CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 136 results for author: <span class="mathjax">Katz, S D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Katz%2C+S+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Katz, S D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Katz%2C+S+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Katz, S D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16709">arXiv:2403.16709</a> <span> [<a href="https://arxiv.org/pdf/2403.16709">pdf</a>, <a href="https://arxiv.org/format/2403.16709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The crossover line in the $(T, 渭)$-phase diagram of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">Kalman K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16709v1-abstract-short" style="display: inline;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16709v1-abstract-full" style="display: none;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extrapolation of the crossover temperature based on different observables at several lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'none'; document.getElementById('2403.16709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to Quark Matter Conference 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A 982 (2019) 303-306 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07528">arXiv:2312.07528</a> <span> [<a href="https://arxiv.org/pdf/2312.07528">pdf</a>, <a href="https://arxiv.org/format/2312.07528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Continuum extrapolated high order baryon fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07528v1-abstract-short" style="display: inline;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07528v1-abstract-full" style="display: none;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that for $T \leq 145$ MeV, relevant for criticality search, finite volume effects are under control. Our results are in sharp contrast with well known results in the literature obtained at finite lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'none'; document.getElementById('2312.07528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures (main text) + 5 pages, 7 figures (supplemental material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06105">arXiv:2308.06105</a> <span> [<a href="https://arxiv.org/pdf/2308.06105">pdf</a>, <a href="https://arxiv.org/format/2308.06105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Can rooted staggered fermions describe nonzero baryon density at low temperatures? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06105v1-abstract-short" style="display: inline;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06105v1-abstract-full" style="display: none;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass. We elucidate the nature of the non-analyticity behind this sharp rise in the density by a comparison of reweighting results with a Taylor expansion of high order. While at first sight this non-analytic behavior becomes apparent at the same position where the pion condensation transition takes place in the phase-quenched theory, the nature of the non-analyticity in the two theories appears to be quite different: While at nonzero isospin density the data are consistent with a genuine thermodynamic (branch-point) singularity, the results at nonzero baryon density point to an essential singularity at $渭_B=0$. The effect is absent for four flavors of degenerate quarks, where rooting is not used. For the two-flavor case, we show numerical evidence that the magnitude of the effect diminishes on finer lattices. We discuss the implications of this technical complication on future studies of the QCD phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'none'; document.getElementById('2308.06105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05398">arXiv:2208.05398</a> <span> [<a href="https://arxiv.org/pdf/2208.05398">pdf</a>, <a href="https://arxiv.org/format/2208.05398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L091503">10.1103/PhysRevD.107.L091503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real $渭_B$ vs. extrapolations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05398v2-abstract-short" style="display: inline;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05398v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05398v2-abstract-full" style="display: none;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniques free from an overlap problem. We use 2stout improved staggered fermions with 8 time-slices and cover the entire RHIC BES range in the baryochemical potential, up to $渭_B/T=3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'none'; document.getElementById('2208.05398v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07561">arXiv:2202.07561</a> <span> [<a href="https://arxiv.org/pdf/2202.07561">pdf</a>, <a href="https://arxiv.org/format/2202.07561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.054512">10.1103/PhysRevD.106.054512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exponential reduction of the sign problem at finite density in the 2+1D XY model via contour deformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Tulipant%2C+Z">Zoltan Tulipant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07561v1-abstract-short" style="display: inline;"> We study the 2+1 dimensional XY model at nonzero chemical potential $渭$ on deformed integration manifolds, with the aim of alleviating its sign problem. We investigate several proposals for the deformations, and considerably improve on the severity of the sign problem with respect to standard reweighting approaches. We present numerical evidence that the reduction of the sign problem is exponentia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07561v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07561v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07561v1-abstract-full" style="display: none;"> We study the 2+1 dimensional XY model at nonzero chemical potential $渭$ on deformed integration manifolds, with the aim of alleviating its sign problem. We investigate several proposals for the deformations, and considerably improve on the severity of the sign problem with respect to standard reweighting approaches. We present numerical evidence that the reduction of the sign problem is exponential both in $渭^2$ and in the spatial volume. We also present a new approach to the optimization procedure based on reweighting, that sensibly reduces its computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07561v1-abstract-full').style.display = 'none'; document.getElementById('2202.07561v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05807">arXiv:2202.05807</a> <span> [<a href="https://arxiv.org/pdf/2202.05807">pdf</a>, <a href="https://arxiv.org/format/2202.05807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> QED and strong isospin corrections in the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05807v2-abstract-short" style="display: inline;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05807v2-abstract-full" style="display: none;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospin breaking is implemented by expanding the relevant correlation functions to second order in the electric charge $e$ and to first order in $m_u-m_d$. The correction terms are then computed using isospin-symmetric configurations. The choice of this approach allows us to better distribute the available computing resources among the various contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'none'; document.getElementById('2202.05807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">talk presented at the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00887">arXiv:2201.00887</a> <span> [<a href="https://arxiv.org/pdf/2201.00887">pdf</a>, <a href="https://arxiv.org/format/2201.00887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real $渭_B$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00887v1-abstract-short" style="display: inline;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00887v1-abstract-full" style="display: none;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature ratio of $渭_B/T=2.7$, covering the RHIC Beam Energy Scan range, and penetrating the region where methods based on analytic continuation are unpredictive.This opens up a new window to study QCD matter at finite $渭_B$ from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'none'; document.getElementById('2201.00887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Contribution to the XXXIII International (ONLINE) Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests"; Based on 2108.09213 [hep-lat]. arXiv admin note: substantial text overlap with arXiv:2112.02134</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02402">arXiv:2112.02402</a> <span> [<a href="https://arxiv.org/pdf/2112.02402">pdf</a>, <a href="https://arxiv.org/format/2112.02402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantifying corrections to the hadron resonance gas