CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–28 of 28 results for author: <span class="mathjax">Gomil拧ek, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Gomil%C5%A1ek%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gomil拧ek, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gomil%C5%A1ek%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gomil拧ek, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00185">arXiv:2408.00185</a> <span> [<a href="https://arxiv.org/pdf/2408.00185">pdf</a>, <a href="https://arxiv.org/format/2408.00185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anharmonic quantum muon effects in the kagome antiferromagnet Zn-Barlowite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hotz%2C+F">Fabian Hotz</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">Matja啪 Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Arh%2C+T">Tina Arh</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">Andrej Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">Hubertus Luetkens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00185v1-abstract-short" style="display: inline;"> Muon spin spectroscopy ($渭$SR) is a powerful local probe technique e.g. used for the investigation of exotic frustrated magnetism. Ab initio simulations using Density Functional Theory with the muon treated as a point-like defect (DFT+$渭$) are commonly employed to determine the interstitial lattice positions where the muon comes to rest after implantation. These muon stopping sites are critical fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00185v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00185v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00185v1-abstract-full" style="display: none;"> Muon spin spectroscopy ($渭$SR) is a powerful local probe technique e.g. used for the investigation of exotic frustrated magnetism. Ab initio simulations using Density Functional Theory with the muon treated as a point-like defect (DFT+$渭$) are commonly employed to determine the interstitial lattice positions where the muon comes to rest after implantation. These muon stopping sites are critical for accurately interpreting $渭$SR data. For example, for the quantum spin liquid candidate Zn-Barlowite, DFT+$渭$ simulations identify two types of muon stopping sites: a higher-energy site where the muon is located between a fluorine and a bromine atom and three similar sites near an OH group. However, our study shows that the $渭$SR spectra of Zn-Barlowite cannot be adequately described using muon sites determined by the conventional DFT+$渭$ approach. Instead, accurate reproduction of the $渭$SR data requires treating the muon as a spatially extended quantum particle with a skewed wavefunction due to the anharmonicity of the surrounding electrostatic potential. The quantum nature of the muon significantly affects its lattice position and, consequently, the observed $渭$SR spectra. Our findings highlight the potential of $渭$SR to study the localization of quantum particles, using the muon as the probe and particle under investigation. The light mass of the muon amplifies quantum effects, enhancing the sensitivity of our measurements and enabling a detailed comparison between experimental data and theoretical calculations. These results can be directly applied to the theoretical calculations of hydrogen localization, where quantum effects, though smaller, may still be relevant in real materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00185v1-abstract-full').style.display = 'none'; document.getElementById('2408.00185v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09858">arXiv:2407.09858</a> <span> [<a href="https://arxiv.org/pdf/2407.09858">pdf</a>, <a href="https://arxiv.org/format/2407.09858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.184402">10.1103/PhysRevB.110.184402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism and field-induced effects in the S = 5/2 honeycomb lattice antiferromagnet FeP3SiO11 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khatua%2C+J">J. Khatua</a>, <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+K">Kwang-Yong Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Khuntia%2C+P">P. Khuntia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09858v1-abstract-short" style="display: inline;"> Quantum magnets based on honeycomb lattices with low-coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogues, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09858v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09858v1-abstract-full" style="display: none;"> Quantum magnets based on honeycomb lattices with low-coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogues, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in the context of capturing the classical analogs of quantum phenomena. Herein, we report the crystal structure, magnetic susceptibility, specific heat, and electron spin resonance (ESR), complemented by ab initio density functional theory (DFT) calculations on polycrystalline samples of FeP3SiO11 wherein the Fe3+ ions decorate a nearly-perfect S = 5/2 honeycomb lattice without any site disorder among constituent atoms. Above 150 K, an antiferromagnetic Weiss temperature of - 12 K is observed consistent with DFT calculations, which suggest the presence of strong intra-planar nearest-neighbor and weaker inter-planar further nearest-neighbor exchange interactions. An anomaly at TN = 3.5 K in specific heat and magnetic susceptibility reveals the presence of a long-range ordered ground state in zero field. Above TN, ESR evidences short-range spin correlations and unsaturated magnetic entropy, while below TN unconventional excitations are seen via power-law specific heat. A spin-flop transition is observed in an applied field of Hc1 = 0.2 T. At higher applied fields, TN is gradually suppressed down to zero at Hc2 = 5.6 T with a 2D critical exponent 0.255. Above Hc2, a broad maximum in specific heat due to gapped magnon excitations indicates the emergence of an interesting nearly-polarized state dressed by a disordered state in the honeycomb lattice antiferromagnet FeP3SiO11. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09858v1-abstract-full').style.display = 'none'; document.getElementById('2407.09858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 184402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09431">arXiv:2403.09431</a> <span> [<a href="https://arxiv.org/pdf/2403.09431">pdf</a>, <a href="https://arxiv.org/ps/2403.09431">ps</a>, <a href="https://arxiv.org/format/2403.09431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Field-orientation-dependent magnetic phases in GdRu$_2$Si$_2$ probed with muon-spin spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Hern%C3%A1ndez-Meli%C3%A1n%2C+A">A. Hern谩ndez-Meli谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09431v3-abstract-short" style="display: inline;"> Centrosymmetric GdRu$_2$Si$_2$ exhibits a variety of multi-Q magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material's behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic $c$ axis. Here, we present th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09431v3-abstract-full').style.display = 'inline'; document.getElementById('2403.09431v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09431v3-abstract-full" style="display: none;"> Centrosymmetric GdRu$_2$Si$_2$ exhibits a variety of multi-Q magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material's behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic $c$ axis. Here, we present the results of muon-spin relaxation ($渭^+$SR) measurements on single crystals of GdRu$_2$Si$_2$. Our analysis is based on the computation of muon stopping sites and consideration of zero-point motion effects, allowing direct comparison with the underlying spin textures in the material. The muon site is confirmed experimentally, using angle-dependent measurements of the muon Knight shift. Using transverse-field $渭^+$SR with fields applied along either the [001] or [100] crystallographic directions, we distinguish between the magnetic phases in this system via their distinct muon response, providing additional evidence for the skyrmion and meron-lattice phases, while also suggesting the existence of RKKY-driven muon hyperfine coupling. Zero-field $渭^+$SR provides clear evidence for a transition between two distinct magnetically-ordered phases at 39 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09431v3-abstract-full').style.display = 'none'; document.getElementById('2403.09431v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17323">arXiv:2312.17323</a> <span> [<a href="https://arxiv.org/pdf/2312.17323">pdf</a>, <a href="https://arxiv.org/format/2312.17323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.046702">10.1103/PhysRevLett.134.046702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic skyrmion and multi-$q$ spin dynamics in centrosymmetric Gd$_2$PdSi$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Telling%2C+M+T+F">M. T. F. Telling</a>, <a href="/search/cond-mat?searchtype=author&query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17323v3-abstract-short" style="display: inline;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these here b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v3-abstract-full').style.display = 'inline'; document.getElementById('2312.17323v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17323v3-abstract-full" style="display: none;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these here by investigating both the static and dynamical spin properties of the centrosymmetric SkL host Gd$_2$PdSi$_3$ using muon spectroscopy ($渭$SR). We find that spin fluctuations in the non-coplanar SkL phase are highly anisotropic, implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly-anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material, indicating that it hosts a meron-like multi-$q$ structure. In contrast, the higher-field, coplanar IC-2 phase is found to be single-$q$ with nearly-isotropic spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v3-abstract-full').style.display = 'none'; document.getElementById('2312.17323v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 8 pages, 3 figures. Supplemental Material: 7 pages, 8 figures. Data and code available at: https://dx.doi.org/10.6084/m9.figshare.28024910</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 134, 046702 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15071">arXiv:2310.15071</a> <span> [<a href="https://arxiv.org/pdf/2310.15071">pdf</a>, <a href="https://arxiv.org/format/2310.15071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2023.09.008">10.1016/j.physrep.2023.09.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental signatures of quantum and topological states in frustrated magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khatua%2C+J">J. Khatua</a>, <a href="/search/cond-mat?searchtype=author&query=Sana%2C+B">B. Sana</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+K+S+M+S+R">K. Sethupathi M. S. Ramachandra Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Baenitz%2C+M">M. Baenitz</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+B">B. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Khuntia%2C+P">P. Khuntia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15071v2-abstract-short" style="display: inline;"> Frustration in magnetic materials arising from competing exchange interactions can prevent the system from adopting long-range magnetic order and can instead lead to a diverse range of novel quantum and topological states with exotic quasiparticle excitations. Here, we review prominent examples of such emergent phenomena, including magnetically-disordered and extensively degenerate spin ices, whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15071v2-abstract-full').style.display = 'inline'; document.getElementById('2310.15071v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15071v2-abstract-full" style="display: none;"> Frustration in magnetic materials arising from competing exchange interactions can prevent the system from adopting long-range magnetic order and can instead lead to a diverse range of novel quantum and topological states with exotic quasiparticle excitations. Here, we review prominent examples of such emergent phenomena, including magnetically-disordered and extensively degenerate spin ices, which feature emergent magnetic monopole excitations, highly-entangled quantum spin liquids with fractional spinon excitations, topological order and emergent gauge fields, as well as complex particle-like topological spin textures known as skyrmions. We provide an overview of recent advances in the search for magnetically-disordered candidate materials on the three-dimensional pyrochlore lattice and two-dimensional triangular, kagome and honeycomb lattices, the latter with bond-dependent Kitaev interactions, and on lattices supporting topological magnetism. We highlight experimental signatures of these often elusive phenomena and single out the most suitable experimental techniques that can be used to detect them. Our review also aims at providing a comprehensive guide for designing and investigating novel frustrated magnetic materials, with the potential of addressing some important open questions in contemporary condensed matter physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15071v2-abstract-full').style.display = 'none'; document.getElementById('2310.15071v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports 1041, 1 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05859">arXiv:2202.05859</a> <span> [<a href="https://arxiv.org/pdf/2202.05859">pdf</a>, <a href="https://arxiv.org/format/2202.05859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01260-7">10.1038/s42005-023-01260-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many-Body Quantum Muon Effects and Quadrupolar Coupling in Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Cottrell%2C+S+P">S. P. Cottrell</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05859v2-abstract-short" style="display: inline;"> Strong quantum zero-point motion (ZPM) of light nuclei and other particles is a crucial aspect of many state-of-the-art quantum materials. However, it has only recently begun to be explored from an $\textit{ab initio}$ perspective, through several competing approximations. Here we develop a unified description of muon and light nucleus ZPM and establish the regimes of anharmonicity and positional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05859v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05859v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05859v2-abstract-full" style="display: none;"> Strong quantum zero-point motion (ZPM) of light nuclei and other particles is a crucial aspect of many state-of-the-art quantum materials. However, it has only recently begun to be explored from an $\textit{ab initio}$ perspective, through several competing approximations. Here we develop a unified description of muon and light nucleus ZPM and establish the regimes of anharmonicity and positional quantum entanglement where different approximation schemes apply. Via density functional theory and path-integral molecular dynamics simulations we demonstrate that in solid nitrogen, $伪\unicode{x2013}$N$_2$, muon ZPM is both strongly anharmonic and many-body in character, with the muon forming an extended electric-dipole polaron around a central, quantum-entangled [N$_2\unicode{x2013}渭\unicode{x2013}$N$_2$]$^+$ complex. By combining this quantitative description of quantum muon ZPM with precision muon quadrupolar level-crossing resonance experiments, we independently determine the static $^{14}$N nuclear quadrupolar coupling constant of pristine $伪\unicode{x2013}$N$_2$ to be $-5.36(2)$ MHz, a significant improvement in accuracy over the previously-accepted value of $-5.39(5)$ MHz, and a validation of our unified description of light-particle ZPM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05859v2-abstract-full').style.display = 'none'; document.getElementById('2202.05859v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 11 pages, 3 figures, 2 tables. Supplementary Information: 2 pages, 6 figures, 2 videos. Data and code available at: https://doi.org/10.6084/m9.figshare.23203037</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 6, 142 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07341">arXiv:2110.07341</a> <span> [<a href="https://arxiv.org/pdf/2110.07341">pdf</a>, <a href="https://arxiv.org/ps/2110.07341">ps</a>, <a href="https://arxiv.org/format/2110.07341">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2022.108488">10.1016/j.cpc.2022.108488 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuFinder: A program to determine and analyse muon stopping