CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 94 results for author: <span class="mathjax">Borsanyi, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Borsanyi%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Borsanyi, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Borsanyi%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Borsanyi, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10267">arXiv:2502.10267</a> <span> [<a href="https://arxiv.org/pdf/2502.10267">pdf</a>, <a href="https://arxiv.org/format/2502.10267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD constraints on the critical point from an improved precision equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Vovchenko%2C+V">Volodymyr Vovchenko</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10267v1-abstract-short" style="display: inline;"> In this Letter we employ lattice simulations to search for the critical point of quantum chromodynamics (QCD). We search for the onset of a first order QCD transition on the phase diagram by following contours of constant entropy density from imaginary to real chemical potentials under conditions of strangeness neutrality. We scan the phase diagram and investigate whether these contours meet to de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10267v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10267v1-abstract-full" style="display: none;"> In this Letter we employ lattice simulations to search for the critical point of quantum chromodynamics (QCD). We search for the onset of a first order QCD transition on the phase diagram by following contours of constant entropy density from imaginary to real chemical potentials under conditions of strangeness neutrality. We scan the phase diagram and investigate whether these contours meet to determine the probability that the critical point is located in a certain region on the $T-渭_B$ plane. To achieve this we introduce a new, continuum extrapolated equation of state at zero density with improved precision using lattices with $N_蟿=8,10,12,16$ timeslices, and supplement it with new data at imaginary chemical potential. The current precision allows us to exclude, at the $2蟽$ level, the existence of a critical point at $渭_B < 450$~MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10267v1-abstract-full').style.display = 'none'; document.getElementById('2502.10267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 + 5 Pages with a Supplemental Material in the same file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07354">arXiv:2502.07354</a> <span> [<a href="https://arxiv.org/pdf/2502.07354">pdf</a>, <a href="https://arxiv.org/format/2502.07354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Taste breaking in the minimally doubled Karsten-Wilczek action and its tree-level improvement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">S. Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Capitani%2C+S">S. Capitani</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D">D. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Vig%2C+R+A">R. A. Vig</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">C. H. Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07354v1-abstract-short" style="display: inline;"> Minimally doubled fermion actions offer a discretization for two-flavor Quantum Chromodynamics without rooting, but retaining a U(1) chiral symmetry at the same time. The price to pay is a breaking of the hypercubic symmetry, which requires the inclusion and tuning of new counterterms. Similar to staggered quarks, these actions suffer from taste breaking. We perform a mixed action numerical study… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07354v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07354v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07354v1-abstract-full" style="display: none;"> Minimally doubled fermion actions offer a discretization for two-flavor Quantum Chromodynamics without rooting, but retaining a U(1) chiral symmetry at the same time. The price to pay is a breaking of the hypercubic symmetry, which requires the inclusion and tuning of new counterterms. Similar to staggered quarks, these actions suffer from taste breaking. We perform a mixed action numerical study with the Karsten-Wilczek formulation of minimally doubled fermions on 4stout staggered configurations, generated with physical quark masses, covering a broad range of lattice spacings. We consider a tree-level spatial Naik improvement to mitigate discretization errors. We carry out a non-perturbative tuning of the KW action with and without improvement, and investigate the taste breaking and the approach to the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07354v1-abstract-full').style.display = 'none'; document.getElementById('2502.07354v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03249">arXiv:2502.03249</a> <span> [<a href="https://arxiv.org/pdf/2502.03249">pdf</a>, <a href="https://arxiv.org/format/2502.03249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Portable Lattice QCD implementation based on OpenCL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kumar%2C+P">Piyush Kumar</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03249v1-abstract-short" style="display: inline;"> The presence of GPU from different vendors demands the Lattice QCD codes to support multiple architectures. To this end, Open Computing Language (OpenCL) is one of the viable frameworks for writing a portable code. It is of interest to find out how the OpenCL implementation performs as compared to the code based on a dedicated programming interface such as CUDA for Nvidia GPUs. We have developed a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03249v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03249v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03249v1-abstract-full" style="display: none;"> The presence of GPU from different vendors demands the Lattice QCD codes to support multiple architectures. To this end, Open Computing Language (OpenCL) is one of the viable frameworks for writing a portable code. It is of interest to find out how the OpenCL implementation performs as compared to the code based on a dedicated programming interface such as CUDA for Nvidia GPUs. We have developed an OpenCL backend for our already existing code of the Wuppertal-Budapest collaboration. In this contribution, we show benchmarks of the most time consuming part of the numerical simulation, namely, the inversion of the Dirac operator. We present the code performance on the JUWELS and LUMI Supercomputers based on Nvidia and AMD graphics cards, respectively, and compare with the CUDA backend implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03249v1-abstract-full').style.display = 'none'; document.getElementById('2502.03249v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for Lattice Conference 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03211">arXiv:2502.03211</a> <span> [<a href="https://arxiv.org/pdf/2502.03211">pdf</a>, <a href="https://arxiv.org/format/2502.03211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Search for a Lee-Yang edge singularity in high-statistics Wuppertal-Budapest data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Adam%2C+A">Alexander Adam</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03211v1-abstract-short" style="display: inline;"> Near a critical endpoint the Lee-Yang edge singularity approaches the real axis in the complex chemical potential plane. In the vicinity of the critical point the functional form of this approach depends on the universality class. Assuming a three dimensional Ising critical point in the QCD phase diagram the location of the critical endpoint can be extrapolated provided that the position of the Le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03211v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03211v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03211v1-abstract-full" style="display: none;"> Near a critical endpoint the Lee-Yang edge singularity approaches the real axis in the complex chemical potential plane. In the vicinity of the critical point the functional form of this approach depends on the universality class. Assuming a three dimensional Ising critical point in the QCD phase diagram the location of the critical endpoint can be extrapolated provided that the position of the Lee-Yang edge singularity is known at multiple temperatures. A popular method to estimate the position of a singularity is to model the free energy as a rational function of the baryon chemical potential $渭_\text{B}$. The parameters of this model can be constrained by the cumulants of the net baryon density taken at $渭_\text{B}^2\leq0$ . Using high-statistics simulations on a lattice $16^3\times8$ by the Wuppertal-Budapest Collaboration we estimate the location of the closest singularity in the QCD phase diagram. We also compare various models for the functional form of the free energy and discuss the predictive power of this approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03211v1-abstract-full').style.display = 'none'; document.getElementById('2502.03211v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to Lattice Conference 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01132">arXiv:2502.01132</a> <span> [<a href="https://arxiv.org/pdf/2502.01132">pdf</a>, <a href="https://arxiv.org/format/2502.01132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Dense and magnetized QCD from imaginary chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Brandt%2C+B">Bastian Brandt</a>, <a href="/search/hep-lat?searchtype=author&query=Endr%C5%91di%2C+G">Gergely Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J">Jana Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Petri%2C+M">Marc-Andr茅 Petri</a>, <a href="/search/hep-lat?searchtype=author&query=Valois%2C+A+D+M">Adeilton Dean Marques Valois</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">Lukas Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01132v1-abstract-short" style="display: inline;"> In this work, we computed the equation of state of dense QCD in the presence of background magnetic fields using lattice QCD simulations at imaginary baryon chemical potential. Our simulations include 2+1+1 flavors of stout-smeared staggered fermions with masses at the physical point and a tree-level Symanzik-improved gauge action. Using several expansion schemes, we tuned our simulation