with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02402v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02402v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane. Using the aforementioned coefficients, we also extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity expansion. Our results extrapolated along the crossover line $T_\mathrm{c}(渭_B)$ at strangeness neutrality are able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'none'; document.getElementById('2112.02402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02134">arXiv:2112.02134</a> <span> [<a href="https://arxiv.org/pdf/2112.02134">pdf</a>, <a href="https://arxiv.org/format/2112.02134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density: reweighting without an overlap problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02134v2-abstract-short" style="display: inline;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the gener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02134v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02134v2-abstract-full" style="display: none;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the generation of configurations with the positive fermionic weights given by the absolute value of the real part of the quark determinant, and a reweighting by a sign. There are only two sectors, +1 and -1 and as long as the average $\left\langle \pm \right\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting has no overlap problem - unlike reweighting from $渭=0$ - and the results are reliable. We also present results based on this algorithm on the phase diagram of lattice QCD with two different actions: as a first test, we apply the method to calculate the position of the critical endpoint with unimproved staggered fermions at $N_蟿=4$; as a second application, we study the phase diagram with 2stout improved staggered fermions at $N_蟿=6$. This second one is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method penetrates the region of the phase diagram where the Taylor and imaginary chemical potential methods lose predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'none'; document.getElementById('2112.02134v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; Contribution to the Proceedings of The 38th International Symposium on Lattice Field Theory, LATTICE2021; Based on 2004.10800 and 2108.09213</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00083">arXiv:2112.00083</a> <span> [<a href="https://arxiv.org/pdf/2112.00083">pdf</a>, <a href="https://arxiv.org/format/2112.00083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of QCD at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00083v1-abstract-short" style="display: inline;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00083v1-abstract-full" style="display: none;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We calculate the alternative expansion coefficients in the continuum, and show our results for the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'none'; document.getElementById('2112.00083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09213">arXiv:2108.09213</a> <span> [<a href="https://arxiv.org/pdf/2108.09213">pdf</a>, <a href="https://arxiv.org/format/2108.09213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051506">10.1103/PhysRevD.105.L051506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real baryon density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09213v1-abstract-short" style="display: inline;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09213v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09213v1-abstract-full" style="display: none;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $渭_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'none'; document.getElementById('2108.09213v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06660">arXiv:2102.06660</a> <span> [<a href="https://arxiv.org/pdf/2102.06660">pdf</a>, <a href="https://arxiv.org/format/2102.06660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.232001">10.1103/PhysRevLett.126.232001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06660v1-abstract-short" style="display: inline;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06660v1-abstract-full" style="display: none;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating the equation of state of QCD to finite, real chemical potential that can extend its reach further than previous methods. We present continuum extrapolated lattice results for the new expansion coefficients and show the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'none'; document.getElementById('2102.06660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 232001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06625">arXiv:2102.06625</a> <span> [<a href="https://arxiv.org/pdf/2102.06625">pdf</a>, <a href="https://arxiv.org/format/2102.06625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094508">10.1103/PhysRevD.104.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pesznyak%2C+D">David Pesznyak</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06625v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06625v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansion coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane, where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these coefficients by performing lattice simulations with temporal extents of $N_蟿=8,10,12$ using the 4stout-improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'none'; document.getElementById('2102.06625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10800">arXiv:2004.10800</a> <span> [<a href="https://arxiv.org/pdf/2004.10800">pdf</a>, <a href="https://arxiv.org/ps/2004.10800">ps</a>, <a href="https://arxiv.org/format/2004.10800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2020)088">10.1007/JHEP05(2020)088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density; results for the critical end point on coarse lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10800v2-abstract-short" style="display: inline;"> All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $渭= 渭_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10800v2-abstract-full').style.display = 'inline'; document.getElementById('2004.10800v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10800v2-abstract-full" style="display: none;"> All approaches currently used to study finite baryon density lattice QCD suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We formulate and test an algorithm, sign reweighting, that works directly at finite $渭= 渭_B/3$ and is yet free from any such uncontrolled systematics. With this algorithm the {\em only} problem is the sign problem itself. This approach involves the generation of configurations with the positive fermionic weight $|{\rm Re\; det} D(渭)|$ where $D(渭)$ is the Dirac matrix and the signs ${\rm sign} \; ( {\rm Re\; det} D(渭) ) = \pm 1$ are handled by a discrete reweighting. Hence there are only two sectors, $+1$ and $-1$ and as long as the average $\langle\pm 1\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting by the signs carries no overlap problem and the results are reliable. The approach is tested on $N_t = 4$ lattices with $2+1$ flavors and physical quark masses using the unimproved staggered discretization. By measuring the Fisher (sometimes also called Lee-Yang) zeros in the bare coupling on spatial lattices $L/a = 8, 10, 12$ we conclude that the cross-over present at $渭= 0$ becomes stronger at $渭> 0$ and is consistent with a true phase transition at around $渭_B/T \sim 2.4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10800v2-abstract-full').style.display = 'none'; document.getElementById('2004.10800v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07066">arXiv:2004.07066</a> <span> [<a href="https://arxiv.org/pdf/2004.07066">pdf</a>, <a href="https://arxiv.org/format/2004.07066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2020.121986">10.1016/j.nuclphysa.2020.121986 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a reliable lower bound on the location of the critical endpoint </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Konel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07066v1-abstract-short" style="display: inline;"> We perform the first direct determination of the position of the leading singularity of the pressure in the complex chemical potential $渭_B$ plane in lattice QCD using numerical simulations with 2-stout improved rooted staggered fermions. This provides a direct determination of the radius of convergence of the Taylor expansion of the pressure that does not rely on a finite-order truncation of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07066v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07066v1-abstract-full" style="display: none;"> We perform the first direct determination of the position of the leading singularity of the pressure in the complex chemical potential $渭_B$ plane in lattice QCD using numerical simulations with 2-stout improved rooted staggered fermions. This