sites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Hern%C3%A1ndez-Meli%C3%A1n%2C+A">A. Hern谩ndez-Meli谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07341v1-abstract-short" style="display: inline;"> Significant progress has recently been made in calculating muon stopping sites using density functional theory. The technique aims to address two of the most common criticisms of the muon-spin spectroscopy ($渭^+$SR) technique, namely, where in the sample does the muon stop, and what is its effect on its local environment. We have designed and developed a program called MuFinder that enables users… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07341v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07341v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07341v1-abstract-full" style="display: none;"> Significant progress has recently been made in calculating muon stopping sites using density functional theory. The technique aims to address two of the most common criticisms of the muon-spin spectroscopy ($渭^+$SR) technique, namely, where in the sample does the muon stop, and what is its effect on its local environment. We have designed and developed a program called MuFinder that enables users to carry out these calculations through a simple graphical user interface (GUI). The procedure for calculating muon sites by generating initial muon positions, relaxing the structures, and then clustering and analysing the resulting candidate sites, can be done entirely within the GUI. The local magnetic field at the muon site can also be computed, allowing the connection between the muon sites obtained and experiment to be made. MuFinder will make these computations significantly more accessible to non-experts and help to establish muon site calculations as a routine part of $渭^+$SR experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07341v1-abstract-full').style.display = 'none'; document.getElementById('2110.07341v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08668">arXiv:2107.08668</a> <span> [<a href="https://arxiv.org/pdf/2107.08668">pdf</a>, <a href="https://arxiv.org/format/2107.08668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00879-2">10.1038/s42005-022-00879-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of a randomness-driven spin-liquid state in a frustrated magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khatua%2C+J">J. Khatua</a>, <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Orain%2C+J+C">J. C. Orain</a>, <a href="/search/cond-mat?searchtype=author&query=Strydom%2C+A+M">A. M. Strydom</a>, <a href="/search/cond-mat?searchtype=author&query=Jaglicic%2C+Z">Z. Jaglicic</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Petit%2C+S">S. Petit</a>, <a href="/search/cond-mat?searchtype=author&query=Ozarowski%2C+A">A. Ozarowski</a>, <a href="/search/cond-mat?searchtype=author&query=Mangin-Thro%2C+L">L. Mangin-Thro</a>, <a href="/search/cond-mat?searchtype=author&query=Sethupathi%2C+K">K. Sethupathi</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+M+S+R">M. S. Ramachandra Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Khuntia%2C+P">P. Khuntia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08668v2-abstract-short" style="display: inline;"> Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08668v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08668v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08668v2-abstract-full" style="display: none;"> Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ ions (S = 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+ moments leading to a large effective Curie-Weiss temperature of -154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08668v2-abstract-full').style.display = 'none'; document.getElementById('2107.08668v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13254">arXiv:2103.13254</a> <span> [<a href="https://arxiv.org/pdf/2103.13254">pdf</a>, <a href="https://arxiv.org/format/2103.13254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.064401">10.1103/PhysRevMaterials.5.064401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ordering of the distorted kagome antiferromagnet Y$_3$Cu$_9$(OH)$_{18}$[Cl$_8$(OH)] prepared via optimal synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Arh%2C+T">T. Arh</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Ko%C5%BEelj%2C+P">P. Ko啪elj</a>, <a href="/search/cond-mat?searchtype=author&query=Vrtnik%2C+S">S. Vrtnik</a>, <a href="/search/cond-mat?searchtype=author&query=Herak%2C+M">M. Herak</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+J+-">J. -X. Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13254v2-abstract-short" style="display: inline;"> Experimental studies of high-purity kagome-lattice antiferromagnets (KAFM) are of great importance in attempting to better understand the predicted enigmatic quantum spin-liquid ground state of the KAFM model. However, realizations of this model can rarely evade magnetic ordering at low temperatures due to various perturbations to its dominant isotropic exchange interactions. Such a situation is f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13254v2-abstract-full').style.display = 'inline'; document.getElementById('2103.13254v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13254v2-abstract-full" style="display: none;"> Experimental studies of high-purity kagome-lattice antiferromagnets (KAFM) are of great importance in attempting to better understand the predicted enigmatic quantum spin-liquid ground state of the KAFM model. However, realizations of this model can rarely evade magnetic ordering at low temperatures due to various perturbations to its dominant isotropic exchange interactions. Such a situation is for example encountered due to sizable Dzyaloshinskii-Moriya magnetic anisotropy in YCu$_3$(OH)$_6$Cl$_3$, which stands out from other KAFM materials by its perfect crystal structure. We find evidence of magnetic ordering also in the distorted sibling compound Y$_3$Cu$_9$(OH)$_{18}$[Cl$_8$(OH)], which has recently been proposed to feature a spin-liquid ground state arising from a spatially anisotropic kagome lattice. Our findings are based on a combination of bulk susceptibility, specific heat, and magnetic torque measurements that disclose a N茅el transition temperature of $T_N=11$~K in this material, which might feature a coexistence of magnetic order and persistent spin dynamics as previously found in YCu$_3$(OH)$_6$Cl$_3$. Contrary to previous studies of single crystals and powders containing impurity inclusions, we use high-purity single crystals of Y$_3$Cu$_9$(OH)$_{18}$[Cl$_8$(OH)] grown via an optimized hydrothermal synthesis route that minimizes such inclusions. This study thus demonstrates that the lack of magnetic ordering in less pure samples of the investigated compound does not originate from the reduced symmetry of spin lattice but is instead of extrinsic origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13254v2-abstract-full').style.display = 'none'; document.getElementById('2103.13254v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 064401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12994">arXiv:2011.12994</a> <span> [<a href="https://arxiv.org/pdf/2011.12994">pdf</a>, <a href="https://arxiv.org/format/2011.12994">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.134414">10.1103/PhysRevB.104.134414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics in bulk MnNiGa and Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn investigated by muon spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12994v2-abstract-short" style="display: inline;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics suroun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'inline'; document.getElementById('2011.12994v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12994v2-abstract-full" style="display: none;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics surounding the two magnetic phase transitions in each material. In particular, we demonstrate that the behaviour approaching the higher temperature transition in both samples is best understood by considering a slow decrease in the frequency of dynamics with temperature, rather than the sharp critical slowing down typical of second order transitions. Furthermore, at low temperatures the two samples both show spin dynamics over a broad range of frequencies that persist below the spin reorienation transition. The dynamic behavior we identify gives new insight into the bulk magnetism of these materials that may help underpin