parameter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01132v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01132v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01132v1-abstract-full" style="display: none;"> In this work, we computed the equation of state of dense QCD in the presence of background magnetic fields using lattice QCD simulations at imaginary baryon chemical potential. Our simulations include 2+1+1 flavors of stout-smeared staggered fermions with masses at the physical point and a tree-level Symanzik-improved gauge action. Using several expansion schemes, we tuned our simulation parameters such that the equation of state satisfies strangeness neutrality and isospin asymmetry constraints, which are relevant to the phenomenology of heavy-ion collisions. Our results suggest a strong change in the equation of state due to the magnetic field, in particular, around the crossover temperature. A continuum extrapolation of our data is still needed for future applications of our equation of state to heavy-ion-collision phenomenology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01132v1-abstract-full').style.display = 'none'; document.getElementById('2502.01132v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures. Contribution to the 41st International Symposium on Lattice Field Theory (LATTICE2024), Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06216">arXiv:2410.06216</a> <span> [<a href="https://arxiv.org/pdf/2410.06216">pdf</a>, <a href="https://arxiv.org/format/2410.06216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD deconfinement transition line up to $渭_B=400$ MeV from finite volume lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06216v1-abstract-short" style="display: inline;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06216v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06216v1-abstract-full" style="display: none;"> The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($渭_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $渭_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak position of the static quark entropy ($S_Q(T,渭_B)$) in $T$, which is based on the renormalized Polyakov loop. We extrapolate $S_Q(T,渭_B)$ based on high statistics finite temperature ensembles on a $16^3\times 8$ lattice to finite density by means of a Taylor expansion to eighth order in $渭_B$ (NNNLO) along the strangeness neutral line. For the simulations the 4HEX staggered action was used with 2+1 flavors at physical quark masses. In this setup the phase diagram can be drawn up to unprecedentedly high chemical potentials. Our results for the deconfinement temperature are in rough agreement with phenomenological estimates of the freeze-out curve in relativistic heavy ion collisions. In addition, we study the width of the deconfinement crossover. We show that up to $渭_B \approx 400$ MeV, the deconfinement transition gets broader at higher densities, disfavoring the existence of a deconfinement critical endpoint in this range. Finally, we examine the transition line without the strangeness neutrality condition and observe a hint for the narrowing of the crossover towards large $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06216v1-abstract-full').style.display = 'none'; document.getElementById('2410.06216v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10913">arXiv:2407.10913</a> <span> [<a href="https://arxiv.org/pdf/2407.10913">pdf</a>, <a href="https://arxiv.org/format/2407.10913">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boccaletti%2C+A">A. Boccaletti</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Frech%2C+F">F. Frech</a>, <a href="/search/hep-lat?searchtype=author&query=Gerardin%2C+A">A. Gerardin</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">Th. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Lupo%2C+A">A. Lupo</a>, <a href="/search/hep-lat?searchtype=author&query=Malaescu%2C+B">B. Malaescu</a>, <a href="/search/hep-lat?searchtype=author&query=Mutzel%2C+S">S. Mutzel</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Risch%2C+A">A. Risch</a>, <a href="/search/hep-lat?searchtype=author&query=Sjo%2C+M">M. Sjo</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">G. Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Z">Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10913v1-abstract-short" style="display: inline;"> We present a new lattice QCD calculation of the leading order hadronic vacuum polarization contribution to the muon anomalous magnetic moment $a_渭$. We reduce uncertainties compared to our earlier computation by $40\%$, arXiv:2002.12347. We perform simulations on finer lattices allowing for an even more accurate continuum extrapolation. We also include a small, long-distance contribution obtained… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10913v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10913v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10913v1-abstract-full" style="display: none;"> We present a new lattice QCD calculation of the leading order hadronic vacuum polarization contribution to the muon anomalous magnetic moment $a_渭$. We reduce uncertainties compared to our earlier computation by $40\%$, arXiv:2002.12347. We perform simulations on finer lattices allowing for an even more accurate continuum extrapolation. We also include a small, long-distance contribution obtained using input from experiments in a low-energy regime where they all agree. Combined with other standard model contributions our result leads to a prediction that differs from the measurement of $a_渭$ by only 0.9 standard deviations. This provides a remarkable validation of the standard model to 0.37ppm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10913v1-abstract-full').style.display = 'none'; document.getElementById('2407.10913v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 31 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12320">arXiv:2405.12320</a> <span> [<a href="https://arxiv.org/pdf/2405.12320">pdf</a>, <a href="https://arxiv.org/format/2405.12320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral and deconfinement properties of the QCD crossover have a different volume and baryochemical potential dependence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pirelli%2C+L">Ludovica Pirelli</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12320v1-abstract-short" style="display: inline;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12320v1-abstract-full" style="display: none;"> The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry restoring transition. Here, we study observables related to both aspects using lattice simulations: the Polyakov loop and its derivatives and the chiral condensate and its derivatives. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperatures almost agree. However, chiral and deconfinement related observables have a qualitatively different chemical potential and volume dependence. In general, deconfinement related observables have a milder volume dependence. Furthermore, while the deconfinement transition appears to get broader with increasing $渭_B$, the width as well as the strength of the chiral transition is approximately constant. Our results are based on simulations at zero and imaginary chemical potentials using 4stout-improved staggered fermions with $N_蟿=12$ time-slices and physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12320v1-abstract-full').style.display = 'none'; document.getElementById('2405.12320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16709">arXiv:2403.16709</a> <span> [<a href="https://arxiv.org/pdf/2403.16709">pdf</a>, <a href="https://arxiv.org/format/2403.16709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The crossover line in the $(T, 渭)$-phase diagram of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">Kalman K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16709v1-abstract-short" style="display: inline;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16709v1-abstract-full" style="display: none;"> An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to $渭^4$ contributions. We present the continuum extrapolation of the crossover temperature based on different observables at several lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16709v1-abstract-full').style.display = 'none'; document.getElementById('2403.16709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to Quark Matter Conference 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A 982 (2019) 303-306 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07799">arXiv:2401.07799</a> <span> [<a href="https://arxiv.org/pdf/2401.07799">pdf</a>, <a href="https://arxiv.org/format/2401.07799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Renormalization of Karsten-Wilczek Quarks on a Staggered Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D+A">Daniel A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Vig%2C+R+A">R茅ka A. Vig</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07799v1-abstract-short" style="display: inline;"> The Karsten-Wilczek action is a formulation of minimally doubled fermions on the lattice. It explicitly breaks hypercubic symmetry and introduces three counterterms with respective bare parameters. We present a tuning of the bare parameters of the Karsten-Wilczek action on staggered configurations at the physical point. We study the magnitude of the taste-splitting as a function of the lattice spa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07799v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07799v1-abstract-full" style="display: none;"> The Karsten-Wilczek action is a formulation of minimally doubled fermions on the lattice. It explicitly breaks hypercubic symmetry and introduces three counterterms with respective bare parameters. We present a tuning of the bare parameters of the Karsten-Wilczek action on staggered configurations at the physical point. We study the magnitude of the taste-splitting as a function of the lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07799v1-abstract-full').style.display = 'none'; document.getElementById('2401.07799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07651">arXiv:2401.07651</a> <span> [<a href="https://arxiv.org/pdf/2401.07651">pdf</a>, <a href="https://arxiv.org/format/2401.