provides a direct determination of the radius of convergence of the Taylor expansion of the pressure that does not rely on a finite-order truncation of the expansion. The analyticity issues in the complex $渭_B$ plane of the grand canonical partition function of QCD with rooted staggered fermions are solved with a careful redefinition of the fermion determinant that makes it a polynomial in the fugacity on any finite lattice, without changing the continuum limit of the observables. By performing a finite volume scaling study at a single coarse lattice spacing, we show that the limiting singularity is not on the real line in the thermodynamic limit, thus showing that the radius of convergence of the Taylor expansion gives a lower bound on the location of a possible phase transition. In the vicinity of the crossover temperature at zero chemical potential, the radius of convergence turns out to be $渭_B/T \approx 2$ and roughly temperature independent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07066v1-abstract-full').style.display = 'none'; document.getElementById('2004.07066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure; Quark Matter 2019 - the XXVIIIth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04355">arXiv:2003.04355</a> <span> [<a href="https://arxiv.org/pdf/2003.04355">pdf</a>, <a href="https://arxiv.org/format/2003.04355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034503">10.1103/PhysRevD.102.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of stout smearing on the phase diagram from multiparameter reweigthing in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04355v2-abstract-short" style="display: inline;"> The phase diagram and the location of the critical endpoint (CEP) of lattice QCD with unimproved staggered fermions on a $N_t=4$ lattice was determined fifteen years ago with the multiparameter reweighting method by studying Fisher zeros. We first reproduce the old result with an exact algorithm (not known at the time) and with statistics larger by an order of magnitude. As an extension of the old… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04355v2-abstract-full').style.display = 'inline'; document.getElementById('2003.04355v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04355v2-abstract-full" style="display: none;"> The phase diagram and the location of the critical endpoint (CEP) of lattice QCD with unimproved staggered fermions on a $N_t=4$ lattice was determined fifteen years ago with the multiparameter reweighting method by studying Fisher zeros. We first reproduce the old result with an exact algorithm (not known at the time) and with statistics larger by an order of magnitude. As an extension of the old analysis we introduce stout smearing in the fermion action in order to reduce the finite lattice spacing effects. First we show that increasing the smearing parameter $蟻$ the crossover at $渭= 0$ gets weaker, i.e., the leading Fisher zero gets farther away from the real axis. Furthermore as the chemical potential is increased the overlap problem gets severe sooner than in the unimproved case, therefore shrinking the range of applicability of the method. Nevertheless certain qualitative features remain, even after introducing the smearing. Namely, at small chemical potentials the Fisher zeros first get farther away from the real axis and later at around $a渭_q = 0.1 - 0.15$ they start to get closer, i.e., the crossover first gets weaker and later stronger as a function of $渭$. However, because of the more severe overlap problem the CEP is out of reach with the smeared action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04355v2-abstract-full').style.display = 'none'; document.getElementById('2003.04355v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034503 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12347">arXiv:2002.12347</a> <span> [<a href="https://arxiv.org/pdf/2002.12347">pdf</a>, <a href="https://arxiv.org/format/2002.12347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03418-1">10.1038/s41586-021-03418-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leading hadronic contribution to the muon magnetic moment from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12347v3-abstract-short" style="display: inline;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'inline'; document.getElementById('2002.12347v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12347v3-abstract-full" style="display: none;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to leading order. The infinite-volume limit is taken thanks to simulations performed in volumes of sizes up to 11~fm. Our result for the LO-HVP contribution to $(g_渭-2)$ has a total uncertainty of 0.8\%. Compared to the result of the dispersive approach for this contribution, ours significantly reduces the tension between the standard model prediction for $(g_渭-2)$ and its measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'none'; document.getElementById('2002.12347v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication. 116 pages, 34 figures with main, methods and supplementary information. v2: added finite time extent corrections, analyzed new configurations and included suggestions from the community (regarding the continuum limit, scale setting and running of the fine structure constant). v3: revised analysis to take into account referees' comments. Original conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02821">arXiv:2002.02821</a> <span> [<a href="https://arxiv.org/pdf/2002.02821">pdf</a>, <a href="https://arxiv.org/format/2002.02821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.052001">10.1103/PhysRevLett.125.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD crossover at finite chemical potential from lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02821v1-abstract-short" style="display: inline;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02821v1-abstract-full" style="display: none;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero and imaganiary $渭_B$. We obtain the parameters $魏_2=0.0153(18)$ and $魏_4=0.00032(67)$ as a continuum extrapolation based on $N_t=10,12$ and $16$ lattices with physical quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both of these are consistent with a constant function of $渭_B$. We see no sign of criticality in the explored range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'none'; document.getElementById('2002.02821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text + 7 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00043">arXiv:1911.00043</a> <span> [<a href="https://arxiv.org/pdf/1911.00043">pdf</a>, <a href="https://arxiv.org/format/1911.00043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.074511">10.1103/PhysRevD.101.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radius of convergence in lattice QCD at finite $渭_B$ with rooted staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00043v2-abstract-short" style="display: inline;"> In typical statistical mechanical systems the grand canonical partition function at finite volume is proportional to a polynomial of the fugacity $e^{渭/T}$. The zero of this Lee-Yang polynomial closest to the origin determines the radius of convergence of the Taylor expansion of the pressure around $渭=0$. The computationally cheapest formulation of lattice QCD, rooted staggered fermions, with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00043v2-abstract-full').style.display = 'inline'; document.getElementById('1911.00043v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00043v2-abstract-full" style="display: none;"> In typical statistical mechanical systems the grand canonical partition function at finite volume is proportional to a polynomial of the fugacity $e^{渭/T}$. The zero of this Lee-Yang polynomial closest to the origin determines the radius of convergence of the Taylor expansion of the pressure around $渭=0$. The computationally cheapest formulation of lattice QCD, rooted staggered fermions, with the usual definition of the rooted determinant, does not admit such a Lee-Yang polynomial. We argue that the radius of convergence is then bounded by the spectral gap of the reduced matrix of the unrooted staggered operator. This is a cutoff effect that potentially affects all estimates of the radius of convergence with the standard staggered rooting. We suggest a new definition of the rooted staggered determinant at finite chemical potential that allows for a definition of a Lee-Yang polynomial, and, therefore of the numerical study of Lee-Yang zeros. We also describe an algorithm to determine the Lee-Yang zeros and apply it to configurations generated with the 2-stout improved staggered action at $N_t = 4$. We perform a finite-volume scaling study of the leading Lee-Yang zeros and estimate the radius of convergence of the Taylor expansion extrapolated to an infinite volume. We show that the limiting singularity is not on the real line, thus giving a lower bound on the location of any possible phase transitions at this lattice