the stabilization of the topologically non-trivial phases that are seen in thin lamellae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'none'; document.getElementById('2011.12994v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 134414 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10330">arXiv:2011.10330</a> <span> [<a href="https://arxiv.org/pdf/2011.10330">pdf</a>, <a href="https://arxiv.org/format/2011.10330">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024428">10.1103/PhysRevB.103.024428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz dynamics in skyrmion systems probed with muon-spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10330v3-abstract-short" style="display: inline;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'inline'; document.getElementById('2011.10330v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10330v3-abstract-full" style="display: none;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified from the $渭$SR response. From measurements following different cooling protocols and calculations of the muon stopping site, we suggest that the metastable SkL is not the majority phase throughout the bulk of this material at the fields and temperatures where it is often observed. The dynamics of bulk Co$_8$Zn$_9$Mn$_3$ are well described by $\simeq~2$ GHz excitations that reduce in frequency near the critical temperature, while in Co$_8$Zn$_8$Mn$_4$ we observe similar behavior over a wide range of temperatures, implying that dynamics of this kind persist beyond the SkL phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'none'; document.getElementById('2011.10330v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024428 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02369">arXiv:2011.02369</a> <span> [<a href="https://arxiv.org/pdf/2011.02369">pdf</a>, <a href="https://arxiv.org/format/2011.02369">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.014431">10.1103/PhysRevB.103.014431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical spin correlations of the kagome antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Prelov%C5%A1ek%2C+P">P. Prelov拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Arh%2C+T">T. Arh</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02369v2-abstract-short" style="display: inline;"> Temperature-dependent dynamical spin correlations, which can be readily accessed via a variety of experimental techniques, hold the potential of offering a unique fingerprint of quantum spin liquids and other intriguing dynamical states. In this work we present an in-depth study of the temperature-dependent dynamical spin structure factor $S({\bf q}, 蠅)$ of the antiferromagnetic (AFM) Heisenberg s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02369v2-abstract-full').style.display = 'inline'; document.getElementById('2011.02369v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02369v2-abstract-full" style="display: none;"> Temperature-dependent dynamical spin correlations, which can be readily accessed via a variety of experimental techniques, hold the potential of offering a unique fingerprint of quantum spin liquids and other intriguing dynamical states. In this work we present an in-depth study of the temperature-dependent dynamical spin structure factor $S({\bf q}, 蠅)$ of the antiferromagnetic (AFM) Heisenberg spin-1/2 model on the kagome lattice with additional Dzyaloshinskii--Moriya (DM) interactions. Using the finite-temperature Lanczos method on lattices with up to $N = 30$ sites we find that even without DM interactions, chiral low-energy spin fluctuations of the $120^\circ$ AFM order parameter dominate the dynamical response. This leads to a nontrivial frequency dependence of $S({\bf q}, 蠅)$ and the appearance of a pronounced low-frequency mode at the M point of the extended Brillouin zone. Adding an out-of-plane DM interactions $D^z$ gives rise to an anisotropic dynamical response, a softening of in-plane spin fluctuations, and, ultimately, the onset of a coplanar AFM ground-state order at $D^z > 0.1 J$. Our results are in very good agreement with existing inelastic neutron scattering and temperature-dependent NMR spin-lattice relaxation rate ($1/T_1$) data on the paradigmatic kagome AFM herbertsmithite, where the effect of its small $D^z$ on the dynamical spin correlations is shown to be rather small, as well as with $1/T_1$ data on the novel kagome AFM YCu$_3$(OH)$_6$Cl$_3$, where its substantial $D^z \approx 0.25 J$ interaction is found to strongly affect the spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02369v2-abstract-full').style.display = 'none'; document.getElementById('2011.02369v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 014431 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14326">arXiv:2010.14326</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge Density Waves and Coplanar Magnetism in Gd2PdSi3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14326v3-abstract-short" style="display: inline;"> The intermetallic Gd2PdSi3 has recently generated a lot of excitement after reports that it hosts chiral magnetic nano-skyrmions despite its centrosymmetric crystal structure. Using magnetic-field-dependent polarized resonant elastic x-ray scattering (REXS), we find than an unexpected incommensurate charge density wave (CDW) appears below the ordering transition with a wavevector equal to that of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14326v3-abstract-full').style.display = 'inline'; document.getElementById('2010.14326v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14326v3-abstract-full" style="display: none;"> The intermetallic Gd2PdSi3 has recently generated a lot of excitement after reports that it hosts chiral magnetic nano-skyrmions despite its centrosymmetric crystal structure. Using magnetic-field-dependent polarized resonant elastic x-ray scattering (REXS), we find than an unexpected incommensurate charge density wave (CDW) appears below the ordering transition with a wavevector equal to that of the magnetic textures. Furthermore, we show these incommensurate magnetic textures in Gd2PdSi3 are highly anisotropic, with the vast majority of the spin modulation lying within the hexagonal ab-plane. This observation is not compatible with the previously suggested non-coplanar magnetic textures and coplanar alternatives are discussed. Our results thus refute the interpretation of the observed large anomalous Hall and Nernst effects in Gd2PdSi3 as arising from topologically-nontrivial magnetic skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14326v3-abstract-full').style.display = 'none'; document.getElementById('2010.14326v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We have recently collected new measurements which conflict the main claims of this paper. We will reinterpret our old results together with the new data in due course and will report our findings once the analysis is complete and a better understanding of the complete picture has been achieved</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13743">arXiv:2006.13743</a> <span> [<a href="https://arxiv.org/pdf/2006.13743">pdf</a>, <a href="https://arxiv.org/ps/2006.13743">ps</a>, <a href="https://arxiv.org/format/2006.13743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L060405">10.1103/PhysRevB.103.L060405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order and ballistic spin transport in a sine-Gordon spin chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&query=Goddard%2C+P+A">P. A. Goddard</a>, <a href="/search/cond-mat?searchtype=author&query=Kaech%2C+S+J">S. J. Kaech</a>, <a href="/search/cond-mat?searchtype=author&query=Manson%2C+J+L">J. L. Manson</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13743v1-abstract-short" style="display: inline;"> We report the results of muon-spin spectroscopy ($渭^+$SR) measurements on the staggered molecular spin chain [pym-Cu(NO$_3$)$_2$(H$_2$O)$_2$] (pym = pyrimidine), a material previously described using sine-Gordon field theory. Zero-field $渭^+$SR reveals a long range magnetically-ordered ground state below a transition temperature $T_\mathrm{N}=0.22(1)$ K. Using longitudinal-field (LF) $渭^+$SR we in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13743v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13743v1-abstract-full" style="display: none;"> We report the results of muon-spin spectroscopy ($渭^+$SR) measurements on the staggered molecular spin