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> First dynamical simulations with minimally doubled fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Vig%2C+R+A">Reka A. Vig</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D">Daniel Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07651v1-abstract-short" style="display: inline;"> For thermodynamics studies it is desirable to simulate two degenerate flavors and retain at least a remnant of the chiral symmetry. Staggered fermions can achieve this at the cost of rooting the determinant. Rooting can be avoided using minimally doubled fermions. This discretization describes two degenerate quark flavors while explicitly breaking hyper-cubic symmetry, thus, requiring additional c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07651v1-abstract-full" style="display: none;"> For thermodynamics studies it is desirable to simulate two degenerate flavors and retain at least a remnant of the chiral symmetry. Staggered fermions can achieve this at the cost of rooting the determinant. Rooting can be avoided using minimally doubled fermions. This discretization describes two degenerate quark flavors while explicitly breaking hyper-cubic symmetry, thus, requiring additional counter-terms. We use one particular formulation of minimally doubled fermions called the Kirsten-Wilczek action and mitigate lattice artifacts by improving the spatial derivatives in the Dirac operator. In this pilot study we determine the counter-terms non-perturbatively to facilitate proper dynamical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07651v1-abstract-full').style.display = 'none'; document.getElementById('2401.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lattice2023 contribution, 8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01169">arXiv:2401.01169</a> <span> [<a href="https://arxiv.org/pdf/2401.01169">pdf</a>, <a href="https://arxiv.org/format/2401.01169">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Finite volume effects near the chiral crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01169v1-abstract-short" style="display: inline;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at z… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01169v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01169v1-abstract-full" style="display: none;"> The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate the finite volume effects at finite temperature in continuum QCD using lattice simulations and set the focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at zero and small chemical potentials on the QCD transition through the chiral observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01169v1-abstract-full').style.display = 'none'; document.getElementById('2401.01169v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15118">arXiv:2312.15118</a> <span> [<a href="https://arxiv.org/pdf/2312.15118">pdf</a>, <a href="https://arxiv.org/format/2312.15118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD equation of state in the presence of magnetic fields at low density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">S. Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Brandt%2C+B+B">B. B. Brandt</a>, <a href="/search/hep-lat?searchtype=author&query=Endr%C5%91di%2C+G">G. Endr艖di</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J">J. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Valois%2C+A+D+M">A. D. M. Valois</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15118v2-abstract-short" style="display: inline;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15118v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15118v2-abstract-full" style="display: none;"> Peripheral heavy-ion collisions are expected to exhibit magnetic fields with magnitudes comparable to the QCD scale, as well as non-zero baryon densities. Whereas QCD at finite magnetic fields can be simulated directly with standard lattice algorithms, the implementation of real chemical potentials is hindered by the infamous sign problem. Aiming to shed light on the QCD transition and on the equation of state in that regime, we carry out lattice QCD simulations with 2+1+1 flavors of staggered quarks with physical masses at finite magnetic fields and employ a Taylor expansion scheme to circumvent the sign problem. We present the leading-order coefficient of the expansion calculated at non-zero magnetic fields and discuss the impact of the field on the strangeness neutrality condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15118v2-abstract-full').style.display = 'none'; document.getElementById('2312.15118v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Lattice 2023 symposium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07528">arXiv:2312.07528</a> <span> [<a href="https://arxiv.org/pdf/2312.07528">pdf</a>, <a href="https://arxiv.org/format/2312.07528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Continuum extrapolated high order baryon fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07528v1-abstract-short" style="display: inline;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07528v1-abstract-full" style="display: none;"> Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate them, but going to high orders is challenging. Up to the fourth order, continuum results are available since 2015. We present the first continuum results for sixth order baryon fluctuations for temperatures between $T=130 - 200$ MeV, and eighth order at $T=145$ MeV in a fixed volume. We show that for $T \leq 145$ MeV, relevant for criticality search, finite volume effects are under control. Our results are in sharp contrast with well known results in the literature obtained at finite lattice spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07528v1-abstract-full').style.display = 'none'; document.getElementById('2312.07528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures (main text) + 5 pages, 7 figures (supplemental material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06105">arXiv:2308.06105</a> <span> [<a href="https://arxiv.org/pdf/2308.06105">pdf</a>, <a href="https://arxiv.org/format/2308.06105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Can rooted staggered fermions describe nonzero baryon density at low temperatures? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06105v1-abstract-short" style="display: inline;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06105v1-abstract-full" style="display: none;"> Research on the QCD phase diagram with lattice field theory methods is dominated by the use of rooted staggered fermions, as they are the computationally cheapest discretization available. We show that rooted staggered fermions at a nonzero baryochemical potential $渭_B$ predict a sharp rise in the baryon density at low temperatures and $渭_B \gtrsim 3 m_蟺/2$, where $m_蟺$ is the Goldstone pion mass. We elucidate the nature of the non-analyticity behind this sharp rise in the density by a comparison of reweighting results with a Taylor expansion of high order. While at first sight this non-analytic behavior becomes apparent at the same position where the pion condensation transition takes place in the phase-quenched theory, the nature of the non-analyticity in the two theories appears to be quite different: While at nonzero isospin density the data are consistent with a genuine thermodynamic (branch-point) singularity, the results at nonzero baryon density point to an essential singularity at $渭_B=0$. The effect is absent for four flavors of degenerate quarks, where rooting is not used. For the two-flavor case, we show numerical evidence that the magnitude of the effect diminishes on finer lattices. We discuss the implications of this technical complication on future studies of the QCD phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06105v1-abstract-full').style.display = 'none'; document.getElementById('2308.06105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06611">arXiv:2301.06611</a> <span> [<a href="https://arxiv.org/pdf/2301.06611">pdf</a>, <a href="https://arxiv.org/ps/2301.06611">ps</a>, <a href="https://arxiv.org/format/2301.06611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Toward a novel determination of the strong QCD coupling at the Z-pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Holland%2C+K">Kieran Holland</a>, <a href="/search/hep-lat?searchtype=author&query=Kuti%2C+J">Julius Kuti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06611v1-abstract-short" style="display: inline;"> We test here our recently introduced new lattice method for the $尾$-function defined over infinite Euclidean space-time in the continuum from scale changes generated by infinitesimal or finite steps of the renormalized gauge coupling on the gradient flow. Harlander and Neumann calculated in this scheme the three-loop approximation to the continuum $尾$-function. Our goal is the nonperturbative latt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06611v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06611v1-abstract-full" style="display: none;"> We test here our recently introduced new lattice method for the $尾$-function defined over infinite Euclidean space-time in the continuum from scale changes generated by infinitesimal or finite steps of the renormalized gauge coupling on the gradient flow. Harlander and Neumann calculated in this scheme the three-loop approximation to the continuum $尾$-function. Our goal is the nonperturbative lattice implementation of the scheme which we tested originally in the chiral limit of the sextet model and in multi-flavor QCD with ten and twelve flavors of massless fermions. Results are reported here in the SU(3) Yang-Mills gauge sector without dynamical fermions and in ten-flavor QCD with massless femions. The three-loop gradient flow based $尾$-function of Harlander and Neumann is used to connect the $螞_{\overline{\rm MS}}$ scale of the SU(3) Yang-Mills gauge theory with the nonperturbative flow time scale $t_0$, or the equivalent Sommer scale $r_0$. Similarly, the $螞_{\overline{\rm MS}}$ scale is connected with a selected nonperturbative scale in the ten-flavor theory, a pilot study of our new lattice based nonperturbative $尾$-function for high precision determination of the strong coupling $伪_s$ at the Z-boson pole in QCD with three massless fermion flavors. This goal is an important alternative to results from the finite volume based step $尾$-function of the Alpha collaboration. Work is ongoing on direct application of the method to QCD with three massless fermion flavors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06611v1-abstract-full').style.display = 'none'; document.getElementById('2301.06611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the 39th Annual International Symposium on Lattice Field Theory - LATTICE2022 8-13 Aug, 2022; 9 pages, 8 figures. arXiv admin note: text overlap