spacing. In the vicinity of the crossover temperature at zero chemical potential, the radius of convergence turns out to be $渭_B/T \approx 2$ and roughly temperature independent. Our simulations are performed at strange quark chemical potential $渭_s=0$, but the method can be straightforwardly extended to strangeness chemical potential $渭_S=0$ or strangeness neutrality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00043v2-abstract-full').style.display = 'none'; document.getElementById('1911.00043v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures; v2: contains corrections to the formulas from the erratum PRD 104, 119901(E) (2021); results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 074511 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10296">arXiv:1904.10296</a> <span> [<a href="https://arxiv.org/pdf/1904.10296">pdf</a>, <a href="https://arxiv.org/format/1904.10296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2019)007">10.1007/JHEP07(2019)007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic catalysis and inverse catalysis for heavy pions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10296v2-abstract-short" style="display: inline;"> We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10296v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10296v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10296v2-abstract-full" style="display: none;"> We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition region. While the former is known to be robust and independent of the details of the interactions, inverse catalysis arises as a result of a delicate competition, effective only for light quarks. By performing simulations at different quark masses, we determine the pion mass above which inverse catalysis does not take place in the transition region anymore. Even for pions heavier than this limiting value - where the quark condensate undergoes magnetic catalysis - our results are consistent with the notion that the transition temperature is reduced by the magnetic field. These findings will be useful to guide low-energy models and effective theories of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10296v2-abstract-full').style.display = 'none'; document.getElementById('1904.10296v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version; matches published version; 14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09862">arXiv:1807.09862</a> <span> [<a href="https://arxiv.org/pdf/1807.09862">pdf</a>, <a href="https://arxiv.org/format/1807.09862">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Searching for a CEP signal with lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">Denes Sexty</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09862v1-abstract-short" style="display: inline;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09862v1-abstract-full" style="display: none;"> We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $蠂^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09862v1-abstract-full').style.display = 'none'; document.getElementById('1807.09862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08326">arXiv:1807.08326</a> <span> [<a href="https://arxiv.org/pdf/1807.08326">pdf</a>, <a href="https://arxiv.org/format/1807.08326">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074508">10.1103/PhysRevD.98.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applying constrained simulations for low temperature lattice QCD at finite baryon chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Cs. Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08326v2-abstract-short" style="display: inline;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08326v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08326v2-abstract-full" style="display: none;"> We study the density of states method as well as reweighting to explore the low temperature phase diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level Symanzik improved gauge action and four stout smearing steps on lattices with $N_s=4,6,8$ and $N_t=6 - 16$. We compare our results to that of the phase quenched ensemble and also determine the pion and nucleon masses. In the density of states approach we applied pion condensate or gauge action density fixing. We found that the density of states method performs similarly to reweighting. At $T \approx 100$ MeV, we found an indication of the onset of the quark number density at around $渭/m_N \sim 0.16 - 0.18$ on $6^4$ lattices at $尾=2.9$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08326v2-abstract-full').style.display = 'none'; document.getElementById('1807.08326v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06472">arXiv:1807.06472</a> <span> [<a href="https://arxiv.org/pdf/1807.06472">pdf</a>, <a href="https://arxiv.org/format/1807.06472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2018.10.068">10.1016/j.nuclphysa.2018.10.068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice-based QCD equation of state at finite baryon density: Cluster Expansion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Vovchenko%2C+V">V. Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&query=Steinheimer%2C+J">J. Steinheimer</a>, <a href="/search/hep-lat?searchtype=author&query=Philipsen%2C+O">O. Philipsen</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Stoecker%2C+H">H. Stoecker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06472v1-abstract-short" style="display: inline;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06472v1-abstract-full" style="display: none;"> The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $渭_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data at both $渭_B = 0$ and at imaginary $渭_B$ is obtained. We also demonstrate how the Fourier coefficients can be reconstructed from baryon number susceptibilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06472v1-abstract-full').style.display = 'none'; document.getElementById('1807.06472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures. Contribution to the Quark Matter 2018 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07718">arXiv:1802.07718</a> <span> [<a href="https://arxiv.org/pdf/1802.07718">pdf</a>, <a href="https://arxiv.org/format/1802.07718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014512">10.1103/PhysRevD.98.014512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High statistics lattice study of stress tensor correlators in pure $SU(3)$ gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07718v2-abstract-short" style="display: inline;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'inline'; document.getElementById('1802.07718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07718v2-abstract-full" style="display: none;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obtain $畏/s=0.17(2)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'none'; document.getElementById('1802.07718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08720">arXiv:1711.08720</a> <span> [<a href="https://arxiv.org/pdf/1711.08720">pdf</a>, <a href="https://arxiv.org/format/1711.08720">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817507014">10.1051/epjconf/201817507014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau levels in QCD in an external magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bruckmann%2C+F">Falk Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Wellnhofer%2C+J">Jacob Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08720v1-abstract-short" style="display: inline;"> We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a "lowest Landau level" in the four-dimensional case, and discuss how much of the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08720v1-abstract-full').style.display = 'inline'; document.getElementById('1711.08720v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08720v1-abstract-full" style="display: none;"> We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a "lowest Landau level" in the four-dimensional case, and discuss how much of the observed effects of a magnetic field can be explained in terms of it. Our results can be used to test the validity of low-energy models of QCD that make use of the lowest-Landau-level approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08720v1-abstract-full').style.display = 'none'; document.getElementById('1711.08720v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures; to appear in the proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), June 19-24, 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.02852">arXiv:1708.02852</a> <span> [<a href="https://arxiv.org/pdf/1708.02852">pdf</a>, <a href="https://arxiv.org/format/1708.02852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.10.042">10.1016/j.physletb.2017.10.042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Vovchenko%2C+V">Volodymyr Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Stoecker%2C+H">Horst Stoecker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.02852v2-abstract-short" style="display: inline;"> The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02852v2-abstract-full').style.display = 'inline'; document.getElementById('1708.02852v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.02852v2-abstract-full" style="display: none;"> The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential -- corresponding to the fugacity or virial expansion at real chemical potential -- are calculated within this model, and compared with the $N_t = 12$ lattice data. The lattice QCD behavior of the first four Fourier coefficients up to $T \simeq 185$ MeV is described fairly well by an interacting HRG with a single baryon-baryon eigenvolume interaction parameter $b \simeq 1$ fm$^3$, while the available lattice data on the difference $蠂_2^B - 蠂_4^B$ of baryon number susceptibilities is reproduced up to $T \simeq 175$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02852v2-abstract-full').style.display = 'none'; document.getElementById('1708.02852v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, new Fig. 2 depicting $蠂_2^B - 蠂_4^B$, version accepted for publication in Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B 775, 71 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10210">arXiv:1705.10210</a> <span> [<a href="https://arxiv.org/pdf/1705.10210">pdf</a>, <a href="https://arxiv.org/format/1705.10210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.074506">10.1103/PhysRevD.96.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau levels in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bruckmann%2C+F">F. Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">M. Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">T. G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Wellnhofer%2C+J">J. Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10210v1-abstract-short" style="display: inline;"> We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10210v1-abstract-full').style.display = 'inline'; document.getElementById('1705.10210v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10210v1-abstract-full" style="display: none;"> We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and an expansion of the full four-dimensional modes in the basis of these two-dimensional states. We evaluate various fermionic observables including the quark condensate and the spin polarization in this basis to find how much the lowest Landau level contributes to them. The results allow for a deeper insight into the dynamics of quarks and gluons in background magnetic fields and may be directly compared to low-energy models of QCD employing the lowest Landau level approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10210v1-abstract-full').style.display = 'none'; document.getElementById('1705.10210v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 074506 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01113">arXiv:1702.01113</a> <span> [<a href="https://arxiv.org/pdf/1702.01113">pdf</a>, <a href="https://arxiv.org/format/1702.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034517">10.1103/PhysRevD.96.034517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the hadronic spectrum through QCD thermodynamics on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alba%2C+P">Paolo Alba</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J">Jana Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Sarti%2C+V+M">Valentina Mantovani Sarti</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Vazquez%2C+I+P">Israel Portillo Vazquez</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01113v1-abstract-short" style="display: inline;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01113v1-abstract-full" style="display: none;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the Quark Model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'none'; document.getElementById('1702.01113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034517 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.05747">arXiv:1611.05747</a> <span> [<a href="https://arxiv.org/pdf/1611.05747">pdf</a>, <a href="https://arxiv.org/format/1611.05747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Landau Levels in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bruckmann%2C+F">Falk Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">Gergely Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Wellnhofer%2C+J">Jacob Wellnhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.05747v1-abstract-short" style="display: inline;"> The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05747v1-abstract-full').style.display = 'inline'; document.getElementById('1611.05747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.05747v1-abstract-full" style="display: none;"> The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05747v1-abstract-full').style.display = 'none'; document.getElementById('1611.05747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+6 pages, 2 figures. Contribution to the 34th International Symposium on Lattice Field Theory (Lattice 2016), 24-30 July 2016, University of Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03987">arXiv:1611.03987</a> <span> [<a href="https://arxiv.org/pdf/1611.03987">pdf</a>, <a href="https://arxiv.org/format/1611.03987">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.054506">10.1103/PhysRevD.95.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of algorithms for solving the sign problem in the O(3) model in 1+1 dimensions at finite chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Niedermayer%2C+F">Ferenc Niedermayer</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Csaba Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03987v2-abstract-short" style="display: inline;"> We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1+1 dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum results are shown for the pressure at different $渭/T$ values in the range $0-4$. By performing $T=0$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03987v2-abstract-full').style.display = 'inline'; document.getElementById('1611.03987v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03987v2-abstract-full" style="display: none;"> We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1+1 dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum results are shown for the pressure at different $渭/T$ values in the range $0-4$. By performing $T=0$ simulations using the worm algorithm the Silver Blaze phenomenon is reproduced. Regarding the complex Langevin, we test various implementations of discretizing the complex Langevin equation. We found that the exponentialized Euler discretization of the Langevin equation gives wrong results for the action and the density at low $T/m$. By performing continuum extrapolation we found that this discrepancy does not disappear and depends slightly on temperature. The discretization with spherical coordinates perform similarly at low $渭/T$, but goes wrong also at some higher temperatures at high $渭/T$. However, a third discretization that uses a constraining force to achieve the $蠁^2 = 1$ condition gives correct results for the action, but wrong results for the density at low $渭/T$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03987v2-abstract-full').style.display = 'none'; document.getElementById('1611.03987v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, typos fixed, and a short section added (Sec. D.1.), the final version to appear in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 054506 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03284">arXiv:1611.03284</a> <span> [<a href="https://arxiv.org/pdf/1611.03284">pdf</a>, <a href="https://arxiv.org/ps/1611.03284">ps</a>, <a href="https://arxiv.org/format/1611.03284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2017)055">10.1007/JHEP02(2017)055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deconfinement, chiral transition and localisation in a QCD-like model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03284v2-abstract-short" style="display: inline;"> We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of local… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03284v2-abstract-full').style.display = 'inline'; document.getElementById('1611.03284v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03284v2-abstract-full" style="display: none;"> We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03284v2-abstract-full').style.display = 'none'; document.getElementById('1611.03284v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+17 pages, 9 figures; revised introduction, minor changes in figures, new references added; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2017) 055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02493">arXiv:1607.02493</a> <span> [<a href="https://arxiv.org/pdf/1607.02493">pdf</a>, <a href="https://arxiv.org/format/1607.02493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2017.05.044">10.1016/j.nuclphysa.2017.05.