CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 192 results for author: <span class="mathjax">Orginos, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Orginos%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Orginos, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Orginos%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Orginos, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05227">arXiv:2412.05227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05227">pdf</a>, <a href="https://arxiv.org/format/2412.05227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A simple non-parametric reconstruction of parton distributions from limited Fourier information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dutrieux%2C+H">Herv茅 Dutrieux</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05227v1-abstract-short" style="display: inline;"> Some calculations of parton distributions from first principles only give access to a limited range of Fourier modes of the function to reconstruct. We present a physically motivated procedure to regularize the inverse integral problem using a Gaussian process as a Bayesian prior. We propose to fix the hyperparameters of the prior in a meaningful physical fashion, offering a simple implementation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05227v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05227v1-abstract-full" style="display: none;"> Some calculations of parton distributions from first principles only give access to a limited range of Fourier modes of the function to reconstruct. We present a physically motivated procedure to regularize the inverse integral problem using a Gaussian process as a Bayesian prior. We propose to fix the hyperparameters of the prior in a meaningful physical fashion, offering a simple implementation, great numerical efficiency, and allowing us to understand and keep control easily of the uncertainty of the reconstruction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05227v1-abstract-full').style.display = 'none'; document.getElementById('2412.05227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-24-4242 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10304">arXiv:2405.10304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10304">pdf</a>, <a href="https://arxiv.org/format/2405.10304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2024)162">10.1007/JHEP08(2024)162 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards Unpolarized GPDs from Pseudo-Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dutrieux%2C+H">Herv茅 Dutrieux</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10304v2-abstract-short" style="display: inline;"> We present an exploration of the unpolarized isovector proton generalized parton distributions (GPDs) $H^{u-d}(x, 尉, t)$ and $E^{u-d}(x, 尉, t)$ in the pseudo-distribution formalism using distillation. Taking advantage of the large kinematic coverage made possible by this approach, we present results on the moments of GPDs up to the order $x^3$ -- including their skewness dependence -- at a pion ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10304v2-abstract-full').style.display = 'inline'; document.getElementById('2405.10304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10304v2-abstract-full" style="display: none;"> We present an exploration of the unpolarized isovector proton generalized parton distributions (GPDs) $H^{u-d}(x, 尉, t)$ and $E^{u-d}(x, 尉, t)$ in the pseudo-distribution formalism using distillation. Taking advantage of the large kinematic coverage made possible by this approach, we present results on the moments of GPDs up to the order $x^3$ -- including their skewness dependence -- at a pion mass $m_蟺= 358$ MeV and a lattice spacing $a = 0.094$ fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10304v2-abstract-full').style.display = 'none'; document.getElementById('2405.10304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">added discussion on isovector D-term and stability of fits with respect to the range in non-local separation of the operator</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-24-4059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 08 (2024) 162 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06860">arXiv:2401.06860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06860">pdf</a>, <a href="https://arxiv.org/format/2401.06860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Trivializing Flow in 2D O(3) sigma model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chamness%2C+C">Christopher Chamness</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kovner%2C+D">Daniel Kovner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06860v1-abstract-short" style="display: inline;"> The two dimensional O(3) sigma model, just as quantum chromodynamics, is an asymptotically free theory with a mass gap. Therefore, it is an interesting and simple toy model to investigate algorithms for Markov Chain Monte Carlo simulations of quantum chromodynamics. In this talk, we discuss the construction of a trivializing map, a field transformation from a given theory to a trivial one, through&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06860v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06860v1-abstract-full" style="display: none;"> The two dimensional O(3) sigma model, just as quantum chromodynamics, is an asymptotically free theory with a mass gap. Therefore, it is an interesting and simple toy model to investigate algorithms for Markov Chain Monte Carlo simulations of quantum chromodynamics. In this talk, we discuss the construction of a trivializing map, a field transformation from a given theory to a trivial one, through a suitably chosen gradient flow. An analytic solution for the generating functional of this trivializing flow has been obtained by a perturbative expansion in the flow time. Utilizing this solution allows for new approaches to be considered when proposing updates for a Markov Chain Monte Carlo algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06860v1-abstract-full').style.display = 'none'; document.getElementById('2401.06860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure, The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-24-3981 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06858">arXiv:2401.06858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06858">pdf</a>, <a href="https://arxiv.org/format/2401.06858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Extracting the Pion Distribution Amplitude from Lattice QCD through Pseudo-Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kovner%2C+D">Daniel Kovner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joe Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06858v1-abstract-short" style="display: inline;"> The Light-Cone Distribution Amplitude (LCDA) encodes the non-perturbative information of the leading Fock component of the hadron wave function, therefore required for processes including exclusive hadron production. As the pseudo-Nambu-Goldstone boson of QCD, the nonperturbative structure of the pion is of particular interest. Progress on the Lattice QCD calculation of the pion LCDA on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06858v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06858v1-abstract-full" style="display: none;"> The Light-Cone Distribution Amplitude (LCDA) encodes the non-perturbative information of the leading Fock component of the hadron wave function, therefore required for processes including exclusive hadron production. As the pseudo-Nambu-Goldstone boson of QCD, the nonperturbative structure of the pion is of particular interest. Progress on the Lattice QCD calculation of the pion LCDA on ${\cal O}(a)$-improved Wilson fermion ensembles at several lattice spacings is presented. Excited-state systematics are taken into account within a Bayesian Model Averaging framework. A Renormalization-Group-Invariant (RGI) ratio of matrix elements is formed for further extraction of the pion LCDA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06858v1-abstract-full').style.display = 'none'; document.getElementById('2401.06858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, The 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-24-3982 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19926">arXiv:2310.19926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19926">pdf</a>, <a href="https://arxiv.org/format/2310.19926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Evolution of Parton Distribution Functions in the Short-Distance Factorization Scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dutrieux%2C+H">H. Dutrieux</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">J. Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">S. Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19926v1-abstract-short" style="display: inline;"> Lattice QCD offers the possibility of computing parton distributions from first principles, although not in the usual $\overline{MS}$ factorization scheme. We study in this paper the evolution of non-singlet parton distribution functions (PDFs) in the short-distance factorization scheme which notably arises in lattice calculations in the pseudo-distribution approach. We provide an assessment of no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19926v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19926v1-abstract-full" style="display: none;"> Lattice QCD offers the possibility of computing parton distributions from first principles, although not in the usual $\overline{MS}$ factorization scheme. We study in this paper the evolution of non-singlet parton distribution functions (PDFs) in the short-distance factorization scheme which notably arises in lattice calculations in the pseudo-distribution approach. We provide an assessment of non-perturbative evolution of PDFs from already published lattice matrix elements, and show how this evolution can be used to reduce the fluctuation of the lattice data. We compare our result with expectations obtained thanks to a perturbative matching to $\overline{MS}$. By highlighting the limitations of the current computations, we advocate for a new strategy using lattice calculations in small volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19926v1-abstract-full').style.display = 'none'; document.getElementById('2310.19926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 28 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-23-3951 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18179">arXiv:2310.18179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18179">pdf</a>, <a href="https://arxiv.org/format/2310.18179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Gluon helicity from global analysis of experimental data and lattice QCD Ioffe time distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">J. Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Whitehill%2C+R+M">R. M. Whitehill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Melnitchouk%2C+W">W. Melnitchouk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J+-">J. -W. Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sato%2C+N">N. Sato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">S. Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18179v1-abstract-short" style="display: inline;"> We perform a new global analysis of spin-dependent parton distribution functions with the inclusion of Ioffe time pseudo-distributions computed in lattice QCD (LQCD), which are directly sensitive to the gluon helicity distribution, $螖g$. These lattice data have an analogous relationship to parton distributions as do experimental cross sections, and can be readily included in global analyses. We fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18179v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18179v1-abstract-full" style="display: none;"> We perform a new global analysis of spin-dependent parton distribution functions with the inclusion of Ioffe time pseudo-distributions computed in lattice QCD (LQCD), which are directly sensitive to the gluon helicity distribution, $螖g$. These lattice data have an analogous relationship to parton distributions as do experimental cross sections, and can be readily included in global analyses. We focus in particular on the constraining capability of current LQCD data on the sign of $螖g$ at intermediate parton momentum fractions $x$, which was recently brought into question by analysis of data in the absence of parton positivity constraints. We find that present LQCD data cannot discriminate between positive and negative $螖g$ solutions, although significant changes in the solutions for both the gluon and quark sectors are observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18179v1-abstract-full').style.display = 'none'; document.getElementById('2310.18179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-23-3950 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11107">arXiv:2212.11107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11107">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11949-2">10.1140/epjc/s10052-023-11949-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 50 Years of Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gross%2C+F">Franz Gross</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Klempt%2C+E">Eberhard Klempt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brodsky%2C+S+J">Stanley J. Brodsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buras%2C+A+J">Andrzej J. Buras</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Burkert%2C+V+D">Volker D. Burkert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heinrich%2C+G">Gudrun Heinrich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jakobs%2C+K">Karl Jakobs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+C+A">Curtis A. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strickland%2C+M">Michael Strickland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stachel%2C+J">Johanna Stachel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanderighi%2C+G">Giulia Zanderighi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Braun-Munzinger%2C+P">Peter Braun-Munzinger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Britzger%2C+D">Daniel Britzger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Capstick%2C+S">Simon Capstick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+T">Tom Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Crede%2C+V">Volker Crede</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C">Christine Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Denig%2C+A">Achim Denig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deur%2C+A">Alexandre Deur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dokshitzer%2C+Y">Yuri Dokshitzer</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11107v2-abstract-short" style="display: inline;"> This paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11107v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11107v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11107v2-abstract-full" style="display: none;"> This paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD, the only known method for obtaining exact predictions from QCD; methods for approximating QCD, with special focus on effective field theories; QCD under extreme conditions; measurements and predictions of meson and baryon states; a special discussion of the structure of the nucleon; techniques for study of QCD at high energy, including treatment of jets and showers; measurements at colliders; weak decays and quark mixing; and a section on the future, which discusses new experimental facilities or upgrades currently funded. The paper is intended to provide a broad background for Ph.D. students and postdocs starting their career. Some contributions include personal accounts of how the ideas or experiments were developed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11107v2-abstract-full').style.display = 'none'; document.getElementById('2212.11107v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited volume for the EJPC; 567 pages if text/figures and 4783 references occupying about 160 additional pages. arXiv abstract abridged, for the complete abstract please see the full text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The European Physical Journal C 83 (12), 1125 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04430">arXiv:2212.04430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04430">pdf</a>, <a href="https://arxiv.org/ps/2212.04430">ps</a>, <a href="https://arxiv.org/format/2212.04430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Shift Selection in Multilevel Monte Carlo for Disconnected Diagrams in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Whyte%2C+T">Travis Whyte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stathopoulos%2C+A">Andreas Stathopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04430v1-abstract-short" style="display: inline;"> The calculation of disconnected diagram contributions to physical signals is a computationally expensive task in Lattice QCD. To extract the physical signal, the trace of the inverse Lattice Dirac operator, a large sparse matrix, must be stochastically estimated. Because the variance of the stochastic estimator is typically large, variance reduction techniques must be employed. Multilevel Monte Ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04430v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04430v1-abstract-full" style="display: none;"> The calculation of disconnected diagram contributions to physical signals is a computationally expensive task in Lattice QCD. To extract the physical signal, the trace of the inverse Lattice Dirac operator, a large sparse matrix, must be stochastically estimated. Because the variance of the stochastic estimator is typically large, variance reduction techniques must be employed. Multilevel Monte Carlo (MLMC) methods reduce the variance of the trace estimator by utilizing a telescoping sequence of estimators. Frequency Splitting is one such method that uses a sequence of inverses of shifted operators to estimate the trace of the inverse lattice Dirac operator, however there is no a priori way to select the shifts that minimize the cost of the multilevel trace estimation. In this article, we present a sampling and interpolation scheme that is able to predict the variances associated with Frequency Splitting under displacements of the underlying space time lattice. The interpolation scheme is able to predict the variances to high accuracy and therefore choose shifts that correspond to an approximate minimum of the cost for the trace estimation. We show that Frequency Splitting with the chosen shifts displays significant speedups over multigrid deflation, and that these shifts can be used for multiple configurations within the same ensemble with no penalty to performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04430v1-abstract-full').style.display = 'none'; document.getElementById('2212.04430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65C05; 81V05 (Primary) 65F50; 65D05; 15A15 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04434">arXiv:2211.04434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04434">pdf</a>, <a href="https://arxiv.org/format/2211.04434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2023)086">10.1007/JHEP03(2023)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-singlet quark helicity PDFs of the nucleon from pseudo-distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karthik%2C+N">Nikhil Karthik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04434v2-abstract-short" style="display: inline;"> The non-singlet helicity quark parton distribution functions (PDFs) of the nucleon are determined from lattice QCD, by jointly leveraging pseudo-distributions and the distillation spatial smearing paradigm. A Lorentz decomposition of appropriately isolated space-like matrix elements reveals pseudo-distributions that contain information on the leading-twist helicity PDFs, as well as an invariant am&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04434v2-abstract-full').style.display = 'inline'; document.getElementById('2211.04434v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04434v2-abstract-full" style="display: none;"> The non-singlet helicity quark parton distribution functions (PDFs) of the nucleon are determined from lattice QCD, by jointly leveraging pseudo-distributions and the distillation spatial smearing paradigm. A Lorentz decomposition of appropriately isolated space-like matrix elements reveals pseudo-distributions that contain information on the leading-twist helicity PDFs, as well as an invariant amplitude that induces an additional $z^2$ contamination of the leading-twist signal. An analysis of the short-distance behavior of the space-like matrix elements using matching coefficients computed to next-to-leading order (NLO) exposes the desired PDF up to this additional $z^2$ contamination. Due to the non-conservation of the axial current, we elect to isolate the helicity PDFs normalized by the nucleon axial charge at the same scale $渭^2$. The leading-twist helicity PDFs as well as several sources of systematic error, including higher-twist effects, discretization errors, and the aforementioned $z^2$ contaminating amplitude are jointly determined by characterizing the computed pseudo-distribution in a basis of Jacobi polynomials. The Akaike Information Criterion is exploited to effectively average over distinct model parameterizations and cuts on the pseudo-distribution. Encouraging agreement is observed with recent global analyses of each non-singlet quark helicity PDF, notably a rather small non-singlet anti-quark helicity PDF for all quark momentum fractions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04434v2-abstract-full').style.display = 'none'; document.getElementById('2211.04434v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 38 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-22-3751 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08733">arXiv:2207.08733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08733">pdf</a>, <a href="https://arxiv.org/format/2207.08733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.094511">10.1103/PhysRevD.106.094511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the determination of the gluon helicity distribution in the nucleon from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karthik%2C+N">Nikhil Karthik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Khan%2C+T">Tanjib Khan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08733v2-abstract-short" style="display: inline;"> We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized gluon Ioffe-time pseudo-distribution in the nucleon. The Ioffe-time pseudo-distribution provides a frame-independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first principles. We employ a high-statistics computation using a $32^3\times 64$ lattice ensemble cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08733v2-abstract-full').style.display = 'inline'; document.getElementById('2207.08733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08733v2-abstract-full" style="display: none;"> We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized gluon Ioffe-time pseudo-distribution in the nucleon. The Ioffe-time pseudo-distribution provides a frame-independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first principles. We employ a high-statistics computation using a $32^3\times 64$ lattice ensemble characterized by a $358$ MeV pion mass and a $0.094$ fm lattice spacing. We establish the pseudo-distribution approach as a feasible method to address the proton spin puzzle with successive improvements in statistical and systematic uncertainties anticipated in the future. Within the statistical precision of our data, we find a good comparison between the lattice determined polarized gluon Ioffe-time distribution and the corresponding expectations from the state-of-the-art global analyses. We find a hint for a nonzero gluon spin contribution to the proton spin from the model-independent extraction of the gluon helicity pseudo-distribution over a range of Ioffe-time, $谓\lesssim 9$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08733v2-abstract-full').style.display = 'none'; document.getElementById('2207.08733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version to be published in Phys. Rev. D, 24 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-22-3663 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00543">arXiv:2204.00543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00543">pdf</a>, <a href="https://arxiv.org/format/2204.00543">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114051">10.1103/PhysRevD.105.114051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complementarity of experimental and lattice QCD data on pion parton distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Barry%2C+P+C">P. C. Barry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">C. Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">J. Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Melnitchouk%2C+W">W. Melnitchouk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">D. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sato%2C+N">N. Sato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">R. S. Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">S. Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00543v2-abstract-short" style="display: inline;"> We extract pion parton distribution functions (PDFs) in a Monte Carlo global QCD analysis of experimental data together with reduced Ioffe time pseudo-distributions and matrix elements of current-current correlators generated from lattice QCD. By including both experimental and lattice QCD data, our analysis rigorously quantifies both the uncertainties of the pion PDFs and systematic effects intri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00543v2-abstract-full').style.display = 'inline'; document.getElementById('2204.00543v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00543v2-abstract-full" style="display: none;"> We extract pion parton distribution functions (PDFs) in a Monte Carlo global QCD analysis of experimental data together with reduced Ioffe time pseudo-distributions and matrix elements of current-current correlators generated from lattice QCD. By including both experimental and lattice QCD data, our analysis rigorously quantifies both the uncertainties of the pion PDFs and systematic effects intrinsic to the lattice QCD observables. The reduced Ioffe time pseudo-distributions significantly decrease the uncertainties on the PDFs, while the current-current correlators are limited by the systematic effects associated with the lattice. Consistent with recent phenomenological determinations, the behavior of the valence quark distribution of the pion at large momentum fraction is found to be $\sim (1-x)^{ 尾_{\rm eff}}$ with $尾_{\rm eff} \approx 1.0-1.2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00543v2-abstract-full').style.display = 'none'; document.getElementById('2204.00543v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-22-3592 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07193">arXiv:2202.07193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07193">pdf</a>, <a href="https://arxiv.org/ps/2202.07193">ps</a>, <a href="https://arxiv.org/format/2202.07193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Calculations of Parton Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sato%2C+N">Nobuo Sato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yuan%2C+C+-">C. -P. Yuan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07193v1-abstract-short" style="display: inline;"> In this document, we summarize the status and challenges of calculating parton physics in lattice QCD for the US Particle Physics Community Planning Exercise (a.k.a. &#34;Snowmass&#34;). While PDF-moments calculations have been very successful and been continuously improved, new methods have been developed to calculate distributions directly in $x$-space. Many recent lattice studies have been focused on c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07193v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07193v1-abstract-full" style="display: none;"> In this document, we summarize the status and challenges of calculating parton physics in lattice QCD for the US Particle Physics Community Planning Exercise (a.k.a. &#34;Snowmass&#34;). While PDF-moments calculations have been very successful and been continuously improved, new methods have been developed to calculate distributions directly in $x$-space. Many recent lattice studies have been focused on calculating isovector PDFs of the pion and nucleon, learning to control systematics associated with excited-state contamination, renormalization and continuum extrapolations, pion-mass and finite-volume effects, etc. Although in some cases, the lattice results are already competitive with experimental data, to reach the level of precision in a wide range of $x$ for unpolarized nucleon PDFs impactful for future collider physics remains a challenge, and may require exascale supercomputing power. The new theoretical methods open the door for calculating other partonic observables which will be the focus of the experimental program in nuclear physics, including generalized parton distributions and transverse-momentum dependent PDFs. A fruitful interplay between experimental data and lattice-QCD calculations will usher in a new era for parton physics and hadron structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07193v1-abstract-full').style.display = 'none'; document.getElementById('2202.07193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-22-3564,MIT-CTP/5408,MSUHEP-22-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01808">arXiv:2111.01808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01808">pdf</a>, <a href="https://arxiv.org/format/2111.01808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034507">10.1103/PhysRevD.105.034507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The transversity parton distribution function of the nucleon using the pseudo-distribution approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kallidonis%2C+C">Christos Kallidonis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karthik%2C+N">Nikhil Karthik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01808v1-abstract-short" style="display: inline;"> We present a determination of the non-singlet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at $渭^2=2$ GeV$^2$ from lattice quantum chromodynamics. We apply the pseudo-distribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01808v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01808v1-abstract-full" style="display: none;"> We present a determination of the non-singlet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at $渭^2=2$ GeV$^2$ from lattice quantum chromodynamics. We apply the pseudo-distribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudo-distribution using the leading-twist next-to-leading order (NLO) matching coefficients calculated for transversity. We reconstruct the $x$-dependence of the transversity PDF through an expansion in a basis of Jacobi polynomials in order to reduce the PDF ansatz dependence. Within the limitations imposed by a heavier-than-physical pion mass and a fixed lattice spacing, we present a comparison of our estimate for the valence transversity PDF with the recent global fit results based on single transverse spin asymmetry. We find the intrinsic nucleon sea to be isospin symmetric with respect to transversity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01808v1-abstract-full').style.display = 'none'; document.getElementById('2111.01808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-21-3521 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08960">arXiv:2107.08960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08960">pdf</a>, <a href="https://arxiv.org/format/2107.08960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094516">10.1103/PhysRevD.104.094516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unpolarized gluon distribution in the nucleon from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Khan%2C+T">Tanjib Khan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morris%2C+W">Wayne Morris</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08960v2-abstract-short" style="display: inline;"> In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on a $32^3\times 64$ ensemble with a pion mass of $358$ MeV and lattice spacing of $0.094$ fm. We construct the nucleon interpolating fields using the distillation technique, flow the gauge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08960v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08960v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08960v2-abstract-full" style="display: none;"> In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on a $32^3\times 64$ ensemble with a pion mass of $358$ MeV and lattice spacing of $0.094$ fm. We construct the nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow, and solve the summed generalized eigenvalue problem to determine the glounic matrix elements. Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution and unpolarized gluon PDF. We obtain the flow time independent reduced Ioffe-time pseudo-distribution, and calculate the light-cone Ioffe-time distribution and unpolarized gluon distribution function in the $\overline{\rm MS}$ scheme at $渭= 2$ GeV, neglecting the mixing of the gluon operator with the quark singlet sector. Finally, we compare our results to phenomenological determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08960v2-abstract-full').style.display = 'none'; document.getElementById('2107.08960v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, Phys Rev D accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-21-3469 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05199">arXiv:2107.05199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05199">pdf</a>, <a href="https://arxiv.org/format/2107.05199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)148">10.1007/JHEP11(2021)148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards High-Precision Parton Distributions From Lattice QCD via Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kallidonis%2C+C">Christos Kallidonis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A+V">Anatoly V. Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05199v1-abstract-short" style="display: inline;"> We apply the Distillation spatial smearing program to the extraction of the unpolarized isovector valence PDF of the nucleon. The improved volume sampling and control of excited-states afforded by distillation leads to a dramatically improved determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-twist effects is subsequently explored by extending the Wilson lin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05199v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05199v1-abstract-full" style="display: none;"> We apply the Distillation spatial smearing program to the extraction of the unpolarized isovector valence PDF of the nucleon. The improved volume sampling and control of excited-states afforded by distillation leads to a dramatically improved determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-twist effects is subsequently explored by extending the Wilson line length present in our non-local operators to one half the spatial extent of the lattice ensemble considered. The valence PDF is extracted by analyzing both the matched Ioffe-time Distribution (ITD), as well as a direct matching of the pITD to the PDF. Through development of a novel prescription to obtain the PDF from the pITD, we establish a concerning deviation of the pITD from the expected DGLAP evolution of the pseudo-PDF. The presence of DGLAP evolution is observed once more following introduction of a discretization term into the PDF extractions. Observance and correction of this discrepancy further highlights the utility of distillation in such structure studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05199v1-abstract-full').style.display = 'none'; document.getElementById('2107.05199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 26 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-21-3457 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01275">arXiv:2106.01275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01275">pdf</a>, <a href="https://arxiv.org/format/2106.01275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Probing for the Trace Estimation of a Permuted Matrix Inverse Corresponding to a Lattice Displacement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Switzer%2C+H">Heather Switzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stathopoulos%2C+A">Andreas Stathopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laeuchli%2C+J">Jesse Laeuchli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01275v2-abstract-short" style="display: inline;"> In this work, we study