with arXiv:2203.15847</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10155">arXiv:2212.10155</a> <span> [<a href="https://arxiv.org/pdf/2212.10155">pdf</a>, <a href="https://arxiv.org/format/2212.10155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Parallel tempering algorithm applied to the deconfinement transition of quenched QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D+A">Daniel A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">Denes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10155v1-abstract-short" style="display: inline;"> QCD with infinite heavy quark masses exhibits a first-order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. We analyze the corresponding order parameter, namely the Polyakov loop and its moments, and show, with a rigorous finite size scaling, that in the continuum limit the transition is of first order. We show that the use of a paralle… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10155v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10155v1-abstract-full" style="display: none;"> QCD with infinite heavy quark masses exhibits a first-order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. We analyze the corresponding order parameter, namely the Polyakov loop and its moments, and show, with a rigorous finite size scaling, that in the continuum limit the transition is of first order. We show that the use of a parallel tempering algorithm can significantly reduce the large auto-correlation times which are mainly caused by the supercritical slowing down. As a result, we calculate the transition temperature $w_0 T_c$ with per-mill precision, and the latent heat, carrying out controlled continuum and infinite volume extrapolations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10155v1-abstract-full').style.display = 'none'; document.getElementById('2212.10155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, University of Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08684">arXiv:2212.08684</a> <span> [<a href="https://arxiv.org/pdf/2212.08684">pdf</a>, <a href="https://arxiv.org/format/2212.08684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054514">10.1103/PhysRevD.107.054514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological features of the deconfinement transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D+A">D. A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">D. Sexty</a>, <a href="/search/hep-lat?searchtype=author&query=Vig%2C+R">R. Vig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08684v1-abstract-short" style="display: inline;"> The first order transition between the confining and the center symmetry breaking phases of the SU(3) Yang-Mills theory is marked by discontinuities in various thermodynamics functions, such as the energy density or the value of the Polyakov loop. We investigate the non-analytical behaviour of the topological susceptibility and its higher cumulant around the transition temperature and make the con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08684v1-abstract-full').style.display = 'inline'; document.getElementById('2212.08684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08684v1-abstract-full" style="display: none;"> The first order transition between the confining and the center symmetry breaking phases of the SU(3) Yang-Mills theory is marked by discontinuities in various thermodynamics functions, such as the energy density or the value of the Polyakov loop. We investigate the non-analytical behaviour of the topological susceptibility and its higher cumulant around the transition temperature and make the connection to the curvature of the phase diagram in the $T-胃$ plane and to the latent heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08684v1-abstract-full').style.display = 'none'; document.getElementById('2212.08684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05398">arXiv:2208.05398</a> <span> [<a href="https://arxiv.org/pdf/2208.05398">pdf</a>, <a href="https://arxiv.org/format/2208.05398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L091503">10.1103/PhysRevD.107.L091503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real $渭_B$ vs. extrapolations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05398v2-abstract-short" style="display: inline;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05398v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05398v2-abstract-full" style="display: none;"> The equation of state of the quark gluon plasma is a key ingredient of heavy ion phenomenology. In addition to the traditional Taylor method, several novel approximation schemes have been proposed with the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of these schemes, we compare them to direct results at $渭_B>0$, using reweighting techniques free from an overlap problem. We use 2stout improved staggered fermions with 8 time-slices and cover the entire RHIC BES range in the baryochemical potential, up to $渭_B/T=3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05398v2-abstract-full').style.display = 'none'; document.getElementById('2208.05398v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05807">arXiv:2202.05807</a> <span> [<a href="https://arxiv.org/pdf/2202.05807">pdf</a>, <a href="https://arxiv.org/format/2202.05807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> QED and strong isospin corrections in the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05807v2-abstract-short" style="display: inline;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05807v2-abstract-full" style="display: none;"> Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the evaluation of the lowest-order hadronic vacuum polarization contribution to the muon $g_渭-2$ (arXiv:hep-lat/2002.12347v3). At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review how QED and strong-isospin-breaking effects have been included in our work. Isospin breaking is implemented by expanding the relevant correlation functions to second order in the electric charge $e$ and to first order in $m_u-m_d$. The correction terms are then computed using isospin-symmetric configurations. The choice of this approach allows us to better distribute the available computing resources among the various contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05807v2-abstract-full').style.display = 'none'; document.getElementById('2202.05807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">talk presented at the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05574">arXiv:2202.05574</a> <span> [<a href="https://arxiv.org/pdf/2202.05574">pdf</a>, <a href="https://arxiv.org/format/2202.05574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114504">10.1103/PhysRevD.105.114504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05574v2-abstract-short" style="display: inline;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05574v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05574v2-abstract-full" style="display: none;"> We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical potentials. This work presents a generalization of the scheme introduced in 2102.06660 to the case of non-zero $渭_S$, focusing on the line of strangeness neutrality. We present results up to $渭_B/T \leq 3.5$ on the strangeness neutral line $\left\langle S \right\rangle = 0$ in the temperature range $130 \rm{MeV} \leq T \leq 280 \rm{MeV}$. We also extrapolate the finite baryon density equation of state to small non-zero values of the strangeness-to-baryon ratio $R=\left\langle S \right\rangle / \left\langle B \right\rangle$. We perform a continuum extrapolation using lattice simulations of the 4stout-improved staggered action with 8, 10, 12 and 16 timeslices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05574v2-abstract-full').style.display = 'none'; document.getElementById('2202.05574v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures; v2: contains ancillary files with tabulated data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05234">arXiv:2202.05234</a> <span> [<a href="https://arxiv.org/pdf/2202.05234">pdf</a>, <a href="https://arxiv.org/format/2202.05234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Precision study of the continuum SU(3) Yang-Mills theory: how to use parallel tempering to improve on supercritical slowing down for first order phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Godzieba%2C+D+A">D. A. Godzieba</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">D. Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05234v3-abstract-short" style="display: inline;"> We perform large scale simulations to characterize the transition in quenched QCD. It is shown by a rigorous finite size scaling that the transition is of first order. After this qualitative feature quantitative results are obtained with unprecedented precision: we calculate the transition temperature $w_0T_c$=0.25384(23), -- which is the first per-mill accurate result in QCD thermodynamics -- and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05234v3-abstract-full').style.display = 'inline'; document.getElementById('2202.05234v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05234v3-abstract-full" style="display: none;"> We perform large scale simulations to characterize the transition in quenched QCD. It is shown by a rigorous finite size scaling that the transition is of first order. After this qualitative feature quantitative results are obtained with unprecedented precision: we calculate the transition temperature $w_0T_c$=0.25384(23), -- which is the first per-mill accurate result in QCD thermodynamics -- and the latent heat $螖E/T_c^4$=1.025(21)(27) in both cases carrying out controlled continuum and infinite volume extrapolations. As it is well known the cost of lattice simulations explodes in the vicinity of phase transitions, a phenomenon called critical slowing down for second order phase transitions and supercritical slowing down for first order phase transitions. We show that a generalization of the parallel tempering algorithm of Marinari and Parisi [Europhys. Lett. 19, 451 (1992)] originally for spin systems can efficiently overcome these difficulties even if the transition is of first order, like in the case of QCD without quarks, or with very heavy quarks. We also report on our investigations on the autocorrelation times and other details. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05234v3-abstract-full').style.display = 'none'; document.getElementById('2202.05234v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, PRD version, minor changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00887">arXiv:2201.00887</a> <span> [<a href="https://arxiv.org/pdf/2201.00887">pdf</a>, <a href="https://arxiv.org/format/2201.00887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real $渭_B$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00887v1-abstract-short" style="display: inline;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00887v1-abstract-full" style="display: none;"> Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. We studied the QCD chiral transition at finite real baryon density with the more direct sign reweighting approach. We simulate up to a baryochemical potential-temperature ratio of $渭_B/T=2.7$, covering the RHIC Beam Energy Scan range, and penetrating the region where methods based on analytic continuation are unpredictive.This opens up a new window to study QCD matter at finite $渭_B$ from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00887v1-abstract-full').style.display = 'none'; document.getElementById('2201.00887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Contribution to the XXXIII International (ONLINE) Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests"; Based on 2108.09213 [hep-lat]. arXiv admin note: substantial text overlap with arXiv:2112.02134</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04192">arXiv:2112.04192</a> <span> [<a href="https://arxiv.org/pdf/2112.04192">pdf</a>, <a href="https://arxiv.org/format/2112.04192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The upper right corner of the Columbia plot with staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">Denes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04192v1-abstract-short" style="display: inline;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04192v1-abstract-full" style="display: none;"> QCD with heavy dynamical quarks exhibits a first order thermal transition which is driven by the spontaneous breaking of the global $\mathcal{Z}_3$ center symmetry. Decreasing the quark masses weakens the transition until the corresponding latent heat vanishes at the critical mass. We explore the heavy mass region with three flavors of staggered quarks and analyze the Polyakov loop and its moments in a finite volume scaling study. We calculate the heavy critical mass in the three flavor theory in the infinite volume limit for $N_t=8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04192v1-abstract-full').style.display = 'none'; document.getElementById('2112.04192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02402">arXiv:2112.02402</a> <span> [<a href="https://arxiv.org/pdf/2112.02402">pdf</a>, <a href="https://arxiv.org/format/2112.02402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantifying corrections to the hadron resonance gas with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bors%C3%A1nyi%2C+S">Szabolcs Bors谩nyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zolt谩n Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S谩ndor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=P%C3%A1sztor%2C+A">Attila P谩sztor</a>, <a href="/search/hep-lat?searchtype=author&query=Peszny%C3%A1k%2C+D">D谩vid Peszny谩k</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szab%C3%B3%2C+K+K">K谩lm谩n K. Szab贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02402v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02402v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal extents of $N_蟿=8,10$ and $12$ to quantify corrections to the ideal HRG. Firstly, we determine a number of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane. Using the aforementioned coefficients, we also extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity expansion. Our results extrapolated along the crossover line $T_\mathrm{c}(渭_B)$ at strangeness neutrality are able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02402v1-abstract-full').style.display = 'none'; document.getElementById('2112.02402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02134">arXiv:2112.02134</a> <span> [<a href="https://arxiv.org/pdf/2112.02134">pdf</a>, <a href="https://arxiv.org/format/2112.02134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> New approach to lattice QCD at finite density: reweighting without an overlap problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kapas%2C+K">Kornel Kapas</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02134v2-abstract-short" style="display: inline;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the gener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02134v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02134v2-abstract-full" style="display: none;"> Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic uncertainties in addition to the well-known sign problem. We test a method - sign reweighting - that works directly at finite chemical potential and is yet free from any such uncontrolled systematics: with this approach the only problem is the sign problem itself. In practice the approach involves the generation of configurations with the positive fermionic weights given by the absolute value of the real part of the quark determinant, and a reweighting by a sign. There are only two sectors, +1 and -1 and as long as the average $\left\langle \pm \right\rangle \neq 0$ (with respect to the positive weight) this discrete reweighting has no overlap problem - unlike reweighting from $渭=0$ - and the results are reliable. We also present results based on this algorithm on the phase diagram of lattice QCD with two different actions: as a first test, we apply the method to calculate the position of the critical endpoint with unimproved staggered fermions at $N_蟿=4$; as a second application, we study the phase diagram with 2stout improved staggered fermions at $N_蟿=6$. This second one is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method penetrates the region of the phase diagram where the Taylor and imaginary chemical potential methods lose predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02134v2-abstract-full').style.display = 'none'; document.getElementById('2112.02134v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; Contribution to the Proceedings of The 38th International Symposium on Lattice Field Theory, LATTICE2021; Based on 2004.10800 and 2108.09213</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00083">arXiv:2112.00083</a> <span> [<a href="https://arxiv.org/pdf/2112.00083">pdf</a>, <a href="https://arxiv.org/format/2112.00083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Equation of state of QCD at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00083v1-abstract-short" style="display: inline;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00083v1-abstract-full" style="display: none;"> The equation of state of Quantum Chromodynamics (QCD) at finite density is currently known only in a limited range in the baryon chemical potential $渭_B$. This is due to fundamental shortcomings of traditional methods such as Taylor expansion around $渭_B=0$. In this contribution, we present an alternative scheme that displays substantially improved convergence over the Taylor expansion method. We calculate the alternative expansion coefficients in the continuum, and show our results for the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00083v1-abstract-full').style.display = 'none'; document.getElementById('2112.00083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, presentation at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Massachusetts Institute of Technology, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09213">arXiv:2108.09213</a> <span> [<a href="https://arxiv.org/pdf/2108.09213">pdf</a>, <a href="https://arxiv.org/format/2108.09213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051506">10.1103/PhysRevD.105.L051506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations of the QCD chiral transition at real baryon density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">Daniel Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09213v1-abstract-short" style="display: inline;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09213v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09213v1-abstract-full" style="display: none;"> State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $渭_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09213v1-abstract-full').style.display = 'none'; document.getElementById('2108.09213v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06660">arXiv:2102.06660</a> <span> [<a href="https://arxiv.org/pdf/2102.06660">pdf</a>, <a href="https://arxiv.org/format/2102.06660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.232001">10.1103/PhysRevLett.126.232001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">R. Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">P. Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06660v1-abstract-short" style="display: inline;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06660v1-abstract-full" style="display: none;"> Taylor expansion of the equation of state of QCD suffers from shortcomings at chemical potentials $渭_B \geq (2-2.5)T$. First, one faces difficulties inherent in performing such an expansion with a limited number of coefficients; second, higher order coefficients determined from lattice calculations suffer from a poor signal-to-noise ratio. In this work, we present a novel scheme for extrapolating the equation of state of QCD to finite, real chemical potential that can extend its reach further than previous methods. We present continuum extrapolated lattice results for the new expansion coefficients and show the thermodynamic observables up to $渭_B/T\le3.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06660v1-abstract-full').style.display = 'none'; document.getElementById('2102.06660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 232001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06625">arXiv:2102.06625</a> <span> [<a href="https://arxiv.org/pdf/2102.06625">pdf</a>, <a href="https://arxiv.org/format/2102.06625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094508">10.1103/PhysRevD.104.