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD equation of state at finite density from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02493v1-abstract-short" style="display: inline;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02493v1-abstract-full" style="display: none;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~渭_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $渭_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'none'; document.getElementById('1607.02493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07494">arXiv:1606.07494</a> <span> [<a href="https://arxiv.org/pdf/1606.07494">pdf</a>, <a href="https://arxiv.org/format/1606.07494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD for Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kampert%2C+K+H">K. H. Kampert</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">T. G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S+W">S. W. Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Redondo%2C+J">J. Redondo</a>, <a href="/search/hep-lat?searchtype=author&query=Ringwald%2C+A">A. Ringwald</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07494v2-abstract-short" style="display: inline;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'inline'; document.getElementById('1606.07494v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07494v2-abstract-full" style="display: none;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'none'; document.getElementById('1606.07494v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pdflatex, 40 figures; Section on experimental setups added, small corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.00466">arXiv:1601.00466</a> <span> [<a href="https://arxiv.org/pdf/1601.00466">pdf</a>, <a href="https://arxiv.org/format/1601.00466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2016.02.010">10.1016/j.nuclphysa.2016.02.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the QCD phase diagram from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.00466v1-abstract-short" style="display: inline;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'inline'; document.getElementById('1601.00466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.00466v1-abstract-full" style="display: none;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the strangeness neutrality is maintained, as it is in heavy ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'none'; document.getElementById('1601.00466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, Proceedings of the Quark Matter 2015 conference, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06804">arXiv:1512.06804</a> <span> [<a href="https://arxiv.org/pdf/1512.06804">pdf</a>, <a href="https://arxiv.org/ps/1512.06804">ps</a>, <a href="https://arxiv.org/format/1512.06804">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.094512">10.1103/PhysRevD.95.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD on Non-Orientable Manifolds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S">Simon Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06804v2-abstract-short" style="display: inline;"> A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achiev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06804v2-abstract-full').style.display = 'inline'; document.getElementById('1512.06804v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06804v2-abstract-full" style="display: none;"> A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a non-orientable manifold, and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is, that translational invariance is preserved up to exponentially small corrections. A Dirac-fermion on a non-orientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06804v2-abstract-full').style.display = 'none'; document.getElementById('1512.06804v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures; v2: matches accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 094512 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.00032">arXiv:1511.00032</a> <span> [<a href="https://arxiv.org/pdf/1511.00032">pdf</a>, <a href="https://arxiv.org/format/1511.00032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Static quark-antiquark pair free energy and screening masses: continuum results at the QCD physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Csaba Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.00032v1-abstract-short" style="display: inline;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop corre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'inline'; document.getElementById('1511.00032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.00032v1-abstract-full" style="display: none;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator. This conference contribution is based on the paper: JHEP 1504 (2015) 138 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'none'; document.getElementById('1511.00032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Talk presented at the 33rd International Symposium on Lattice Field Theory (Lattice 2015), 14-18 July 2015, Kobe International Conference Center, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.08013">arXiv:1510.08013</a> <span> [<a href="https://arxiv.org/pdf/1510.08013">pdf</a>, <a href="https://arxiv.org/format/1510.08013">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.172001">10.1103/PhysRevLett.116.172001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice computation of the nucleon scalar quark contents at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Durr%2C+S">S. Durr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Metivet%2C+T">T. Metivet</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.08013v2-abstract-short" style="display: inline;"> We present a QCD calculation of the $u$, $d$ and $s$ scalar quark contents of nucleons based on $47$ lattice ensembles with $N_f = 2+1$ dynamical sea quarks, $5$ lattice spacings down to $0.054\,\text{fm}$, lattice sizes up to $6\,\text{fm}$ and pion masses down to $120\,\text{MeV}$. Using the Feynman-Hellmann theorem, we obtain $f^N_{ud} = 0.0405(40)(35)$ and $f^N_s = 0.113(45)(40)$, which transl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08013v2-abstract-full').style.display = 'inline'; document.getElementById('1510.08013v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.08013v2-abstract-full" style="display: none;"> We present a QCD calculation of the $u$, $d$ and $s$ scalar quark contents of nucleons based on $47$ lattice ensembles with $N_f = 2+1$ dynamical sea quarks, $5$ lattice spacings down to $0.054\,\text{fm}$, lattice sizes up to $6\,\text{fm}$ and pion masses down to $120\,\text{MeV}$. Using the Feynman-Hellmann theorem, we obtain $f^N_{ud} = 0.0405(40)(35)$ and $f^N_s = 0.113(45)(40)$, which translates into $蟽_{蟺N}=38(3)(3)\,\text{MeV}$, $蟽_{sN}=105(41)(37)\,\text{MeV}$ and $y_N=0.20(8)(8)$ for the sigma terms and the related ratio, where the first errors are statistical and the second are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08013v2-abstract-full').style.display = 'none'; document.getElementById('1510.08013v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 172001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06917">arXiv:1508.06917</a> <span> [<a href="https://arxiv.org/pdf/1508.06917">pdf</a>, <a href="https://arxiv.org/format/1508.06917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2015.11.020">10.1016/j.physletb.2015.11.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion cosmology, lattice QCD and the dilute instanton gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Dierigl%2C+M">M. Dierigl</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S+W">S. W. Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">D. Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Redondo%2C+J">J. Redondo</a>, <a href="/search/hep-lat?searchtype=author&query=Ringwald%2C+A">A. Ringwald</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06917v1-abstract-short" style="display: inline;"> Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $蠂(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum ext… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06917v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06917v1-abstract-full" style="display: none;"> Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $蠂(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine $蠂(T)$ in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06917v1-abstract-full').style.display = 'none'; document.getElementById('1508.06917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 15-151 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05260">arXiv:1508.05260</a> <span> [<a href="https://arxiv.org/pdf/1508.05260">pdf</a>, <a href="https://arxiv.org/ps/1508.05260">ps</a>, <a href="https://arxiv.org/format/1508.05260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.094516">10.1103/PhysRevD.92.094516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multi-parameter reweighting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">C. T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05260v2-abstract-short" style="display: inline;"> We study lattice