations, specifically Neural Density Operators. As a proof of principle d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06607v2-abstract-full').style.display = 'inline'; document.getElementById('2402.06607v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06607v2-abstract-full" style="display: none;"> Ab-initio simulations of multiple heavy quarks propagating in a Quark-Gluon Plasma are computationally difficult to perform due to the large dimension of the space of density matrices. This work develops machine learning algorithms to overcome this difficulty by approximating exact quantum states with neural network parametrisations, specifically Neural Density Operators. As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1+1d lattice Schwinger Model as an open quantum system. Neural Density Operators enable the study of in-medium dynamics on large lattice volumes, where multiple-string interactions and their effects on string-breaking and recombination phenomena can be studied. Thermal properties of the system at equilibrium can also be probed with these methods by variationally constructing the steady state of the Lindblad master equation. Scaling of this approach with system size is studied, and numerical demonstrations on up to 32 spatial lattice sites and with up to 3 interacting strings are performed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06607v2-abstract-full').style.display = 'none'; document.getElementById('2402.06607v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures. v2: Updated to journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5679,IQuS@UW-21-073 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP06(2024)211 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10874">arXiv:2401.10874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10874">pdf</a>, <a href="https://arxiv.org/format/2401.10874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Applications of flow models to the generation of correlated lattice QCD ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Botev%2C+A">Aleksandar Botev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10874v2-abstract-short" style="display: inline;"> Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables. Three different proof-of-concept applications are demonstrated using a novel residu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10874v2-abstract-full').style.display = 'inline'; document.getElementById('2401.10874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10874v2-abstract-full" style="display: none;"> Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables. Three different proof-of-concept applications are demonstrated using a novel residual flow architecture: continuum limits of gauge theories, the mass dependence of QCD observables, and hadronic matrix elements based on the Feynman-Hellmann approach. In all three cases, it is shown that statistical uncertainties are significantly reduced when machine-learned flows are incorporated as compared with the same calculations performed with uncorrelated ensembles or direct reweighting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10874v2-abstract-full').style.display = 'none'; document.getElementById('2401.10874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 tables, 5 figures. v2: accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5658, FERMILAB-PUB-24-0014-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08484">arXiv:2310.08484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08484">pdf</a>, <a href="https://arxiv.org/format/2310.08484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.251904">10.1103/PhysRevLett.132.251904 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational form factors of the proton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pefkou%2C+D+A">Dimitra A. Pefkou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08484v3-abstract-short" style="display: inline;"> The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from e.g., its energy density. This work presents a determination of the flavor decomposition of the GFFs of the proton from lattice QCD, in the kinematic region $0\leq -t\leq 2~\text{GeV}^2$. The decomposition into up-, down-, strange-quark, and gluon contribution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08484v3-abstract-full').style.display = 'inline'; document.getElementById('2310.08484v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08484v3-abstract-full" style="display: none;"> The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from e.g., its energy density. This work presents a determination of the flavor decomposition of the GFFs of the proton from lattice QCD, in the kinematic region $0\leq -t\leq 2~\text{GeV}^2$. The decomposition into up-, down-, strange-quark, and gluon contributions provides first-principles constraints on the role of each constituent in generating key proton structure observables, such as its mechanical radius, mass radius, and $D$-term. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08484v3-abstract-full').style.display = 'none'; document.getElementById('2310.08484v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5630,FERMILAB-PUB-23-592-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, Vol. 132, Iss. 25 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01156">arXiv:2309.01156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01156">pdf</a>, <a href="https://arxiv.org/format/2309.01156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-023-00616-w">10.1038/s42254-023-00616-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01156v1-abstract-short" style="display: inline;"> Sampling from known probability distributions is a ubiquitous task in computational science, underlying calculations in domains from linguistics to biology and physics. Generative machine-learning (ML) models have emerged as a promising tool in this space, building on the success of this approach in applications such as image, text, and audio generation. Often, however, generative tasks in scienti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01156v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01156v1-abstract-full" style="display: none;"> Sampling from known probability distributions is a ubiquitous task in computational science, underlying calculations in domains from linguistics to biology and physics. Generative machine-learning (ML) models have emerged as a promising tool in this space, building on the success of this approach in applications such as image, text, and audio generation. Often, however, generative tasks in scientific domains have unique structures and features -- such as complex symmetries and the requirement of exactness guarantees -- that present both challenges and opportunities for ML. This Perspective outlines the advances in ML-based sampling motivated by lattice quantum field theory, in particular for the theory of quantum chromodynamics. Enabling calculations of the structure and interactions of matter from our most fundamental understanding of particle physics, lattice quantum chromodynamics is one of the main consumers of open-science supercomputing worldwide. The design of ML algorithms for this application faces profound challenges, including the necessity of scaling custom ML architectures to the largest supercomputers, but also promises immense benefits, and is spurring a wave of development in ML-based sampling more broadly. In lattice field theory, if this approach can realize its early promise it will be a transformative step towards first-principles physics calculations in particle, nuclear and condensed matter physics that are intractable with traditional approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01156v1-abstract-full').style.display = 'none'; document.getElementById('2309.01156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Physics 5, 526-535 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00600">arXiv:2309.00600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00600">pdf</a>, <a href="https://arxiv.org/format/2309.00600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Signal-to-noise improvement through neural network contour deformations for 3D $SU(2)$ lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00600v1-abstract-short" style="display: inline;"> Complex contour deformations of the path integral have been demonstrated to significantly improve the signal-to-noise ratio of observables in previous studies of two-dimensional gauge theories with open boundary conditions. In this work, new developments based on gauge fixing and a neural network definition of the deformation are introduced, which enable an effective application to theories in hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00600v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00600v1-abstract-full" style="display: none;"> Complex contour deformations of the path integral have been demonstrated to significantly improve the signal-to-noise ratio of observables in previous studies of two-dimensional gauge theories with open boundary conditions. In this work, new developments based on gauge fixing and a neural network definition of the deformation are introduced, which enable an effective application to theories in higher dimensions and with generic boundary conditions. Improvements of the signal-to-noise ratio by up to three orders of