chain [pym-Cu(NO$_3$)$_2$(H$_2$O)$_2$] (pym = pyrimidine), a material previously described using sine-Gordon field theory. Zero-field $渭^+$SR reveals a long range magnetically-ordered ground state below a transition temperature $T_\mathrm{N}=0.22(1)$ K. Using longitudinal-field (LF) $渭^+$SR we investigate the dynamic response in applied magnetic fields $0< B < 500$ mT and find evidence for ballistic spin transport. Our LF $渭^+$SR measurements on the chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6 \cdot $H$_2$O instead demonstrate one-dimensional spin diffusion and the distinct spin transport in these two systems likely reflects differences in their magnetic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13743v1-abstract-full').style.display = 'none'; document.getElementById('2006.13743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 060405 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02547">arXiv:2004.02547</a> <span> [<a href="https://arxiv.org/pdf/2004.02547">pdf</a>, <a href="https://arxiv.org/format/2004.02547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.174429">10.1103/PhysRevB.102.174429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order and disorder in a quasi-two-dimensional quantum Heisenberg antiferromagnet with randomized exchange </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+F">F. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Blackmore%2C+W+J+A">W. J. A. Blackmore</a>, <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Singleton%2C+J">J. Singleton</a>, <a href="/search/cond-mat?searchtype=author&query=Gawryluk%2C+D">D. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&query=Turnbull%2C+M+M">M. M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&query=Goddard%2C+P+A">P. A. Goddard</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02547v2-abstract-short" style="display: inline;"> We present an investigation of the effect of randomizing exchange strengths in the $S=1/2$ square lattice quasi-two-dimensional quantum Heisenberg antiferromagnet (QuinH)$_2$Cu(Cl$_{x}$Br$_{1-x}$)$_{4}\cdot$2H$_2$O (QuinH$=$Quinolinium, C$_9$H$_8$N$^+$), with $0\leq x \leq 1$. Pulsed-field magnetization measurements allow us to estimate an effective in-plane exchange strength $J$ in a regime where… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02547v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02547v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02547v2-abstract-full" style="display: none;"> We present an investigation of the effect of randomizing exchange strengths in the $S=1/2$ square lattice quasi-two-dimensional quantum Heisenberg antiferromagnet (QuinH)$_2$Cu(Cl$_{x}$Br$_{1-x}$)$_{4}\cdot$2H$_2$O (QuinH$=$Quinolinium, C$_9$H$_8$N$^+$), with $0\leq x \leq 1$. Pulsed-field magnetization measurements allow us to estimate an effective in-plane exchange strength $J$ in a regime where exchange fosters short-range order, while the temperature $T_{\mathrm{N}}$ at which long range order (LRO) occurs is found using muon-spin relaxation, allowing us to construct a phase diagram for the series. We evaluate the effectiveness of disorder in suppressing $T_{\mathrm{N}}$ and the ordered moment size and find an extended disordered phase in the region $0.4 \lesssim x \lesssim 0.8$ where no magnetic order occurs, driven by quantum effects of the exchange randomness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02547v2-abstract-full').style.display = 'none'; document.getElementById('2004.02547v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 174429 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08682">arXiv:2003.08682</a> <span> [<a href="https://arxiv.org/pdf/2003.08682">pdf</a>, <a href="https://arxiv.org/format/2003.08682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.032001">10.1103/PhysRevResearch.2.032001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism and N茅el skyrmion dynamics in GaV$_{4}$S$_{8-y}$Se$_{y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08682v2-abstract-short" style="display: inline;"> We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{\' e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($渭$SR) measurements on $y=0$ and 0.1 materials reveal the magnetic ground state consists of microscopically coexisting incommensurate cycloidal and ferromagneti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08682v2-abstract-full').style.display = 'inline'; document.getElementById('2003.08682v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08682v2-abstract-full" style="display: none;"> We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{\' e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($渭$SR) measurements on $y=0$ and 0.1 materials reveal the magnetic ground state consists of microscopically coexisting incommensurate cycloidal and ferromagnetic environments, while chemical substitution leads to the growth of localized regions of increased spin density. $渭$SR measurements of emergent low-frequency skyrmion dynamics show that the SkL exists under low-levels of substitution at both ends of the series. Skyrmionic excitations persist to temperatures below the equilibrium SkL in substituted samples, suggesting the presence of skyrmion precursors over a wide range of temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08682v2-abstract-full').style.display = 'none'; document.getElementById('2003.08682v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 032001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.09047">arXiv:1912.09047</a> <span> [<a href="https://arxiv.org/pdf/1912.09047">pdf</a>, <a href="https://arxiv.org/format/1912.09047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.027203">10.1103/PhysRevLett.125.027203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of Magnetic Ordering in a Structurally-Perfect Quantum Kagome Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Arh%2C+T">T. Arh</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Prelov%C5%A1ek%2C+P">P. Prelov拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Ozarowski%2C+A">A. Ozarowski</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+J+-">J. -X. Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.09047v2-abstract-short" style="display: inline;"> The ground state of the simple Heisenberg nearest-neighbor quantum kagome antiferromagnetic model is a magnetically disordered spin liquid, yet various perturbations may lead to fundamentally different states. Here we disclose the origin of magnetic ordering in the structurally-perfect kagome material YCu$_3$(OH)$_6$Cl$_3$, which is free of the widespread impurity problem. {\it Ab-initio} calculat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09047v2-abstract-full').style.display = 'inline'; document.getElementById('1912.09047v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.09047v2-abstract-full" style="display: none;"> The ground state of the simple Heisenberg nearest-neighbor quantum kagome antiferromagnetic model is a magnetically disordered spin liquid, yet various perturbations may lead to fundamentally different states. Here we disclose the origin of magnetic ordering in the structurally-perfect kagome material YCu$_3$(OH)$_6$Cl$_3$, which is free of the widespread impurity problem. {\it Ab-initio} calculations and modeling of its magnetic susceptibility reveal that, similar to the archetypal case of herbertsmithite, the nearest-neighbor exchange is by far the dominant isotropic interaction. Dzyaloshinskii-Moriya (DM) magnetic anisotropy deduced from electron spin resonance and specific-heat measurements is, however, significantly larger than in herbertsmithite. By enhancing spin correlations within kagome planes, this anisotropy is essential for magnetic ordering. Our study isolates the effect of DM anisotropy from other perturbations and unambiguously confirms the theoretical phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09047v2-abstract-full').style.display = 'none'; document.getElementById('1912.09047v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript plus Supplemental Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 027203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07489">arXiv:1907.07489</a> <span> [<a href="https://arxiv.org/pdf/1907.07489">pdf</a>, <a href="https://arxiv.org/format/1907.07489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.144420">10.1103/PhysRevB.100.144420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative-vector-chirality 