QCD at non-vanishing chemical potential using the complex Langevin equation. We compare the results with multi-parameter reweighting both from $渭=0$ and phase quenched ensembles. We find a good agreement for lattice spacings below $\approx$0.15 fm. On coarser lattices the complex Langevin approach breaks down. Four flavors of staggered fermions are used on $N_t=4, 6$ and 8 lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05260v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05260v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05260v2-abstract-full" style="display: none;"> We study lattice QCD at non-vanishing chemical potential using the complex Langevin equation. We compare the results with multi-parameter reweighting both from $渭=0$ and phase quenched ensembles. We find a good agreement for lattice spacings below $\approx$0.15 fm. On coarser lattices the complex Langevin approach breaks down. Four flavors of staggered fermions are used on $N_t=4, 6$ and 8 lattices. For one ensemble we also use two flavors to investigate the effects of rooting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05260v2-abstract-full').style.display = 'none'; document.getElementById('1508.05260v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, PRD version, minor changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 094516 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07510">arXiv:1507.07510</a> <span> [<a href="https://arxiv.org/pdf/1507.07510">pdf</a>, <a href="https://arxiv.org/format/1507.07510">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The QCD phase diagram from analytic continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BCnther%2C+J">J. G眉nther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07510v2-abstract-short" style="display: inline;"> We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains stra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07510v2-abstract-full').style.display = 'inline'; document.getElementById('1507.07510v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07510v2-abstract-full" style="display: none;"> We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to $渭_B\approx 300$ MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on $N_t=$ 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value $魏= 0.0149 \pm 0.0021$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07510v2-abstract-full').style.display = 'none'; document.getElementById('1507.07510v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04627">arXiv:1507.04627</a> <span> [<a href="https://arxiv.org/pdf/1507.04627">pdf</a>, <a href="https://arxiv.org/format/1507.04627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114505">10.1103/PhysRevD.92.114505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuations and correlations in high temperature QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04627v1-abstract-short" style="display: inline;"> We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\dots24$ in the crossover-region and $N_t=8\dots16$ at higher temperatures. We find that the Hadron Resonance Ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04627v1-abstract-full').style.display = 'inline'; document.getElementById('1507.04627v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04627v1-abstract-full" style="display: none;"> We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\dots24$ in the crossover-region and $N_t=8\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04627v1-abstract-full').style.display = 'none'; document.getElementById('1507.04627v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages revtex, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114505 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03676">arXiv:1504.03676</a> <span> [<a href="https://arxiv.org/pdf/1504.03676">pdf</a>, <a href="https://arxiv.org/ps/1504.03676">ps</a>, <a href="https://arxiv.org/format/1504.03676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.014505">10.1103/PhysRevD.92.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics with continuum extrapolated Wilson fermions II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Durr%2C+S">Stephan Durr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Holbling%2C+C">Christian Holbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Trombitas%2C+N">Norbert Trombitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03676v2-abstract-short" style="display: inline;"> We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03676v2-abstract-full').style.display = 'inline'; document.getElementById('1504.03676v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03676v2-abstract-full" style="display: none;"> We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03676v2-abstract-full').style.display = 'none'; document.getElementById('1504.03676v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 014505 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.06921">arXiv:1502.06921</a> <span> [<a href="https://arxiv.org/pdf/1502.06921">pdf</a>, <a href="https://arxiv.org/format/1502.06921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2016.01.047">10.1016/j.physletb.2016.01.047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum electrodynamics in finite volume and nonrelativistic effective field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.06921v1-abstract-short" style="display: inline;"> Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06921v1-abstract-full').style.display = 'inline'; document.getElementById('1502.06921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.06921v1-abstract-full" style="display: none;"> Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06921v1-abstract-full').style.display = 'none'; document.getElementById('1502.06921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 LaTeX pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02173">arXiv:1501.02173</a> <span> [<a href="https://arxiv.org/pdf/1501.02173">pdf</a>, <a href="https://arxiv.org/format/1501.02173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2015)138">10.1007/JHEP04(2015)138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static $\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B6r%C3%B6k%2C+C">Csaba T枚r枚k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02173v1-abstract-short" style="display: inline;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02173v1-abstract-full').style.display = 'inline'; document.getElementById('1501.02173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02173v1-abstract-full" style="display: none;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02173v1-abstract-full').style.display = 'none'; document.getElementById('1501.02173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8392">arXiv:1410.8392</a> <span> [<a href="https://arxiv.org/pdf/1410.8392">pdf</a>, <a href="https://arxiv.org/format/1410.8392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The chiral transition as an Anderson transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">Tamas G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">Ferenc Pittler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8392v2-abstract-short" style="display: inline;"> At low temperature the low-lying QCD Dirac spectrum obeys random matrix statistics. Recently we found that above $T_{c}$ the lowest part of the spectrum consists of localized modes that obey Poisson statistics. An interesting implication of this is that as the system crosses $T_{c}$ from above, the spectral statistics at $位=0$ changes from Poisson to random matrix. Here we study this transition an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8392v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8392v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8392v2-abstract-full" style="display: none;"> At low temperature the low-lying QCD Dirac spectrum obeys random matrix statistics. Recently we found that above $T_{c}$ the lowest part of the spectrum consists of localized modes that obey Poisson statistics. An interesting implication of this is that as the system crosses $T_{c}$ from above, the spectral statistics at $位=0$ changes from Poisson to random matrix. Here we study this transition and its possible implications for the finite temperature transition of QCD-like theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8392v2-abstract-full').style.display = 'none'; document.getElementById('1410.8392v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7917">arXiv:1410.7917</a> <span> [<a href="https://arxiv.org/pdf/1410.7917">pdf</a>, <a href="https://arxiv.org/format/1410.7917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Recent results on the Equation of State of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">Christian Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7917v1-abstract-short" style="display: inline;"> We report on a continuum extrapolated result (arXiv:1309.5258) for the equation of state (EoS) of QCD with $N_f=2+1$ dynamical quark flavors and discuss preliminary results obtained with an