magnitude for Wilson loop measurements are shown in $SU(2)$ lattice gauge theory in three spacetime dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00600v1-abstract-full').style.display = 'none'; document.getElementById('2309.00600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Proceedings for the 40th Lattice conference at Fermilab from July 31 to August 4, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15014">arXiv:2307.15014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15014">pdf</a>, <a href="https://arxiv.org/format/2307.15014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice quantum chromodynamics at large isospin density: 6144 pions in a box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15014v1-abstract-short" style="display: inline;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15014v1-abstract-full" style="display: none;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm to calculations of correlation functions with up to 6144 $蟺^+$s using two ensembles of gauge field configurations generated with quark masses corresponding to a pion mass $m_蟺= 170$ MeV and spacetime volumes of $(4.4^3\times 8.8)\ {\rm fm}^4$ and $(5.8^3\times 11.6)\ {\rm fm}^4$. We also discuss statistical techniques for the analysis of such systems, in which the correlation functions vary over many orders of magnitude. In particular, we observe that the many-pion correlation functions are well approximated by log-normal distributions, allowing the extraction of the energies of these systems. Using these energies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A peak is observed in the energy density at an isospin chemical potential $渭_I\sim 1.5 m_蟺$, signalling the transition into a Bose-Einstein condensed phase. The isentropic speed of sound in the medium is seen to exceed the ideal-gas (conformal) limit ($c_s^2\leq 1/3$) over a wide range of chemical potential before falling towards the asymptotic expectation at $渭_I\sim 15 m_蟺$. These, and other thermodynamic observables, indicate that the isospin chemical potential must be large for the system to be well described by an ideal gas or perturbative QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'none'; document.getElementById('2307.15014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5560,UMD-PP-023-03,FERMILAB-PUB-23-382-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11707">arXiv:2307.11707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11707">pdf</a>, <a href="https://arxiv.org/format/2307.11707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Gravitational form factors of the pion from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P+R">Patrick R. Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pefkou%2C+D+A">Dimitra A. Pefkou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11707v2-abstract-short" style="display: inline;"> The two gravitational form factors of the pion, $A^蟺(t)$ and $D^蟺(t)$, are computed as functions of the momentum transfer squared $t$ in the kinematic region $0\leq -t&lt; 2~\text{GeV}^2$ on a lattice QCD ensemble with quark masses corresponding to a close-to-physical pion mass $m_蟺\approx 170~\text{MeV}$ and $N_f=2+1$ quark flavors. The flavor decomposition of these form factors into gluon, up/down&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11707v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11707v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11707v2-abstract-full" style="display: none;"> The two gravitational form factors of the pion, $A^蟺(t)$ and $D^蟺(t)$, are computed as functions of the momentum transfer squared $t$ in the kinematic region $0\leq -t&lt; 2~\text{GeV}^2$ on a lattice QCD ensemble with quark masses corresponding to a close-to-physical pion mass $m_蟺\approx 170~\text{MeV}$ and $N_f=2+1$ quark flavors. The flavor decomposition of these form factors into gluon, up/down light-quark, and strange-quark contributions is presented in the $\overline{\text{MS}}$ scheme at energy scale $渭=2~\text{GeV}$, with renormalization factors computed nonperturbatively via the RI-MOM scheme. Using monopole and $z$-expansion fits to the gravitational form factors, we obtain estimates for the pion momentum fraction and $D$-term that are consistent with the momentum fraction sum rule and the next-to-leading order chiral perturbation theory prediction for $D^蟺(0)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11707v2-abstract-full').style.display = 'none'; document.getElementById('2307.11707v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 18 figures, 7 tables; version accepted for publication at PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5585 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06313">arXiv:2305.06313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06313">pdf</a>, <a href="https://arxiv.org/format/2305.06313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Constraint of pionless EFT using two-nucleon spectra from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06313v1-abstract-short" style="display: inline;"> Finite-volume pionless effective field theory (FVEFT$_{ 蟺\!/ }$) at next-to-leading order (NLO) is used to analyze the two-nucleon lattice QCD spectrum of Ref.~\cite{Amarasinghe:2021lqa}, performed at quark masses corresponding to a pion mass of approximately $800 $ MeV. Specifically, the effective theory is formulated in finite volume, and variational sets of wave functions are optimized using di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06313v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06313v1-abstract-full" style="display: none;"> Finite-volume pionless effective field theory (FVEFT$_{ 蟺\!/ }$) at next-to-leading order (NLO) is used to analyze the two-nucleon lattice QCD spectrum of Ref.~\cite{Amarasinghe:2021lqa}, performed at quark masses corresponding to a pion mass of approximately $800 $ MeV. Specifically, the effective theory is formulated in finite volume, and variational sets of wave functions are optimized using differential programming. Using these wave functions projected to the appropriate finite-volume symmetry group, variational bounds from FVEFT$_{蟺\!/ }$ are obtained for the ground state, as well as excited states. By comparison with the lattice QCD GEVP spectrum, different low energy constants (LECs) are constrained. Relativistic corrections are incorporated, allowing for the extractions of NLO LECs, as well as the leading $s$-$d$-wave mixing term in the deuteron channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06313v1-abstract-full').style.display = 'none'; document.getElementById('2305.06313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figs, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5538 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02402">arXiv:2305.02402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02402">pdf</a>, <a href="https://arxiv.org/format/2305.02402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Normalizing flows for lattice gauge theory in arbitrary space-time dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Botev%2C+A">Aleksandar Botev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Matthews%2C+A+G+D+G">Alexander G. D. G. Matthews</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Razavi%2C+A">Ali Razavi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02402v1-abstract-short" style="display: inline;"> Applications of normalizing flows to the sampling of field configurations in lattice gauge theory have so far been explored almost exclusively in two space-time dimensions. We report new algorithmic developments of gauge-equivariant flow architectures facilitating the generalization to higher-dimensional lattice geometries. Specifically, we discuss masked autoregressive transformations with tracta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02402v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02402v1-abstract-full" style="display: none;"> Applications of normalizing flows to the sampling of field configurations in lattice gauge theory have so far been explored almost exclusively in two space-time dimensions. We report new algorithmic developments of gauge-equivariant flow architectures facilitating the generalization to higher-dimensional lattice geometries. Specifically, we discuss masked autoregressive transformations with tractable and unbiased Jacobian determinants, a key ingredient for scalable and asymptotically exact flow-based sampling algorithms. For concreteness, results from a proof-of-principle application to SU(3) lattice gauge theory in four space-time dimensions are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02402v1-abstract-full').style.display = 'none'; document.getElementById('2305.02402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08347">arXiv:2303.08347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08347">pdf</a>, <a href="https://arxiv.org/format/2303.08347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Colloquium: Gravitational Form Factors of the Proton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Burkert%2C+V+D">V. D. Burkert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Elouadrhiri%2C+L">L. Elouadrhiri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Girod%2C+F+X">F. X. Girod</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lorce%2C+C">C. Lorce</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schweitzer%2C+P">P. Schweitzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08347v3-abstract-short" style="display: inline;"> The physics of the gravitational form factors of the proton, and their understanding within quantum chromodynamics, has advanced significantly in the past two decades through both theory and experiment. This Colloquium provides an overview of this progress, highlights the physical insights unveiled by studies of gravitational form factors, and reviews their interpretation in terms of the mechanica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08347v3-abstract-full').style.display = 'inline'; document.getElementById('2303.08347v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08347v3-abstract-full" style="display: none;"> The physics of the gravitational form factors of the proton, and their understanding within quantum chromodynamics, has advanced significantly in the past two decades through both theory and experiment. This Colloquium provides an overview of this progress, highlights the physical insights unveiled by studies of gravitational form factors, and reviews their interpretation in terms of the mechanical properties of the proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08347v3-abstract-full').style.display = 'none'; document.getElementById('2303.08347v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07541">arXiv:2211.07541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07541">pdf</a>, <a href="https://arxiv.org/format/2211.07541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Aspects of scaling and scalability for flow-based sampling of lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Botev%2C+A">Aleksandar Botev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Matthews%2C+A+G+D+G">Alexander G. D. G. Matthews</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Razavi%2C+A">Ali Razavi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07541v1-abstract-short" style="display: inline;"> Recent applications of machine-learned normalizing flows to sampling in lattice field theory suggest that such methods may be able to mitigate critical slowing down and topological freezing. However, these demonstrations have been at the scale of toy models, and it remains to be determined whether they can be applied to state-of-the-art lattice quantum chromodynamics calculations. Assessing the vi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07541v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07541v1-abstract-full" style="display: none;"> Recent applications of machine-learned normalizing flows to sampling in lattice field theory suggest that such methods may be able to mitigate critical slowing down and topological freezing. However, these demonstrations have been at the scale of toy models, and it remains to be determined whether they can be applied to state-of-the-art lattice quantum chromodynamics calculations. Assessing the viability of sampling algorithms for lattice field theory at scale has traditionally been accomplished using simple cost scaling laws, but as we discuss in this work, their utility is limited for flow-based approaches. We conclude that flow-based approaches to sampling are better thought of as a broad family of algorithms with different scaling properties, and that scalability must be assessed experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07541v1-abstract-full').style.display = 'none'; document.getElementById('2211.07541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5496 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01209">arXiv:2209.01209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01209">pdf</a>, <a href="https://arxiv.org/format/2209.01209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054507">10.1103/PhysRevD.107.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avkhadiev%2C+A">A. Avkhadiev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01209v1-abstract-short" style="display: inline;"> It has recently been argued that noisy intermediate-scale quantum computers may be used to optimize interpolating operator constructions for lattice quantum field theory (LQFT) calculations on classical computers. Here, two concrete realizations of the method are developed and implemented. The first approach is to maximize the overlap, or fidelity, of the state created by an interpolating operator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01209v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01209v1-abstract-full" style="display: none;"> It has recently been argued that noisy intermediate-scale quantum computers may be used to optimize interpolating operator constructions for lattice quantum field theory (LQFT) calculations on classical computers. Here, two concrete realizations of the method are developed and implemented. The first approach is to maximize the overlap, or fidelity, of the state created by an interpolating operator acting on the vacuum state to the target eigenstate. The second is to instead minimize the energy expectation value of the interpolated state. These approaches are implemented in a proof-of-concept calculation in (1+1)-dimensions for a single-flavor massive Schwinger model to obtain quantum-optimized interpolating operator constructions for a vector meson state in the theory. Although fidelity maximization is preferable in the absence of noise due to quantum gate errors, it is found that energy minimization is more robust to these effects in the proof-of-concept calculation. This work serves as a concrete demonstration of how quantum computers in the intermediate term might be used to accelerate classical LQFT calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01209v1-abstract-full').style.display = 'none'; document.getElementById('2209.01209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5459; ADP-22-26/T1197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05322">arXiv:2208.05322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05322">pdf</a>, <a href="https://arxiv.org/format/2208.05322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094501">10.1103/PhysRevD.107.094501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay from Lattice QCD: The Short-Distance $蟺^-\rightarrow蟺^+ e^- e^-$ Amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P+R">Patrick R. Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05322v2-abstract-short" style="display: inline;"> This work presents a determination of potential short-distance contributions to the unphysical $蟺^-\rightarrow蟺^+ e^- e^-$ decay through lattice QCD calculations. The hadronic contributions to the transition amplitude are described by the pion matrix elements of five Standard Model Effective Field Theory operators, which are computed on five ensembles of domain-wall fermions with $N_f = 2 + 1$ qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05322v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05322v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05322v2-abstract-full" style="display: none;"> This work presents a determination of potential short-distance contributions to the unphysical $蟺^-\rightarrow蟺^+ e^- e^-$ decay through lattice QCD calculations. The hadronic contributions to the transition amplitude are described by the pion matrix elements of five Standard Model Effective Field Theory operators, which are computed on five ensembles of domain-wall fermions with $N_f = 2 + 1$ quark flavors with a range of heavier-than-physical values of the light quark masses. The matrix elements are extrapolated to the continuum, physical light-quark mass, and infinite volume limit using a functional form derived in chiral Effective Field Theory ($蠂\mathrm{EFT}$). This extrapolation also yields the relevant low-energy constants of $蠂\mathrm{EFT}$, which are necessary input for $蠂\mathrm{EFT}$ calculations of neutrinoless double beta decay of nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05322v2-abstract-full').style.display = 'none'; document.getElementById('2208.05322v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5414 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03832">arXiv:2208.03832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03832">pdf</a>, <a href="https://arxiv.org/format/2208.03832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Sampling QCD field configurations with gauge-equivariant flow models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Botev%2C+A">Aleksandar Botev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Matthews%2C+A+G+D+G">Alexander G. D. G. Matthews</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Razavi%2C+A">Ali Razavi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03832v2-abstract-short" style="display: inline;"> Machine learning methods based on normalizing flows have been shown to address important challenges, such as critical slowing-down and topological freezing, in the sampling of gauge field configurations in simple lattice field theories. A critical question is whether this success will translate to studies of QCD. This Proceedings presents a status update on advances in this area. In particular, it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03832v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03832v2-abstract-full" style="display: none;"> Machine learning methods based on normalizing flows have been