probing for the more general problem of computing the trace of a permutation of $A^{-1}$, say $PA^{-1}$. The motivation comes from Lattice QCD where we need to construct &#34;disconnected diagrams&#34; to extract flavor-separated Generalized Parton functions. In Lattice QCD, where the matrix has a 4D toroidal lattice structure, these non-local operators correspond to a $PA^{-1}$ whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01275v2-abstract-full').style.display = 'inline'; document.getElementById('2106.01275v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01275v2-abstract-full" style="display: none;"> In this work, we study probing for the more general problem of computing the trace of a permutation of $A^{-1}$, say $PA^{-1}$. The motivation comes from Lattice QCD where we need to construct &#34;disconnected diagrams&#34; to extract flavor-separated Generalized Parton functions. In Lattice QCD, where the matrix has a 4D toroidal lattice structure, these non-local operators correspond to a $PA^{-1}$ where $P$ is the permutation relating to some displacement $\vec{p}$ in one or more dimensions. We focus on a single dimension displacement ($p$) but our methods are general. We show that probing on $A^k$ or $(PA)^k$ do not annihilate the largest magnitude elements. To resolve this issue, our displacement-based probing works on $PA^k$ using a new coloring scheme that works directly on appropriately displaced neighborhoods on the lattice. We prove lower bounds on the number of colors needed, and study the effect of this scheme on variance reduction, both theoretically and experimentally on a real-world Lattice QCD calculation. We achieve orders of magnitude speedup over the unprobed or the naively probed methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01275v2-abstract-full').style.display = 'none'; document.getElementById('2106.01275v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05B20; 15A15; 65C05; 65F50; 68R10; 81V05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13313">arXiv:2105.13313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13313">pdf</a>, <a href="https://arxiv.org/format/2105.13313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)024">10.1007/JHEP11(2021)024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuum and Leading Twist Limits of Parton Distribution Functions in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13313v3-abstract-short" style="display: inline;"> In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing lattice QCD calculable matrix elements. Our findings are also compared with the pertinent phenomenological determinations. Inter alia, we are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13313v3-abstract-full').style.display = 'inline'; document.getElementById('2105.13313v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13313v3-abstract-full" style="display: none;"> In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing lattice QCD calculable matrix elements. Our findings are also compared with the pertinent phenomenological determinations. Inter alia, we are employing the summation Generalized Eigenvalue Problem (sGEVP) technique in order to optimize our control over the excited state contamination which can be one of the most serious systematic errors in this type of calculations. A crucial novel ingredient of our analysis is the parameterization of systematic errors using Jacobi polynomials to characterize and remove both lattice spacing and higher twist contaminations, as well as the leading twist distribution. This method can be expanded in further studies to remove all other systematic errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13313v3-abstract-full').style.display = 'none'; document.getElementById('2105.13313v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">56 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-21-3409 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10571">arXiv:2011.10571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10571">pdf</a>, <a href="https://arxiv.org/ps/2011.10571">ps</a>, <a href="https://arxiv.org/format/2011.10571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Efficient computation of baryon interpolating fields in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10571v1-abstract-short" style="display: inline;"> In this work we present an efficient construction of baryon interpolating fields for lattice QCD computations of two and three point functions. These are essential building blocks of computations of nucleon parton distribution functions (PDFs), generalized parton distribution functions (GPDs) and transverse momentum dependent distributions functions (TMDs). Lattice QCD computations of these quanti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10571v1-abstract-full').style.display = 'inline'; document.getElementById('2011.10571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10571v1-abstract-full" style="display: none;"> In this work we present an efficient construction of baryon interpolating fields for lattice QCD computations of two and three point functions. These are essential building blocks of computations of nucleon parton distribution functions (PDFs), generalized parton distribution functions (GPDs) and transverse momentum dependent distributions functions (TMDs). Lattice QCD computations of these quantities can provide additional input to assist with the global fits on experimental data for determining TMDs, GPDs and PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10571v1-abstract-full').style.display = 'none'; document.getElementById('2011.10571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03996">arXiv:2010.03996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03996">pdf</a>, <a href="https://arxiv.org/format/2010.03996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2021)138">10.1007/JHEP02(2021)138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neural-network analysis of Parton Distribution Functions from Ioffe-time pseudodistributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giani%2C+T">Tommaso Giani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03996v2-abstract-short" style="display: inline;"> We extract two nonsinglet nucleon Parton Distribution Functions from lattice QCD data for reduced Ioffe-time pseudodistributions. We perform such analysis within the NNPDF framework, considering data coming from different lattice ensembles and discussing in detail the treatment of the different source of systematics involved in the fit. We introduce a recipe for taking care of systematics and use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03996v2-abstract-full').style.display = 'inline'; document.getElementById('2010.03996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03996v2-abstract-full" style="display: none;"> We extract two nonsinglet nucleon Parton Distribution Functions from lattice QCD data for reduced Ioffe-time pseudodistributions. We perform such analysis within the NNPDF framework, considering data coming from different lattice ensembles and discussing in detail the treatment of the different source of systematics involved in the fit. We introduce a recipe for taking care of systematics and use it to perform our extraction of light-cone PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03996v2-abstract-full').style.display = 'none'; document.getElementById('2010.03996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12357">arXiv:2009.12357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12357">pdf</a>, <a href="https://arxiv.org/format/2009.12357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054508">10.1103/PhysRevD.103.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering and Effective Interactions of Two Baryons at $m_蟺\sim 450$ MeV from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12357v3-abstract-short" style="display: inline;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'inline'; document.getElementById('2009.12357v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12357v3-abstract-full" style="display: none;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-singlet $危危$ ($I=2$) and $螢危$ ($I=3/2$) states, and the spin-triplet $螢N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using L眉scher&#39;s formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $危N$ and $螢螢$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'none'; document.getElementById('2009.12357v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">69 pages, 31 figures and 25 tables; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038, FERMILAB-PUB-20-498-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10691">arXiv:2009.10691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10691">pdf</a>, <a href="https://arxiv.org/format/2009.10691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034502">10.1103/PhysRevD.103.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distillation at High-Momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10691v1-abstract-short" style="display: inline;"> Extraction of hadronic observables at finite-momenta from Lattice QCD (LQCD) is constrained by the well-known signal-to-noise problems afflicting all such LQCD calculations. Traditional quark smearing algorithms are commonly used tools to improve the statistical quality of hadronic $n$-point functions, provided operator momenta are small. The momentum smearing algorithm of Bali et al. extends the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10691v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10691v1-abstract-full" style="display: none;"> Extraction of hadronic observables at finite-momenta from Lattice QCD (LQCD) is constrained by the well-known signal-to-noise problems afflicting all such LQCD calculations. Traditional quark smearing algorithms are commonly used tools to improve the statistical quality of hadronic $n$-point functions, provided operator momenta are small. The momentum smearing algorithm of Bali et al. extends the range of momenta that are cleanly accessible, and has facilitated countless novel lattice calculations. Momentum smearing has, however, not been explicitly demonstrated within the framework of distillation. In this work we extend the momentum-smearing idea, by exploring a few modifications to the distillation framework. Together with enhanced time slice sampling and expanded operator bases engendered by distillation, we find ground-state nucleon energies can be extracted reliably for $\left|\vec{p}\right|\lesssim3\text{ GeV}$ and matrix elements featuring a large momentum dependence can be resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10691v1-abstract-full').style.display = 'none'; document.getElementById('2009.10691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-20-3250 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05522">arXiv:2009.05522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05522">pdf</a>, <a href="https://arxiv.org/format/2009.05522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.202001">10.1103/PhysRevLett.126.202001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD constraints on the parton distribution functions of ${}^3\text{He}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05522v1-abstract-short" style="display: inline;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05522v1-abstract-full" style="display: none;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3\text{He}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'none'; document.getElementById('2009.05522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5234, ICCUB-20-019, FERMILAB-PUB-20-466-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 202001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11160">arXiv:2008.11160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11160">pdf</a>, <a href="https://arxiv.org/format/2008.11160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.10.004">10.1016/j.physrep.2020.10.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11160v1-abstract-short" style="display: inline;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11160v1-abstract-full" style="display: none;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined. Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'none'; document.getElementById('2008.11160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5229, UMD-PP-020-4, ICCUB-20-018, FERMILAB-PUB-20-445-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04795">arXiv:2005.04795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04795">pdf</a>, <a href="https://arxiv.org/format/2005.04795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034507">10.1103/PhysRevD.102.034507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $F_K / F_蟺$ from M枚bius domain-wall fermions solved on gradient-flowed HISQ ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Miller%2C+N">Nolan Miller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D+A">David A. Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A+S">Arjun Singh Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%B6rber%2C+C">Christopher K枚rber</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04795v3-abstract-short" style="display: inline;"> We report the results of a lattice quantum chromodynamics calculation of $F_K/F_蟺$ using M枚bius domain-wall fermions computed on gradient-flowed $N_f=2+1+1$ highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from $130 \lesssim m_蟺\lesssim 400$ MeV, four lattice spacings of $a\sim 0.15, 0.12, 0.09$ and $0.06$ fm and multiple valu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04795v3-abstract-full').style.display = 'inline'; document.getElementById('2005.04795v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04795v3-abstract-full" style="display: none;"> We report the results of a lattice quantum chromodynamics calculation of $F_K/F_蟺$ using M枚bius domain-wall fermions computed on gradient-flowed $N_f=2+1+1$ highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from $130 \lesssim m_蟺\lesssim 400$ MeV, four lattice spacings of $a\sim 0.15, 0.12, 0.09$ and $0.06$ fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the $a\sim0.06$ fm ensemble is helpful, but not necessary to achieve a subpercent determination of $F_K/F_蟺$. We also include an estimate of the strong isospin breaking corrections and arrive at a final result of $F_{K^\pm}/F_{蟺^\pm} = 1.1942(45)$ with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of $|V_{us}|/|V_{ud}| = 0.2311(10)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04795v3-abstract-full').style.display = 'none'; document.getElementById('2005.04795v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: published version; v2: version submitted to journal; v1: 26 pages including 13 figures, appendices, and references. See https://github.com/callat-qcd/project_fkfpi for the analysis and data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-809712, RIKEN-iTHEMS-Report-20, JLAB-THY-20-3192 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034507 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01687">arXiv:2004.01687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.01687">pdf</a>, <a href="https://arxiv.org/format/2004.01687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.232003">10.1103/PhysRevLett.125.232003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton Distribution Functions from Ioffe Time Pseudodistributions from Lattice Calculations: Approaching the Physical Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A+V">Anatoly V. Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01687v2-abstract-short" style="display: inline;"> We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01687v2-abstract-full').style.display = 'inline'; document.getElementById('2004.01687v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01687v2-abstract-full" style="display: none;"> We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01687v2-abstract-full').style.display = 'none'; document.getElementById('2004.01687v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2, 8 pages, 6 figures, matches published version, to appear in Phys.Rev.Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-20-3161 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04960">arXiv:2001.04960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04960">pdf</a>, <a href="https://arxiv.org/format/2001.04960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054508">10.1103/PhysRevD.102.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion valence quark distribution from current-current correlation in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+Y">Yan-Qing Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04960v3-abstract-short" style="display: inline;"> We extract the pion valence quark distribution $q^蟺_{\rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04960v3-abstract-full').style.display = 'inline'; document.getElementById('2001.04960v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04960v3-abstract-full" style="display: none;"> We extract the pion valence quark distribution $q^蟺_{\rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We derive the Ioffe time distribution of the two-current correlations in the physical limit by investigating the finite lattice spacing, volume, quark mass, and higher-twist dependencies in a simultaneous fit of matrix elements computed on four gauge ensembles. We find remarkable consistency between our extracted $q^蟺_{\rm v}(x)$ and that obtained from experimental data across the entire $x$-range. Further, we demonstrate that the one-loop matching coefficient relating the LQCD matrix computed in position space to the $q_{\rm v}^蟺(x)$ in momentum space has well-controlled behavior with Ioffe time. This justifies that LQCD calculated current-current correlations are good observables for extracting partonic structures by using QCD factorization, which complements to the global effort to extract partonic structure from experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04960v3-abstract-full').style.display = 'none'; document.getElementById('2001.04960v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-20-3131 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054508 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08321">arXiv:1912.08321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08321">pdf</a>, <a href="https://arxiv.org/format/1912.08321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.317.0020">10.22323/1.317.0020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Determination of $g_A$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D+A">David A. Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A">Arjun Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C">Chris Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08321v1-abstract-short" style="display: inline;"> The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08321v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08321v1-abstract-full" style="display: none;"> The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculations of electroweak matrix elements in one and few nucleon systems. There were a number of significant challenges in determining $g_A$, notably the notorious exponentially-bad signal-to-noise problem and the requirement for hundreds of thousands of stochastic samples, that rendered this goal more difficult to obtain than originally thought. I will describe the use of an unconventional computation method, coupled with &#34;ludicrously&#39;&#34; fast GPU code, access to publicly available lattice QCD configurations from MILC and access to leadership computing that have allowed these challenges to be overcome resulting in a determination of $g_A$ with 1% precision and all sources of systematic uncertainty controlled. I will discuss the implications of these results for the convergence of $SU(2)$ Chiral Perturbation theory for nucleons, as well as prospects for further improvements to $g_A$ (sub-percent precision, for which we have preliminary results) which is part of a more comprehensive application of lattice QCD to nuclear physics. This is particularly exciting in light of the new CORAL supercomputers coming online, Sierra and Summit, for which our lattice QCD codes achieve a machine-to-machine speed up over Titan of an order of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08321v1-abstract-full').style.display = 'none'; document.getElementById('1912.08321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary presentation at The 9th International workshop on Chiral Dynamics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-19, LLNL-PROC-800060 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> POS(CD2018)020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12234">arXiv:1909.12234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.12234">pdf</a>, <a href="https://arxiv.org/format/1909.12234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2020.109356">10.1016/j.jcp.2020.109356 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multigrid deflation for Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Romero%2C+E">Eloy Romero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stathopoulos%2C+A">Andreas Stathopoulos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12234v1-abstract-short" style="display: inline;"> Computing the trace of the inverse of large matrices is typically addressed through statistical methods. Deflating out the lowest eigenvectors or singular vectors of the matrix reduces the variance of the trace estimator. This work summarizes our efforts to reduce the computational cost of computing the deflation space while achieving the desired variance reduction for Lattice QCD applications. Pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12234v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12234v1-abstract-full" style="display: none;"> Computing the trace of the inverse of large matrices is typically addressed through statistical methods. Deflating out the lowest eigenvectors or singular vectors of the matrix reduces the variance of the trace estimator. This work summarizes our efforts to reduce the computational cost of computing the deflation space while achieving the desired variance reduction for Lattice QCD applications. Previous efforts computed the lower part of the singular spectrum of the Dirac operator by using an eigensolver preconditioned with a multigrid linear system solver. Despite the improvement in performance in those applications, as the problem size grows the runtime and storage demands of this approach will eventually dominate the stochastic estimation part of the computation. In this work, we propose to compute the deflation space in one of the following two ways. First, by using an inexact eigensolver on the Hermitian, but maximally indefinite, operator $A 纬_5$. Second, by exploiting the fact that the multigrid prolongator for this operator is rich in components toward the lower part of the singular spectrum. We show experimentally that the inexact eigensolver can approximate the lower part of the spectrum even for ill-conditioned operators. Also, the deflation based on the multigrid prolongator is more efficient to compute and apply, and, despite its limited ability to approximate the fine level spectrum, it obtains similar variance reduction on the trace estimator as deflating with approximate eigenvectors from the fine level operator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12234v1-abstract-full').style.display = 'none'; document.getElementById('1909.12234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08517">arXiv:1909.08517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.08517">pdf</a>, <a href="https://arxiv.org/format/1909.08517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.114512">10.1103/PhysRevD.100.114512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Valence Structure from Ioffe Time Pseudo-Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A+V">Anatoly V. Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08517v2-abstract-short" style="display: inline;"> We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions $24^3\times 64$ and $32^3\times 96$ at the lattice spacing of $a=0.127$ fm, and with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08517v2-abstract-full').style.display = 'inline'; document.getElementById('1909.08517v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08517v2-abstract-full" style="display: none;"> We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions $24^3\times 64$ and $32^3\times 96$ at the lattice spacing of $a=0.127$ fm, and with the quark mass equivalent to a pion mass of $m_蟺\simeq 415$ MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using the summation method. After one-loop perturbative matching and combining the pseudo-distributions from these two ensembles, we extract the pion valence quark distribution using a phenomenological functional form motivated by the global fits of parton distribution functions. We also calculate the lowest four moments of the pion quark distribution through the &#34;OPE without OPE&#34;. We present a qualitative comparison between our lattice QCD extraction of the pion valence quark distribution with that obtained from global fits and previous lattice QCD calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08517v2-abstract-full').style.display = 'none'; document.getElementById('1909.08517v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted by Phys. Rev. D , 18 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-19-3038 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 114512 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09771">arXiv:1908.09771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09771">pdf</a>, <a href="https://arxiv.org/format/1908.09771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2019)081">10.1007/JHEP12(2019)081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton Distribution Functions from Ioffe time pseudo-distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09771v3-abstract-short" style="display: inline;"> In this paper, we present a detailed study of the unpolarized nucleon parton distribution function (PDF) employing the approach of parton pseudo-distribution functions. We perform a systematic analysis using three lattice ensembles at two volumes, with lattice spacings $a=$ 0.127 fm and $a=$ 0.094 fm, for a pion mass of roughly 400 MeV. With two lattice spacings and two volumes, both continuum lim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09771v3-abstract-full').style.display = 'inline'; document.getElementById('1908.09771v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09771v3-abstract-full" style="display: none;"> In this paper, we present a detailed study of the unpolarized nucleon parton distribution function (PDF) employing the approach of parton pseudo-distribution functions. We perform a systematic analysis using three lattice ensembles at two volumes, with lattice spacings $a=$ 0.127 fm and $a=$ 0.094 fm, for a pion mass of roughly 400 MeV. With two lattice spacings and two volumes, both continuum limit and infinite volume extrapolation systematic errors of the PDF are estimated. In addition to the $x$ dependence of the PDF, we compute their first two moments and compare them with the pertinent phenomenological determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09771v3-abstract-full').style.display = 'none'; document.getElementById('1908.09771v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+46 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09512">arXiv:1904.09512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09512">pdf</a>, <a href="https://arxiv.org/format/1904.09512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12902-4">10.1140/epja/i2019-12902-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadrons and Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P">Phiala Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09512v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD calculations related to the structure and spectroscopy of hadrons and nuclei. An overview of recent lattice calculations of the structure of the proton and other hadrons is presented along with prospects for future extensions. Progress and prospects of hadronic spectroscopy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09512v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09512v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD calculations related to the structure and spectroscopy of hadrons and nuclei. An overview of recent lattice calculations of the structure of the proton and other hadrons is presented along with prospects for future extensions. Progress and prospects of hadronic spectroscopy and the study of resonances in the light, strange and heavy quark sectors is summarized. Finally, recent advances in the study of light nuclei from lattice QCD are addressed, and the scope of future investigations that are currently envisioned is outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09512v1-abstract-full').style.display = 'none'; document.getElementById('1904.09512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05408">arXiv:1901.05408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.05408">pdf</a>, <a href="https://arxiv.org/format/1901.05408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2019)057">10.1007/JHEP04(2019)057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05408v1-abstract-short" style="display: inline;"> The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem. In this study, we present and evaluate the efficiency of a selection of methods for inverse problems to reconstruct the full $x$-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05408v1-abstract-full').style.display = 'inline'; document.getElementById('1901.05408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05408v1-abstract-full" style="display: none;"> The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem. In this study, we present and evaluate the efficiency of a selection of methods for inverse problems to reconstruct the full $x$-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time calculations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05408v1-abstract-full').style.display = 'none'; document.getElementById('1901.05408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+41 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03921">arXiv:1901.03921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03921">pdf</a>, <a href="https://arxiv.org/format/1901.03921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.074507">10.1103/PhysRevD.99.074507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Valence Quark Distribution from Matrix Element Calculated in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03921v2-abstract-short" style="display: inline;"> We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted from spatially separated current-current correlations in coordinate space. We show that an antisymmetric combination of vector and axial-vector currents provides direct information on the pion valence quark distribution. Using the collinear factorization approach, we calculate the perturbative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03921v2-abstract-full').style.display = 'inline'; document.getElementById('1901.03921v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03921v2-abstract-full" style="display: none;"> We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted from spatially separated current-current correlations in coordinate space. We show that an antisymmetric combination of vector and axial-vector currents provides direct information on the pion valence quark distribution. Using the collinear factorization approach, we calculate the perturbative tree-level kernel for this current combination and extract the pion valence distribution. The main goal of this article is to demonstrate the efficacy of this general lattice QCD approach in the reliable extraction of parton distributions. With controllable power corrections and a good understanding of the lattice systematics, this method has the potential to serve as a complementary to the many efforts to extract parton distributions in global analyses from experimentally measured cross sections. We perform our calculation on an ensemble of 2+1 flavor QCD using the isotropic-clover fermion action, with lattice dimensions $32^3\times 96$ at a lattice spacing \mbox{$a=0.127$ fm} and the quark mass equivalent to a pion mass $m_蟺\simeq 416$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03921v2-abstract-full').style.display = 'none'; document.getElementById('1901.03921v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version to appear in Physical Review D, 13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-19-2847 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 074507 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.01609">arXiv:1810.01609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.01609">pdf</a>, <a href="https://arxiv.org/format/1810.01609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/SC.2018.00058">10.1109/SC.2018.00058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A">Arjun Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McElvain%2C+K">Ken McElvain</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.01609v2-abstract-short" style="display: inline;"> The fundamental particle theory called Quantum Chromodynamics (QCD) dictates everything about protons and neutrons, from their intrinsic properties to interactions that bind them into atomic nuclei. Quantities that cannot be fully resolved through experiment, such as the neutron lifetime (whose precise value is important for the existence of light-atomic elements that make the sun shine and life p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01609v2-abstract-full').style.display = 'inline'; document.getElementById('1810.01609v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.01609v2-abstract-full" style="display: none;"> The fundamental particle theory called Quantum Chromodynamics (QCD) dictates everything about protons and neutrons, from their intrinsic properties to interactions that bind them into atomic nuclei. Quantities that cannot be fully resolved through experiment, such as the neutron lifetime (whose precise value is important for the existence of light-atomic elements that make the sun shine and life possible), may be understood through numerical solutions to QCD. We directly solve QCD using Lattice Gauge Theory and calculate nuclear observables such as neutron lifetime. We have developed an improved algorithm that exponentially decreases the time-to solution and applied it on the new CORAL supercomputers, Sierra and Summit. We use run-time autotuning to distribute GPU resources, achieving 20% performance at low node count. We also developed optimal application mapping through a job manager, which allows CPU and GPU jobs to be interleaved, yielding 15% of peak performance when deployed across large fractions of CORAL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01609v2-abstract-full').style.display = 'none'; document.getElementById('1810.01609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2018 Gordon Bell Finalist: 9 pages, 9 figures; v2: fixed 2 typos and appended acknowledgements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-749850, RIKEN-iTHEMS-Report-18 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> C.1.4; D.1.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercomputing 2018, pp. 697-705 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10933">arXiv:1807.10933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10933">pdf</a>, <a href="https://arxiv.org/format/1807.10933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2018)178">10.1007/JHEP11(2018)178 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moments of Ioffe time parton distribution functions from non-local matrix elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10933v3-abstract-short" style="display: inline;"> We examine the relation of moments of parton distribution functions to matrix elements of non-local operators computed in lattice quantum chromodynamics. We argue that after the continuum limit is taken, these non-local matrix elements give access to moments that are finite and can be matched to those defined in the $\overline{MS}$ scheme. We demonstrate this fact with a numerical computation of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10933v3-abstract-full').style.display = 'inline'; document.getElementById('1807.10933v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10933v3-abstract-full" style="display: none;"> We examine the relation of moments of parton distribution functions to matrix elements of non-local operators computed in lattice quantum chromodynamics. We argue that after the continuum limit is taken, these non-local matrix elements give access to moments that are finite and can be matched to those defined in the $\overline{MS}$ scheme. We demonstrate this fact with a numerical computation of moments through non-local matrix elements in the quenched approximation and we find that these moments are in excellent agreement with the moments obtained from direct computations of local twist-2 matrix elements in the quenched approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10933v3-abstract-full').style.display = 'none'; document.getElementById('1807.10933v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+11 pages, 1 figure, version to appear in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12130">arXiv:1805.12130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12130">pdf</a>, <a href="https://arxiv.org/format/1805.12130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-018-0161-8">10.1038/s41586-018-0161-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D+A">David A. Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C">Chris Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12130v1-abstract-short" style="display: inline;"> The $\textit{axial coupling of the nucleon}$, $g_A$, is the strength of its coupling to the $\textit{weak}$ axial current of the Standard Model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force betwe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12130v1-abstract-full').style.display = 'inline'; document.getElementById('1805.12130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12130v1-abstract-full" style="display: none;"> The $\textit{axial coupling of the nucleon}$, $g_A$, is the strength of its coupling to the $\textit{weak}$ axial current of the Standard Model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of the Standard Model. The prominence of $g_A$ makes it a benchmark quantity to determine theoretically - a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice Quantum Chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two percent would be possible by 2020 if two challenges are overcome: contamination of $g_A$ from excited states must be controlled in the calculations and statistical precision must be improved markedly. Here we report a calculation of $g_A^{QCD} = 1.271\pm0.013$, using an unconventional method inspired by the Feynman-Hellmann theorem that overcomes these challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12130v1-abstract-full').style.display = 'none'; document.getElementById('1805.12130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature. 46 pages total: Main text 4 pages, Extended Data 8 pages, Supplemental 34 pages. Supporting data and code at https://github.com/callat-qcd/project_gA or https://zenodo.org/record/1241374</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-203631-2018-JAAM, INT-PUB-18-021, LLNL-JRNL-747003, RBRC-1283, RIKEN-iTHEMS-Report-18, LTH 1166 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 558, 91-94 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03221">arXiv:1712.03221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03221">pdf</a>, <a href="https://arxiv.org/format/1712.03221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.152002">10.1103/PhysRevLett.120.152002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear modification of scalar, axial and tensor charges from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A+S">Arjun S. Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03221v2-abstract-short" style="display: inline;"> Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_蟺\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03221v2-abstract-full').style.display = 'inline'; document.getElementById('1712.03221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03221v2-abstract-full" style="display: none;"> Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_蟺\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor charges of nuclei constrain their spin content, integrated transversity and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. Significant nuclear modifications are found, with particularly large, O(10%), effects in the scalar charges. Typically, these nuclear effects reduce the effective charge of the nucleon (quenching), although in some cases an enhancement is not excluded. Given the size of the nuclear modifications of the scalar charges resolved here, contributions from correlated multi-nucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03221v2-abstract-full').style.display = 'none'; document.getElementById('1712.03221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-054, MIT-CTP/4967, JLAB-THY-17-2607, UMD-PP-017-35 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 152002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07916">arXiv:1711.07916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.07916">pdf</a>, <a href="https://arxiv.org/format/1711.07916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2018.01.007">10.1016/j.ppnp.2018.01.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distributions and lattice QCD calculations: a community white paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nocera%2C+E+R">Emanuele R. Nocera</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Olness%2C+F">Fred Olness</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rojo%2C+J">Juan Rojo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Accardi%2C+A">Alberto Accardi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacchetta%2C+A">Alessandro Bacchetta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bozzi%2C+G">Giuseppe Bozzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">Sara Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cooper-Sarkar%2C+A">Amanda Cooper-Sarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Harland-Lang%2C+L+A">Lucian A. Harland-Lang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kusina%2C+A">Aleksander Kusina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nadolsky%2C+P">Pavel Nadolsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Qiu%2C+J">Jian-Wei Qiu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07916v3-abstract-short" style="display: inline;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic obs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'inline'; document.getElementById('1711.07916v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07916v3-abstract-full" style="display: none;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'none'; document.getElementById('1711.07916v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">80 pages, 15 figures, 28 tables, minor typos corrected, published in Progress in Particle and Nuclear Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 17-185, IFJPAN-IV-2017-19, INT-PUB-17-042, MSUHEP-17-017, Nikhef-2017-047, OUTP-17-15P, SMU-HEP-17-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08288">arXiv:1710.08288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08288">pdf</a>, <a href="https://arxiv.org/format/1710.08288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506032">10.1051/epjconf/201817506032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distribution functions on the lattice and in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08288v1-abstract-short" style="display: inline;"> Ioffe-time distributions, which are functions of the Ioffe-time $谓$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08288v1-abstract-full').style.display = 'inline'; document.getElementById('1710.08288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08288v1-abstract-full" style="display: none;"> Ioffe-time distributions, which are functions of the Ioffe-time $谓$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present the first numerical calculation of the Ioffe-time distributions of the nucleon in the quenched approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08288v1-abstract-full').style.display = 'none'; document.getElementById('1710.08288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures. arXiv admin note: text overlap with arXiv:1706.05373</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-17-2573 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06523">arXiv:1710.06523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06523">pdf</a>, <a href="https://arxiv.org/format/1710.06523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon axial coupling from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D">David Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Chris Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C">Chris Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06523v1-abstract-short" style="display: inline;"> We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, $g_A$, using M枚bius Domain-Wall fermions solved on the dynamical $N_f = 2 + 1 + 1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06523v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06523v1-abstract-full" style="display: none;"> We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, $g_A$, using M枚bius Domain-Wall fermions solved on the dynamical $N_f = 2 + 1 + 1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of $m_蟺\sim \{400, 350, 310, 220, 130\}$~MeV, three lattice spacings of $a\sim\{0.15, 0.12, 0.09\}$~fm, and we do a dedicated volume study with $m_蟺L\sim\{3.22, 4.29, 5.36\}$. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of $g_A = 1.285(17)$, with a relative uncertainty of 1.33\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06523v1-abstract-full').style.display = 'none'; document.getElementById('1710.06523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, Lattice 2017 Proceedings</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-18-022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06466">arXiv:1710.06466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06466">pdf</a>, <a href="https://arxiv.org/format/1710.06466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506004">10.1051/epjconf/201817506004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite continuum quasi distributions from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06466v1-abstract-short" style="display: inline;"> We present a new approach to extracting continuum quasi distributions from lattice QCD. Quasi distributions are defined by matrix elements of a Wilson-line operator extended in a spatial direction, evaluated between nucleon states at finite momentum. We propose smearing this extended operator with the gradient flow to render the corresponding matrix elements finite in the continuum limit. This pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06466v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06466v1-abstract-full" style="display: none;"> We present a new approach to extracting continuum quasi distributions from lattice QCD. Quasi distributions are defined by matrix elements of a Wilson-line operator extended in a spatial direction, evaluated between nucleon states at finite momentum. We propose smearing this extended operator with the gradient flow to render the corresponding matrix elements finite in the continuum limit. This procedure provides a nonperturbative method to remove the power-divergence associated with the Wilson line and the resulting matrix elements can be directly matched to light-front distributions via perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06466v1-abstract-full').style.display = 'none'; document.getElementById('1710.06466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Eight pages, two figures. Proceedings of the 35th International Symposium on Lattice Field Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-044 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01564">arXiv:1709.01564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01564">pdf</a>, <a href="https://arxiv.org/format/1709.01564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506001">10.1051/epjconf/201817506001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryon magnetic moments: Symmetries and relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01564v1-abstract-short" style="display: inline;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'inline'; document.getElementById('1709.01564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01564v1-abstract-full" style="display: none;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spin-flavor symmetry in the large Nc limit of QCD is shared by the naive constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'none'; document.getElementById('1709.01564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, talk given at Lattice 2017, the 35th International Symposium