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pesznyak%2C+D">David Pesznyak</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06625v1-abstract-short" style="display: inline;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06625v1-abstract-full" style="display: none;"> The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansion coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary baryon number chemical potential ($渭_B$) - strangeness chemical potential ($渭_S$) plane, where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these coefficients by performing lattice simulations with temporal extents of $N_蟿=8,10,12$ using the 4stout-improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06625v1-abstract-full').style.display = 'none'; document.getElementById('2102.06625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03383">arXiv:2101.03383</a> <span> [<a href="https://arxiv.org/pdf/2101.03383">pdf</a>, <a href="https://arxiv.org/ps/2101.03383">ps</a>, <a href="https://arxiv.org/format/2101.03383">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136148">10.1016/j.physletb.2021.136148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility of pure gauge theory using Density of States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szablocs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Sexty%2C+D">D茅nes Sexty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03383v2-abstract-short" style="display: inline;"> The topological susceptibility of the SU(3) pure gauge theory is calculated in the deconfined phase at temperatures up to $10T_c$. At such large temperatures the susceptibility is suppressed, topologically non-trivial configurations are extremely rare. Thus, direct lattice simulations are not feasible. The density of states (DoS) method is designed to simulate rare events, we present an applicatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03383v2-abstract-full').style.display = 'inline'; document.getElementById('2101.03383v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03383v2-abstract-full" style="display: none;"> The topological susceptibility of the SU(3) pure gauge theory is calculated in the deconfined phase at temperatures up to $10T_c$. At such large temperatures the susceptibility is suppressed, topologically non-trivial configurations are extremely rare. Thus, direct lattice simulations are not feasible. The density of states (DoS) method is designed to simulate rare events, we present an application of the DoS method to the problem of high temperature topological susceptibility. We reconstruct the histogram of the charge sectors that one could have obtained in a naive importance sampling. Our findings are perfectly consistent with a free instanton gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03383v2-abstract-full').style.display = 'none'; document.getElementById('2101.03383v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, PLB version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03319">arXiv:2007.03319</a> <span> [<a href="https://arxiv.org/pdf/2007.03319">pdf</a>, <a href="https://arxiv.org/format/2007.03319">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab-initio calculation of the proton and the neutron's scalar couplings for new physics searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03319v1-abstract-short" style="display: inline;"> Many low-energy, particle-physics experiments seek to reveal new fundamental physics by searching for very rare scattering events on atomic nuclei. The interpretation of their results requires quantifying the non-linear effects of the strong interaction on the spin-independent couplings of this new physics to protons and neutrons. Here we present a fully-controlled, ab-initio calculation of these… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03319v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03319v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03319v1-abstract-full" style="display: none;"> Many low-energy, particle-physics experiments seek to reveal new fundamental physics by searching for very rare scattering events on atomic nuclei. The interpretation of their results requires quantifying the non-linear effects of the strong interaction on the spin-independent couplings of this new physics to protons and neutrons. Here we present a fully-controlled, ab-initio calculation of these couplings to the quarks within those constituents of nuclei. We use lattice quantum chromodynamics computations for the four lightest species of quarks and heavy-quark expansions for the remaining two. We determine each of the six quark contributions with an accuracy better than 15%. Our results are especially important for guiding and interpreting experimental searches for our universe's dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03319v1-abstract-full').style.display = 'none'; document.getElementById('2007.03319v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12347">arXiv:2002.12347</a> <span> [<a href="https://arxiv.org/pdf/2002.12347">pdf</a>, <a href="https://arxiv.org/format/2002.12347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03418-1">10.1038/s41586-021-03418-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leading hadronic contribution to the muon magnetic moment from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">J. N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Parato%2C+L">L. Parato</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">F. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Cs. Torok</a>, <a href="/search/hep-lat?searchtype=author&query=Varnhorst%2C+L">L. Varnhorst</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12347v3-abstract-short" style="display: inline;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'inline'; document.getElementById('2002.12347v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12347v3-abstract-full" style="display: none;"> We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_渭-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physical quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to leading order. The infinite-volume limit is taken thanks to simulations performed in volumes of sizes up to 11~fm. Our result for the LO-HVP contribution to $(g_渭-2)$ has a total uncertainty of 0.8\%. Compared to the result of the dispersive approach for this contribution, ours significantly reduces the tension between the standard model prediction for $(g_渭-2)$ and its measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12347v3-abstract-full').style.display = 'none'; document.getElementById('2002.12347v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication. 116 pages, 34 figures with main, methods and supplementary information. v2: added finite time extent corrections, analyzed new configurations and included suggestions from the community (regarding the continuum limit, scale setting and running of the fine structure constant). v3: revised analysis to take into account referees' comments. Original conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02821">arXiv:2002.02821</a> <span> [<a href="https://arxiv.org/pdf/2002.02821">pdf</a>, <a href="https://arxiv.org/format/2002.02821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.052001">10.1103/PhysRevLett.125.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD crossover at finite chemical potential from lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Kara%2C+R">Ruben Kara</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02821v1-abstract-short" style="display: inline;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02821v1-abstract-full" style="display: none;"> We provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature $T_c$, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real $渭_B \approx 300$ MeV. The definition of $T_c$ adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero and imaganiary $渭_B$. We obtain the parameters $魏_2=0.0153(18)$ and $魏_4=0.00032(67)$ as a continuum extrapolation based on $N_t=10,12$ and $16$ lattices with physical quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both of these are consistent with a constant function of $渭_B$. We see no sign of criticality in the explored range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02821v1-abstract-full').style.display = 'none'; document.getElementById('2002.02821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages main text + 7 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06762">arXiv:1911.06762</a> <span> [<a href="https://arxiv.org/pdf/1911.06762">pdf</a>, <a href="https://arxiv.org/format/1911.06762">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Cross-correlators of conserved charges in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06762v1-abstract-short" style="display: inline;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to prelimina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06762v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06762v1-abstract-full" style="display: none;"> We present cross-correlators of QCD conserved charges at $渭_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-蠂_{11}^{BS}/蠂_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to preliminary STAR results and comment on a possible direct comparison of lattice and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06762v1-abstract-full').style.display = 'none'; document.getElementById('1911.06762v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, contribution to the proceedings from the 18th International Conference on Strangeness in Quark Matter (SQM 2019)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14592">arXiv:1910.14592</a> <span> [<a href="https://arxiv.org/pdf/1910.14592">pdf</a>, <a href="https://arxiv.org/format/1910.14592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034506">10.1103/PhysRevD.101.