shown to address important challenges, such as critical slowing-down and topological freezing, in the sampling of gauge field configurations in simple lattice field theories. A critical question is whether this success will translate to studies of QCD. This Proceedings presents a status update on advances in this area. In particular, it is illustrated how recently developed algorithmic components may be combined to construct flow-based sampling algorithms for QCD in four dimensions. The prospects and challenges for future use of this approach in at-scale applications are summarized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03832v2-abstract-full').style.display = 'none'; document.getElementById('2208.03832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as a proceedings to the 39th International Symposium on Lattice Field Theory (Lattice 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02728">arXiv:2208.02728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02728">pdf</a>, <a href="https://arxiv.org/format/2208.02728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.034508">10.1103/PhysRevD.107.034508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neural-network preconditioners for solving the Dirac equation in lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cal%C3%AC%2C+S">Salvatore Cal矛</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Xiao%2C+B">Brian Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02728v1-abstract-short" style="display: inline;"> This work develops neural-network--based preconditioners to accelerate solution of the Wilson-Dirac normal equation in lattice quantum field theories. The approach is implemented for the two-flavor lattice Schwinger model near the critical point. In this system, neural-network preconditioners are found to accelerate the convergence of the conjugate gradient solver compared with the solution of unp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02728v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02728v1-abstract-full" style="display: none;"> This work develops neural-network--based preconditioners to accelerate solution of the Wilson-Dirac normal equation in lattice quantum field theories. The approach is implemented for the two-flavor lattice Schwinger model near the critical point. In this system, neural-network preconditioners are found to accelerate the convergence of the conjugate gradient solver compared with the solution of unpreconditioned systems or those preconditioned with conventional approaches based on even-odd or incomplete Cholesky decompositions, as measured by reductions in the number of iterations and/or complex operations required for convergence. It is also shown that a preconditioner trained on ensembles with small lattice volumes can be used to construct preconditioners for ensembles with many times larger lattice volumes, with minimal degradation of performance. This volume-transferring technique amortizes the training cost and presents a pathway towards scaling such preconditioners to lattice field theory calculations with larger lattice volumes and in four dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02728v1-abstract-full').style.display = 'none'; document.getElementById('2208.02728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08945">arXiv:2207.08945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08945">pdf</a>, <a href="https://arxiv.org/format/2207.08945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.074506">10.1103/PhysRevD.106.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tian%2C+B">Betsy Tian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08945v3-abstract-short" style="display: inline;"> This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice field theories using pseudofermions as stochastic estimators for the fermionic determinant. This is the default approach in state-of-the-art lattice field theory calculations, making this development critical to the practical application of flow models to theories such as QCD. Methods by which flow-base&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08945v3-abstract-full').style.display = 'inline'; document.getElementById('2207.08945v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08945v3-abstract-full" style="display: none;"> This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice field theories using pseudofermions as stochastic estimators for the fermionic determinant. This is the default approach in state-of-the-art lattice field theory calculations, making this development critical to the practical application of flow models to theories such as QCD. Methods by which flow-based sampling approaches can be improved via standard techniques such as even/odd preconditioning and the Hasenbusch factorization are also outlined. Numerical demonstrations in two-dimensional U(1) and SU(3) gauge theories with $N_f=2$ flavors of fermions are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08945v3-abstract-full').style.display = 'none'; document.getElementById('2207.08945v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures. v3: accepted version for publication. New appendix C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5446, INT-PUB-22-017 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 106 (2022) 7, 074506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09030">arXiv:2203.09030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09030">pdf</a>, <a href="https://arxiv.org/format/2203.09030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ruso%2C+L+A">L. Alvarez Ruso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ankowski%2C+A+M">A. M. Ankowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacca%2C+S">S. Bacca</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Carlson%2C+J">J. Carlson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gonzalez-Jimenez%2C+R">R. Gonzalez-Jimenez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hobbs%2C+T+J">T. J. Hobbs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Isaacson%2C+J">J. Isaacson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jachowicz%2C+N">N. Jachowicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">W. I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katori%2C+T">T. Katori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kling%2C+F">F. Kling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+S+W">S. W. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lovato%2C+A">A. Lovato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mahn%2C+K">K. Mahn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Menendez%2C+J">J. Menendez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morfin%2C+J">J. Morfin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pastore%2C+S">S. Pastore</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09030v2-abstract-short" style="display: inline;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09030v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09030v2-abstract-full" style="display: none;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. This white paper discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'none'; document.getElementById('2203.09030v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">81 pages, contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-05, FERMILAB-FN-1161-T, MITP-22-027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11712">arXiv:2202.11712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.11712">pdf</a>, <a href="https://arxiv.org/format/2202.11712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.014514">10.1103/PhysRevD.106.014514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flow-based sampling in the lattice Schwinger model at criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11712v1-abstract-short" style="display: inline;"> Recent results suggest that flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications, such as studies of quantum chromodynamics and the Schwinger model. In this work, we provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass. In contrast, at the same parameters, conven&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11712v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11712v1-abstract-full" style="display: none;"> Recent results suggest that flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications, such as studies of quantum chromodynamics and the Schwinger model. In this work, we provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass. In contrast, at the same parameters, conventional methods fail to sample all parts of configuration space, leading to severely underestimated uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11712v1-abstract-full').style.display = 'none'; document.getElementById('2202.11712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text, 3 pages supplementary material. 