on Lattice Field Theory, Granada, Spain, 18-24 June 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01511">arXiv:1709.01511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01511">pdf</a>, <a href="https://arxiv.org/format/1709.01511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The PDFLattice2017 workshop: a summary report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Nocera%2C+E+R">Emanuele R. Nocera</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Olness%2C+F">Fred Olness</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rojo%2C+J">Juan Rojo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01511v2-abstract-short" style="display: inline;"> The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22$^{\rm nd}$ to 24$^{\rm th}$ March 2017. The workshop brought together the lattice-QCD and the global-fit physicists who devote their efforts to determine the parton distribution functions (PDFs) of the proton. The goals were to make the two communities m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01511v2-abstract-full').style.display = 'inline'; document.getElementById('1709.01511v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01511v2-abstract-full" style="display: none;"> The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22$^{\rm nd}$ to 24$^{\rm th}$ March 2017. The workshop brought together the lattice-QCD and the global-fit physicists who devote their efforts to determine the parton distribution functions (PDFs) of the proton. The goals were to make the two communities more familiar between each other, review developments from both sides, and set precision targets for lattice calculations so that they can contribute, together with the forthcoming experimental input, to the next generation of PDF determinations. This contribution summarises the relevant outcome of the workshop, in anticipation of a thorough white paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01511v2-abstract-full').style.display = 'none'; document.getElementById('1709.01511v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure, contribution to the proceedings of the XXV Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00395">arXiv:1709.00395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00395">pdf</a>, <a href="https://arxiv.org/format/1709.00395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.094512">10.1103/PhysRevD.96.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First lattice QCD study of the gluonic structure of light nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A+S">Arjun S. Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00395v2-abstract-short" style="display: inline;"> The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic number $A=3$ at quark masses corresponding to pion masses of $m_蟺\sim 450$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00395v2-abstract-full').style.display = 'inline'; document.getElementById('1709.00395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00395v2-abstract-full" style="display: none;"> The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic number $A=3$ at quark masses corresponding to pion masses of $m_蟺\sim 450$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $\sim 10$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $b_1$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $m_蟺\sim 806$ MeV. This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00395v2-abstract-full').style.display = 'none'; document.getElementById('1709.00395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-035, MIT-CTP/4932, JLAB-THY-17-2540 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 094512 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06550">arXiv:1706.06550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.06550">pdf</a>, <a href="https://arxiv.org/format/1706.06550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.114510">10.1103/PhysRevD.96.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06550v2-abstract-short" style="display: inline;"> Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06550v2-abstract-full').style.display = 'inline'; document.getElementById('1706.06550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06550v2-abstract-full" style="display: none;"> Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L眉scher&#39;s formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$N_c$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $NN~({^1}S_0)$, $NN~({^3}S_1)$ and $\frac{1}{\sqrt{2}}(螢^0n+螢^-p)~({^3}S_1)$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $危^+ p~({^3}S_1)$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06550v2-abstract-full').style.display = 'none'; document.getElementById('1706.06550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 21 figures, 14 tables. v2: Minor wording improvements and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 114510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05373">arXiv:1706.05373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.05373">pdf</a>, <a href="https://arxiv.org/format/1706.05373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD exploration of pseudo-PDFs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radyushkin%2C+A">Anatoly Radyushkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joseph Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zafeiropoulos%2C+S">Savvas Zafeiropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05373v4-abstract-short" style="display: inline;"> We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element ${\cal M} (Pz_3, z_3^2)$ as a function of the Ioffe time $谓= Pz_3$ and the distance $z_3$. The next step is to divide ${\cal M} (Pz_3, z_3^2)$ by the rest-frame density ${\cal M} (0, z_3^2)$. Our lattice calculation shows a linear exponential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05373v4-abstract-full').style.display = 'inline'; document.getElementById('1706.05373v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05373v4-abstract-full" style="display: none;"> We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element ${\cal M} (Pz_3, z_3^2)$ as a function of the Ioffe time $谓= Pz_3$ and the distance $z_3$. The next step is to divide ${\cal M} (Pz_3, z_3^2)$ by the rest-frame density ${\cal M} (0, z_3^2)$. Our lattice calculation shows a linear exponential $z_3$-dependence in the rest-frame function, expected from the $Z(z_3^2)$ factor generated by the gauge link. Still, we observe that the ratio ${\cal M} (Pz_3 , z_3^2)/{\cal M} (0, z_3^2)$ has a Gaussian-type behavior with respect to $z_3$ for 6 values of $P$ used in the calculation. This means that $Z(z_3^2)$ factor was canceled in the ratio. When plotted as a function of $谓$ and $z_3$, the data are very close to $z_3$-independent functions. This phenomenon corresponds to factorization of the $x$- and $k_\perp$-dependence for the TMD ${\cal F} (x, k_\perp^2)$. For small $z_3 \leq 4a$, the residual $z_3$-dependence is explained by perturbative evolution, with $伪_s/蟺=0.1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05373v4-abstract-full').style.display = 'none'; document.getElementById('1706.05373v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 18 figures, to appear in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-17-2494 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09239">arXiv:1705.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09239">pdf</a>, <a href="https://arxiv.org/format/1705.09239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Are two nucleons bound in lattice QCD for heavy quark masses? - Sanity check with L眉scher&#39;s finite volume formula -&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09239v3-abstract-short" style="display: inline;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'inline'; document.getElementById('1705.09239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09239v3-abstract-full" style="display: none;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the &#39;sanity checks&#39; introduced in arXiv:1703.07210. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'none'; document.getElementById('1705.09239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Clarifications added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-016, NT@UW-17-10, MIT-CTP-4909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01114">arXiv:1704.01114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01114">pdf</a>, <a href="https://arxiv.org/format/1704.01114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> An accurate calculation of the nucleon axial charge with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brantley%2C+D">David Brantley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C">Chris Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicholas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">Thorsten Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">Chris Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01114v1-abstract-short" style="display: inline;"> We report on a lattice QCD calculation of the nucleon axial charge, $g_A$, using M枚bius Domain-Wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, $m_蟺\sim\{310,220,130\}$ MeV. Three lattice spacings ($a\sim\{0.15,0.12,0.09\}$ fm) are used with the heaviest pion mass, while t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01114v1-abstract-full').style.display = 'inline'; document.getElementById('1704.01114v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01114v1-abstract-full" style="display: none;"> We report on a lattice QCD calculation of the nucleon axial charge, $g_A$, using M枚bius Domain-Wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, $m_蟺\sim\{310,220,130\}$ MeV. Three lattice spacings ($a\sim\{0.15,0.12,0.09\}$ fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the $m_蟺\sim220$ MeV, $a\sim0.12$ fm point, a dedicated volume study is performed with $m_蟺L \sim \{3.22,4.29,5.36\}$. Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of $g_A$ with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is $g_A = 1.278(21)(26)$, with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01114v1-abstract-full').style.display = 'none'; document.getElementById('1704.01114v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages + 11 pages of references and appendices. 15 figures. Interested readers can download the Python analysis scripts and an hdf5 data file at https://github.com/callat-qcd/project_gA_v0</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06703">arXiv:1703.06703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06703">pdf</a>, <a href="https://arxiv.org/format/1703.06703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114502">10.1103/PhysRevD.95.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Up, down, and strange nucleon axial form factors from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasan%2C+N">Nesreen Hasan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laeuchli%2C+J">Jesse Laeuchli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J">John Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A">Andrew Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06703v2-abstract-short" style="display: inline;"> We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $q\in\{u,d,s\}$ in the range $0\leq Q^2\lesssim 1.2\text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonpertu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06703v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06703v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06703v2-abstract-full" style="display: none;"> We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $q\in\{u,d,s\}$ in the range $0\leq Q^2\lesssim 1.2\text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $G_A^q(Q^2)$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $G_P^{u-d}(Q^2)$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to $G_P$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06703v2-abstract-full').style.display = 'none'; document.getElementById('1703.06703v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures. v2: additional comparison with phenomenology and discussion of systematics; new appendix with fit parameters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC 1232 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114502 (2017) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orginos%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10