CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 202 results for author: <span class="mathjax">Balakrishnan, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Balakrishnan, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Balakrishnan%2C+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Balakrishnan, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09239">arXiv:2411.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09239">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Multiphase superconductivity in PdBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Powell%2C+L">Lewis Powell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+W">Wenjun Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawkins-Pottier%2C+G">Gabriel Hawkins-Pottier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jalil%2C+R">Rashid Jalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birkbeck%2C+J">John Birkbeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Ziyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yichao Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komrakova%2C+S">Sofiia Komrakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haigh%2C+S">Sarah Haigh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timokhin%2C+I">Ivan Timokhin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">Andre K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walet%2C+N">Niels Walet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Principi%2C+A">Alessandro Principi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigorieva%2C+I+V">Irina V. Grigorieva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09239v1-abstract-short" style="display: inline;"> Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T_c cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and ext&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09239v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09239v1-abstract-full" style="display: none;"> Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T_c cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state. Here we report a magnetic-field driven phase transition in 尾-PdBi2, a layered non-magnetic superconductor. Our tunnelling spectroscopy on thin PdBi2 monocrystals incorporated in planar superconductor-insulator-normal metal junctions reveals a marked discontinuity in the superconducting properties with increasing in-plane field, which is consistent with a transition from conventional (s-wave) to nodal pairing. Our theoretical analysis suggests that this phase transition may arise from spin polarisation and spin-momentum locking caused by locally broken inversion symmetry, with p-wave pairing becoming energetically favourable in high fields. Our findings also reconcile earlier predictions of unconventional multigap superconductivity in 尾-PdBi2 with previous experiments where only a single s-wave gap could be detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09239v1-abstract-full').style.display = 'none'; document.getElementById('2411.09239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, including 4 main Figures, Methods, 8 Supplementary Figures and 5 Supplementary Notes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18305">arXiv:2410.18305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18305">pdf</a>, <a href="https://arxiv.org/format/2410.18305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Role of native point defects and Hg impurities in the electronic properties of Bi$_4$I$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cassemiro%2C+G+H">Gustavo H. Cassemiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinostroza%2C+C+D">C. David Hinostroza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Faria%2C+L+R">Leandro Rodrigues de Faria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">Daniel A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aguiar%2C+M+C+O">Maria C. O. Aguiar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">Martin R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez%2C+J+L">J. Larrea Jim茅nez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Machado%2C+A+J+d+S">Antonio Jefferson da Silva Machado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martelli%2C+V">Valentina Martelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brito%2C+W+H">Walber H. Brito</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18305v1-abstract-short" style="display: inline;"> We studied the effects of point defects and Hg impurities in the electronic properties of bismuth iodide (Bi$_4$I$_4$). Our transport measurements after annealing at different temperatures show that the resistivity of Bi$_4$I$_4$ depends on its thermal history, suggesting that the formation of native defects and impurities can shape the temperature dependence of electrical resistivity. Our density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18305v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18305v1-abstract-full" style="display: none;"> We studied the effects of point defects and Hg impurities in the electronic properties of bismuth iodide (Bi$_4$I$_4$). Our transport measurements after annealing at different temperatures show that the resistivity of Bi$_4$I$_4$ depends on its thermal history, suggesting that the formation of native defects and impurities can shape the temperature dependence of electrical resistivity. Our density functional theory calculations indicate that the bismuth and iodine antisites, and bismuth vacancies are the dominant native point defects. We find that bismuth antisites introduce resonant states in the band-edges, while iodine antisites and bismuth vacancies lead to a $n$-type and $p$-type doping of Bi$_4$I$_4$, respectively. The Hg impurities are likely to be found at Bi substitutional sites, giving rise to the $p$-type doping of Bi$_4$I$_4$. Overall, our findings indicate that the presence of native point defects and impurities can significantly modify the electronic properties, and, thus, impact the resistivity profile of Bi$_4$I$_4$ due to modifications in the amount and type of carriers, and the associated defect(impurity) scattering. Our results suggest possible routes for pursuing fine-tuning of the electronic properties of quasi-one-dimensional quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18305v1-abstract-full').style.display = 'none'; document.getElementById('2410.18305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01631">arXiv:2410.01631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01631">pdf</a>, <a href="https://arxiv.org/format/2410.01631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disorder-resilient transition of helical to conical ground states in M$_{1/3}$NbS$_2$, M=Cr,Mn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahoo%2C+M">Manaswini Sahoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonf%C3%A0%2C+P">Pietro Bonf脿</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">Amelia. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">Daniel. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">Laura T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Renzi%2C+R">Roberto De Renzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allodi%2C+G">Giuseppe Allodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01631v1-abstract-short" style="display: inline;"> The discovery of chiral helical magnetism (CHM) in Cr$_{1/3}$NbS$_2$ and the stabilization of a chiral soliton lattice (CSL) has attracted considerable interest in view of their potential technological applications. However, there is an ongoing debate regarding whether the sister compound, Mn$_{1/3}$NbS$_2$, which shares the same crystal structure, exhibits similar nontrivial properties which rely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01631v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01631v1-abstract-full" style="display: none;"> The discovery of chiral helical magnetism (CHM) in Cr$_{1/3}$NbS$_2$ and the stabilization of a chiral soliton lattice (CSL) has attracted considerable interest in view of their potential technological applications. However, there is an ongoing debate regarding whether the sister compound, Mn$_{1/3}$NbS$_2$, which shares the same crystal structure, exhibits similar nontrivial properties which rely on the stabilization of the lack of inversion symmetry at the magnetic ion. In this study, we conduct a comprehensive investigation of the magnetically ordered states of both compounds, using $^{53}$Cr, $^{55}$Mn and $^{93}$Nb nuclear magnetic resonance. Our results, supported by density functional calculations, detect in a high-quality single crystal of Cr$_{1/3}$NbS$_2$ all the signatures of the monoaxial CHM in a magnetic field, identifying it as a textbook NMR case. The detailed understanding of this prototypic behavior provides a reference for Mn$_{1/3}$NbS$_2$. Despite the much larger density of specific defects in this second single crystal, we confirm the presence of a CHM phase in the Mn compound, characterized by a very large critical field for the forced ferromagnetic phase ($\approx 5$ T for H$\parallel\hat c$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01631v1-abstract-full').style.display = 'none'; document.getElementById('2410.01631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Supplemental MAterial</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04469">arXiv:2407.04469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04469">pdf</a>, <a href="https://arxiv.org/format/2407.04469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Muon spectroscopy investigation of anomalous dynamic magnetism in NiI$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Breeze%2C+T+L">T. L. Breeze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hern%C3%A1ndez-Mel%C3%ADan%2C+A">A. Hern谩ndez-Mel铆an</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentley%2C+N+P">N. P. Bentley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilkinson%2C+J">J. Wilkinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04469v1-abstract-short" style="display: inline;"> We present the results of muon-spin relaxation ($渭^{+}$SR) measurements of the van der Waals magnet NiI$_2$, which probe magnetic phase transitions at $T_{\mathrm{N1}}=73$K and $T_{\mathrm{N2}}=60$K. Supporting density functional theory (DFT) calculations allow the determination of a single muon stopping site whose magnetic environment is consistent with the proposed ground-state magnetic structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04469v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04469v1-abstract-full" style="display: none;"> We present the results of muon-spin relaxation ($渭^{+}$SR) measurements of the van der Waals magnet NiI$_2$, which probe magnetic phase transitions at $T_{\mathrm{N1}}=73$K and $T_{\mathrm{N2}}=60$K. Supporting density functional theory (DFT) calculations allow the determination of a single muon stopping site whose magnetic environment is consistent with the proposed ground-state magnetic structure. $渭^{+}$SR measurements of the dynamics reveal behavior consistent with spin-wave excitations below $T_{\mathrm{N2}}$, with an additional contribution from a nonmagnetic component of the material. In the region $T_{\mathrm{N1}}&lt;T&lt;T_{\mathrm{N2}}$ the system is magnetically ordered throughout the bulk, but the character of the dynamics changes qualitatively, resulting in an unusual region of temperature-independent fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04469v1-abstract-full').style.display = 'none'; document.getElementById('2407.04469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, submitted to PRB letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00498">arXiv:2407.00498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00498">pdf</a>, <a href="https://arxiv.org/ps/2407.00498">ps</a>, <a href="https://arxiv.org/format/2407.00498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.155113">10.1103/PhysRevB.110.155113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum oscillation study of the large magnetoresistance in Mo substituted WTe$_2$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barua%2C+S">Sourabh Barua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00498v3-abstract-short" style="display: inline;"> The list of interesting electrical properties exhibited by transition metal dichalcogenides has grown with the discovery of extremely large magnetoresistance (MR) and type-II Weyl semimetal behaviour in WTe$_2$ and MoTe$_2$. The extremely large MR in WTe$_2$ is still not adequately understood. Here, we systematically study the effect of Mo substitution on the quantum oscillations in the MR in WTe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00498v3-abstract-full').style.display = 'inline'; document.getElementById('2407.00498v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00498v3-abstract-full" style="display: none;"> The list of interesting electrical properties exhibited by transition metal dichalcogenides has grown with the discovery of extremely large magnetoresistance (MR) and type-II Weyl semimetal behaviour in WTe$_2$ and MoTe$_2$. The extremely large MR in WTe$_2$ is still not adequately understood. Here, we systematically study the effect of Mo substitution on the quantum oscillations in the MR in WTe$_2$. The MR decreases with Mo substitution, however, the carrier concentrations extracted from the quantum oscillations show that the charge compensation improves. We believe that earlier interpretations based on the two-band theory, which attribute the decrease in MR to charge imbalance, could be incorrect due to over-parametrization. We attribute the decrease in MR in the presence of charge compensation to a fall in transport mobility, which is evident from the residual resistivity ratio data. The quantum scattering time and the effective masses do not change within experimental errors upon substitution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00498v3-abstract-full').style.display = 'none'; document.getElementById('2407.00498v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This revised version includes minor revisions after peer-review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110 (2024) 155113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09431">arXiv:2403.09431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09431">pdf</a>, <a href="https://arxiv.org/ps/2403.09431">ps</a>, <a href="https://arxiv.org/format/2403.09431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Field-orientation-dependent magnetic phases in GdRu$_2$Si$_2$ probed with muon-spin spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hern%C3%A1ndez-Meli%C3%A1n%2C+A">A. Hern谩ndez-Meli谩n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09431v2-abstract-short" style="display: inline;"> Centrosymmetric GdRu$_2$Si$_2$ exhibits a variety of multi-Q magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material&#39;s behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic $c$ axis. Here, we present th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09431v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09431v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09431v2-abstract-full" style="display: none;"> Centrosymmetric GdRu$_2$Si$_2$ exhibits a variety of multi-Q magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material&#39;s behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic $c$ axis. Here, we present the results of muon-spin relaxation ($渭^+$SR) measurements on single crystals of GdRu$_2$Si$_2$. Our analysis is based on the computation of muon stopping sites and consideration of zero-point motion effects, allowing direct comparison with the underlying spin textures in the material. Using transverse-field $渭^+$SR with fields applied along either the [001] or [100] crystallographic directions, we distinguish between the magnetic phases in this system via their distinct muon response, providing additional evidence for the skyrmion and meron-lattice phases, while also suggesting the existence of RKKY-driven muon hyperfine coupling. Zero-field $渭^+$SR provides clear evidence for a transition between two distinct magnetically-ordered phases at 39 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09431v2-abstract-full').style.display = 'none'; document.getElementById('2403.09431v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04550">arXiv:2403.04550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04550">pdf</a>, <a href="https://arxiv.org/format/2403.04550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electrical transport signatures of metallic surface state formation in the strongly-correlated insulator FeSb2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">Alexander G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popiel%2C+N+J+M">Nicholas J. M. Popiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">Alexander J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hsu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+G+F">Gunnar F. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slager%2C+R">Robert-Jan Slager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04550v1-abstract-short" style="display: inline;"> We present local and nonlocal electrical transport measurements of the correlated insulator FeSb$_2$. By employing wiring configurations that delineate between bulk- and surface-dominated conduction, we reveal the formation of a metallic surface state in FeSb$_2$ for temperatures $\lessapprox 5$~K. This result is corroborated by an angular rotation study of this material&#39;s magnetotransport, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04550v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04550v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04550v1-abstract-full" style="display: none;"> We present local and nonlocal electrical transport measurements of the correlated insulator FeSb$_2$. By employing wiring configurations that delineate between bulk- and surface-dominated conduction, we reveal the formation of a metallic surface state in FeSb$_2$ for temperatures $\lessapprox 5$~K. This result is corroborated by an angular rotation study of this material&#39;s magnetotransport, which also shows signatures of the transition from bulk- to surface-dominated conduction over the same temperature interval as the local/nonlocal transport divergence. Notable similarities with the topological Kondo insulator candidate SmB$_6$ are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04550v1-abstract-full').style.display = 'none'; document.getElementById('2403.04550v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18779">arXiv:2402.18779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18779">pdf</a>, <a href="https://arxiv.org/format/2402.18779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale variation of the Rashba energy in BiTeI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+R">Ruizhe Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larson%2C+D+T">Daniel T. Larson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saghir%2C+M">Mohammed Saghir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+D">Jason D. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+J+E">Jennifer E. Hoffman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18779v2-abstract-short" style="display: inline;"> BiTeI is a polar semiconductor with strong spin-orbit coupling (SOC) that produces large Rashba spin splitting. Due to its potential utility in spintronics and magnetoelectrics, it is essential to understand how defects impact the spin transport in this material. Using scanning tunneling microscopy and spectroscopy, we image ring-like charging states of single-atom defects on the iodine surface of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18779v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18779v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18779v2-abstract-full" style="display: none;"> BiTeI is a polar semiconductor with strong spin-orbit coupling (SOC) that produces large Rashba spin splitting. Due to its potential utility in spintronics and magnetoelectrics, it is essential to understand how defects impact the spin transport in this material. Using scanning tunneling microscopy and spectroscopy, we image ring-like charging states of single-atom defects on the iodine surface of BiTeI. We observe nanoscale variations in the Rashba energy around each defect, which we correlate with the local electric field extracted from the bias dependence of each ring radius. Our data demonstrate the local impact of atomic defects on the Rashba effect, which is both a challenge and an opportunity for the development of future nanoscale spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18779v2-abstract-full').style.display = 'none'; document.getElementById('2402.18779v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17323">arXiv:2312.17323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17323">pdf</a>, <a href="https://arxiv.org/format/2312.17323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic skyrmion and multi-$q$ spin dynamics in centrosymmetric Gd$_2$PdSi$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M+T+F">M. T. F. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17323v2-abstract-short" style="display: inline;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with net-zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v2-abstract-full').style.display = 'inline'; document.getElementById('2312.17323v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17323v2-abstract-full" style="display: none;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with net-zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these by investigating both static and dynamic spin properties of the centrosymmetric SkL host Gd$_2$PdSi$_3$ using muon spectroscopy ($渭$SR). We find that spin fluctuations in its non-coplanar SkL phase are highly anisotropic, implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly-anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material, indicating that it is a meron-like multi-$q$ structure. In contrast, the higher-field, coplanar IC-2 phase is found to be single-$q$ with nearly-isotropic spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v2-abstract-full').style.display = 'none'; document.getElementById('2312.17323v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 3 figures. Supplemental Material: 6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13894">arXiv:2312.13894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13894">pdf</a>, <a href="https://arxiv.org/format/2312.13894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L032008">10.1103/PhysRevResearch.6.L032008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence from high-field magnetotransport for a dramatic change of quasiparticle character in van der Waals ferromagnet Fe$_{3-x}$GeTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaidya%2C+S">Shroya Vaidya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coak%2C+M+J">Matthew J. Coak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">Daniel A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">Martin R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singleton%2C+J">John Singleton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">Paul A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13894v1-abstract-short" style="display: inline;"> Magnetometry and magnetoresistance (MR) data taken on the van der Waals ferromagnet Fe$_{3-x}$GeTe$_2$ (FGT) reveal three distinct contributions to the MR: a linear negative component, a contribution from closed Fermi-surface orbits, and a $H^2$ enhancement linked to a non-coplanar spin arrangement. Contrary to earlier studies on FGT, by accounting for the field dependence of the anomalous Hall ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13894v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13894v1-abstract-full" style="display: none;"> Magnetometry and magnetoresistance (MR) data taken on the van der Waals ferromagnet Fe$_{3-x}$GeTe$_2$ (FGT) reveal three distinct contributions to the MR: a linear negative component, a contribution from closed Fermi-surface orbits, and a $H^2$ enhancement linked to a non-coplanar spin arrangement. Contrary to earlier studies on FGT, by accounting for the field dependence of the anomalous Hall effect, we find that the ordinary Hall coefficient decreases markedly below 80 K, indicating a significant change in character of the electrons and holes on the Fermi surface at this temperature. The resulting altered ground state eventually causes the Hall coefficient to reverse sign at 35 K. Our Hall data support the proposal that Kondo-lattice behavior develops in this $d$-electron material below 80 K. Additional evidence comes from the negative linear component of the MR, which arises from electron-magnon scattering with an atypical temperature dependence attributable to the onset of Kondo screening. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13894v1-abstract-full').style.display = 'none'; document.getElementById('2312.13894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, L032008 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00715">arXiv:2312.00715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00715">pdf</a>, <a href="https://arxiv.org/format/2312.00715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic phase diagram and magneto-elastic coupling of NdB$_4$ studied by high-resolution capacitance dilatometry up to 35~T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ohlendorf%2C+R">Rahel Ohlendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spachmann%2C+S">Sven Spachmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+L">Lukas Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carstens%2C+F+L">Frederik Leon Carstens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brunt%2C+D">Daniel Brunt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">Oleg A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klingeler%2C+R">R眉diger Klingeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00715v1-abstract-short" style="display: inline;"> We report high-resolution dilatometry studies on single crystals of the Shastry-Sutherland-lattice magnet NdB$_4$ supported by specific heat and magnetometry data. Our dilatometric studies evidence pronounced anomalies at the phase boundaries which imply strong magneto-elastic coupling. The evolution of the three zero-field phase transitions separating distinct antiferromagnetic phases at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00715v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00715v1-abstract-full" style="display: none;"> We report high-resolution dilatometry studies on single crystals of the Shastry-Sutherland-lattice magnet NdB$_4$ supported by specific heat and magnetometry data. Our dilatometric studies evidence pronounced anomalies at the phase boundaries which imply strong magneto-elastic coupling. The evolution of the three zero-field phase transitions separating distinct antiferromagnetic phases at $TN=17.2$~K, $TIT=6.8$~K and $TLT=4.8$~K can thus be traced in applied magnetic fields which provides the magnetic phase diagrams for $B\parallel c$ up to 15~T and for $B\parallel [110]$ up to 35~T. New in-field phases are discovered for both field directions and already known phases are confirmed. In particular, phase boundaries between different phases are unambiguously shown by sign changes of observed anomalies and corresponding changes in uniaxial pressure effects. For $B||c$, we find a 1/4-magnetization plateau in addition to a previously reported plateau at 1/5 of the saturation magnetization. TN increases for $B\parallel c$ in fields up to 15~T implying that magnetic moments of the all-in/all-out structure in the high temperature AFM ordered phase are driven towards the $c$ axis in high magnetic fields. Uniaxial pressure dependencies ${\partial}T_{\mathrm{crit}}/{\partial}p_{\mathrm{c}}$ of the phase transition temperatures for magnetic fields and pressure applied along the $c$ axis are derived from the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00715v1-abstract-full').style.display = 'none'; document.getElementById('2312.00715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00440">arXiv:2312.00440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00440">pdf</a>, <a href="https://arxiv.org/format/2312.00440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Charge doping into spin minority states mediates doubling of $T_\mathrm{C}$ in ferromagnetic CrGeTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Trzaska%2C+L">Liam Trzaska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lei Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">Edgar Abarca Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antonelli%2C+T">Tommaso Antonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picozzi%2C+S">Silvia Picozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00440v1-abstract-short" style="display: inline;"> The recent discovery of the persistence of long-range magnetic order when van der Waals layered magnets are thinned towards the monolayer limit has provided a tunable platform for the engineering of novel magnetic structures and devices. Here, we study the evolution of the electronic structure of CrGeTe$_3$ as a function of electron doping in the surface layer. From angle-resolved photoemission sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00440v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00440v1-abstract-full" style="display: none;"> The recent discovery of the persistence of long-range magnetic order when van der Waals layered magnets are thinned towards the monolayer limit has provided a tunable platform for the engineering of novel magnetic structures and devices. Here, we study the evolution of the electronic structure of CrGeTe$_3$ as a function of electron doping in the surface layer. From angle-resolved photoemission spectroscopy, we observe spectroscopic fingerprints that this electron doping drives a marked increase in $T_\mathrm{C}$, reaching values more than double that of the undoped material, in agreement with recent studies using electrostatic gating. Together with density functional theory calculations and Monte Carlo simulations, we show that, surprisingly, the increased $T_\mathrm{C}$ is mediated by the population of spin-minority Cr $t_{2g}$ states, forming a half-metallic 2D electron gas at the surface. We show how this promotes a novel variant of double exchange, and unlocks a significant influence of the Ge -- which was previously thought to be electronically inert in this system -- in mediating Cr-Cr exchange. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00440v1-abstract-full').style.display = 'none'; document.getElementById('2312.00440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages including supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10337">arXiv:2310.10337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10337">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ad27e7">10.1088/2053-1583/ad27e7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flux-pinning mediated superconducting diode effect in the NbSe$_2$/CrGeTe$_3$ heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mehrnejat%2C+A">A. Mehrnejat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">M. C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+N">N. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savel%27ev%2C+S+E">S. E. Savel&#39;ev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dejene%2C+F+K">F. K. Dejene</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10337v1-abstract-short" style="display: inline;"> In ferromagnet/superconductor bilayer systems, dipolar fields from the ferromagnet can create asymmetric energy barriers for the formation and dynamics of vortices through flux pinning. Conversely, the flux emanating from vortices can pin the domain walls of the ferromagnet, thereby creating asymmetric critical currents. Here, we report the observation of a superconducting diode effect in a NbSe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10337v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10337v1-abstract-full" style="display: none;"> In ferromagnet/superconductor bilayer systems, dipolar fields from the ferromagnet can create asymmetric energy barriers for the formation and dynamics of vortices through flux pinning. Conversely, the flux emanating from vortices can pin the domain walls of the ferromagnet, thereby creating asymmetric critical currents. Here, we report the observation of a superconducting diode effect in a NbSe$_2$/CrGeTe$_3$ van der Waals heterostructure in which the magnetic domains of CrGeTe$_3$ control the Abrikosov vortex dynamics in NbSe$_2$. In addition to extrinsic vortex pinning mechanisms at the edges of NbSe$_2$, flux-pinning-induced bulk pinning of vortices can alter the critical current. This asymmetry can thus be explained by considering the combined effect of this bulk pinning mechanism along with the vortex tilting induced by the Lorentz force from the transport current in the NbSe$_2$/CrGeTe$_3$ heterostructure. We also provide evidence of critical current modulation by flux pinning depending on the history of the field setting procedure. Our results suggest a method of controlling the efficiency of the superconducting diode effect in magnetically coupled van der Waals superconductors, where dipolar fields generated by the magnetic layer can be used to modulate the dynamics of the superconducting vortices in the superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10337v1-abstract-full').style.display = 'none'; document.getElementById('2310.10337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09268">arXiv:2310.09268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.09268">pdf</a>, <a href="https://arxiv.org/format/2310.09268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic structure, excitations and field induced transitions in the honeycomb lattice $\rm{Er_2Si_2O_7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+M">M. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=d%27Ambrumenil%2C+N">N. d&#39;Ambrumenil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09268v3-abstract-short" style="display: inline;"> We investigate the magnetic properties of the monoclinic D-type $\rm{Er_2Si_2O_7}$ with a distorted honeycomb lattice using powder and single crystal neutron scattering techniques, as well as single crystal magnetisation measurements. The powder neutron diffraction shows that below the ordering temperature, $T_{\rm N}=1.85$ K, the compound forms a ${\bf q}=0$ antiferromagnetic structure with four&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09268v3-abstract-full').style.display = 'inline'; document.getElementById('2310.09268v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09268v3-abstract-full" style="display: none;"> We investigate the magnetic properties of the monoclinic D-type $\rm{Er_2Si_2O_7}$ with a distorted honeycomb lattice using powder and single crystal neutron scattering techniques, as well as single crystal magnetisation measurements. The powder neutron diffraction shows that below the ordering temperature, $T_{\rm N}=1.85$ K, the compound forms a ${\bf q}=0$ antiferromagnetic structure with four sublattices. For $H \! \parallel \! a$, magnetisation measurements reveal a narrow, but clearly visible plateau at one third of the magnetisation saturation value. The plateau&#39;s stabilisation is accompanied by a significant increase of the magnetic unit cell, as the magnetic peaks with fractional indices are observed in single crystal neutron diffraction experiments. At low-temperatures, the inelastic neutron scattering measurements reveal the presence of low-energy dispersionless excitations. Their spectrum is sensitive to the applied field, it significantly softens on the magnetisation plateau, and demonstrates the behaviour expected for a non-collinear Ising antiferromagnet away from the plateau. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09268v3-abstract-full').style.display = 'none'; document.getElementById('2310.09268v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures and Supplementary Material containing 8 pages, 6 figures. To view the .mcif file, please download and extract the gzipped tar source file listed under &#34;Other formats&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00821">arXiv:2306.00821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00821">pdf</a>, <a href="https://arxiv.org/format/2306.00821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Inelastic neutron scattering investigation of the crystal field excitations of NdCo$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Passos%2C+F+d+A">F. de Almeida Passos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patrick%2C+C+E">C. E. Patrick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">Santosh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thamizhavel%2C+A">A. Thamizhavel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cornejo%2C+D+R">D. R. Cornejo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez%2C+J+L">J. Larrea Jim茅nez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00821v1-abstract-short" style="display: inline;"> We present an inelastic neutron scattering study of the crystal electric field levels in the intermetallic ferrimagnets RECo$_{5}$ (RE = Nd and Y). In NdCo$_{5}$, measurements at $5~$K reveal two levels at approximately 28.9 and 52.9 meV. Crystal field calculations including the exchange field $B_{\textrm{exc}}$ from the Co sites account for both of these, as well as the spectrum at temperatures a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00821v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00821v1-abstract-full" style="display: none;"> We present an inelastic neutron scattering study of the crystal electric field levels in the intermetallic ferrimagnets RECo$_{5}$ (RE = Nd and Y). In NdCo$_{5}$, measurements at $5~$K reveal two levels at approximately 28.9 and 52.9 meV. Crystal field calculations including the exchange field $B_{\textrm{exc}}$ from the Co sites account for both of these, as well as the spectrum at temperatures above the spin-reorientation transition at $\sim 280$~K. In particular, it is found that both a large hexagonal crystal field parameter $A_{6}^6\langle r^6 \rangle$ and $B_{\textrm{exc}}$ are required to reproduce the data, with the latter having a much larger value than that deduced from previous computational and experimental studies. Our study sheds light on the delicate interplay of terms in the rare-earth Hamiltonian of RECo$_5$ systems, and is therefore expected to stimulate further experimental and computational work on the broader family of rare-earth permanent magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00821v1-abstract-full').style.display = 'none'; document.getElementById('2306.00821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14896">arXiv:2304.14896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14896">pdf</a>, <a href="https://arxiv.org/format/2304.14896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L180402">10.1103/PhysRevB.107.L180402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Double-$Q$ Ground State with Topological Charge Stripes in the Skyrmion Candidate $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouaziz%2C+J">J. Bouaziz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">S. Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staunton%2C+J+B">J. B. Staunton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14896v2-abstract-short" style="display: inline;"> $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ is a centrosymmetric magnet in which a skyrmion lattice has recently been discovered. Here, we investigate the magnetic structure of the zero field ground state using neutron diffraction on single crystal and polycrystalline $^{\text{160}}\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$. In addition to observing the principal propagation vectors $\mathbf{q}_&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14896v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14896v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14896v2-abstract-full" style="display: none;"> $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ is a centrosymmetric magnet in which a skyrmion lattice has recently been discovered. Here, we investigate the magnetic structure of the zero field ground state using neutron diffraction on single crystal and polycrystalline $^{\text{160}}\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$. In addition to observing the principal propagation vectors $\mathbf{q}_{1}$ and $\mathbf{q}_{2}$, we discover higher order magnetic satellites, notably $\mathbf{q}_{1} + 2\mathbf{q}_{2}$. The appearance of these satellites are explained within the framework of a new double-$Q$ constant-moment solution. Using powder diffraction we implement a quantitative refinement of this model. This structure, which contains vortexlike motifs, is shown to have a one-dimensional topological charge density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14896v2-abstract-full').style.display = 'none'; document.getElementById('2304.14896v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted PRB Letter (14.4.2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00294">arXiv:2303.00294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00294">pdf</a>, <a href="https://arxiv.org/format/2303.00294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.054419">10.1103/PhysRevB.108.054419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Covalency, correlations, and inter-layer interactions governing the magnetic and electronic structure of Mn$_3$Si$_2$Te$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bigi%2C+C">Chiara Bigi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lei Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+P">Paolo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemann%2C+G">Gesa-R. Siemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achinuq%2C+B">Barat Achinuq</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">Daniel Alexander Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinai%2C+G">Giovanni Vinai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polewczyk%2C+V">Vincent Polewczyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagur%2C+D">Deepak Dagur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bencok%2C+P">Peter Bencok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picozzi%2C+S">Silvia Picozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00294v1-abstract-short" style="display: inline;"> Mn$_3$Si$_2$Te$_6$ is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00294v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00294v1-abstract-full" style="display: none;"> Mn$_3$Si$_2$Te$_6$ is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations, to probe the elemental-selective electronic structure and magnetic order in Mn$_3$Si$_2$Te$_6$. Through these, we identify a marked Mn-Te hybridisation, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn$_3$Si$_2$Te$_6$, which is key to stabilising its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbours and anti-symmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilising the ferrimagnetic order in Mn$_3$Si$_2$Te$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00294v1-abstract-full').style.display = 'none'; document.getElementById('2303.00294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 054419 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13313">arXiv:2302.13313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13313">pdf</a>, <a href="https://arxiv.org/format/2302.13313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L201104">10.1103/PhysRevB.107.L201104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES signature of the competition between magnetic order and Kondo effect in CeCoGe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Huiqing Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhiguang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhongzheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Z">Zhaoyang Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+R+P">Ravi P. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yi-feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smidman%2C+M">Michael Smidman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kroha%2C+J">Johann Kroha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huiqiu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steglich%2C+F">Frank Steglich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13313v1-abstract-short" style="display: inline;"> The competition between magnetic order and Kondo effect is essential for the rich physics of heavy fermion systems. Nevertheless, how such competition is manifested in the quasiparticle bands in a real periodic lattice remains elusive in spectroscopic experiments. Here we report a high-resolution photoemission study of the antiferromagnetic Kondo lattice system CeCoGe3 with a high TN1 of 21K. Our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13313v1-abstract-full').style.display = 'inline'; document.getElementById('2302.13313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13313v1-abstract-full" style="display: none;"> The competition between magnetic order and Kondo effect is essential for the rich physics of heavy fermion systems. Nevertheless, how such competition is manifested in the quasiparticle bands in a real periodic lattice remains elusive in spectroscopic experiments. Here we report a high-resolution photoemission study of the antiferromagnetic Kondo lattice system CeCoGe3 with a high TN1 of 21K. Our measurements reveal a weakly dispersive 4f band at the Fermi level near the Z point, arisingfrom moderate Kondo effect. The intensity of this heavy 4f band exhibits a logarithmic increase with lowering temperature and begins to deviate from this Kondo-like behavior below 25 K, just above TN1, and eventually ceases to grow below 12 K. Our work provides direct spectroscopic evidence for the competition between magnetic order and the Kondo effect in a Kondo lattice system with local-moment antiferromagnetism, indicating a distinct scenario for the microscopic coexistence and competition of these phenomena, which might be related to the real-space modulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13313v1-abstract-full').style.display = 'none'; document.getElementById('2302.13313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, L201104 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01702">arXiv:2210.01702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01702">pdf</a>, <a href="https://arxiv.org/format/2210.01702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.214434">10.1103/PhysRevB.106.214434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced skyrmion metastability under applied strain in FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Littlehales%2C+M+T">M. T. Littlehales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+L+A">L. A. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">H. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verezhak%2C+J+A+T">J. A. T. Verezhak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01702v1-abstract-short" style="display: inline;"> Mechanical straining of skyrmion hosting materials has previously demonstrated increased phase stability through the expansion of the skyrmion equilibrium pocket. Additionally, metastable skyrmions can be generated via rapid field-cooling to form significant skyrmion populations at low temperatures. Using small-angle x-ray scattering and x-ray holographic imaging on a thermally strained 200 nm thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01702v1-abstract-full').style.display = 'inline'; document.getElementById('2210.01702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01702v1-abstract-full" style="display: none;"> Mechanical straining of skyrmion hosting materials has previously demonstrated increased phase stability through the expansion of the skyrmion equilibrium pocket. Additionally, metastable skyrmions can be generated via rapid field-cooling to form significant skyrmion populations at low temperatures. Using small-angle x-ray scattering and x-ray holographic imaging on a thermally strained 200 nm thick FeGe lamella, we observe temperature-induced strain effects on the structure and metastability of the skyrmion lattice. We find that in this sample orientation (H || [1 1 0]) with no strain, metastable skyrmions produced by field cooling through the equilibrium skyrmion pocket vanish from the sample upon dropping below the well known helical reorientation temperature. However, when strain is applied along [110] axis, and this procedure is repeated, a substantial volume fraction of metastable skyrmions persist upon cooling below this temperature down to 100 K. Additionally, we observe a large number of skyrmions retained after a complete magnetic field polarity reversal, implying that the metastable energy barrier protecting skyrmions from decay is enhanced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01702v1-abstract-full').style.display = 'none'; document.getElementById('2210.01702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14820">arXiv:2209.14820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14820">pdf</a>, <a href="https://arxiv.org/format/2209.14820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ace576">10.1088/1361-648X/ace576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adherence of the rotating vortex lattice in the noncentrosymmetric superconductor Ru$_{7}$B$_{3}$ to the London model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cameron%2C+A+S">A. S. Cameron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tymoshenko%2C+Y+V">Y. V. Tymoshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Portnichenko%2C+P+Y">P. Y. Portnichenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sukhanov%2C+A+S">A. S. Sukhanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paul%2C+D+M">D. McK. Paul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+R">R. Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">D. S. Inosov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14820v1-abstract-short" style="display: inline;"> The noncentrosymmetric superconductor Ru$_7$B$_3$ has in previous studies demonstrated remarkably unusual behaviour in its vortex lattice, where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the vortex lattice rotates as the field is changed. In this study, we look at the vortex lattice form factor of R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14820v1-abstract-full').style.display = 'inline'; document.getElementById('2209.14820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14820v1-abstract-full" style="display: none;"> The noncentrosymmetric superconductor Ru$_7$B$_3$ has in previous studies demonstrated remarkably unusual behaviour in its vortex lattice, where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the vortex lattice rotates as the field is changed. In this study, we look at the vortex lattice form factor of Ru$_7$B$_3$ during this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small. From this, we also extract values for the penetration depth and coherence length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14820v1-abstract-full').style.display = 'none'; document.getElementById('2209.14820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 35, 425602 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03051">arXiv:2206.03051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03051">pdf</a>, <a href="https://arxiv.org/format/2206.03051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.044414">10.1103/PhysRevMaterials.7.044414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrogen-impurity induced unconventional magnetism in semiconducting molybdenum ditelluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tay%2C+D">Daniel Tay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusinov%2C+I+P">Igor P. Rusinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barua%2C+S">Sourabh Barua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">Pabitra K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korosec%2C+L">Lukas Korosec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">Toni Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">Evgueni V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03051v1-abstract-short" style="display: inline;"> Layered transition-metal dichalcogenides are proposed as building blocks for van der Waals (vdW) heterostructures due to their graphene-like two dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03051v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03051v1-abstract-full" style="display: none;"> Layered transition-metal dichalcogenides are proposed as building blocks for van der Waals (vdW) heterostructures due to their graphene-like two dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and density-functional theory calculations to show that 2H-MoTe2 is on the verge of becoming magnetic. Our results present clear evidence that the magnetism can be &#34;switched on&#34; by a hydrogen-like impurity. We also show that this magnetic state survives up to the free surface region, demonstrating the material&#39;s potential applicability as a magnetic component for thin-film heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03051v1-abstract-full').style.display = 'none'; document.getElementById('2206.03051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, including supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 044414 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15961">arXiv:2205.15961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15961">pdf</a>, <a href="https://arxiv.org/format/2205.15961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Controlled Mechanism for the Deflection of Skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">Samuel H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Littlehales%2C+M+T">Matthew T. Littlehales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=White%2C+J+S">Jonathan S. White</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D">Daniel Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">Diego Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">Peter D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15961v1-abstract-short" style="display: inline;"> Magnetic skyrmions are vortex-like, swirls of magnetisation whose topological protection and particle-like nature have suggested them to be suitable for a number of novel spintronic devices. One such application is skyrmionic computing, which has the advantage over conventional schemes due to the amalgamation of logic calculations and data storage. Using small-angle neutron scattering from Cu2OSeO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15961v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15961v1-abstract-full" style="display: none;"> Magnetic skyrmions are vortex-like, swirls of magnetisation whose topological protection and particle-like nature have suggested them to be suitable for a number of novel spintronic devices. One such application is skyrmionic computing, which has the advantage over conventional schemes due to the amalgamation of logic calculations and data storage. Using small-angle neutron scattering from Cu2OSeO3, and applying electric and magnetic fields, we find that the direction of the skyrmion-coexisting conical states can be manipulated by varying the electric field, and explain this using a free energy approach. Our findings unlock the prospect of creating a number of skyrmion devices which may constitute part of a skyrmion computer, as the direction of a skyrmion within a nanosized racetrack can be manipulated into different channels by controllably changing the direction of the localised conical state. We provide time-dependant micromagnetic simulations to demonstrate such a device: a skyrmion double transistor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15961v1-abstract-full').style.display = 'none'; document.getElementById('2205.15961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06813">arXiv:2203.06813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06813">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2203399119">10.1073/pnas.2203399119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Unified Theory of Free Energy Functionals and Applications to Diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A+B">Andrew B. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miroshnik%2C+L">Leonid Miroshnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rummel%2C+B+D">Brian D. Rummel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Ganesh Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S+M">Sang M. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinno%2C+T">Talid Sinno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06813v1-abstract-short" style="display: inline;"> Free energy functionals of Ginzburg-Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn-Hilliard and Swift-Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals are frequently either poorly justified or lead to physically opaque parameters. Here, we introduce a mathematically rigorous pathway for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06813v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06813v1-abstract-full" style="display: none;"> Free energy functionals of Ginzburg-Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn-Hilliard and Swift-Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals are frequently either poorly justified or lead to physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free energy functionals that generalizes beyond the constraints of Ginzburg-Landau gradient expansions. We show that the new formalism unifies existing free energetic descriptions under a single umbrella by establishing the criteria under which the generalized free energy reduces to gradient-based representations. Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn-Hilliard model as the product of an interaction length scale and the free energy curvature. The practical impact of our approach is demonstrated using both a model free energy function and the silicon-germanium alloy system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06813v1-abstract-full').style.display = 'none'; document.getElementById('2203.06813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03910">arXiv:2202.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03910">pdf</a>, <a href="https://arxiv.org/format/2202.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.094519">10.1103/PhysRevB.105.094519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Singlet-triplet mixing in the order parameter of the noncentrosymmetric superconductor Ru$_{7}$B$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cameron%2C+A+S">A. S. Cameron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yerin%2C+Y+S">Y. S. Yerin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tymoshenko%2C+Y+V">Y. V. Tymoshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Portnichenko%2C+P+Y">P. Y. Portnichenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sukhanov%2C+A+S">A. S. Sukhanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paul%2C+D+M">D. McK. Paul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+R">R. Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinemann%2C+A">A. Heinemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">D. S. Inosov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03910v1-abstract-short" style="display: inline;"> One of the key effects which is predicted to arise in superconductors without a centre of inversion is the mixing of singlet and triplet order parameters, which are no longer good quantum numbers on their own due to parity. We have probed the gap structure in the noncentrosymmetric superconductor Ru$_7$B$_3$, through small-angle neutron diffraction from the vortex lattice, in order to search for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03910v1-abstract-full" style="display: none;"> One of the key effects which is predicted to arise in superconductors without a centre of inversion is the mixing of singlet and triplet order parameters, which are no longer good quantum numbers on their own due to parity. We have probed the gap structure in the noncentrosymmetric superconductor Ru$_7$B$_3$, through small-angle neutron diffraction from the vortex lattice, in order to search for the proposed mixed order parameter. We find that the measured temperature dependence of the vortex-lattice form factor is well characterised by a model constructed to describe the effects of broken inversion symmetry on the superconducting state, indicating the presence of a mixed singlet-triplet gap and confirming the theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03910v1-abstract-full').style.display = 'none'; document.getElementById('2202.