additional dynamical charm quark ($N_f=2+1+1$). For all our final results, the systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three la… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7917v1-abstract-full').style.display = 'inline'; document.getElementById('1410.7917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7917v1-abstract-full" style="display: none;"> We report on a continuum extrapolated result (arXiv:1309.5258) for the equation of state (EoS) of QCD with $N_f=2+1$ dynamical quark flavors and discuss preliminary results obtained with an additional dynamical charm quark ($N_f=2+1+1$). For all our final results, the systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three lattice spacings corresponding to temporal extents up to $N_t=16$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7917v1-abstract-full').style.display = 'none'; document.getElementById('1410.7917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014, June 23-28, 2014, Columbia University, New York, New York</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7443">arXiv:1410.7443</a> <span> [<a href="https://arxiv.org/pdf/1410.7443">pdf</a>, <a href="https://arxiv.org/format/1410.7443">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Spectral functions of charmonium with 2+1 flavours of dynamical quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=D%C3%BCrr%2C+S">Stephan D眉rr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">Christian Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">Stefan Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S">Simon Mages</a>, <a href="/search/hep-lat?searchtype=author&query=N%C3%B3gr%C3%A1di%2C+D">D谩niel N贸gr谩di</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=T%C3%B3th%2C+B+C">B谩lint C. T贸th</a>, <a href="/search/hep-lat?searchtype=author&query=Trombit%C3%A1s%2C+N">Norbert Trombit谩s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7443v1-abstract-short" style="display: inline;"> Finite temperature charmonium spectral functions in the pseudoscalar(PS) and vector(V) channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of 545MeV. The highest temperature studied is approximately 1.4Tc. Up to this temperature no significant variation of the spectral functi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7443v1-abstract-full').style.display = 'inline'; document.getElementById('1410.7443v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7443v1-abstract-full" style="display: none;"> Finite temperature charmonium spectral functions in the pseudoscalar(PS) and vector(V) channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of 545MeV. The highest temperature studied is approximately 1.4Tc. Up to this temperature no significant variation of the spectral function is seen in the PS channel. The V channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega > 0. These results are in accord with previous calculations using the quenched approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7443v1-abstract-full').style.display = 'none'; document.getElementById('1410.7443v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014 June 23-28, 2014 Columbia University, New York, New York This conference contribution draws heavily from the paper: arXiv:1401.5940 [hep-lat]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.4088">arXiv:1406.4088</a> <span> [<a href="https://arxiv.org/pdf/1406.4088">pdf</a>, <a href="https://arxiv.org/format/1406.4088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1257050">10.1126/science.1257050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the neutron-proton mass difference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Durr%2C+S">S. Durr</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.4088v2-abstract-short" style="display: inline;"> The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.4088v2-abstract-full').style.display = 'inline'; document.getElementById('1406.4088v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.4088v2-abstract-full" style="display: none;"> The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of $300$ kilo-electron volts, which is greater than $0$ by $5$ standard deviations. We also determine the splittings in the $危$, $螢$, $D$ and $螢_{cc}$ isospin multiplets, exceeding in some cases the precision of experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.4088v2-abstract-full').style.display = 'none'; document.getElementById('1406.4088v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 15 figures, 6 tables, revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 347:1452-1455,2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.0269">arXiv:1406.0269</a> <span> [<a href="https://arxiv.org/pdf/1406.0269">pdf</a>, <a href="https://arxiv.org/format/1406.0269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2014)177">10.1007/JHEP08(2014)177 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD equation of state in background magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bali%2C+G+S">G. S. Bali</a>, <a href="/search/hep-lat?searchtype=author&query=Bruckmann%2C+F">F. Bruckmann</a>, <a href="/search/hep-lat?searchtype=author&query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">A. Schafer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.0269v2-abstract-short" style="display: inline;"> We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0269v2-abstract-full').style.display = 'inline'; document.getElementById('1406.0269v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.0269v2-abstract-full" style="display: none;"> We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is compared to other approaches in the literature and found to be advantageous for the determination of the equation of state up to large magnetic fields. Thermodynamic observables including the longitudinal and transverse pressure, magnetization, energy density, entropy density and interaction measure are presented for a wide range of temperatures and magnetic fields, and provided in ancillary files. The behavior of these observables confirms our previous result that the transition temperature is reduced by the magnetic field. We calculate the magnetic susceptibility and permeability, verifying that the thermal QCD medium is paramagnetic around and above the transition temperature, while we also find evidence for weak diamagnetism at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0269v2-abstract-full').style.display = 'none'; document.getElementById('1406.0269v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 24 figures. v2: discussion about B- and Phi-schemes extended, references added, minor corrections in the text. Version to appear in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.4576">arXiv:1403.4576</a> <span> [<a href="https://arxiv.org/pdf/1403.4576">pdf</a>, <a href="https://arxiv.org/format/1403.4576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.052301">10.1103/PhysRevLett.113.052301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.4576v2-abstract-short" style="display: inline;"> Recent results for moments of multiplicity distributions of net-protons and net-electric charge from the STAR collaboration are compared to lattice QCD results for higher order fluctuations of baryon number and electric charge by the Wuppertal-Budapest collaboration, with the purpose of extracting the freeze-out temperature and chemical potential. All lattice simulations are performed for a system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4576v2-abstract-full').style.display = 'inline'; document.getElementById('1403.4576v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.4576v2-abstract-full" style="display: none;"> Recent results for moments of multiplicity distributions of net-protons and net-electric charge from the STAR collaboration are compared to lattice QCD results for higher order fluctuations of baryon number and electric charge by the Wuppertal-Budapest collaboration, with the purpose of extracting the freeze-out temperature and chemical potential. All lattice simulations are performed for a system of 2+1 dynamical quark flavors, at the physical mass for light and strange quarks; all results are continuum extrapolated. We show that it is possible to extract an upper value for the freeze-out temperature, as well as precise baryo-chemical potential values corresponding to the four highest collision energies of the experimental beam energy scan. Consistency between the freeze-out parameters obtained from baryon number and electric charge fluctuations is found. The freeze-out chemical potentials are now in agreement with the statistical hadronization model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4576v2-abstract-full').style.display = 'none'; document.getElementById('1403.4576v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, references added, discussion added to the introduction, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 052301 (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Katz%2C+S+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>