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5409 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05838">arXiv:2202.05838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05838">pdf</a>, <a href="https://arxiv.org/ps/2202.05838">ps</a>, <a href="https://arxiv.org/format/2202.05838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Applications of Machine Learning to Lattice Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cal%C3%AC%2C+S">Salvatore Cal矛</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foreman%2C+S">Sam Foreman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Funcke%2C+L">Lena Funcke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aarts%2C+G">Gert Aarts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05838v1-abstract-short" style="display: inline;"> There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05838v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05838v1-abstract-full" style="display: none;"> There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment of this approach in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05838v1-abstract-full').style.display = 'none'; document.getElementById('2202.05838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, contribution to Snowmass 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03530">arXiv:2202.03530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03530">pdf</a>, <a href="https://arxiv.org/format/2202.03530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Finite-Volume Pionless Effective Field Theory for Few-Nucleon Systems with Differentiable Programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+X">Xiangkai Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luo%2C+D">Di Luo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03530v2-abstract-short" style="display: inline;"> Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable programm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03530v2-abstract-full').style.display = 'inline'; document.getElementById('2202.03530v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03530v2-abstract-full" style="display: none;"> Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable programming and via solution of a generalised eigenvalue problem. This approach is shown to be significantly more efficient than a stochastic implementation of the variational method based on the same form of correlated Gaussian wavefunctions, yielding comparably accurate representations of the ground-state wavefunctions with an order of magnitude fewer terms. The efficiency of representation allows such calculations to be extended to larger systems than in previous work. The method is demonstrated through calculations of the binding energies of nuclei with atomic number $A\in\{2,3,4\}$ in finite volume, matched to lattice QCD calculations at quark masses corresponding to $m_蟺=806$ MeV, and infinite-volume effective field theory calculations of $A\in\{2,3,4,5,6\}$ systems based on this matching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03530v2-abstract-full').style.display = 'none'; document.getElementById('2202.03530v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5404 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01105">arXiv:2202.01105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.01105">pdf</a>, <a href="https://arxiv.org/format/2202.01105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00601-022-01749-x">10.1007/s00601-022-01749-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Forces for Precision Nuclear Physics -- a collection of perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tews%2C+I">Ingo Tews</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ekstr%C3%B6m%2C+A">Andreas Ekstr枚m</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holt%2C+J+D">Jason D. Holt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+K">Kevin Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brice%C3%B1o%2C+R">Ra煤l Brice帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dean%2C+D+J">David J. Dean</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Drischler%2C+C">Christian Drischler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Duguet%2C+T">Thomas Duguet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasparyan%2C+A">Ashot Gasparyan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gegelia%2C+J">Jambul Gegelia</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grie%C3%9Fhammer%2C+H+W">Harald W. Grie脽hammer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heinz%2C+M">Matthias Heinz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hergert%2C+H">Heiko Hergert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kekejian%2C+D">David Kekejian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kievsky%2C+A">Alejandro Kievsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%B6nig%2C+S">Sebastian K枚nig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Launey%2C+K+D">Kristina D. Launey</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01105v1-abstract-short" style="display: inline;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory&#39;s Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01105v1-abstract-full" style="display: none;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory&#39;s Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'none'; document.getElementById('2202.01105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Perspective pieces of the virtual INT program 21-1b &#34;Nuclear Forces for Precision Nuclear Physics&#34;, 107 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-002, LA-UR-22-20419, UMD-PP-022-02, FERMILAB-PUB-22-090-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Few-Body Systems 63, 67 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10835">arXiv:2108.10835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10835">pdf</a>, <a href="https://arxiv.org/format/2108.10835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094508">10.1103/PhysRevD.107.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A variational study of two-nucleon systems with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Amarasinghe%2C+S">Saman Amarasinghe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Baghdadi%2C+R">Riyadh Baghdadi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10835v4-abstract-short" style="display: inline;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'inline'; document.getElementById('2108.10835v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10835v4-abstract-full" style="display: none;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effective theories. Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-function matrices using products of these operators. Projection of these matrices onto irreducible representations of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain the low-energy spectra of two-nucleon systems in a single finite volume with quark masses corresponding to a pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths and weaknesses of variational methods. These studies and comparisons to previous studies using the same gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the two-nucleon energy spectra obtained using both variational and non-variational methods, including missing energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be improved in future calculations using additional interpolating operators and is therefore a step toward reliable nuclear spectroscopy from the underlying Standard Model of particle physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'none'; document.getElementById('2108.10835v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results and discussion. 111 pages, 44 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-354-T, MIT-CTP/5320, UMD-PP-021-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094508 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10368">arXiv:2107.10368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10368">pdf</a>, <a href="https://arxiv.org/format/2107.10368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.054509">10.1103/PhysRevD.105.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluon gravitational structure of hadrons of different spin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pefkou%2C+D+A">Dimitra A. Pefkou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10368v4-abstract-short" style="display: inline;"> The gravitational form factors (GFFs) of hadrons encode the matrix elements of the energy momentum tensor of QCD. These quantities describe how energy, spin, and various mechanical properties of hadrons are carried by their quark and gluon constituents. We present the gluon GFFs of the pion, nucleon, $蟻$ meson, and $螖$ baryon as functions of the squared momentum transfer $t$ in the region&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10368v4-abstract-full').style.display = 'inline'; document.getElementById('2107.10368v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10368v4-abstract-full" style="display: none;"> The gravitational form factors (GFFs) of hadrons encode the matrix elements of the energy momentum tensor of QCD. These quantities describe how energy, spin, and various mechanical properties of hadrons are carried by their quark and gluon constituents. We present the gluon GFFs of the pion, nucleon, $蟻$ meson, and $螖$ baryon as functions of the squared momentum transfer $t$ in the region $0 \leq -t &lt; 2 \; \text{GeV}^2$, as determined in a lattice QCD study with pion mass $m_蟺 = 450(5) \; \text{MeV}$. By fitting the extracted GFFs using multipole and z-parameter expansion functional forms, we extract various gluon contributions to the energy, pressure, and shear force distributions of the hadrons in the 3D and 2D Breit frames as well as in the infinite momentum frame. We also obtain estimates for the corresponding