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 094519 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03311">arXiv:2202.03311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03311">pdf</a>, <a href="https://arxiv.org/format/2202.03311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.013134">10.1103/PhysRevResearch.4.013134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant topological and planar Hall effect in Cr$_{1/3}$NbS$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouaziz%2C+J">J. Bouaziz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staunton%2C+J+B">J. B. Staunton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03311v2-abstract-short" style="display: inline;"> Cr$_{1/3}$NbS$_{2}$ is a transition metal dichalcogenide that has been of significant interest due to its ability to host a magnetic chiral soliton lattice. Conventional and planar Hall measurements provide valuable insight into the detection of exotic spin structures in chiral magnets. We show that the presence of a giant planar Hall effect can be attributed to a tilted soliton lattice in Cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03311v2-abstract-full').style.display = 'inline'; document.getElementById('2202.03311v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03311v2-abstract-full" style="display: none;"> Cr$_{1/3}$NbS$_{2}$ is a transition metal dichalcogenide that has been of significant interest due to its ability to host a magnetic chiral soliton lattice. Conventional and planar Hall measurements provide valuable insight into the detection of exotic spin structures in chiral magnets. We show that the presence of a giant planar Hall effect can be attributed to a tilted soliton lattice in Cr$_{1/3}$NbS$_{2}$. Our detailed angular dependent study shows the planar Hall effect and anisotropic magnetoresistance are intrinsically linked in complex non-coplanar magnets. From the conventional Hall signal we show the presence of a giant unconventional, likely topological Hall component, that is the fingerprint of non-coplanar spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03311v2-abstract-full').style.display = 'none'; document.getElementById('2202.03311v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 + 3 pages, 5 + 3 figures. Includes supplemental material. Published in Physical Review Research</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 013134 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12794">arXiv:2201.12794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12794">pdf</a>, <a href="https://arxiv.org/format/2201.12794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetism in the N茅el skyrmion host GaV$_4$S$_8$ under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khassanov%2C+R">R. Khassanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+D">D. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12794v2-abstract-short" style="display: inline;"> We present magnetization and muon-spin spectroscopy measurements of N茅el skyrmion-host GaV$_4$S$_8$ under the application of hydrostatic pressures up to $P=2.29$ GPa. Our results suggest that the magnetic phase diagram is altered with pressure via a reduction in the crossover temperature from the cycloidal (C) to ferromagnetic-like state with increasing $P$, such that, by 2.29 GPa, the C state app&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12794v2-abstract-full').style.display = 'inline'; document.getElementById('2201.12794v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12794v2-abstract-full" style="display: none;"> We present magnetization and muon-spin spectroscopy measurements of N茅el skyrmion-host GaV$_4$S$_8$ under the application of hydrostatic pressures up to $P=2.29$ GPa. Our results suggest that the magnetic phase diagram is altered with pressure via a reduction in the crossover temperature from the cycloidal (C) to ferromagnetic-like state with increasing $P$, such that, by 2.29 GPa, the C state appears to persist down to the lowest measured temperatures. With the aid of micromagnetic simulations, we propose that the driving mechanism behind this change is a reduction in the magnetic anisotropy of the system, and suggest that this could lead to an increase in stability of the skyrmion lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12794v2-abstract-full').style.display = 'none'; document.getElementById('2201.12794v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01176">arXiv:2201.01176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01176">pdf</a>, <a href="https://arxiv.org/format/2201.01176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014425">10.1103/PhysRevB.105.014425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic structures of geometrically frustrated SrGd$_2$O$_4$ derived from powder and single-crystal neutron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qureshi%2C+N">N. Qureshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malkin%2C+B+Z">B. Z. Malkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riberolles%2C+S+X+M">S. X. M. Riberolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouladdiaf%2C+B">B. Ouladdiaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01176v1-abstract-short" style="display: inline;"> We present the low-temperature magnetic structures of SrGd$_2$O$_4$ combining neutron diffraction methods on polycrystalline and single-crystal samples containing the $^{160}$Gd isotope. In contrast to other members of the Sr$Ln_2$O$_4$ family ($Ln$ = lanthanide) this system reveals two long-range ordered magnetic phases, which our diffraction data unambiguously identify. Below $T_{\rm N1}$ = 2.73&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01176v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01176v1-abstract-full" style="display: none;"> We present the low-temperature magnetic structures of SrGd$_2$O$_4$ combining neutron diffraction methods on polycrystalline and single-crystal samples containing the $^{160}$Gd isotope. In contrast to other members of the Sr$Ln_2$O$_4$ family ($Ln$ = lanthanide) this system reveals two long-range ordered magnetic phases, which our diffraction data unambiguously identify. Below $T_{\rm N1}$ = 2.73~K, a $\mathbf{q}_1$ = (0 0 0) magnetic structure is stabilized where ferromagnetic chains along the $c$~axis (space group $Pnam$) are coupled antiferromagnetically with neighboring chains. On cooling below $T_{\rm N2}$ = 0.48~K, an additional incommensurate component modulated by $\mathbf{q}_2$ = (0~0~0.42) evolves and aligned along either of the perpendicular axes for the two different Gd sites, resulting in a fan-like magnetic structure. The identification of the particular Gd sites with the magnetic order observed with neutron diffraction is facilitated by a detailed analysis of the crystal fields acting on the sites. The observed ordering phenomena underline the complex multiaxial anisotropy in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01176v1-abstract-full').style.display = 'none'; document.getElementById('2201.01176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09282">arXiv:2111.09282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09282">pdf</a>, <a href="https://arxiv.org/format/2111.09282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.1c00684">10.1021/acs.cgd.1c00684 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Fe deficiency and Co substitution in polycrystalline and single crystals of Fe$_{3}$GeTe$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beckett%2C+G">G. Beckett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dekker%2C+E+J+L">E. J. L. Dekker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09282v2-abstract-short" style="display: inline;"> Fe$_{3}$GeTe$_{2}$ is a two-dimensional van der Waals material with a ferromagnetic ground state and a maximum transition temperature $T_{\mathrm{c}}\sim225$ K. However, when Fe$_{3}$GeTe$_{2}$ is synthesized lower values of $T_{\mathrm{c}}$ are often reported. This is attributed to a deficiency in the Fe at the 2c site in the crystal structure. Here we investigate the effect of Fe deficiency and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09282v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09282v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09282v2-abstract-full" style="display: none;"> Fe$_{3}$GeTe$_{2}$ is a two-dimensional van der Waals material with a ferromagnetic ground state and a maximum transition temperature $T_{\mathrm{c}}\sim225$ K. However, when Fe$_{3}$GeTe$_{2}$ is synthesized lower values of $T_{\mathrm{c}}$ are often reported. This is attributed to a deficiency in the Fe at the 2c site in the crystal structure. Here we investigate the effect of Fe deficiency and the substitution of Co for Fe on the magnetic properties of this system. We have synthesized both polycrystalline material and single crystals by chemical vapor transport and the flux method, with the largest crystals obtained using the flux method. Cobalt substitution at the Fe site is found to significantly reduce the magnetic transition temperature. Crystals of Fe$_{3}$GeTe$_{2}$ grown by chemical vapor transport with $\sim 8\%$ excess Fe in the starting materials display an optimum Fe content and magnetic transition temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09282v2-abstract-full').style.display = 'none'; document.getElementById('2111.09282v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures, 3 tables. Published online in ACS Crystal Growth and Design</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Cryst. Growth Des. 21, 6786 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09239">arXiv:2111.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09239">pdf</a>, <a href="https://arxiv.org/format/2111.09239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.114803">10.1103/PhysRevMaterials.5.114803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic superconductivity and unusually robust electronic critical field in single crystal La$_{7}$Ir$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takabatake%2C+T">T. Takabatake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09239v2-abstract-short" style="display: inline;"> Polycrystalline La$_{7}$Ir$_{3}$ is reported to show superconductivity breaking time-reversal symmetry while also having an isotropic $s$-wave gap. Single crystals of this noncentrosymmetric superconductor are highly desirable to understand the nature of the electron pairing mechanism in this system. Here we report the growth of high-quality single crystals of La$_{7}$Ir$_{3}$ by the Czochralski m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09239v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09239v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09239v2-abstract-full" style="display: none;"> Polycrystalline La$_{7}$Ir$_{3}$ is reported to show superconductivity breaking time-reversal symmetry while also having an isotropic $s$-wave gap. Single crystals of this noncentrosymmetric superconductor are highly desirable to understand the nature of the electron pairing mechanism in this system. Here we report the growth of high-quality single crystals of La$_{7}$Ir$_{3}$ by the Czochralski method. The structural and superconducting properties of these large crystals have been investigated using x-rays, magnetization, resistivity and heat capacity measurements. We observe a clear anisotropy in the lower and upper critical fields for magnetic fields applied parallel and perpendicular to the hexagonal $c$ axis. We also report the presence of a robust electronic critical field, that diverges from the upper critical field derived from heat capacity, which is the hallmark of surface superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09239v2-abstract-full').style.display = 'none'; document.getElementById('2111.09239v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 + 5 pages, 6 + 4 figures, 1 + 1 tables. Accepted for publication into Physical Review Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials 5, 114803 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08381">arXiv:2111.08381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08381">pdf</a>, <a href="https://arxiv.org/format/2111.08381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Investigations of the size distribution and magnetic properties of nanoparticles of Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08381v1-abstract-short" style="display: inline;"> Skyrmions in confined geometries have been a subject of increasing interest due to the different properties that they exhibit compared to their bulk counterparts. In this study, nanoparticles of skyrmion-hosting $\text{Cu}_{2}\text{OSeO}_{3}$ have been synthesised using a precipitation method followed by thermal treatment. This enables us to produce nanoparticles whose mean size varies from tens o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08381v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08381v1-abstract-full" style="display: none;"> Skyrmions in confined geometries have been a subject of increasing interest due to the different properties that they exhibit compared to their bulk counterparts. In this study, nanoparticles of skyrmion-hosting $\text{Cu}_{2}\text{OSeO}_{3}$ have been synthesised using a precipitation method followed by thermal treatment. This enables us to produce nanoparticles whose mean size varies from tens of nanometers to a few micrometers by varying the temperature and duration of the thermal decomposition of the precursor. These sizes span the $\sim 63$~nm diameter of skyrmions in $\text{Cu}_{2}\text{OSeO}_{3}$, allowing investigations into how the magnetic state changes when the size of the geometrical confinement is similar to and smaller than the size of an isolated magnetic skyrmion. AC susceptibility measurements performed on nanoparticles with a size distribution from 15 to 250 nm show a change in the magnetic phase diagram compared to bulk $\text{Cu}_{2}\text{OSeO}_{3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08381v1-abstract-full').style.display = 'none'; document.getElementById('2111.08381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07727">arXiv:2111.07727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.07727">pdf</a>, <a href="https://arxiv.org/format/2111.07727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of a remnant Fermi surface in SmB6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Millichamp%2C+T+E">Thomas E. Millichamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Billington%2C+D">David Billington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H+C">Hannah C. Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laverock%2C+J">Jude Laverock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=ONeill%2C+D">Daniel ONeill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+J+A">Jonathan A. Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+J+W">Jonathan W. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giblin%2C+S+R">Sean R. Giblin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dugdale%2C+S+B">Stephen B. Dugdale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07727v1-abstract-short" style="display: inline;"> The quest to understand the nature of the electronic state in SmB6 has been challenging, perplexing and surprising researchers for over half a century. In the theoretically predicted topological Kondo insulator SmB6, the nature of the bulk electronic structure is not characterised unambiguously by quantum oscillations due to contrary interpretations. One simple definition of an electrical insulato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07727v1-abstract-full').style.display = 'inline'; document.getElementById('2111.07727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07727v1-abstract-full" style="display: none;"> The quest to understand the nature of the electronic state in SmB6 has been challenging, perplexing and surprising researchers for over half a century. In the theoretically predicted topological Kondo insulator SmB6, the nature of the bulk electronic structure is not characterised unambiguously by quantum oscillations due to contrary interpretations. One simple definition of an electrical insulator is a material that lacks a Fermi surface and here we report the results of our investigation into its existence in SmB6 by Compton scattering. Compton scattering measures occupied electron momentum states, is bulk sensitive due to the high energy of the incoming photons and is also an ultra-fast probe of the correlated many-body electron wavefunction. Remarkably, direct evidence for a three-dimensional remnant Fermi surface is observed. However, a further dichotomy is raised in that the full occupancy expected of a conventional metal is not reproduced. Our observation of a remnant Fermi surface using a momentum-resolved probe provides significant new evidence that the paradigm of a bulk insulator is not robust for SmB6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07727v1-abstract-full').style.display = 'none'; document.getElementById('2111.07727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures (Supplementary information included)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09484">arXiv:2110.09484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09484">pdf</a>, <a href="https://arxiv.org/format/2110.09484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.064422">10.1103/PhysRevB.106.064422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray holographic imaging of magnetic surface spirals in FeGe lamellae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+L+A">L. A. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Littlehales%2C+M+T">M. T. Littlehales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">H. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verezhak%2C+J+A+T">J. A. T. Verezhak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09484v2-abstract-short" style="display: inline;"> Isotropic helimagnets are known to host a diverse range of chiral magnetic states. In 2016, F.N. Rybakov et al. theorized the presence of a surface-pinned stacked spin spiral phase [F.N. Rybakov et al., 2016 New J. Phys. 18 045002], which has yet to be observed experimentally. Here we present experimental evidence for the observation of this state in lamellae of FeGe using resonant x-ray holograph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09484v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09484v2-abstract-full" style="display: none;"> Isotropic helimagnets are known to host a diverse range of chiral magnetic states. In 2016, F.N. Rybakov et al. theorized the presence of a surface-pinned stacked spin spiral phase [F.N. Rybakov et al., 2016 New J. Phys. 18 045002], which has yet to be observed experimentally. Here we present experimental evidence for the observation of this state in lamellae of FeGe using resonant x-ray holographic imaging data and micromagnetic simulations. The identification of this state has significant implications for the stability of other coexisting spin textures, and will help complete our understanding of helimagnetic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09484v2-abstract-full').style.display = 'none'; document.getElementById('2110.09484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 064422 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05313">arXiv:2109.05313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05313">pdf</a>, <a href="https://arxiv.org/ps/2109.05313">ps</a>, <a href="https://arxiv.org/format/2109.05313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Impedance Spectroscopy of SmB$_6$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stankiewicz%2C+J">Jolanta Stankiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blasco%2C+J">Javier Blasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlottmann%2C+P">Pedro Schlottmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05313v1-abstract-short" style="display: inline;"> We report results from an in--plane and out--of--plane impedance study on SmB$_6$ single crystals, performed at low temperatures and over a wide frequency range. A universal equivalent circuit describes the dielectric behavior of this system across the transition, from surface to bulk dominated electrical conduction between 2 and 10 K. We identify the resistive, capacitive, and inductive contribut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05313v1-abstract-full').style.display = 'inline'; document.getElementById('2109.05313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05313v1-abstract-full" style="display: none;"> We report results from an in--plane and out--of--plane impedance study on SmB$_6$ single crystals, performed at low temperatures and over a wide frequency range. A universal equivalent circuit describes the dielectric behavior of this system across the transition, from surface to bulk dominated electrical conduction between 2 and 10 K. We identify the resistive, capacitive, and inductive contributions to the impedance. The equivalent inductance, obtained from fits to experimental data, drops drastically as the bulk starts to control electrical conduction upon increasing temperature. SmB$_6$ single crystals also show current--controlled negative differential resistance at low temperatures, which is brought about by Joule heating. This feature, in addition to inductive and capacitive contributions to the impedance, can give rise to the self--sustained voltage oscillations observed below 5 K (Stern {\it et al.}, Phys. Rev. Lett. {\bf 116}, 166603 (2016)). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05313v1-abstract-full').style.display = 'none'; document.getElementById('2109.05313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01152">arXiv:2106.01152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01152">pdf</a>, <a href="https://arxiv.org/ps/2106.01152">ps</a>, <a href="https://arxiv.org/format/2106.01152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.094402">10.1103/PhysRevMaterials.5.094402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of zero-field-cooled exchange bias effect in single crystalline La2-xAxCoMnO6 (A = Ca, Sr) compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Macchiutti%2C+C">C. Macchiutti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesus%2C+J+R">J. R. Jesus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carneiro%2C+F+B">F. B. Carneiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bufai%C3%A7al%2C+L">L. Bufai莽al</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bittar%2C+E+M">E. M. Bittar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01152v2-abstract-short" style="display: inline;"> Magnetic properties of A2BB&#39;O6 (A = rare or alkaline earth ions; B,B&#39; = transition metal ions) double perovskites are of great interest due to their potential spintronic applications. Particularly fascinating is the zero field cooled exchange bias (ZEB) effect observed for the hole doped La2-xAxCoMnO6 polycrystalline samples. In this work we synthesize La2CoMnO6, La1.5Ca0.5CoMnO6, and La1.5Sr0.5Co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01152v2-abstract-full').style.display = 'inline'; document.getElementById('2106.01152v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01152v2-abstract-full" style="display: none;"> Magnetic properties of A2BB&#39;O6 (A = rare or alkaline earth ions; B,B&#39; = transition metal ions) double perovskites are of great interest due to their potential spintronic applications. Particularly fascinating is the zero field cooled exchange bias (ZEB) effect observed for the hole doped La2-xAxCoMnO6 polycrystalline samples. In this work we synthesize La2CoMnO6, La1.5Ca0.5CoMnO6, and La1.5Sr0.5CoMnO6 single crystals by the floating zone method and study their magnetic behavior. The three materials are ferromagnetic. Surprisingly, we observe no zero or even conventional exchange bias effect for the Ca and Sr doped single crystals, in sharp contrast to polycrystalline samples. This absence indicates that the lack of grain boundaries and spin glass-like behavior, not observed in our samples, might be key ingredients for the spontaneous exchange bias phenomena seen in polycrystalline samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01152v2-abstract-full').style.display = 'none'; document.getElementById('2106.01152v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 094402 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00112">arXiv:2106.00112</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic one-dimensional conducting channels in the Kondo insulator SmB6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barber%2C+M">Mark Barber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+E+Y">Eric Yue Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00112v2-abstract-short" style="display: inline;"> Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation-driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, impo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00112v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00112v2-abstract-full" style="display: none;"> Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation-driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00112v2-abstract-full').style.display = 'none'; document.getElementById('2106.00112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Upon further follow-up studies, we discovered additional data in different parameter spaces that weakened our arguments. While this does not preclude the existence of 1-D conducting states, we feel that our previous supporting arguments are rendered ineffective, and we must suspend and withdraw our manuscript at this point</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09273">arXiv:2105.09273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09273">pdf</a>, <a href="https://arxiv.org/format/2105.09273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043149">10.1103/PhysRevResearch.3.043149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence of a change of Exchange Anisotropy Sign with Temperature in Zn-Substituted Cu2OSeO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nielsen%2C+P">P. Nielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">D. Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09273v1-abstract-short" style="display: inline;"> We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu2OSeO3. Using a 3D vector-field magnet to reorient the conical wavevector, our measurements show that the magnitude of the conical wavevector changes as a function of crystallographic direction. These changes are caused by the anisotropic exchange interaction (AEI), whose magnitude transitions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09273v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09273v1-abstract-full" style="display: none;"> We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu2OSeO3. Using a 3D vector-field magnet to reorient the conical wavevector, our measurements show that the magnitude of the conical wavevector changes as a function of crystallographic direction. These changes are caused by the anisotropic exchange interaction (AEI), whose magnitude transitions from a maxima to a minima along the &lt;111&gt; and &lt;100&gt; crystallographic directions respectively. We further find that the AEI constant undergoes a change of sign from positive to negative with decreasing temperature. Unlike in the related compound FeGe, where similar behaviour of the AEI induces a reorientation of the helical wavevector, we show that the zero field helical wavevector in (Cu0.98Zn0.02)2OSeO3 remains along the &lt;100&gt; directions at all temperatures due to the competing fourth-order magnetocrystalline anisotropy becoming dominant at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09273v1-abstract-full').style.display = 'none'; document.getElementById('2105.09273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02128">arXiv:2105.02128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02128">pdf</a>, <a href="https://arxiv.org/format/2105.02128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.214449">10.1103/PhysRevB.103.214449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-temperature phase diagram of the enigmatic Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A9ger%2C+M">M. L茅ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beauvois%2C+K">K. Beauvois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damay%2C+F">F. Damay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paulsen%2C+C">C. Paulsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Mawla%2C+A">A. Al-Mawla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suard%2C+E">E. Suard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02128v1-abstract-short" style="display: inline;"> By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains &#34;all in / all out&#34;, while the fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02128v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02128v1-abstract-full" style="display: none;"> By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains &#34;all in / all out&#34;, while the field induces phase transitions towards new states characterized by &#34;2 in - 2 out&#34; or &#34;1 out - 3 in / 1 in - 3 out&#34; configurations. These transitions manifest as metamagnetic singularities in the magnetization vs field measurements. Strikingly, it is found that moderate substitution reinforces the stability of the &#34;all in / all out&#34; phase: the N茅el temperature, the metamagnetic fields along with the ordered magnetic moment are higher in substituted samples with $x &lt;$ 10\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02128v1-abstract-full').style.display = 'none'; document.getElementById('2105.02128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures + appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 214449 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01393">arXiv:2105.01393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01393">pdf</a>, <a href="https://arxiv.org/format/2105.01393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L060407">10.1103/PhysRevB.105.L060407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy-gap driven low-temperature magnetic and transport properties in Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01393v3-abstract-short" style="display: inline;"> The helimagnets Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta) have attracted renewed attention due to the discovery of a chiral soliton lattice (CSL) stabilized in an applied magnetic field, but reports of unusual low-temperature transport and magnetic properties in this system lack a unifying explanation. Here we present electronic structure calculations that demonstrate the materials are half-metals. There&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01393v3-abstract-full').style.display = 'inline'; document.getElementById('2105.01393v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01393v3-abstract-full" style="display: none;"> The helimagnets Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta) have attracted renewed attention due to the discovery of a chiral soliton lattice (CSL) stabilized in an applied magnetic field, but reports of unusual low-temperature transport and magnetic properties in this system lack a unifying explanation. Here we present electronic structure calculations that demonstrate the materials are half-metals. There is also a gap-like feature (width in range 40-100 meV) in the density of states of one spin channel. This electronic structure explains the low-temperature electronic and magnetic properties of Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta), with the gap-like feature particularly important for explaining the magnetic behavior. Our magnetometry measurements confirm the existence of this gap. Dynamic spin fluctuations driven by excitations across this gap are seen over a wide range of frequencies (0.1 Hz to MHz) with AC susceptibility and muon-spin relaxation ($渭^+$SR) measurements. We show further how effects due to the CSL in Cr$_{1/3}$NbS$_2$, as detected with $渭^+$SR, dominate over the gap-driven magnetism when the CSL is stabilized as the majority phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01393v3-abstract-full').style.display = 'none'; document.getElementById('2105.01393v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11517">arXiv:2104.11517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11517">pdf</a>, <a href="https://arxiv.org/format/2104.11517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.2c00692">10.1021/acsaelm.2c00692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement of Skyrmions in Nanoscale FeGe Device-like Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+R+A">R. A. Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Midgley%2C+P+A">P. A. Midgley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11517v3-abstract-short" style="display: inline;"> Skyrmion-containing devices have been proposed as a promising solution for low energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine Bloch skyrmions in FeGe device shapes using Lorentz transmission electron microscopy (LTEM) to reveal the consequences of s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11517v3-abstract-full').style.display = 'inline'; document.getElementById('2104.11517v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11517v3-abstract-full" style="display: none;"> Skyrmion-containing devices have been proposed as a promising solution for low energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine Bloch skyrmions in FeGe device shapes using Lorentz transmission electron microscopy (LTEM) to reveal the consequences of skyrmion confinement in a device-like structure. Dumbbell-shaped elements were created by focused ion beam (FIB) milling to provide regions where single skyrmions are confined adjacent to areas containing a skyrmion lattice. Simple block shapes of equivalent dimensions were also prepared to allow a direct comparison with skyrmion formation in a less complex, yet still confined, device geometry. The impact of applying a magnetic field and varying the temperature on the formation of skyrmions within the shapes was examined. This revealed that it is not just confinement within a small device structure that controls the position and number of skyrmions, but that a complex device geometry changes the skyrmion behaviour, including allowing skyrmions to form at lower applied magnetic fields than in simple shapes. This could allow methods to be developed to control both the position and number of skyrmions within device structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11517v3-abstract-full').style.display = 'none'; document.getElementById('2104.11517v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09912">arXiv:2104.09912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09912">pdf</a>, <a href="https://arxiv.org/format/2104.09912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/abf9bb">10.1088/1361-648X/abf9bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of the magnetic ground state of GaV$_4$S$_8$ using powder neutron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09912v1-abstract-short" style="display: inline;"> The magnetic ground state of polycrystalline N茅el skyrmion hosting material GaV$_4$S$_8$ has been investigated using ac susceptibility and powder neutron diffraction. In the absence of an applied magnetic field GaV$_4$S$_8$ undergoes a transition from a paramagnetic to a cycloidal state below 13~K and then to a ferromagnetic-like state below 6~K. With evidence from ac susceptibility and powder neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09912v1-abstract-full').style.display = 'inline'; document.getElementById('2104.09912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09912v1-abstract-full" style="display: none;"> The magnetic ground state of polycrystalline N茅el skyrmion hosting material GaV$_4$S$_8$ has been investigated using ac susceptibility and powder neutron diffraction. In the absence of an applied magnetic field GaV$_4$S$_8$ undergoes a transition from a paramagnetic to a cycloidal state below 13~K and then to a ferromagnetic-like state below 6~K. With evidence from ac susceptibility and powder neutron diffraction, we have identified the commensurate magnetic structure at 1.5 K, with ordered magnetic moments of $0.23(2)~渭_{\mathrm{B}}$ on the V1 sites and $0.22(1)~渭_{\mathrm{B}}$ on the V2 sites. These moments have ferromagnetic-like alignment but with a 39(8)$^{\circ}$ canting of the magnetic moments on the V2 sites away from the V$_4$ cluster. In the incommensurate magnetic phase that exists between 6 and 13 K, we provide a thorough and careful analysis of the cycloidal magnetic structure exhibited by this material using powder neutron diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09912v1-abstract-full').style.display = 'none'; document.getElementById('2104.09912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09545">arXiv:2102.09545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.09545">pdf</a>, <a href="https://arxiv.org/format/2102.09545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00413-7">10.1038/s41535-021-00413-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $f$-electron hybridised metallic Fermi surface in magnetic field-induced metallic YbB$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickey%2C+A+J">A. J. Hickey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartstein%2C+M">M. Hartstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davies%2C+A+J">A. J. Davies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eaton%2C+A+G">A. G. Eaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elvin%2C+T">T. Elvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polyakov%2C+E">E. Polyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vu%2C+T+H">T. H. Vu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wichitwechkarn%2C+V">V. Wichitwechkarn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">T. F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wosnitza%2C+J">J. Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T+P">T. P. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N">N. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09545v2-abstract-short" style="display: inline;"> The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscillations between the high magnetic field-induced metallic regime in YbB$_{12}$ and the unconventional insulating regime. In the field-induced metallic r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09545v2-abstract-full').style.display = 'inline'; document.getElementById('2102.09545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09545v2-abstract-full" style="display: none;"> The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscillations between the high magnetic field-induced metallic regime in YbB$_{12}$ and the unconventional insulating regime. In the field-induced metallic regime beyond 47 T, we find prominent quantum oscillations in the contactless resistivity characterised by multiple frequencies up to at least 3000 T and heavy effective masses up to at least 17 $m_\text{e}$, characteristic of an $f$-electron hybridised metallic Fermi surface. The growth of quantum oscillation amplitude at low temperatures in electrical transport and magnetic torque in insulating YbB$_{12}$ is closely similar to the Lifshitz-Kosevich low temperature growth of quantum oscillation amplitude in field-induced metallic YbB$_{12}$, pointing to an origin of quantum oscillations in insulating YbB$_{12}$ from in-gap neutral low energy excitations. The field-induced metallic regime of YbB$_{12}$ is characterised by more Fermi surface sheets of heavy quasiparticle effective mass that emerge in addition to the heavy Fermi surface sheets yielding multiple quantum oscillation frequencies below 1000 T observed in both insulating and metallic regimes. We thus observe a heavy multi-component Fermi surface in which $f$-electron hybridisation persists from the unconventional insulating to the field-induced metallic regime of YbB$_{12}$, which is in distinct contrast to the unhybridised conduction electron Fermi surface observed in the case of the unconventional insulator SmB$_6$. Our findings require a different theoretical model of neutral in-gap low energy excitations in which the $f$-electron hybridisation is retained in the case of the unconventional insulator YbB$_{12}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09545v2-abstract-full').style.display = 'none'; document.getElementById('2102.09545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 7, 12 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09537">arXiv:2101.09537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09537">pdf</a>, <a href="https://arxiv.org/format/2101.09537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22807-8">10.1038/s41467-021-22807-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral singlet superconductivity in the weakly correlated metal LaPt3P </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+S+K">S. K. Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+Z">J. Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhigadlo%2C+N+D">N. D. Zhigadlo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillier%2C+A+D">A. D. Hillier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09537v1-abstract-short" style="display: inline;"> Topological superconductors (SCs) are novel phases of matter with nontrivial bulk topology. They host at their boundaries and vortex cores zero-energy Majorana bound states, potentially useful in fault-tolerant quantum computation. Chiral SCs are particular examples of topological SCs with finite angular momentum Cooper pairs circulating around a unique chiral axis, thus spontaneously breaking tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09537v1-abstract-full').style.display = 'inline'; document.getElementById('2101.09537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09537v1-abstract-full" style="display: none;"> Topological superconductors (SCs) are novel phases of matter with nontrivial bulk topology. They host at their boundaries and vortex cores zero-energy Majorana bound states, potentially useful in fault-tolerant quantum computation. Chiral SCs are particular examples of topological SCs with finite angular momentum Cooper pairs circulating around a unique chiral axis, thus spontaneously breaking time-reversal symmetry (TRS). They are rather scarce and usually feature triplet pairing: best studied examples in bulk materials are UPt3 and Sr2RuO4 proposed to be f-wave and p-wave SCs respectively, although many open questions still remain. Chiral triplet SCs are, however, topologically fragile with the gapless Majorana modes weakly protected against symmetry preserving perturbations in contrast to chiral singlet SCs. Using muon spin relaxation (muSR) measurements, here we report that the weakly correlated pnictide compound LaPt3P has the two key features of a chiral SC: spontaneous magnetic fields inside the superconducting state indicating broken TRS and low temperature linear behaviour in the superfluid density indicating line nodes in the order parameter. Using symmetry analysis, first principles band structure calculation and mean-field theory, we unambiguously establish that the superconducting ground state of LaPt3P is chiral d-wave singlet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09537v1-abstract-full').style.display = 'none'; document.getElementById('2101.09537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 12, 2504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09049">arXiv:2101.09049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09049">pdf</a>, <a href="https://arxiv.org/format/2101.09049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.247201">10.1103/PhysRevLett.126.247201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and unconventional Coulomb phase in Nd$_2$Zr$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A9ger%2C+M">M. L茅ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lhotel%2C+E">E. Lhotel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit%2C+S">S. Petit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09049v2-abstract-short" style="display: inline;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an &#34;all in - all out&#34; antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09049v2-abstract-full" style="display: none;"> We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an &#34;all in - all out&#34; antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{\rm N} \approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{\rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the &#34;all in - all out&#34; order superimposed on a Coulomb phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09049v2-abstract-full').style.display = 'none'; document.getElementById('2101.09049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + 9 pages supp. mat</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 247201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04557">arXiv:2101.04557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.04557">pdf</a>, <a href="https://arxiv.org/format/2101.04557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c00152">10.1021/acs.nanolett.1c00152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Quantum Interference in Twisted van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Farrar%2C+L+S">Liam S. Farrar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nevill%2C+A">Aimee Nevill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+Z+J">Zhen Jieh Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dale%2C+S">Sara Dale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bending%2C+S+J">Simon J. Bending</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04557v1-abstract-short" style="display: inline;"> Modern Superconducting QUantum Interference Devices (SQUIDs) are commonly fabricated from either Al or Nb electrodes, with an in-situ oxidation process to create a weak link between them. However, common problems of such planar nano- and micro-SQUIDs are hysteretic current-voltage curves, and a shallow flux modulation depth. Here, we demonstrate the formation of both Josephson junctions and SQUIDs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04557v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04557v1-abstract-full" style="display: none;"> Modern Superconducting QUantum Interference Devices (SQUIDs) are commonly fabricated from either Al or Nb electrodes, with an in-situ oxidation process to create a weak link between them. However, common problems of such planar nano- and micro-SQUIDs are hysteretic current-voltage curves, and a shallow flux modulation depth. Here, we demonstrate the formation of both Josephson junctions and SQUIDs using a dry transfer technique to stack and deterministically misalign flakes of NbSe$_{2}$; allowing one to overcome these issues. The Josephson dynamics of the resulting twisted NbSe$_{2}$-NbSe$_{2}$ junctions are found to be sensitive to the misalignment angle of the crystallographic axes. A single lithographic process was then implemented to shape the Josephson junction into a SQUID geometry with typical loop areas of $\simeq$ 25 $渭m^{2}$ and weak links $\simeq$ 600 nm wide. These devices display large stable current and voltage modulation depths of up to $螖I_{c} \simeq$ 75$\%$ and $螖V \simeq$ 1.4 mV respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04557v1-abstract-full').style.display = 'none'; document.getElementById('2101.04557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14813">arXiv:2012.14813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14813">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bloch point-mediated skyrmion annihilation in three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">D. Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khanh%2C+N+D">N. D. Khanh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seki%2C+S">S. Seki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14813v1-abstract-short" style="display: inline;"> The creation and annihilation of magnetic skyrmions are mediated by three dimensional topological defects known as Bloch points. Investigation of such dynamical processes is important both for understanding the emergence of exotic topological spin textures, and for future engineering of skyrmions in technological applications. However, while the annihilation of skyrmions has been extensively inves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14813v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14813v1-abstract-full" style="display: none;"> The creation and annihilation of magnetic skyrmions are mediated by three dimensional topological defects known as Bloch points. Investigation of such dynamical processes is important both for understanding the emergence of exotic topological spin textures, and for future engineering of skyrmions in technological applications. However, while the annihilation of skyrmions has been extensively investigated in two dimensions, in three dimensions the phase transitions are considerably more complex. We report field-dependent experimental measurements of metastable skyrmion lifetimes in an archetypal chiral magnet, revealing two distinct regimes. Comparison to supporting three-dimensional geodesic nudged elastic band simulations demonstrates that these correspond to skyrmion annihilation into either the helical or conical states, each exhibiting a different transition mechanism. The results highlight that the lowest energy magnetic configuration of the system plays a crucial role when considering the emergence of topological spin structures via defect-mediated dynamics, and their stability in future devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14813v1-abstract-full').style.display = 'none'; document.getElementById('2012.14813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09682">arXiv:2012.09682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09682">pdf</a>, <a href="https://arxiv.org/ps/2012.09682">ps</a>, <a href="https://arxiv.org/format/2012.09682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024507">10.1103/PhysRevB.103.024507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for the coexistence of time-reversal symmetry breaking and Bardeen-Cooper-Schrieffer-like superconductivity in La$_{7}$Pd$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillier%2C+A+D">A. D. Hillier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09682v1-abstract-short" style="display: inline;"> Time-reversal symmetry breaking (TRSB) with a Bardeen-Cooper-Schrieffer (BCS) -like superconductivity occurs in a small, but growing number of noncentrosymmetric (NCS) materials, although the mechanism is poorly understood. We present heat capacity, magnetization, resistivity, and muon spin resonance/relaxation ($渭$SR) measurements on polycrystalline samples of NCS La$_{7}$Pd$_{3}$. Transverse-fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09682v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09682v1-abstract-full" style="display: none;"> Time-reversal symmetry breaking (TRSB) with a Bardeen-Cooper-Schrieffer (BCS) -like superconductivity occurs in a small, but growing number of noncentrosymmetric (NCS) materials, although the mechanism is poorly understood. We present heat capacity, magnetization, resistivity, and muon spin resonance/relaxation ($渭$SR) measurements on polycrystalline samples of NCS La$_{7}$Pd$_{3}$. Transverse-field $渭$SR and heat capacity data show La$_{7}$Pd$_{3}$ is a type-II superconductor with a BCS-like gap structure, while zero-field $渭$SR results provide evidence of TRSB. We discuss the implications of these results for both the La$_{7}X_{3}$ (where $X=$ Ni, Pd, Rh, Ir) group of superconductors and other CS and NCS superconductors for which TRSB has been observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09682v1-abstract-full').style.display = 'none'; document.getElementById('2012.09682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures and 2 tables. Accepted in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 103, 024507 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00723">arXiv:2012.00723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00723">pdf</a>, <a href="https://arxiv.org/format/2012.00723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.104424">10.1103/PhysRevB.103.104424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic coupling and Gr眉neisen scaling in NdB$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ohlendorf%2C+R">Rahel Ohlendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spachmann%2C+S">Sven Spachmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+L">Lukas Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dey%2C+K">Kaustav Dey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brunt%2C+D">Daniel Brunt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrenko%2C+O+A">Oleg A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klingeler%2C+R">R眉diger Klingeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00723v1-abstract-short" style="display: inline;"> We report high-resolution capacitance dilatometry studies on the uniaxial length changes in a NdB$_4$ single crystal. The evolution of magnetically ordered phases below $T_{\rm N}$= 17.2~K (commensurate antiferromagnetic phase, cAFM), $T_{\rm IT}$= 6.8~K (intermediate incommensurate phase, IT), and $T_{\rm LT}$= 4.8~K (low-temperature phase, LT) is associated with pronounced anomalies in the therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00723v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00723v1-abstract-full" style="display: none;"> We report high-resolution capacitance dilatometry studies on the uniaxial length changes in a NdB$_4$ single crystal. The evolution of magnetically ordered phases below $T_{\rm N}$= 17.2~K (commensurate antiferromagnetic phase, cAFM), $T_{\rm IT}$= 6.8~K (intermediate incommensurate phase, IT), and $T_{\rm LT}$= 4.8~K (low-temperature phase, LT) is associated with pronounced anomalies in the thermal expansion coefficients. The data imply significant magneto-elastic coupling and evidence of a structural phase transition at $T_{\rm LT}$ . While both cAFM and LT favor structural anisotropy $未$ between in-plane and out-of-plane length changes, it competes with the IT-type of order, i.e., $未$ is suppressed in that phase. Notably, finite anisotropy well above $T_{\rm N}$ indicates short-range correlations which are, however, of neither cAFM, IT, nor LT-type. Gr眉neisen analysis of the ratio of thermal expansion coefficient and specific heat enables the derivation of uniaxial as well as hydrostatic pressure dependencies. While $伪$/$c_{\rm p}$ evidences a single dominant energy scale in LT, our data imply precursory fluctuations of a competing phase in IT and cAFM, respectively. Our results suggest the presence of orbital degrees of freedom competing with cAFM and successive evolution of a magnetically and orbitally ordered ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00723v1-abstract-full').style.display = 'none'; document.getElementById('2012.00723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 104424 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12994">arXiv:2011.12994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12994">pdf</a>, <a href="https://arxiv.org/format/2011.12994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.134414">10.1103/PhysRevB.104.134414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics in bulk MnNiGa and Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn investigated by muon spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12994v2-abstract-short" style="display: inline;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics suroun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'inline'; document.getElementById('2011.12994v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12994v2-abstract-full" style="display: none;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics surounding the two magnetic phase transitions in each material. In particular, we demonstrate that the behaviour approaching the higher temperature transition in both samples is best understood by considering a slow decrease in the frequency of dynamics with temperature, rather than the sharp critical slowing down typical of second order transitions. Furthermore, at low temperatures the two samples both show spin dynamics over a broad range of frequencies that persist below the spin reorienation transition. The dynamic behavior we identify gives new insight into the bulk magnetism of these materials that may help underpin the stabilization of the topologically non-trivial phases that are seen in thin lamellae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'none'; document.getElementById('2011.12994v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 134414 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10330">arXiv:2011.10330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10330">pdf</a>, <a href="https://arxiv.org/format/2011.10330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024428">10.1103/PhysRevB.103.024428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz dynamics in skyrmion systems probed with muon-spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10330v3-abstract-short" style="display: inline;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'inline'; document.getElementById('2011.10330v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10330v3-abstract-full" style="display: none;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified from the $渭$SR response. From measurements following different cooling protocols and calculations of the muon stopping site, we suggest that the metastable SkL is not the majority phase throughout the bulk of this material at the fields and temperatures where it is often observed. The dynamics of bulk Co$_8$Zn$_9$Mn$_3$ are well described by $\simeq~2$ GHz excitations that reduce in frequency near the critical temperature, while in Co$_8$Zn$_8$Mn$_4$ we observe similar behavior over a wide range of temperatures, implying that dynamics of this kind persist beyond the SkL phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'none'; document.getElementById('2011.10330v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024428 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08923">arXiv:2011.08923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08923">pdf</a>, <a href="https://arxiv.org/format/2011.08923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.055001">10.1103/PhysRevMaterials.5.055001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk transport paths through defects in floating zone and Al flux grown SmB$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eo%2C+Y+S">Yun Suk Eo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rakoski%2C+A">Alexa Rakoski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S">Shriya Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihaliov%2C+D">Dmitri Mihaliov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrman%2C+W+T">Wesley T. Fuhrman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S+R">Shanta R. Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisk%2C+Z">Zachary Fisk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamorro%2C+J+R">Juan R. Chamorro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koohpayeh%2C+S+M">Seyed M. Koohpayeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueen%2C+T+M">Tyrel M. McQueen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Boyoun Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Myung-suk Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+B">Beongki Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrer%2C+M+S">Michael S. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurdak%2C+C">Cagliyan Kurdak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08923v1-abstract-short" style="display: inline;"> We investigate the roles of disorder on low-temperature transport in SmB$_6$ crystals grown by both the Al flux and floating zone methods. We used the inverted resistance method with Corbino geometry to investigate whether low-temperature variations in the standard resistance plateau arises from a surface or a bulk channel in floating zone samples. The results show significant sample-dependent res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08923v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08923v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08923v1-abstract-full" style="display: none;"> We investigate the roles of disorder on low-temperature transport in SmB$_6$ crystals grown by both the Al flux and floating zone methods. We used the inverted resistance method with Corbino geometry to investigate whether low-temperature variations in the standard resistance plateau arises from a surface or a bulk channel in floating zone samples. The results show significant sample-dependent residual bulk conduction, in contrast to smaller amounts of residual bulk conduction previously observed in Al flux grown samples with Sm vacancies. We consider hopping in an activated impurity band as a possible source for the observed bulk conduction, but it is unlikely that the large residual bulk conduction seen in floating zone samples is solely due to Sm vacancies. We therefore propose that one-dimensional defects, or dislocations, contribute as well. Using chemical etching, we find evidence for dislocations in both flux and floating zone samples, with higher dislocation density in floating zone samples than in Al flux grown samples. In addition to the possibility of transport through one-dimensional dislocations, we also discuss our results in the context of recent theoretical models of SmB$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08923v1-abstract-full').style.display = 'none'; document.getElementById('2011.08923v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 055001 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Balakrishnan%2C+G&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10