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-diagonal correlators of conserved charges from lattice QCD and how to relate them to experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Stafford%2C+J+M">Jamie M. Stafford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14592v2-abstract-short" style="display: inline;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14592v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14592v2-abstract-full" style="display: none;"> Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $渭_B=0$, and present a finite-$渭_B$ extrapolation, comparing two different methods. In order to relate the grand canonical observables to the experimentally available net-particle fluctuations and correlations, we perform a Hadron Resonance Gas (HRG) model analysis, which allows us to completely break down the contributions from different hadrons. We then construct suitable hadronic proxies for fluctuations ratios, and study their behavior at finite chemical potentials. We also study the effect of introducing acceptance cuts, and argue that the small dependence of certain ratios on the latter allows for a direct comparison with lattice QCD results, provided that the same cuts are applied to all hadronic species. Finally, we perform a comparison for the constructed quantities for experimentally available measurements from the STAR Collaboration. Thus, we estimate the chemical freeze-out temperature to 165 MeV using a strangeness-related proxy. This is a rather high temperature for the use of the Hadron Resonance Gas, thus, further lattice studies are necessary to provide first principle results at intermediate $渭_B$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14592v2-abstract-full').style.display = 'none'; document.getElementById('1910.14592v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, 1 table, version published in Phys.Rev.D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034506 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04445">arXiv:1805.04445</a> <span> [<a href="https://arxiv.org/pdf/1805.04445">pdf</a>, <a href="https://arxiv.org/format/1805.04445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2018)205">10.1007/JHEP10(2018)205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher order fluctuations and correlations of conserved charges from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J+N">Jana N. Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+K">Sandor K Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Portillo%2C+I">Israel Portillo</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04445v1-abstract-short" style="display: inline;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04445v1-abstract-full" style="display: none;"> We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of 2+1+1 quark flavors with physical masses, on a lattice with size $48^3\times12$. Higher order fluctuations at $渭_B=0$ are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulants as functions of temperature and chemical potential, which satisfy the experimental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively explain the behavior of the measured cumulant ratios by the STAR collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04445v1-abstract-full').style.display = 'none'; document.getElementById('1805.04445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07718">arXiv:1802.07718</a> <span> [<a href="https://arxiv.org/pdf/1802.07718">pdf</a>, <a href="https://arxiv.org/format/1802.07718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014512">10.1103/PhysRevD.98.014512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High statistics lattice study of stress tensor correlators in pure $SU(3)$ gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Giordano%2C+M">Matteo Giordano</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07718v2-abstract-short" style="display: inline;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'inline'; document.getElementById('1802.07718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07718v2-abstract-full" style="display: none;"> We compute the Euclidean correlators of the stress tensor in pure $SU(3)$ Yang-Mills theory at finite temperature at zero and finite spatial momenta with lattice simulations. We perform continuum extrapolations using $N_蟿=10,12,16,20$ lattices with renormalized anisotropy 2. We use these correlators to estimate the shear viscosity of the gluon plasma in the deconfined phase. For $T=1.5T_c$ we obtain $畏/s=0.17(2)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07718v2-abstract-full').style.display = 'none'; document.getElementById('1802.07718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.04980">arXiv:1711.04980</a> <span> [<a href="https://arxiv.org/pdf/1711.04980">pdf</a>, <a href="https://arxiv.org/format/1711.04980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.022002">10.1103/PhysRevLett.121.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=collaboration%2C+B">Budapest-Marseille-Wuppertal collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Malak%2C+R">R. Malak</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.04980v2-abstract-short" style="display: inline;"> We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of $u$, $d$, $s$ and $c$ quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than $6\,\mathrm{fm}$. All connected and disconnect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04980v2-abstract-full').style.display = 'inline'; document.getElementById('1711.04980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.04980v2-abstract-full" style="display: none;"> We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of $u$, $d$, $s$ and $c$ quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than $6\,\mathrm{fm}$. All connected and disconnected Wick contractions are calculated. Continuum limits are carried out using six lattice spacings. We obtain $a_e^\mathrm{LO-HVP}=189.3(2.6)(5.6)\times 10^{-14}$, $a_渭^\mathrm{LO-HVP}=711.1(7.5)(17.4)\times 10^{-10}$ and $a_蟿^\mathrm{LO-HVP}=341.0(0.8)(3.2)\times 10^{-8}$, where the first error is statistical and the second is systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04980v2-abstract-full').style.display = 'none'; document.getElementById('1711.04980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures (in 13 PDF files), RevTeX 4.1. Minor changes to results and to text. References updated. Matches version published in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 022002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01113">arXiv:1702.01113</a> <span> [<a href="https://arxiv.org/pdf/1702.01113">pdf</a>, <a href="https://arxiv.org/format/1702.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034517">10.1103/PhysRevD.96.034517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the hadronic spectrum through QCD thermodynamics on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alba%2C+P">Paolo Alba</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">Rene Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Guenther%2C+J">Jana Guenther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Sarti%2C+V+M">Valentina Mantovani Sarti</a>, <a href="/search/hep-lat?searchtype=author&query=Noronha-Hostler%2C+J">Jacquelyn Noronha-Hostler</a>, <a href="/search/hep-lat?searchtype=author&query=Parotto%2C+P">Paolo Parotto</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Vazquez%2C+I+P">Israel Portillo Vazquez</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01113v1-abstract-short" style="display: inline;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01113v1-abstract-full" style="display: none;"> Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the Quark Model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01113v1-abstract-full').style.display = 'none'; document.getElementById('1702.01113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034517 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06755">arXiv:1612.06755</a> <span> [<a href="https://arxiv.org/pdf/1612.06755">pdf</a>, <a href="https://arxiv.org/format/1612.06755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201713701006">10.1051/epjconf/201713701006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frontiers of finite temperature lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06755v1-abstract-short" style="display: inline;"> I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and fi- nite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06755v1-abstract-full" style="display: none;"> I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and fi- nite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06755v1-abstract-full').style.display = 'none'; document.getElementById('1612.06755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk at XII Quark Confinement, 2016, Thessaloniki, Greece; 14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02364">arXiv:1612.02364</a> <span> [<a href="https://arxiv.org/pdf/1612.02364">pdf</a>, <a href="https://arxiv.org/ps/1612.02364">ps</a>, <a href="https://arxiv.org/format/1612.02364">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.074507">10.1103/PhysRevD.96.074507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slope and curvature of the hadron vacuum polarization at vanishing virtuality from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Malak%2C+R">R. Malak</a>, <a href="/search/hep-lat?searchtype=author&query=Miura%2C+K">K. Miura</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Torrero%2C+C">C. Torrero</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B">B. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02364v1-abstract-short" style="display: inline;"> We compute the slope and curvature, at vanishing four-momentum transfer squared, of the leading order hadron vacuum polarization function, using lattice QCD. Calculations are performed with 2+1+1 flavors of staggered fermions directly at the physical values of the quark masses and in volumes of linear extent larger than 6fm. The continuum limit is carried out using six different lattice spacings.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02364v1-abstract-full').style.display = 'inline'; document.getElementById('1612.02364v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02364v1-abstract-full" style="display: none;"> We compute the slope and curvature, at vanishing four-momentum transfer squared, of the leading order hadron vacuum polarization function, using lattice QCD. Calculations are performed with 2+1+1 flavors of staggered fermions directly at the physical values of the quark masses and in volumes of linear extent larger than 6fm. The continuum limit is carried out using six different lattice spacings. All connected and disconnected contributions are calculated, up to and including those of the charm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02364v1-abstract-full').style.display = 'none'; document.getElementById('1612.02364v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 074507 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02493">arXiv:1607.02493</a> <span> [<a href="https://arxiv.org/pdf/1607.02493">pdf</a>, <a href="https://arxiv.org/format/1607.02493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2017.05.044">10.1016/j.nuclphysa.2017.05.