gluon mechanical and mass radii, as well as the forward-limit gluon contributions to the momentum fraction and angular momentum of the hadrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10368v4-abstract-full').style.display = 'none'; document.getElementById('2107.10368v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 19 figures, as published in PRD. v2,v3: updated citations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 054509 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00734">arXiv:2107.00734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.00734">pdf</a>, <a href="https://arxiv.org/format/2107.00734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Flow-based sampling for multimodal distributions in lattice field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hsieh%2C+C">Chung-Chun Hsieh</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+K">Kai-Feng Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00734v1-abstract-short" style="display: inline;"> Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for targets with multiple separated modes (i.e. theories with multiple vacua). We demonstrate the application of these methods to modeling two-dimensional r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00734v1-abstract-full').style.display = 'inline'; document.getElementById('2107.00734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00734v1-abstract-full" style="display: none;"> Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for targets with multiple separated modes (i.e. theories with multiple vacua). We demonstrate the application of these methods to modeling two-dimensional real scalar field theory in its symmetry-broken phase. In this context we investigate the performance of different flow-based sampling algorithms, including a composite sampling algorithm where flow-based proposals are occasionally augmented by applying updates using traditional algorithms like HMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00734v1-abstract-full').style.display = 'none'; document.getElementById('2107.00734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5312 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05934">arXiv:2106.05934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05934">pdf</a>, <a href="https://arxiv.org/format/2106.05934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.114507">10.1103/PhysRevD.104.114507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flow-based sampling for fermionic lattice field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo J. Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urban%2C+J+M">Julian M. Urban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05934v2-abstract-short" style="display: inline;"> Algorithms based on normalizing flows are emerging as promising machine learning approaches to sampling complicated probability distributions in a way that can be made asymptotically exact. In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness of this approach for scalar theories, gauge theories, and statistical systems. This work develops approache&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05934v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05934v2-abstract-full" style="display: none;"> Algorithms based on normalizing flows are emerging as promising machine learning approaches to sampling complicated probability distributions in a way that can be made asymptotically exact. In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness of this approach for scalar theories, gauge theories, and statistical systems. This work develops approaches that enable flow-based sampling of theories with dynamical fermions, which is necessary for the technique to be applied to lattice field theory studies of the Standard Model of particle physics and many condensed matter systems. As a practical demonstration, these methods are applied to the sampling of field configurations for a two-dimensional theory of massless staggered fermions coupled to a scalar field via a Yukawa interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05934v2-abstract-full').style.display = 'none'; document.getElementById('2106.05934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5307 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 114507 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04329">arXiv:2102.04329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.04329">pdf</a>, <a href="https://arxiv.org/format/2102.04329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074503">10.1103/PhysRevD.103.074503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-nucleon matrix elements in pionless effective field theory in a finite volume </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04329v1-abstract-short" style="display: inline;"> Pionless effective field theory in a finite volume (FVEFT$_{蟺\!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{蟺\!/}$ with the stochastic variational method, the spectra of nuclei with atomic number $A\in\{2,3\}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04329v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04329v1-abstract-full" style="display: none;"> Pionless effective field theory in a finite volume (FVEFT$_{蟺\!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{蟺\!/}$ with the stochastic variational method, the spectra of nuclei with atomic number $A\in\{2,3\}$ are matched to existing finite-volume LQCD calculations at heavier-than-physical quark masses corresponding to a pion mass $m_蟺=806$ MeV, thereby enabling infinite-volume binding energies to be determined using infinite-volume variational calculations. Based on the variational wavefunctions that are constructed in this approach, the finite-volume matrix elements of various local operators are computed in FVEFT$_{蟺\!/}$ and matched to LQCD calculations of the corresponding QCD operators in the same volume, thereby determining the relevant one and two-body EFT counterterms and enabling an extrapolation of the LQCD matrix elements to infinite volume. As examples, the scalar, tensor, and axial matrix elements are considered, as well as the magnetic moments and the isovector longitudinal momentum fraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04329v1-abstract-full').style.display = 'none'; document.getElementById('2102.04329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5275 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03805">arXiv:2102.03805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03805">pdf</a>, <a href="https://arxiv.org/format/2102.03805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074511">10.1103/PhysRevD.103.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The axial charge of the triton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03805v1-abstract-short" style="display: inline;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03805v1-abstract-full" style="display: none;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of $g_A^{^{3}{\rm H}}/g_A^p=0.91\substack{+0.07 \\ -0.09}$. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'none'; document.getElementById('2102.03805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5274, ICCUB-21-001, FERMILAB-PUB-21-026-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08176">arXiv:2101.08176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08176">pdf</a>, <a href="https://arxiv.org/format/2101.08176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Introduction to Normalizing Flows for Lattice Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo Jimenez Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08176v3-abstract-short" style="display: inline;"> This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428, and arXiv:2003.06413 are reviewed and a concrete implementation of the framework is presented. We apply this framework to a lattice scalar field theor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08176v3-abstract-full').style.display = 'inline'; document.getElementById('2101.08176v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08176v3-abstract-full" style="display: none;"> This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428, and arXiv:2003.06413 are reviewed and a concrete implementation of the framework is presented. We apply this framework to a lattice scalar field theory and to U(1) gauge theory, explicitly encoding gauge symmetries in the flow-based approach to the latter. This presentation is intended to be interactive and working with the attached Jupyter notebook is recommended. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08176v3-abstract-full').style.display = 'none'; document.getElementById('2101.08176v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 5 numbered figures, Jupyter notebook included as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5272 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12357">arXiv:2009.12357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12357">pdf</a>, <a href="https://arxiv.org/format/2009.12357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054508">10.1103/PhysRevD.103.