120$^\circ$ spin structure in the defect- and distortion-free quantum kagome antiferromagnet YCu$_3$(OH)$_6$Cl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Klanjsek%2C+M">M. Klanjsek</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+J+-">J. -X. Mi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07489v2-abstract-short" style="display: inline;"> The magnetic ground state of the ideal quantum kagome antiferromagnet (QKA) has been a long-standing puzzle, mainly because perturbations to the nearest-neighbor isotropic Heisenberg Hamiltonian can lead to various fundamentally different ground states. Here we investigate a recently synthesized QKA representative YCu$_3$(OH)$_6$Cl$_3$, where perturbations commonly present in real materials, like… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07489v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07489v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07489v2-abstract-full" style="display: none;"> The magnetic ground state of the ideal quantum kagome antiferromagnet (QKA) has been a long-standing puzzle, mainly because perturbations to the nearest-neighbor isotropic Heisenberg Hamiltonian can lead to various fundamentally different ground states. Here we investigate a recently synthesized QKA representative YCu$_3$(OH)$_6$Cl$_3$, where perturbations commonly present in real materials, like lattice distortion and intersite ion mixing, are absent. Nevertheless, this compound enters a long-range magnetically ordered state below $T_N=15$ K. Our powder neutron diffraction experiment reveals that its magnetic structure corresponds to a coplanar $120^\circ$ state with negative vector spin chirality. The ordered magnetic moments are suppressed to $0.42(2)渭_B$, which is consistent with the previously detected spin dynamics persisting to the lowest experimentally accessible temperatures. This indicates either a coexistence of magnetic order and disorder or the presence of strong quantum fluctuations in the ground state of YCu$_3$(OH)$_6$Cl$_3$. The origin of the magnetic order is sought in terms of Dzyaloshinskii-Moriya magnetic anisotropy and further-neighbor isotropic exchange interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07489v2-abstract-full').style.display = 'none'; document.getElementById('1907.07489v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 144420 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02079">arXiv:1905.02079</a> <span> [<a href="https://arxiv.org/pdf/1905.02079">pdf</a>, <a href="https://arxiv.org/format/1905.02079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-019-0160-5">10.1038/s41535-019-0160-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elementary excitation in the spin-stripe phase in quantum chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=White%2C+J+S">J. S. White</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Coomer%2C+F">F. Coomer</a>, <a href="/search/cond-mat?searchtype=author&query=Ivek%2C+T">T. Ivek</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%B3ngora%2C+D+R">D. R. G贸ngora</a>, <a href="/search/cond-mat?searchtype=author&query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&query=Ar%C4%8Don%2C+D">D. Ar膷on</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02079v1-abstract-short" style="display: inline;"> Elementary excitations in condensed matter capture the complex many-body dynamics of interacting basic entities in a simple quasiparticle picture. In magnetic systems the most established quasiparticles are magnons, collective excitations that reside in ordered spin structures, and spinons, their fractional counterparts that emerge in disordered, yet correlated spin states. Here we report on the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02079v1-abstract-full').style.display = 'inline'; document.getElementById('1905.02079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02079v1-abstract-full" style="display: none;"> Elementary excitations in condensed matter capture the complex many-body dynamics of interacting basic entities in a simple quasiparticle picture. In magnetic systems the most established quasiparticles are magnons, collective excitations that reside in ordered spin structures, and spinons, their fractional counterparts that emerge in disordered, yet correlated spin states. Here we report on the discovery of elementary excitation inherent to spin-stripe order that represents a bound state of two phason quasiparticles, resulting in a wiggling-like motion of the magnetic moments. We observe these excitations, which we dub "wigglons", in the frustrated zigzag spin-1/2 chain compound $尾$-TeVO$_4$, where they give rise to unusual low-frequency spin dynamics in the spin-stripe phase. This result provides insights into the stripe physics of strongly-correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02079v1-abstract-full').style.display = 'none'; document.getElementById('1905.02079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in an open access journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials (2019)4:22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06506">arXiv:1904.06506</a> <span> [<a href="https://arxiv.org/pdf/1904.06506">pdf</a>, <a href="https://arxiv.org/format/1904.06506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0536-2">10.1038/s41567-019-0536-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo screening in a charge-insulating spinon metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDitko%2C+R">R. 沤itko</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06506v1-abstract-short" style="display: inline;"> The Kondo effect, an eminent manifestation of many-body physics in condensed matter, is traditionally explained as exchange scattering of conduction electrons on a spinful impurity in a metal. The resulting screening of the impurity's local moment by the electron Fermi sea is characterized by a Kondo temperature $T_K$, below which the system enters a non-perturbative strongly-coupled regime. In re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06506v1-abstract-full').style.display = 'inline'; document.getElementById('1904.06506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06506v1-abstract-full" style="display: none;"> The Kondo effect, an eminent manifestation of many-body physics in condensed matter, is traditionally explained as exchange scattering of conduction electrons on a spinful impurity in a metal. The resulting screening of the impurity's local moment by the electron Fermi sea is characterized by a Kondo temperature $T_K$, below which the system enters a non-perturbative strongly-coupled regime. In recent years, this effect has found its realizations beyond the bulk-metal paradigm in many other itinerant-electron systems, such as quantum dots in semiconductor heterostructures and in nanomaterials, quantum point contacts, and graphene. Here we report on the first experimental observation of the Kondo screening by chargeless quasiparticles. This occurs in a charge-insulating quantum spin liquid, where spinon excitations forming a Fermi surface take the role of conduction electrons. The observed impurity behaviour therefore bears a strong resemblance to the conventional case in a metal. The discovered spinon-based Kondo effect provides a prominent platform for characterising and possibly manipulating enigmatic host spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06506v1-abstract-full').style.display = 'none'; document.getElementById('1904.06506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02878">arXiv:1904.02878</a> <span> [<a href="https://arxiv.org/pdf/1904.02878">pdf</a>, <a href="https://arxiv.org/format/1904.02878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.214441">10.1103/PhysRevB.99.214441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of magnetic order and persistent spin dynamics in a quantum kagome antiferromagnet with no intersite mixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Jagli%C4%8Di%C4%87%2C+Z">Z. Jagli膷i膰</a>, <a href="/search/cond-mat?searchtype=author&query=Lord%2C+J+S">J. S. Lord</a>, <a href="/search/cond-mat?searchtype=author&query=Verezhak%2C+J+A+T">J. A. T. Verezhak</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">T. Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+J+-">J. -X. Mi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02878v2-abstract-short" style="display: inline;"> One of the key questions concerning frustrated lattices that has lately emerged is the role of disorder in inducing spin-liquid-like properties. In this context, the quantum kagome antiferromagnets YCu$_3$(OH)$_6$Cl$_3$, which has been recently reported as the first geometrically perfect realization of the kagome lattice with negligible magnetic/non-magnetic intersite mixing and a possible quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02878v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02878v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02878v2-abstract-full" style="display: none;"> One of the key questions concerning frustrated lattices that has lately emerged is the role of disorder in inducing spin-liquid-like properties. In this context, the quantum kagome antiferromagnets YCu$_3$(OH)$_6$Cl$_3$, which has been recently reported as the first geometrically perfect realization of the kagome lattice with negligible magnetic/non-magnetic intersite mixing and a possible quantum-spin-liquid ground state, is of particular interest. However, contrary to previous conjectures, here we show clear evidence of bulk magnetic ordering in this compound below $T_N=15$\,K by combining bulk magnetization and heat capacity measurements, and local-probe muon spin relaxation measurements. The magnetic ordering in this material is rather unconventional in several respects. Firstly, a crossover regime where the ordered state coexists with the paramagnetic state extends down to $T_N/3$ and, secondly, the fluctuation crossover is shifted far below $T_N$. Moreover, a reduced magnetic-entropy release at $T_N$ and persistent spin dynamics that is observed at temperatures as low as $T/T_N=1/300$ could be a sign of emergent excitations of correlated spin-loops or, alternatively, a sign of fragmentation of each magnetic moment into an ordered and a fluctuating part. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02878v2-abstract-full').style.display = 'none'; document.getElementById('1904.02878v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 214441 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.02084">arXiv:1709.02084</a> <span> [<a href="https://arxiv.org/pdf/1709.02084">pdf</a>, <a href="https://arxiv.org/format/1709.02084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.137205">10.1103/PhysRevLett.119.137205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-Induced Instability of a Gapless Spin Liquid with a Spinon Fermi Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDitko%2C+R">R. 沤itko</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Bert%2C+F">F. Bert</a>, <a href="/search/cond-mat?searchtype=author&query=Mendels%2C+P">P. Mendels</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.02084v2-abstract-short" style="display: inline;"> The ground state of the quantum kagome antiferromagnet Zn-brochantite, ZnCu$_3$(OH)$_6$SO$_4$, which is one of only a few known spin-liquid (SL) realizations in two or three dimensions, has been described as a gapless SL with a spinon Fermi surface. Employing nuclear magnetic resonance in a broad magnetic-field range down to millikelvin temperatures, we show that in applied magnetic fields this en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02084v2-abstract-full').style.display = 'inline'; document.getElementById('1709.02084v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.02084v2-abstract-full" style="display: none;"> The ground state of the quantum kagome antiferromagnet Zn-brochantite, ZnCu$_3$(OH)$_6$SO$_4$, which is one of only a few known spin-liquid (SL) realizations in two or three dimensions, has been described as a gapless SL with a spinon Fermi surface. Employing nuclear magnetic resonance in a broad magnetic-field range down to millikelvin temperatures, we show that in applied magnetic fields this enigmatic state is intrinsically unstable against a SL with a full or a partial gap. A similar instability of the gapless Fermi-surface SL was previously encountered in an organic triangular-lattice antiferromagnet, suggesting a common destabilization mechanism that most likely arises from spinon pairing. A salient property of this instability is that an infinitesimal field suffices to induce it, as predicted theoretically for some other types of gapless SL's. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02084v2-abstract-full').style.display = 'none'; document.getElementById('1709.02084v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">minor corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 137205 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.08455">arXiv:1706.08455</a> <span> [<a href="https://arxiv.org/pdf/1706.08455">pdf</a>, <a href="https://arxiv.org/ps/1706.08455">ps</a>, <a href="https://arxiv.org/format/1706.08455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0129-5">10.1038/s41567-018-0129-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of two types of anyons in the Kitaev honeycomb magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jan%C5%A1a%2C+N">N. Jan拧a</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&query=Biner%2C+D">D. Biner</a>, <a href="/search/cond-mat?searchtype=author&query=Biffin%2C+A">A. Biffin</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Klanj%C5%A1ek%2C+M">M. Klanj拧ek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.08455v2-abstract-short" style="display: inline;"> Quantum spin liquid is a disordered magnetic state with fractional spin excitations. Its clearest example is found in an exactly solved Kitaev honeycomb model where a spin flip fractionalizes into two types of anyons, quasiparticles that are neither fermions nor bosons: a pair of gauge fluxes and a Majorana fermion. Here we demonstrate this kind of fractionalization in the Kitaev paramagnetic stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08455v2-abstract-full').style.display = 'inline'; document.getElementById('1706.08455v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.08455v2-abstract-full" style="display: none;"> Quantum spin liquid is a disordered magnetic state with fractional spin excitations. Its clearest example is found in an exactly solved Kitaev honeycomb model where a spin flip fractionalizes into two types of anyons, quasiparticles that are neither fermions nor bosons: a pair of gauge fluxes and a Majorana fermion. Here we demonstrate this kind of fractionalization in the Kitaev paramagnetic state of the honeycomb magnet $伪$-RuCl$_3$. The spin-excitation gap measured by nuclear magnetic resonance consists of the predicted Majorana fermion contribution following the cube of the applied magnetic field, and a finite zero-field contribution matching the predicted size of the gauge-flux gap. The observed fractionalization into gapped anyons survives in a broad range of temperatures and magnetic fields despite inevitable non-Kitaev interactions between the spins, which are predicted to drive the system towards a gapless ground state. The gapped character of both anyons is crucial for their potential application in topological quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08455v2-abstract-full').style.display = 'none'; document.getElementById('1706.08455v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">changed title, updated figures with added data points, updated supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (7 May 2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02923">arXiv:1612.02923</a> <span> [<a href="https://arxiv.org/pdf/1612.02923">pdf</a>, <a href="https://arxiv.org/ps/1612.02923">ps</a>, <a href="https://arxiv.org/format/1612.02923">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.017202">10.1103/PhysRevLett.118.017202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Reduction in the Quantum Kagome Antiferromagnet Herbertsmithite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Herak%2C+M">M. Herak</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=van+Tol%2C+J">J. van Tol</a>, <a href="/search/cond-mat?searchtype=author&query=Vel%C3%A1zquez%2C+M">M. Vel谩zquez</a>, <a href="/search/cond-mat?searchtype=author&query=Khuntia%2C+P">P. Khuntia</a>, <a href="/search/cond-mat?searchtype=author&query=Bert%2C+F">F. Bert</a>, <a href="/search/cond-mat?searchtype=author&query=Mendels%2C+P">P. Mendels</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02923v2-abstract-short" style="display: inline;"> Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02923v2-abstract-full').style.display = 