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The QCD equation of state at finite density from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02493v1-abstract-short" style="display: inline;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02493v1-abstract-full" style="display: none;"> We determine the equation of state of QCD at finite chemical potential, to order $(渭_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~渭_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $渭_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02493v1-abstract-full').style.display = 'none'; document.getElementById('1607.02493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07494">arXiv:1606.07494</a> <span> [<a href="https://arxiv.org/pdf/1606.07494">pdf</a>, <a href="https://arxiv.org/format/1606.07494">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD for Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Kampert%2C+K+H">K. H. Kampert</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Kawanai%2C+T">T. Kawanai</a>, <a href="/search/hep-lat?searchtype=author&query=Kovacs%2C+T+G">T. G. Kovacs</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S+W">S. W. Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Redondo%2C+J">J. Redondo</a>, <a href="/search/hep-lat?searchtype=author&query=Ringwald%2C+A">A. Ringwald</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07494v2-abstract-short" style="display: inline;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'inline'; document.getElementById('1606.07494v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07494v2-abstract-full" style="display: none;"> We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07494v2-abstract-full').style.display = 'none'; document.getElementById('1606.07494v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pdflatex, 40 figures; Section on experimental setups added, small corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.00466">arXiv:1601.00466</a> <span> [<a href="https://arxiv.org/pdf/1601.00466">pdf</a>, <a href="https://arxiv.org/format/1601.00466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2016.02.010">10.1016/j.nuclphysa.2016.02.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the QCD phase diagram from analytical continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Gunther%2C+J">J. Gunther</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">A. Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Ratti%2C+C">C. Ratti</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.00466v1-abstract-short" style="display: inline;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'inline'; document.getElementById('1601.00466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.00466v1-abstract-full" style="display: none;"> We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to $N_t=16$. The simulation parameters are tuned such that the strangeness neutrality is maintained, as it is in heavy ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.00466v1-abstract-full').style.display = 'none'; document.getElementById('1601.00466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, Proceedings of the Quark Matter 2015 conference, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06804">arXiv:1512.06804</a> <span> [<a href="https://arxiv.org/pdf/1512.06804">pdf</a>, <a href="https://arxiv.org/ps/1512.06804">ps</a>, <a href="https://arxiv.org/format/1512.06804">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.094512">10.1103/PhysRevD.95.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD on Non-Orientable Manifolds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S">Simon Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">Balint C. Toth</a>, <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06804v2-abstract-short" style="display: inline;"> A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achiev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06804v2-abstract-full').style.display = 'inline'; document.getElementById('1512.06804v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06804v2-abstract-full" style="display: none;"> A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a non-orientable manifold, and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is, that translational invariance is preserved up to exponentially small corrections. A Dirac-fermion on a non-orientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06804v2-abstract-full').style.display = 'none'; document.getElementById('1512.06804v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures; v2: matches accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 094512 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.06541">arXiv:1511.06541</a> <span> [<a href="https://arxiv.org/pdf/1511.06541">pdf</a>, <a href="https://arxiv.org/format/1511.06541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Fluctuations at finite temperature and density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.06541v1-abstract-short" style="display: inline;"> Fluctuations of conserved charges in a grand canonical ensemble can be calculated as derivatives of the free energy with respect to the respective chemical potential. They are directly related to experimentally available observables that describe the hadronization in heavy ion collisions. The same derivatives can be used to extrapolate zero density results to finite chemical potential. We review t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06541v1-abstract-full').style.display = 'inline'; document.getElementById('1511.06541v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.06541v1-abstract-full" style="display: none;"> Fluctuations of conserved charges in a grand canonical ensemble can be calculated as derivatives of the free energy with respect to the respective chemical potential. They are directly related to experimentally available observables that describe the hadronization in heavy ion collisions. The same derivatives can be used to extrapolate zero density results to finite chemical potential. We review the recent lattice calculations in the staggered formalism and discuss its implications to phenomenology and resummed perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06541v1-abstract-full').style.display = 'none'; document.getElementById('1511.06541v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, The 33rd International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.00032">arXiv:1511.00032</a> <span> [<a href="https://arxiv.org/pdf/1511.00032">pdf</a>, <a href="https://arxiv.org/format/1511.00032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Static quark-antiquark pair free energy and screening masses: continuum results at the QCD physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Szabolcs Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Zoltan Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">Sandor D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">Kalman K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Pasztor%2C+A">Attila Pasztor</a>, <a href="/search/hep-lat?searchtype=author&query=Torok%2C+C">Csaba Torok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.00032v1-abstract-short" style="display: inline;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop corre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'inline'; document.getElementById('1511.00032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.00032v1-abstract-full" style="display: none;"> We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator. This conference contribution is based on the paper: JHEP 1504 (2015) 138 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00032v1-abstract-full').style.display = 'none'; document.getElementById('1511.00032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Talk presented at the 33rd International Symposium on Lattice Field Theory (Lattice 2015), 14-18 July 2015, Kobe International Conference Center, Kobe, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.03376">arXiv:1510.03376</a> <span> [<a href="https://arxiv.org/pdf/1510.03376">pdf</a>, <a href="https://arxiv.org/format/1510.03376">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QCD thermodynamics with continuum extrapolated dynamical overlap fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">Sz. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+Z+F+S+D+K+S">Z. Fodor S. D. Katz S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">D. Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Pittler%2C+F">F. Pittler</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&query=Toth%2C+B+C">B. C. Toth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.03376v1-abstract-short" style="display: inline;"> We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03376v1-abstract-full').style.display = 'inline'; document.getElementById('1510.03376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.03376v1-abstract-full" style="display: none;"> We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03376v1-abstract-full').style.display = 'none'; document.getElementById('1510.03376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06917">arXiv:1508.06917</a> <span> [<a href="https://arxiv.org/pdf/1508.06917">pdf</a>, <a href="https://arxiv.org/format/1508.06917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2015.11.020">10.1016/j.physletb.2015.11.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion cosmology, lattice QCD and the dilute instanton gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Borsanyi%2C+S">S. Borsanyi</a>, <a href="/search/hep-lat?searchtype=author&query=Dierigl%2C+M">M. Dierigl</a>, <a href="/search/hep-lat?searchtype=author&query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&query=Mages%2C+S+W">S. W. Mages</a>, <a href="/search/hep-lat?searchtype=author&query=Nogradi%2C+D">D. Nogradi</a>, <a href="/search/hep-lat?searchtype=author&query=Redondo%2C+J">J. Redondo</a>, <a href="/search/hep-lat?searchtype=author&query=Ringwald%2C+A">A. Ringwald</a>, <a href="/search/hep-lat?searchtype=author&query=Szabo%2C+K+K">K. K. Szabo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06917v1-abstract-short" style="display: inline;"> Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $蠂(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum ext… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06917v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06917v1-abstract-full" style="display: none;"> Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $蠂(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine $蠂(T)$ in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06917v1-abstract-full').style.display = 'none'; document.getElementById('1508.06917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 15-151 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Borsanyi%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>