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering and Effective Interactions of Two Baryons at $m_蟺\sim 450$ MeV from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12357v3-abstract-short" style="display: inline;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'inline'; document.getElementById('2009.12357v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12357v3-abstract-full" style="display: none;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-singlet $危危$ ($I=2$) and $螢危$ ($I=3/2$) states, and the spin-triplet $螢N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using L眉scher&#39;s formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $危N$ and $螢螢$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'none'; document.getElementById('2009.12357v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">69 pages, 31 figures and 25 tables; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038, FERMILAB-PUB-20-498-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05522">arXiv:2009.05522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05522">pdf</a>, <a href="https://arxiv.org/format/2009.05522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.202001">10.1103/PhysRevLett.126.202001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD constraints on the parton distribution functions of ${}^3\text{He}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05522v1-abstract-short" style="display: inline;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05522v1-abstract-full" style="display: none;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3\text{He}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'none'; document.getElementById('2009.05522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5234, ICCUB-20-019, FERMILAB-PUB-20-466-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 202001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05456">arXiv:2008.05456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05456">pdf</a>, <a href="https://arxiv.org/format/2008.05456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074504">10.1103/PhysRevD.103.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sampling using $SU(N)$ gauge equivariant flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo Jimenez Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05456v2-abstract-short" style="display: inline;"> We develop a flow-based sampling algorithm for $SU(N)$ lattice gauge theories that is gauge-invariant by construction. Our key contribution is constructing a class of flows on an $SU(N)$ variable (or on a $U(N)$ variable by a simple alternative) that respect matrix conjugation symmetry. We apply this technique to sample distributions of single $SU(N)$ variables and to construct flow-based samplers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05456v2-abstract-full').style.display = 'inline'; document.getElementById('2008.05456v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05456v2-abstract-full" style="display: none;"> We develop a flow-based sampling algorithm for $SU(N)$ lattice gauge theories that is gauge-invariant by construction. Our key contribution is constructing a class of flows on an $SU(N)$ variable (or on a $U(N)$ variable by a simple alternative) that respect matrix conjugation symmetry. We apply this technique to sample distributions of single $SU(N)$ variables and to construct flow-based samplers for $SU(2)$ and $SU(3)$ lattice gauge theory in two dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05456v2-abstract-full').style.display = 'none'; document.getElementById('2008.05456v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5228 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12130">arXiv:2003.12130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12130">pdf</a>, <a href="https://arxiv.org/format/2003.12130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054504">10.1103/PhysRevD.103.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged multi-hadron systems in lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">M. Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jafry%2C+M">M. Jafry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">M. L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12130v3-abstract-short" style="display: inline;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'inline'; document.getElementById('2003.12130v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12130v3-abstract-full" style="display: none;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'none'; document.getElementById('2003.12130v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 29 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 20-28, FERMILAB-PUB-20-123-T, ICCUB-20-007, MIT-CTP/5183, NT@UW-20-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.06413">arXiv:2003.06413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.06413">pdf</a>, <a href="https://arxiv.org/format/2003.06413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.121601">10.1103/PhysRevLett.125.121601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equivariant flow-based sampling for lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Racani%C3%A8re%2C+S">S茅bastien Racani猫re</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rezende%2C+D+J">Danilo Jimenez Rezende</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.06413v1-abstract-short" style="display: inline;"> We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge-invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that near critical points in parameter space the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06413v1-abstract-full').style.display = 'inline'; document.getElementById('2003.06413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.06413v1-abstract-full" style="display: none;"> We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge-invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that near critical points in parameter space the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures such as Hybrid Monte Carlo and Heat Bath. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06413v1-abstract-full').style.display = 'none'; document.getElementById('2003.06413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5181 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 121601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07050">arXiv:1908.07050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07050">pdf</a>, <a href="https://arxiv.org/format/1908.07050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.034502">10.1103/PhysRevD.104.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sparsening Algorithm for Multi-Hadron Lattice QCD Correlation Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">M. L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07050v1-abstract-short" style="display: inline;"> Modern advances in algorithms for lattice QCD calculations have steadily driven down the resources required to generate gauge field ensembles and calculate quark propagators, such that, in cases relevant to nuclear physics, performing quark contractions to assemble correlation functions from propagators has become the dominant cost. This work explores a propagator sparsening algorithm for forming&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07050v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07050v1-abstract-full" style="display: none;"> Modern advances in algorithms for lattice QCD calculations have steadily driven down the resources required to generate gauge field ensembles and calculate quark propagators, such that, in cases relevant to nuclear physics, performing quark contractions to assemble correlation functions from propagators has become the dominant cost. This work explores a propagator sparsening algorithm for forming correlation functions describing multi-hadron systems, such as light nuclei, with reduced computational cost. The algorithm constructs correlation functions from sparsened propagators defined on a coarsened lattice geometry, where the sparsened propagators are obtained from propagators computed on the full lattice. This algorithm is used to study the low-energy QCD ground-state spectrum using a single Wilson-clover lattice ensemble with $m_蟺 \approx 800$ MeV. It is found that the extracted ground state masses and binding energies, as well as their statistical uncertainties, are consistent when determined from correlation functions constructed from sparsened and full propagators. In addition, while evidence of modified couplings to excited states is observed in sparsened correlation functions, it is demonstrated that these effects can be removed, if desired, with an inexpensive modification to the sparsened estimator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07050v1-abstract-full').style.display = 'none'; document.getElementById('1908.07050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5127, INT-PUB-19-026 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 034502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04194">arXiv:1908.04194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.04194">pdf</a>, <a href="https://arxiv.org/format/1908.04194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.080501">10.1103/PhysRevLett.124.080501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating lattice quantum field theory calculations via interpolator optimization using NISQ-era quantum computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avkhadiev%2C+A">A. Avkhadiev</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04194v2-abstract-short" style="display: inline;"> The