'inline'; document.getElementById('1612.02923v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02923v2-abstract-full" style="display: none;"> Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are found. Surprisingly, their magnetic response contradicts the three-fold symmetry of the ideal kagome lattice, suggesting the presence of a global structural distortion that may be related to the establishment of the spin-liquid ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02923v2-abstract-full').style.display = 'none'; document.getElementById('1612.02923v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version with minor text corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 017202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04495">arXiv:1608.04495</a> <span> [<a href="https://arxiv.org/pdf/1608.04495">pdf</a>, <a href="https://arxiv.org/format/1608.04495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.081114">10.1103/PhysRevB.94.081114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exchange anisotropy as mechanism for spin-stripe formation in frustrated spin chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Herak%2C+M">M. Herak</a>, <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L+C">L. C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&query=Bourdarot%2C+F">F. Bourdarot</a>, <a href="/search/cond-mat?searchtype=author&query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&query=Ar%C4%8Don%2C+D">D. Ar膷on</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04495v2-abstract-short" style="display: inline;"> We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $尾$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04495v2-abstract-full').style.display = 'inline'; document.getElementById('1608.04495v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04495v2-abstract-full" style="display: none;"> We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $尾$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04495v2-abstract-full').style.display = 'none'; document.getElementById('1608.04495v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages + supplementary material, published version (PRB Rapid Communications)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 081114(R) (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02916">arXiv:1604.02916</a> <span> [<a href="https://arxiv.org/pdf/1604.02916">pdf</a>, <a href="https://arxiv.org/ps/1604.02916">ps</a>, <a href="https://arxiv.org/format/1604.02916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.024438">10.1103/PhysRevB.94.024438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $渭$SR Insight into the Impurity Problem in Quantum Kagome Antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Klanjsek%2C+M">M. Klanjsek</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02916v2-abstract-short" style="display: inline;"> Impurities, which are inherently present in any real material, may play an important role in the magnetism of frustrated spin systems with spin-liquid ground states. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu$_3$(OH)$_6$SO$_4$ (Zn-brochantite) by means of muon spin spectroscopy. We show that muons couple to the impurity magnetism, originating from Cu-Zn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02916v2-abstract-full').style.display = 'inline'; document.getElementById('1604.02916v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02916v2-abstract-full" style="display: none;"> Impurities, which are inherently present in any real material, may play an important role in the magnetism of frustrated spin systems with spin-liquid ground states. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu$_3$(OH)$_6$SO$_4$ (Zn-brochantite) by means of muon spin spectroscopy. We show that muons couple to the impurity magnetism, originating from Cu-Zn intersite disorder, and that the impurities are highly correlated with the kagome spins, allowing us to probe the intrinsic kagome physics via a Kondo-like effect. The low-temperature plateau in local susceptibility identifies the spin-liquid ground state as being gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and an intriguing field dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02916v2-abstract-full').style.display = 'none'; document.getElementById('1604.02916v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 024438 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01945">arXiv:1602.01945</a> <span> [<a href="https://arxiv.org/pdf/1602.01945">pdf</a>, <a href="https://arxiv.org/ps/1602.01945">ps</a>, <a href="https://arxiv.org/format/1602.01945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.060405">10.1103/PhysRevB.93.060405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Instabilities of Spin-Liquid States in a Quantum Kagome Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gomilsek%2C+M">M. Gomilsek</a>, <a href="/search/cond-mat?searchtype=author&query=Klanjsek%2C+M">M. Klanjsek</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Coomer%2C+F+C">F. C. Coomer</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01945v2-abstract-short" style="display: inline;"> The emergent behavior of spin liquids that are born out of geometrical frustration makes them an intriguing state of matter. We show that in the quantum kagome antiferromagnet ZnCu$_3$(OH)$_6$SO$_4$ several different correlated, yet fluctuating states exist. By combining complementary local-probe techniques with neutron scattering, we discover a crossover from a critical regime into a gapless spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01945v2-abstract-full').style.display = 'inline'; document.getElementById('1602.01945v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01945v2-abstract-full" style="display: none;"> The emergent behavior of spin liquids that are born out of geometrical frustration makes them an intriguing state of matter. We show that in the quantum kagome antiferromagnet ZnCu$_3$(OH)$_6$SO$_4$ several different correlated, yet fluctuating states exist. By combining complementary local-probe techniques with neutron scattering, we discover a crossover from a critical regime into a gapless spin-liquid phase with decreasing temperature. An additional unconventional instability of the latter phase leads to a second, distinct spin-liquid state that is stabilized at the lowest temperatures. We advance such complex behavior as a feature common to different frustrated quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01945v2-abstract-full').style.display = 'none'; document.getElementById('1602.01945v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 060405 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02938">arXiv:1501.02938</a> <span> [<a href="https://arxiv.org/pdf/1501.02938">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep07703">10.1038/srep07703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zorko%2C+A">A. Zorko</a>, <a href="/search/cond-mat?searchtype=author&query=Pregelj%2C+M">M. Pregelj</a>, <a href="/search/cond-mat?searchtype=author&query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Jagli%C4%8Di%C4%87%2C+Z">Z. Jagli膷i膰</a>, <a href="/search/cond-mat?searchtype=author&query=Paji%C4%87%2C+D">D. Paji膰</a>, <a href="/search/cond-mat?searchtype=author&query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&query=Ar%C4%8Don%2C+I">I. Ar膷on</a>, <a href="/search/cond-mat?searchtype=author&query=Mikulska%2C+I">I. Mikulska</a>, <a href="/search/cond-mat?searchtype=author&query=Valant%2C+M">M. Valant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02938v1-abstract-short" style="display: inline;"> Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO$_{3-未}$, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02938v1-abstract-full').style.display = 'inline'; document.getElementById('1501.02938v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02938v1-abstract-full" style="display: none;"> Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO$_{3-未}$, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO$_{3-未}$ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02938v1-abstract-full').style.display = 'none'; document.getElementById('1501.02938v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version equivalent to the one published in Scientific Reports, freely available at http://www.nature.com/srep/2015/150109/srep07703/full/srep07703.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 5, 7703 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>