only known way to study quantum field theories in non-perturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04194v2-abstract-full').style.display = 'inline'; document.getElementById('1908.04194v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04194v2-abstract-full" style="display: none;"> The only known way to study quantum field theories in non-perturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on Noisy Intermediate-Scale Quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04194v2-abstract-full').style.display = 'none'; document.getElementById('1908.04194v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; reference fixed in v2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5138; ADP-19-17/T1097 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 080501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12072">arXiv:1904.12072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12072">pdf</a>, <a href="https://arxiv.org/format/1904.12072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034515">10.1103/PhysRevD.100.034515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flow-based generative models for Markov chain Monte Carlo in lattice field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Albergo%2C+M+S">M. S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanwar%2C+G">G. Kanwar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12072v3-abstract-short" style="display: inline;"> A Markov chain update scheme using a machine-learned flow-based generative model is proposed for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained) to produce samples from a distribution approximating the desired Boltzmann distribution determined by the lattice action of the theory being studied. Training the model systematically improves autocorrelatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12072v3-abstract-full').style.display = 'inline'; document.getElementById('1904.12072v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12072v3-abstract-full" style="display: none;"> A Markov chain update scheme using a machine-learned flow-based generative model is proposed for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained) to produce samples from a distribution approximating the desired Boltzmann distribution determined by the lattice action of the theory being studied. Training the model systematically improves autocorrelation times in the Markov chain, even in regions of parameter space where standard Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated updates. Moreover, the model may be trained without existing samples from the desired distribution. The algorithm is compared with HMC and local Metropolis sampling for $蠁^4$ theory in two dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12072v3-abstract-full').style.display = 'none'; document.getElementById('1904.12072v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures; corrected normalization conventions in eqns. 20 and 23</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5114 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034515 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09704">arXiv:1904.09704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09704">pdf</a>, <a href="https://arxiv.org/format/1904.09704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12889-8">10.1140/epja/i2019-12889-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09704v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for Lattice Quantum Chromodynamics (LQCD) in the research frontier in fundamental symmetries and signals for new physics. LQCD, in synergy with effective field theories and nuclear many-body studies, provides theoretical support to ongoing and planned experimental programs in searches for e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09704v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09704v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for Lattice Quantum Chromodynamics (LQCD) in the research frontier in fundamental symmetries and signals for new physics. LQCD, in synergy with effective field theories and nuclear many-body studies, provides theoretical support to ongoing and planned experimental programs in searches for electric dipole moments of the nucleon, nuclei and atoms, decay of the proton, $n$-$\overline{n}$ oscillations, neutrinoless double-$尾$ decay of a nucleus, conversion of muon to electron, precision measurements of weak decays of the nucleon and of nuclei, precision isotope-shift spectroscopy, as well as direct dark matter detection experiments using nuclear targets. This whitepaper details the objectives of the LQCD program in the area of Fundamental Symmetries within the USQCD collaboration, identifies priorities that can be addressed within the next five years, and elaborates on the areas that will likely demand a high degree of innovation in both numerical and analytical frontiers of the LQCD research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09704v1-abstract-full').style.display = 'none'; document.getElementById('1904.09704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A whitepaper by the USQCD Collaboration, 30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 197 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07589">arXiv:1810.07589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.07589">pdf</a>, <a href="https://arxiv.org/format/1810.07589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.072003">10.1103/PhysRevLett.122.072003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The pressure distribution and shear forces inside the proton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07589v3-abstract-short" style="display: inline;"> The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07589v3-abstract-full').style.display = 'inline'; document.getElementById('1810.07589v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07589v3-abstract-full" style="display: none;"> The distributions of pressure and shear forces inside the proton are investigated using lattice Quantum Chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculations of the quark contributions. The utility of LQCD calculations in exploring, and supplementing, the assumptions in a recent extraction of the pressure distribution in the proton from deeply virtual Compton scattering experiments is also discussed. Based on this study, the target kinematics for experiments aiming to determine the pressure and shear distributions with greater precision at Thomas Jefferson National Accelerator Facility and a future Electron Ion Collider are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07589v3-abstract-full').style.display = 'none'; document.getElementById('1810.07589v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Units corrected on figure axes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5071 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 072003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04626">arXiv:1810.04626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.04626">pdf</a>, <a href="https://arxiv.org/format/1810.04626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014511">10.1103/PhysRevD.99.014511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluon gravitational form factors of the nucleon and the pion from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04626v1-abstract-short" style="display: inline;"> A future Electron-Ion Collider will enable the gluon contributions to the gravitational form factors of the proton to be constrained experimentally for the first time. Here, the first calculation of these form factors from lattice Quantum Chromodynamics is presented. The calculations use a larger-than-physical value of the light quark mass corresponding to $m_蟺\sim 450$ MeV. All three form factors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04626v1-abstract-full').style.display = 'inline'; document.getElementById('1810.04626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04626v1-abstract-full" style="display: none;"> A future Electron-Ion Collider will enable the gluon contributions to the gravitational form factors of the proton to be constrained experimentally for the first time. Here, the first calculation of these form factors from lattice Quantum Chromodynamics is presented. The calculations use a larger-than-physical value of the light quark mass corresponding to $m_蟺\sim 450$ MeV. All three form factors, which encode the momentum-dependence of the lowest moment of the spin independent gluon generalised parton distributions and are related to different components of the energy-momentum tensor, are resolved. In particular, the gluon $D$-term form factor, related to the pressure distribution inside the nucleon, is determined for the first time. The gluon contributions to the two gravitational form factors of the pion are also determined, and are compared to existing lattice determinations of the quark contributions to the gravitational form factors and to phenomenology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04626v1-abstract-full').style.display = 'none'; document.getElementById('1810.04626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5069 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014511 (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shanahan%2C+P+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10